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Abstract. The impact of droughts on vegetation is essentially manifested as the transition of water shortage from the 

meteorological to ecological stages. Therefore, understanding the mechanism of drought propagation from meteorological to 10 

ecological drought is crucial for ecological conservation. This study proposes a method for calculating the probability of 

meteorological drought to trigger ecological drought at different magnitudes in Northwestern China. In this approach, 

meteorological and ecological drought events during 1982–2020 are identified using the three-dimensional identification 

method; the propagated drought events are extracted according to a certain spatio-temporal overlap rule; and propagation 

probability is calculated by coupling the machine learning model and C-vine copula. The results indicate that: (1) 46 drought 15 

events are successfully paired by 130 meteorological and 184 ecological drought events during 1982–2020; ecological drought 

exhibits a longer duration, but smaller affected area and severity than meteorological drought; (2) Quadratic Discriminant 

Analysis (QDA) classifier performs the best among the 11 commonly used machine learning models which are combined with 

four-dimensional C-vine copula to construct drought propagation probability model; (3) the hybrid method considers more 

drought characteristics and more detailed propagation process which addresses the limited applicability of the traditional 20 

method to regions with large spatial extent. 

1 Introduction 

Drought is a multivariable and complex natural hazard with the characteristics of slow evolution, wide impact, and spatial 

extent (Feng et al., 2021; Wu et al., 2021; Zhang et al., 2021a; Zhang et al., 2021b). Conventionally, drought can be classified 

into meteorological drought, hydrological drought, agricultural drought, and socioeconomic drought. It is commonly accepted 25 

that all types of drought originate from meteorological drought (Mishra and Singh, 2010). Crausbay et al (2017) argued that 

existing drought types are described through a “human-centric” lens to characterize a range of effects generated by 

meteorological drought. This implies that the response of the ecosystem to drought is generally ignored in policy development, 

which in turn elicits water use conflicts between humans and ecosystems (Zhang et al., 2021c). Ecological Drought Working 

Group of Science for Nature and People Partnership (SNAPP) proposed a framework of ecological drought from an “ecology-30 

centric” lens, which incorporates ecological, meteorological, and hydrological information (Crausbay et al., 2017). Ecological 
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drought was thus defined as an episodic deficit in water availability that drives ecosystems beyond thresholds of resilience into 

a vulnerable state, impacts ecosystem services, and triggers feedback in natural and/or human systems (Bradford et al., 2020; 

Crausbay et al., 2017; McEvoy et al., 2018; Munson et al., 2021; Raheem et al., 2019). 

Vegetation is among the most important components in terrestrial ecosystems, and the distribution and growth of vegetation 35 

are largely influenced by meteorological factors (Wang et al., 2021; Zeng et al., 2020; Zhang et al., 2021d). Developments in 

remote sensing technology have facilitated the application of vegetation indices to reflect the response of vegetation to climate 

change (Lawal et al., 2021). For example, a simple linear relationship was found between the standardized precipitation 

evapotranspiration index (SPEI) and normalized difference vegetation index (NDVI) at the global scale (Vicente-Serrano et 

al., 2012). The correlation between SPEI and NDVI showed a positive relationship in most regions of northwestern China 40 

(NWC), with the exception of a few regions such as the western parts of the Tarim Basin, Qaidam Basin, and southeastern part 

of the area (Jiang et al., 2018). Actually, the impact of drought on vegetation is manifested as the transition of water shortage 

from the meteorological stage to the ecological stage. Therefore, this impact should be analyzed by quantifying the effect of 

decreasing precipitation on the variation of available ecological water, i.e., from the perspective of drought propagation.  

Drought propagation refers to the transition of one drought type to another, and it is vital for drought monitoring and prediction 45 

(Fang et al., 2020; Warter et al., 2021). Accordingly, drought propagation has become a hot topic in meteorology and hydrology 

fields (Apurv et al., 2017; Guo et al., 2020). Approaches to drought propagation analysis are broadly divided into model 

simulations and statistical methods (Han et al., 2019). In the former approach, hydrological responses to meteorological 

drought are analyzed by using physical based models that are considered to be effective in representing relevant hydrological 

processes (Yu et al., 1999). Nevertheless, this approach involves labor-intensive calibration processes and is not suitable at 50 

large spatial scales (Huang et al., 2017). In contrast, statistical methods with fewer assumptions are easier to use at different 

spatial scales (Huang et al., 2017). However, in such methods, the propagation process was analyzed using the time series of 

an average value of drought index in a region or subregion (explained in the Discussion section). In other words, the temporal 

connection between two drought types is was only considered in the traditional statistical methods, but their spatial overlap is 

ignored, which may result in the miscalculation of drought propagation in regions with large spatial extent. 55 

The probability information of one type of successive drought events is contained in another type of associated drought (Wu 

et al., 2021). Therefore, a number of studies have attempted to assess the propagation relationships between the two drought 

types based on the probabilistic method. A Bayesian network is a probabilistic model that acquires probabilistic inferences 

over interacting variables of interest based on a graphical structure. Therefore, this method has been proven to be suitable for 

quantifying the probability relationship between different drought types (Ayantobo et al., 2018; Chang et al., 2016; Das et al., 60 

2020). For example, Guo et al. (2020) calculated the occurrence probability of hydrological drought based on different intervals 

of duration and severities of meteorological drought. Sattar et al (2019) identified the occurrence probability of different classes 

and lag times of hydrological drought according to the intensity of meteorological drought. Xu et al. (2021) found that the 

probability of agricultural drought severity increased synchronously with meteorological drought in different regions of China. 

Jehanzaib et al. (2020) concluded that in the Korean Peninsula, the probability of meteorological drought propagating into 65 
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hydrological drought increased significantly under climate change. In general, these studies primarily focused on the 

relationship between duration and severity between the two drought types but ignored the relationships among affected areas. 

Xu et al. (2015a) found that the probability of drought occurrence would be underestimated if drought affected areas are not 

considered. Therefore, the traditional probabilistic model of drought propagation can be improved by introducing the three-

dimensional clustering method, which would provide more drought information (Liu et al., 2019). 70 

Taking a typically ecological fragile region, Northwestern China (NWC), as an example, the motivation of this study is to 

identify meteorological drought and ecological drought during 1982–2020 in the NWC from a three-dimensional perspective, 

and propose a novel method to investigate the response probability of ecological drought to meteorological drought. The 

remainder of the current paper is organized as follows: Section 2 briefly overviews the geographic information of NWC and 

describes the datasets used in this paper, and the procedure for estimating propagation probability from meteorological to 75 

ecological drought. The results and the comprehensive analysis of the proposed approach are presented in section 3 and 4, 

respectively. Finally, the conclusions are given in section 5. 

2 Materials and methods 

2.1 Study area 

Northwestern China (NWC; 31°35´N–49°15´N, 73°25´E–111°15´E) includes the provinces of Shaanxi, Gansu, Qinghai, and the 80 

Autonomous Regions of Xinjiang Uyghur and Ningxia Hui, covering a total surface area of 3.1 million km2 (Figure 1) (Zheng 

et al., 2021). The terrain of NWC constitutes mountains, basins, and the Gobi. The altitude ranges from –156 m to 6647 m, 

showing the characteristics of “west high and east low”. Four climatic divisions, including humid, semi-humid, semi-arid, and 

arid areas were demarcated, based on the dryness index (Zhang et al., 2021d). As NWC is located at upstream of the Yangtze, 

Yellow, and other large rivers, it is significant to study the impact of drought on its ecosystem (Liu et al., 2021). 85 

2.2 Datasets 

Monthly meteorological data, including surface reflectance, temperature, relative humidity, atmospheric pressure, downward 

shortwave radiation, wind speed, and longwave radiation, was obtained from the ERA5-land reanalysis dataset 

(https://cds.climate.copernicus.eu) issued by the European Centre for Medium-Range Weather Forecasts (ECWMF), which 

has a spatial resolution of 0.1° × 0.1° and covers the period of 1981–2021. Root soil moisture data were obtained from the 90 

hydrological dataset, simulated by the Noah model of the Global Land Data Assimilation System (GLDAS, 0.25°×0.25°; 

https://ldas.gsfc.nasa.gov/gldas), covering the period of 1948–2021. NDVI data covering the period 1981–2021 were obtained 

from the National Centers for Environmental Information (NCEI) (https://www.ncei.noaa.gov/), with a spatial resolution of 

0.05° × 0.05°. Land use type data (LUTD) with a spatial resolution 1 km was downloaded from China’s multi-period land 

use/cover change monitoring dataset (http://www.resdc.cn); it includes the years of 1980, 1990, 1995, 2000, 2005, 2010, 2015, 95 
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2018, and 2020. In order to uniform the spatial resolution of root soil moisture, all spatial datasets were resampled to 0.25°×0.25° 

using the bilinear interpolation method. The temporal range of all datasets was extracted from January 1982 to December 2020. 

2.3 Meteorological and ecological drought index 

Previous studies found that the standardized precipitation evaporation index (SPEI) overestimated the meteorological drought 

in NWC where actual atmospheric water demand is determined by precipitation variation (Ayantobo and Wei, 2019; Zhang et 100 

al., 2019a; Zhang et al., 2021b). Additionally, precipitation is the main water resources for vegetation growth in most regions 

of NWC due to the great depth to groundwater (Cao et al., 2021). Standardized precipitation index (SPI) was thus used in the 

current study to represent meteorological drought. SPI at different time scales was calculated by aggregating n-month moving 

sums, allowing the identification of various drought types (McKee et al., 1993). At short time scales, drought events are 

characterized by high frequency and short duration, while at long time scales, they have longer duration and lower frequency. 105 

SPI–3 has been reported to be highly representative of the impacts of meteorological conditions on vegetation as vegetation 

variation is sensitive to precipitation accumulated over three months (McKee et al., 1993; Vicente-Serrano et al., 2012; 

Vicente-Serrano et al., 2010). Therefore, SPI-3 was used to characterize meteorological drought in this study. Further details 

on SPI calculation are available in McKee et al (1993). 

Commonly used drought indices indirectly reflect the influence of drought on ecosystems, and they do not comprehensively 110 

reflect the homeostasis between ecological water consumption and requirement in drought evolution (Jiang et al., 2021). 

Additionally, decreases in vegetation coverage are not only caused by a persistent deficit in available water for ecosystems but 

also other aspects, such as wildfire, hail, flood, and human activities (Bento et al., 2020). This limited the ability of vegetation 

indices to reflect drought conditions. Therefore, a new drought index, the standardized ecological water deficit index (SEWDI), 

was constructed to monitor terrestrial ecological drought in our previous study (Jiang et al., 2021). SEWDI follows a similar 115 

procedure as SPI, which includes the calculation of ecological water deficit (EWD), the selection of an optimal distribution 

for fitting monthly EWD series, and the inverse normal transformation of the cumulative density distribution of EWD. EWD 

is the difference between ecological water requirement (EWR) and ecological water consumption (EWC) (Chi et al., 2018; 

Jiang et al., 2021). Among them, EWR was calculated using the single crop coefficient method recommended by the Food and 

Agriculture Organization (FAO). EWC equals the actual evapotranspiration, which is derived from latent heat fluxes calculated 120 

by the surface energy balance system (SEBS) algorithm. Therefore, SEWDI can reflect the dynamics of energy and water 

balance under human activities and climate change. Additionally, the standardization method facilitates the same threshold 

and evaluation criteria in monitoring two drought types (Peng et al., 2019; Zang et al., 2020), which reduces the influence of 

other algorithms on final results and guarantees spatio-temporal comparability (Liu et al., 2017). The procedure in calculating 

SEWDI calculation is detailed in Jiang et al (2021). 125 
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2.4 Drought propagation probability method 

Since a reliable understanding of the drought propagation process is beneficial for drought forecasting, research interest in the 

probability of drought propagation from meteorological droughts to other types of droughts has been increasing (Zhou et al., 

2021). The current study thus proposed a novel method coupling spatial and temporal connection method of two type droughts, 

with machine learning model, and C-vine copula to investigate the relationship between meteorological and ecological drought. 130 

A flow diagram of the method is depicted in Figure 2. 

Investigating the relationship between the characteristics of the two drought types is key to constructing a probability model. 

The approach is summarized in three steps as follows: 

Step 1: Meteorological and ecological drought events were identified from a three-dimensional perspective, respectively 

(Section 2.4.1).  135 

Step2: The two drought types with a genetic relationship were paired on the basis of a certain spatio-temporal matching rule. 

Their drought characteristics, including drought affected area, drought severity, and drought duration, were calculated 

according to the method described in Section 2.4.2. 

Step 3: Taking the characteristics of meteorological drought extracted in step 2 as inputs, and propagation results as outputs, 

the optimal model was selected from 11 machine learning classification models to calculate the propagated probability (P1) of 140 

meteorological drought (Section 2.4.3). Then, a conditional probability model of the paired meteorological and ecological 

drought events was constructed based on the C-vine copula (Section 2.4.4). According to the severities of all identified 

ecological drought events, cumulative probabilities of 0.5, 0.75, and 0.9 were selected to demarcate moderate, severe, and 

extreme drought, respectively (Guo et al., 2020). The probabilities of ecological drought at different magnitudes triggered by 

meteorological drought were obtained by multiplying P1 with their conditional probability 145 

2.4.1 Drought identification based on the three-dimensional clustering method 

According to Andreadis et al (2005), the evolution of a drought event should be viewed as a spatio-temporal continuum 

(longitude, latitude, and time). Different from the traditional one- or two-dimensional drought identification method, the three-

dimensional array of SPI-3 and SEWDI-3 were extracted to characterize the degree of meteorological and ecological droughts. 

The extraction procedure involves two steps (Figure 2) (Andreadis et al., 2005; Xu et al., 2015a; Xu et al., 2015b): firstly, the 150 

clustering method was used to identify drought patches in each month; secondly, the drought continuum was constructed by 

selecting the overlapping areas of drought patches between two adjacent months, which was greater than 1.6% of the total area 

(See Section 3.1 for the reason). 

For each drought event, three drought characteristics were extracted as follows: (1) affected area was calculated by cumulating 

the area affected by drought in each month during the entire drought period. (2) Duration denotes the time of a drought event 155 

persisted. (3) Severity is a cumulative value of SEWDI-3 or SPI-3 for the entire drought duration and areal extent, and equals 

the volume of the three-dimensional continuum. 
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2.4.2 Spatio-temporal connection of two drought types 

Liu et al (2019) developed a new method for identifying the propagation between two related drought types based on the 

drought identification method from a three-dimensional perspective. The current study employed this method to identify the 160 

propagation from meteorological to ecological drought. The key to this method is the determination of the temporal and spatial 

connection between two drought types. The specific steps are as follows. 

Firstly, the identified meteorological and ecological drought events are sorted in chronological order. Secondly, whether the 

two drought types overlap in time is judged according to Eq. (1)–Eq. (2). 

                                                                (1) 165 

                                                                                                                                                         (2) 

where 1 and 0 denote the existence and absence of time overlap between two drought types, respectively; MBTi and EBTj 

represent the beginning time of the i-th meteorological and j-th ecological drought events, respectively. Similarly, METi and 

EETj represent the end time of the i-th meteorological and j-th ecological drought events, respectively; MDDi and EDDj indicate 

the duration of the i-th meteorological and j-th ecological drought events, respectively. 170 

Thirdly, whether the meteorological and ecological drought patches connecting at a spatial scale is judged according to Eq. (3) 

and Eq. (4) 

                                                                                                                                          (3) 

                                                                                                                          (4) 

where 1 and 0 denote the existence and absence of spatial overlap between two drought types; ANWC represents the total area 175 

of the NWC; MDAi and EDAj represent the projected area of the i-th meteorological and j-th ecological drought events, 

respectively. b is set as 15% in the current study (See Section 3.1 for the reason). 

Fourthly, successfully matched drought events are encoded following chronological order. Cells in Figure 2 represent the 

relationship between preliminarily identified events of the two drought types. The propagation type from meteorological to 

ecological drought can be classified into four categories: one ecological drought event induced by one meteorological drought 180 

event (one–to–one), multiple ecological drought events induced by one meteorological drought event (one–to–many), one 

ecological drought event induced by multiple meteorological drought events (many–to–one), and multiple ecological drought 

events induced by multiple meteorological drought events (many–to–many).The codes of cells are identical if the propagation 

type belong to one–to–many, many–to–one, and many–to–many. 
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Finally, the characteristics of meteorological and ecological drought events that belong to the same paired drought event are 185 

integrated, respectively. Among them, total duration is the difference between the latest-ending and earliest-starting drought 

events; total affected area is the projected area of all individual drought events; total severity is the sum of severities of 

individual drought events. 

2.4.3 Drought propagation identification based on the machine learning model 

The purpose of this part is to identify whether a meteorological drought event has the potential to trigger ecological drought. 190 

Eleven commonly used machine learning classification models, including the k-neighbors classifier (KN) (Parzen, 1962), 

support vector machine (SVM) classifier (Ben-Hur et al., 2000), Gaussian Process (GP) classifier (Chen et al., 2020), Decision 

Tree (DT) classifier (Quinlan, 1986), Multi-layer Perceptron (MP) classifier (Cybenko, 1989), AdaBoost (AB) classifier 

(Freund and Schapire, 1997), Gaussian Naïve Bayes (GNB) (Chan T.F., 1982 ), Quadratic Discriminant Analysis (QDA) 

(Cover, 1965), Gradient Boosting (GB) classifier (Friedman, 2001), XGBoost (XGB) classifier (Chen and Guestrin, 2016), 195 

and Random Forest (RF) classifier (Pal, 2005), were employed for propagation judgment. Drought duration, severity, and 

affected area of meteorological drought were set as the model inputs (Figure 2). 1 and 0 were set as model target which 

represents propagation occurrence and non-occurrence, respectively. In this study, each binary classifier was constructed using 

a Python package called PyCaret, which wraps several machine-learning libraries, including scikit-learn, XGBoost, LightGBM, 

CatBoost, spaCy, Optuna, and Hyperopt(Ali, 2020). The tune_model() function in the PyCaret package offers simple selection 200 

of optimal hyperparameters of each model. A 5-fold cross-validation was used to train and validate the classifiers in each 

model by setting "fold=5" in the create_model() function. In using the compare_models() function, the classifier with the 

highest summation of accuracy, precision, recall, F1 score, and Matthews correlation coefficient was selected as the optimal 

model. To avoid overfitting and maintain high calculation efficiency, the L2 regularization method was selected for each model 

by setting the parameter "penalty='l2'". 205 

                                                                                                                                                (5) 

                                                                                                                                                                             (6) 

                                                                                                                                                                                                                              (7) 

                                                                                                                                                                     (8) 

                                                                                                                                        (9) 210 
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2.4.4 Drought propagation probability model based on C-vine copula 

Five univariate distributions, including Johnson S_B (Soukissian, 2013), Gamma (THOM, 1958), Exponential (Marshall and 

Olkin, 1967), Pearson III (Wallis and Wood, 1985), and Weibull distribution (Thoman et al., 1969), were used to fit affected 215 

area, duration, and severity of meteorological drought and severity of ecological drought. The optimal distribution was selected 

according to the goodness of fit (GOF), which was estimated with the Kolmogorov–Smirnov (KS) test (Marsaglia et al., 2003) 

and Root Mean Square Error (RMSE).  

Commonly used Copulas, including elliptical Copula (Gaussian) and four Archimedean Copulas (Clayton, Gumbel, Frank, 

and Joe), were used to join two marginal distributions (Chang et al., 2016). The GOF of these Copulas was estimated with 220 

RMSE and Cramer-von Mises (CvM) test (Genest et al., 2009). 

The Vine copula function is an effective tool for integrating different bivariate distributions and calculating the conditional 

probability of multiple variables (Ni et al., 2020). In a vine copula, an n-dimensional multivariate density is decomposed into 

n(n−1)/2 bivariate copula densities and arranged into n-1 trees. Among numerous vine Copula structures, the C-vine copula 

has a relatively simple structure and good robustness for constructing multivariate distributions (Wu et al., 2021). Therefore, 225 

it was of primary significance to this study. The GOF of C-vine Copulas was estimated with RMSE and CvM test. The joint 

density function of an n-dimensional C-vine Copula is expressed as Equation (10). 

                           (10) 

where f(x1,...,xn) represents the joint density function. c represents bivariate Copula densities, which includes Gumbel, Gaussian, 

Frank, and Clayton Copula functions; F represents cumulative distribution function of marginal distribution. i and j represent 230 

root nodes. More detailed information about the n-dimensional C-vine copula can be referred to Wu et al (2021). By this means, 

the conditional probabilities of ecological drought at different magnitudes under impacts of meteorological drought are 

calculated using Equation (11). 

                                 (11) 
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where D, A, and S represent duration, area, and severity of propagated meteorological drought, respectively; X represents 235 

ecological drought at moderate, severe, and extreme magnitudes, which equals the cumulative probability of 0.5, 0.7, and 0.9, 

respectively. C represents the cumulative distribution function of the joint distribution. 

3 Results 

3.1 Threshold selection 

Determining overlapping areas of drought patches between two adjacent months is critical in the identification of drought 240 

events from a three-dimensional perspective. Sheffield et al (2009) used 500,000 km2 as the area threshold in global scales. 

For mainland China, 150,000 km2 was used as the area threshold in some studies (Wang et al., 2011; Xu et al., 2015b). Liu et 

al (2019) took 1.5% of the total area as the threshold in the Loess Plateau. To determine an optimal area threshold, the number 

of meteorological and ecological drought events as well as the ratio of minor drought events were calculated under different 

area thresholds, respectively. Here, a minor drought is defined as a drought event with 2 months duration and average 245 

SPI/SEWDI larger than -1. As shown in Figure 3, 1328 and 2305 meteorological and ecological drought events were identified 

with an area threshold of 0.48% of the total area of the NWC, and the proportions of minor drought events were 44% and 32%, 

respectively. The number of drought events and the proportion of minor drought events decreased with increasing area 

threshold. However, this trend gradually stabilized when the area threshold was set to be larger than 1.6% of the total area of 

the NWC, indicating that most minor drought events with the relatively small area were excluded. Therefore, 1.6% of the total 250 

area of the NWC was used as the area threshold in this study. 

Similarly, the sensitivity of b in Eq.(4) for matching two drought types was tested. The binding mode of absolute and relative 

thresholds was employed to extract spatial intersection. b is set as 10%, 15%, 30%, 50%, 70%, and 90% to match two drought 

types. Although some of the successful matching drought events may be merged into one drought event under larger b, the 

number of successful matching drought events showed little difference under different b (Table 1). In the current study, b =15% 255 

was set because the most paired drought events could be identified for fitting machine learning models and C-vine copula. 

3.2 Top ten meteorological and ecological drought events according to drought severity 

A total of 130 meteorological drought events were identified based on SPI-3 from a three-dimensional perspective. The first 

ten meteorological drought events in terms of severity in NWC during 1982–2020 are shown in Table 2. Meteorological 

drought events with longer duration exhibited relatively larger affected area, were mainly concentrated between 1982 and 2000. 260 

Zou et al (2005) estimated meteorological droughts with the Palmer drought severity index (PDSI) from 1951 to 2003 in China 

and found that most parts of NWC experienced severe droughts during 1997–2003, which is similar to the results of this study. 

As shown in Table 2, two of ten meteorological drought events occurred during this period. Moreover, according to the 

historical record, Xinjiang and Gansu experienced severe meteorological drought during 1985–1986 (Zhang et al., 2019b). 
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The three-dimensional identification method could sensitively capture these events. Event No.9 started from southern Gansu 265 

in August 1985 and ended in May 1987, and ranked 1st. 

A total of 184 ecological drought events during 1982–2020 were identified using the three-dimensional identification method. 

Table 3 lists the top ten ecological drought events in terms of severity. The most severe ecological drought event started in 

April 1982 and originated from central Gansu, which was induced by the persistent meteorological drought No.0 and No.3. 

Compared with the characteristics of meteorological droughts, ecological droughts showed longer duration and smaller 270 

affected area. This reveals that a longer recovery time is required for the mitigation of ecological droughts. 

3.3 Identifying propagation from meteorological to ecological drought 

A total of 46 paired drought events were successfully matched based on the spatio-temporal connection criterion. As shown in 

Figure 4, points representing paired drought events were mainly distributed along a diagonal, illustrating a relatively high 

consistency between the two types of droughts on the temporal scale. The number of one–to–one, many–to–one, one–to–many, 275 

and many–to–many were 8, 8, 4, and 26, accounting for 17.4 %, 17.4 %, 8.7 %, and, 56.5 % of the total number of paired 

drought events, respectively. Meteorological drought of OMT type showed a longer duration, a larger affected area, and a 

greater severity than ecological drought. However, this is contrary to type MTO. Simultaneously, ecological drought of type 

MTO showed a longer duration, a larger affected area, and a greater severity than those of type OTM (Figure 5). 

Paired drought event No.36, comprising meteorological drought event No.87 and ecological drought event No.127, was taken 280 

as an example to show their spatio-temporal continuums (Figure 6). The affected area of meteorological and ecological drought 

in each month was extracted to show their temporal variation. Meteorological drought No.87 (Figure 6a) started two months 

ahead of ecological drought (Figure 6b), and its effects lasted for two months. It is noteworthy that the most severe 

meteorological and ecological droughts mainly occurred in central Xinjiang. The affected area and severity of meteorological 

drought event No.87 and ecological drought event No.127 maintained a similar trend of increase–decrease (Figure 7). Among 285 

them, the peaks of the meteorological drought event appeared two months ahead (December 2007) that of the ecological 

drought (February 2008). In terms of drought trajectory (Figure 8), they all originated from the Yili Basins and showed a 

counterclockwise shift. 

3.4 Propagation probability from meteorological to ecological drought 

To estimate the propagated potential of meteorological drought, 11 commonly used machine learning models were trained 290 

based on characteristics of 81 integrated meteorological drought events. As can be seen in Figure 9 propagated meteorological 

droughts have greater severity, larger affected area, and longer duration than non-propagated droughts. Table 4 lists the 

evaluation results of five-fold cross-validations, including accuracy, precision, recall, F1 Score, and MCC metrics. The closer 

these values are to 1, the higher precision of the model. Therefore, the five metrics were summed to compare the performances 

of the 11 models. Most models showed good performance except for Gaussian Process and Multi-layer Perceptron. The QDA 295 
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classifier with maximum total value was chosen as the best model to identify the propagation potential of meteorological 

drought. 

The reliability of copula function is highly dependent on the dependence between two variables, which was measured by 

Kendall’s τ and Spearman’s ρ (Chang et al., 2016; Feng et al., 2021). The τ and ρ between affected area (M_Area), duration 

(M_Duration), severity (M_Severity) of meteorological drought, and severity of ecological drought (E_Severity) both reached 300 

significance at 0.01 level (Table S.1-S.2). The optimal marginal distributions of M_Area, M_Duration, M_Severity, and 

E_Severity are listed in Table 5. All the distributions passed the KS test and their RMSE was small. Similarly, the parameters 

of bivariate distribution were estimated using the itau method. The Copula estimation can be eased by the itau method, which 

inverts Kendall's tau method (Demarta and McNeil, 2005). CvM test and RMSE were used to evaluate their goodness of fit 

(Table 6). The selected bivariate copulas also demonstrated a well applicability. In the end, the C-vine copula was constructed 305 

centered on E_Severity. The CvM test, RMSE (Table 7), and P–P plots (Fig. S.1) indicated that the distribution can be used in 

probability analysis. The copula structure of M_Area-M_Duration-M_Severity-E_Severity was shown in Table 7. 

Conditional probability is helpful in providing valuable information for the effective allocation of water resources under a 

certain drought level (Guo et al., 2020). In the current study, the occurrence probabilities of ecological drought at different 

levels were determined according to the characteristics of meteorological drought (Figure 10). For example, the occurrence 310 

probabilities of moderate, severe, and extreme ecological drought events were 80%, 63%, 14.7%, respectively, when M_DA > 

17.6×105 km2 ∩ M_DD > 11.8 month ∩ M_DS > 7.5×106 month·km2. Furthermore, the occurrence probability was found to 

increase more rapidly with increasing M_DS and M_DD compared with M_DA, indicating that the duration and severity of 

meteorological drought had stronger effects on ecological drought than affected area. Additionally, meteorological drought 

events with a duration of two months but great severity has a high potential to trigger ecological drought. This may be 315 

attributable to water shortage induced by meteorological droughts with extremely high intensity (intensity is the drought 

severity divided by the product of drought duration and affected area). 

For comparison, ternary linear and ternary quadratic models were constructed based on 46 pairs of meteorological-ecological 

drought events (Table 8). The comparisons were made in terms of three independent variables, M_DS, M_DD, and M_DA, 

and one dependent variable, E_DS. As shown in Table 8, the R2 of the ternary quadratic model was evidently higher than that 320 

of the ternary linear model, whereas the RMSE, AIC, and BIC were lower. This illustrates that M_DS, M_DD, M_DA, and 

E_DS follow a nonlinear relationship, and that the ternary quadratic model is more suitable for simulating their relationship. 

According to the ternary quadratic model, E_DS equals 1.4×106 month·km2 when M_DA > 17.6×105 km2 ∩ M_DD > 11.8 

month ∩ M_DS > 7.5×106 month·km2. These values correspond to the thresholds of moderate (1.7×106 month·km2), severe 

(2.4×106 month·km2), and extreme (4.6×106 month·km2) ecological drought. 325 
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4 Discussion 

4.1 Advantages of the proposed approach 

Many studies have linked meteorological drought to hydrological drought at different time scales (Ding et al., 2021; Fang et 

al., 2020; Feng and Su, 2020; Han et al., 2019; Huang et al., 2017; Ma et al., 2019). In these studies, propagated drought events 

were identified on the basis of the time series between two drought types, and they focused on their lagging, attenuation, 330 

lengthening, and pooling (Figure 11a). The spatial and temporal drought propagation identification method used in the current 

study not only preserved the characteristics identified by the low dimensional method, but also considered the spatial overlap 

of two drought types (Figure 11b). Using this method, two types of drought events without spatial connection would be 

excluded (only 103 out of 184 ecological drought events were induced by 81 out of 108 meteorological drought events), and 

more drought characteristics, such as affected area, and migration path could be extracted. This addresses the limited 335 

applicability of the traditional method to regions with large spatial extent, and provides more reliable information for 

quantifying the relationship between characteristics of meteorological drought and ecological drought. Additionally, we 

improved the method for calculating the affected area and duration of paired drought events developed by Liu et al (2019), 

represented by a simple sum of characteristics of multiple drought events. However, this method overestimates the duration 

and affected area of some paired drought events, which is inconsistent with the real situation. In this study, the enhanced 340 

method could reflect the characteristics of paired drought during the propagation process more accurately. 

The conditional probability model was constructed based on paired meteorological and ecological drought events; it is not 

suitable for calculating the probability of ecological drought at different levels according to meteorological drought events 

without propagation potential. For example, the probability of moderate ecological drought was 63.3% if the characteristics of 

meteorological drought event No.122 (M_Area=5.1×105 km2, M_Duration=6 month, M_Severity=1.89×106 month·km2) was 345 

directly input to the conditional probability model. In reality, this meteorological drought event did not trigger ecological 

drought. The QDA model added before the C-vine copula was used to address this issue, which could estimate the propagation 

potential of the corresponding meteorological drought. After this modification, the probability of the propagation of 

meteorological drought event No.122 to moderate ecological drought changed to 24.8%. 

4.2 Uncertainty of the model and its improvement measures 350 

QDA model could well simulate the propagation potential of most meteorological drought events (Table 4). However, some 

errors occurred in humid southern Shaanxi. For example, meteorological drought event No. 22 showed the potential to trigger 

ecological droughts, which were incorrectly classified as propagation occurrence. This could be attributed to the compensation 

of rich water resources for short-term ecological water deficit. Additionally, this paper provides a method for estimating the 

occurrence probability of ecological drought under the condition of a certain precipitation deficit. The effects of human 355 

activities and climate change on ecological drought were not distinguished in the current study. The proposed method may not 

be accurate for regions with complex water supply systems and strong anthropogenic impacts on vegetation growth. 
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To improve the accuracy of the method, future studies should consider the non-consistence of ecological drought to quantify 

the impacts of human activities on drought propagation. Moreover, SPI can be replaced by PDSI or scPDSI to represent 

meteorological drought through which multiple water balance processes are considered to analyze their relationship with 360 

ecological drought (Altunkaynak and Jalilzadnezamabad, 2021). However, such modification may lead new problem 

associated with spatio-temporal incomparability. Nevertheless, this approach is worth applying in the ecological drought 

warning. For example, when a meteorological drought event occurs, its characteristics can be applied as input to the tuned 

model to estimate propagation probability from meteorological to ecological drought in different degrees. 

5. Conclusions 365 

This study proposed a method in identifying the propagation probability of meteorological drought events to trigger ecological 

drought in different magnitudes. Taking NWC as an example, 130 meteorological drought and 185 ecological drought events 

during 1982–2020 were extracted using the three-dimensional identification method. Compared with meteorological drought, 

ecological drought events exhibited longer duration, but smaller affected area and severity, suggesting that a longer recovery 

time is required for mitigating ecological drought.  370 

A total of 46 drought events were successfully matched according to a certain spatio-temporal connection principle. The paired 

drought events were divided into four categories, including one-to-one, many-to-one, one-to-many, and many-to-many. The 

four categories accounted for 17.4 %, 17.4 %, 8.7 %, and 56.5 % of the total number of paired drought events, respectively. 

Then, a drought propagation probability model was constructed by coupling QDA and C-vine copula. Compared with the 

traditional propagation probability model, the proposed model intuitively provides more objective probabilities of ecological 375 

drought at different magnitudes. 

The current study certainly provides a more robust method for estimating propagation probability from meteorological to 

ecological drought in similar ecologically fragile regions. 

Data availability 

Monthly meteorological data, including surface reflectance, temperature, relative humidity, atmospheric pressure, downward 380 

shortwave radiation, wind speed, and longwave radiation, was obtained from the ERA5-land reanalysis dataset 

(https://cds.climate.copernicus.eu) issued by the European Centre for Medium-Range Weather Forecasts (ECWMF), which 

has a spatial resolution of 0.1° × 0.1° and covers the period of 1981–2021. Root soil moisture data were obtained from the 

hydrological dataset, simulated by the Noah model of the Global Land Data Assimilation System (GLDAS, 0.25°×0.25°; 

https://ldas.gsfc.nasa.gov/gldas), covering the period of 1948–2021. NDVI data covering the period 1981–2021 were obtained 385 

from the National Centers for Environmental Information (NCEI) (https://www.ncei.noaa.gov/), with a spatial resolution of 

0.05° × 0.05°. Land use type data (LUTD) with a spatial resolution 1 km was downloaded from China’s multi-period land 
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use/cover change monitoring dataset (http://www.resdc.cn); it includes the years of 1980, 1990, 1995, 2000, 2005, 2010, 2015, 

2018, and 2020. 
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Figure 1: Elevation and four divisions of northwestern China. 595 
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Figure 2: A schematic diagram illustrating the procedure of the drought propagation identification method. 
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Figure 3: Sensitivity test of overlapping areas of drought patches between two adjacent months. 600 



23 
 

 
Figure 4: Identification results of paired meteorological and ecological drought events. 
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Figure 5. A box plot showing the intensity, duration, and affected area of paired meteorological-ecological drought among different 605 
types 
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Figure 6: Spatio-temporal continuums of (a) meteorological drought event No. 87 and (b) ecological drought event No. 127. 

 610 
Figure 7: Temporal evolution of DS and DA of (a) meteorological drought event No. 87 and (b) ecological drought event No. 127. 
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Figure 8: Cumulative SPI/SEWDI and migration trajectory of (a) meteorological drought event No.87 and (b) ecological drought 
event No.127. 

 615 
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Figure 9: Three-dimensional diagram showing characteristics of meteorological drought events. Larger circles indicate greater 
severity. 

 
Figure 10: Conditional probability of ecological drought at (a) extreme, (b) severe, and (c) moderate levels, given that characteristics 620 
of meteorological drought exceed a certain value. 
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Figure 11: Conceptual graph depicting (a) traditional and (b) spatial and temporal connectivity rule of two drought types. 

 
Table 1 Sensitivity test of parameter b 625 

Threshold Number of paired 
drought events 

min(AMi,AHj)*90% 23 

min(AMi,AHj)*70% 32 
min(AMi,AHj)*50% 36 
min(AMi,AHj)*30% 39 
min(AMi,AHj)*15% 46 
min(AMi,AHj)*10% 46 

 
Table 2 Top ten meteorological drought events according to severity 

No. Affected area 
(km2) 

Duration 
(month) 

Severity 
(month・km2) 

Start time 
(year–month) 

End time 
(year–month) 

9 1764139.2 22 70730086 1985–08 1987–05 

15 1675168.9 12 35741813 1997–01 1997–12 

74 1511945.1 8 29594926 2001–02 2001–09 
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88 1610084.0 6 28099641 2008–04 2008–09 

0 1613507.4 8 21190554 1982–02 1982–09 

46 1407943.0 6 19184637 1995–03 1995–08 

3 1553813.5 6 17818477 1983–07 1983–12 

64 1194351.2 4 17346922 2000–02 2000–05 

120 954552.3 8 2642278 2017–10 2018–05 

115 471019.5 5 1915975 2015–12 2016–04 

 

 
Table 3 Top ten ecological drought events according to the severity 630 

No. Affected area 
(km2) 

Duration 
(month) 

Severity 
(month・km2) 

Start 
(year–month) 

End 
(year–month) 

2 390824.2 25 4446071 1982–04 1984–04 

35 347893.4 24 4197729 1986–07 1988–06 

50 407626.7 30 4182267 1990–06 1992–11 

37 348522.9 21 4047585 1986–10 1988–06 

3 371975.6 18 3732552 1982–04 1983–09 

59 407626.7 21 3566368 1991–03 1992–11 

49 399717.3 27 3555634 1990–06 1992–08 

56 391178.4 23 3360346 1991–01 1992–11 

58 399638.6 18 3124954 1991–03 1992–08 

55 120839.9 20 3085452 1991–01 1992–08 
 

Table 4 Estimations of 11 machine learning models in identifying the potential of meteorological drought to trigger ecological 
drought 

Classifier Accuracy Precision Recall F1 Score MCC Total 

KN 0.89 0.89 0.91 0.89 0.80 4.38 

SVM 0.80 0.84 0.83 0.80 0.67 3.94 

GP 0.43 0.22 0.50 0.30 0.00 1.45 

DT 0.83 0.84 0.84 0.82 0.68 4.02 

MP 0.62 0.40 0.59 0.46 0.17 2.24 

AB 0.82 0.83 0.82 0.81 0.65 3.92 

GNB 0.85 0.88 0.88 0.85 0.75 4.21 

QDA 0.93 0.93 0.94 0.93 0.87 4.58 

GB 0.83 0.83 0.84 0.82 0.67 4.00 

XGB 0.85 0.86 0.87 0.85 0.72 4.15 

RF 0.87 0.87 0.89 0.86 0.76 4.25 
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Table 5 Goodness of fit of the marginal distribution 635 

Distribution Marginal distribution RMSE 
KS-test 

Statistics P-value 

M_Area Johnson S_B 0.044 0.129 0.963 

M_Duration Johnson S_B 0.068 0.161 0.823 

M_Severity Pearson III 0.057 0.226 0.413 

E_Severity Johnson S_B 0.079 0.194 0.615 

 

 
Table 6 Goodness of fit of the bivariate distribution 

Joint variables Copula RMSE 
CvM_test 

Statistic P-value 

M_Area–M_Duration Frank 0.005 0.086 0.373 

M_Area–M_Severity Gaussian 0.052 0.098 0.605 

M_Area–E_Severtiy Gumbel 0.032 0.042 0.933 

M_Duration–M_Severity Gaussian 0.057 0.102 0.585 

M_Duration–E_Severity Gaussian 0.053 0.087 0.663 

M_Severity–E_Severity Frank 0.054 0.105 0.570 

 
Table 7 Goodness of fit of the multivariate distribution 640 

Joint variables RMSE 
CvM_test 

Statistic P-value 
M_Area–M_Duration–M_Severity–E_Severity 0.079 0.073 0.398 

 
Table 8 E_DS with polynomial functions based on meteorological drought characteristics 

Model types Expression 
Assessment metrics 

RMSE AIC BIC R2 

Ternary linear model E_DS=4.85×105+0.15M_DS+4099.35M_DD-1.20M_DA 9.24×105 1350.67 1357.89 0.58 

Ternary quadratic 
model 

E_DS=1.54-0.05M_DS-16.91M_DD-0.08M_DA-
1319.23M_DD2+0.03M_DD×M_DA 7.29×105 1085.75 1100.20 0.85 
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