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Abstract. The impact of droughts on vegetation is essentially manifested as the transition of water shortage from the
meteorological to ecological stages. Therefore, understanding the mechanism of drought propagation from meteorological to
ecological drought is crucial for ecological conservation. This study proposes a method for calculating the probability of
meteorological drought to trigger ecological drought at different magnitudes in Northwestern China. In this approach,
meteorological and ecological drought events during 1982-2020 are identified using the three-dimensional identification
method; the propagated drought events are extracted according to a certain spatio-temporal overlap rule; and propagation
probability is calculated by coupling the machine learning model and C-vine copula. The results indicate that: (1) 46 drought
events are successfully paired by 130 meteorological and 184 ecological drought events during 1982—-2020; ecological drought
exhibits a longer duration, but smaller affected area and severity than meteorological drought; (2) Quadratic Discriminant
Analysis (QDA) classifier performs the best among the 11 commonly used machine learning models which isare combined
with four-dimensional C-vine copula to construct drought propagation probability model; (3) the hybrid method considers
more drought characteristics and more detailed propagation process which addresses the limited applicability of the traditional

method to regions with large spatial extent.

1 Introduction

Drought is a multivariable and complex natural hazard with the characteristics of slow evolution, wide impact, and spatial
extent (Feng et al., 2021; Wu et al., 2021; Zhang et al., 2021a; Zhang et al., 2021b). Conventionally, drought can be classified
into meteorological drought, hydrological drought, agricultural drought, and socioeconomic drought. It is commonly accepted
that all types of drought originate from meteorological drought (Mishra and Singh, 2010). Crausbay et al (2017) argued that
existing dreught-typesdrought types are described through a “human-centric” lens to characterize a range of effects generated
by meteorological drought. This implies that the response of ecosystem to drought areis generally ignored in policy
development, which in turn elieitelicits water use conflicts between humans and ecosystems (Zhang et al., 2021c). Ecological
Drought Working Group of Science for Nature and People Partnership (SNAPP) proposed a framework of ecological drought

from an “ecology-centric” lens, which incorporates ecological, meteorological, and hydrological information (Crausbay et al.,
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2017). Ecological drought was thus defined as an episodic deficit in water availability that drives ecosystems beyond thresholds
of resilience into a vulnerable state, impacts ecosystem services, and triggers feedbaeksfeedback in natural and/or human
systems (Bradford et al., 2020; Crausbay et al., 2017; McEvoy et al., 2018; Munson et al., 2021; Raheem et al., 2019).
Vegetation is among the most important components in terrestrial ecosystems, and the distribution and growth of vegetation
are largely influenced by meteorological factors (Wang et al., 2021; Zeng et al., 2020; Zhang et al., 2021d). Developments in
remote sensing technology have facilitated the application of vegetation indices to reflect the response of vegetation to climate
change (Lawal et al., 2021). For example, a simple linear relationship was found between the standardized precipitation
evapotranspiration index (SPEI) and normalized difference vegetation index (NDVI) at the global scale (Vicente-Serrano et
al., 2012). The correlation between SPEI and NDVI showed a positive relationship in most regions of northwestern China
(NWC), with the exception of a few regions such as the western parts of the Tarim Basin, Qaidam Basin, and southeastern part
of the area (Jiang et al., 2018). Actually, the impact of drought on vegetation is manifested as the transition of water shortage
from the meteorological stage to the ecological stage. Therefore, this impact should be analyzed by quantifying the effect of
decreasing precipitation on the variation of available ecological water, i.e., from the perspective of drought propagation.
Drought propagation refers to the transition of one drought type to another, and it is vital for drought monitoring and prediction
(Fang et al., 2020; Warter et al., 2021). Accordingly, drought propagation has become a hot topic in meteorology and hydrology
fields (Apurv et al., 2017; Guo et al., 2020). Approaches to drought propagation analysis are broadly divided into model
simulations and statistical methods (Han et al., 2019). In the former approach, hydrological responses to meteorological
drought are analyzed by using physical based models that are considered to be effective in representing relevant hydrological
processes (Yu et al., 1999). Nevertheless, this approach involves labor-intensive calibration processes and is not suitable at
large spatial scales (Huang et al., 2017). In contrast, statistical methods with fewer assumptions are easier to use at different
spatial scales (Huang et al., 2017). However, in such methods, the propagation process was analysed using the time series of
an average value of drought index in a region or subregion (explained in the Discussion section). In other words, frether
werds;-the temporal connection between two drought types is was-only considered in the traditional statistical methods, but

their spatial overlap is ignored, which may result in the miscalculation of drought propagation in regions with large spatial

extent.

he probability information of one type of

successive drought events is contained in another type of dreught-associated with-itdrought (Wu et al., 2021). Therefore, a

number of studies have attempted to assess the propagation relationships between the two drought types based on the

probabilistic method. A Bayesian network is a probabilistic model that acquires probabilistic inferences over interacting

variables of interest based on a graphical structure. Therefore, this method has been proven to be suitable for quantifying the

probability relationship between different drought types (Avantobo et al., 2018; Chang et al., 2016; Das et al., 2020). For

example, Guo et al. (2020) calculated the occurrence probability of hydrological drought based on different intervals of

duration and severityseverities of meteorological drought. Sattar et al (2019) identified the occurrence probability of different
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classes and lag timetimes of hydrological drought according to the intensity of meteorological drought. Nevertheless;—the
rumber-of droucht-characterist onsidered-in-thesestudies-arerelativelyfew—Xu et al. (2021) found that the probability of

agricultural drought severity increased synchronously with meteorological drought in different regions of China. Jehanzaib et

al. (2020) concluded that in the Korean Peninsula, the probability of meteorological drought propagating into hydrological

drought increased significantly under climate change. In general, these studies primarily focused on the relationship between

duration and severity between the two drought types but ignored the relationships among affected areas. Xu et al. (2015a)

found that the probability of drought occurrence prebability—would be underestimated if fewer—drought eharacteristies

wereaffected areas are not considered. Therefore, the traditional dreught-probabilistic model of drought propagation can be

improved by introducing the three-dimensional dreughtidentifieationclustering method, which prevideswould provide more
drought information (Liu et al., 2019).

Taking a typically ecological fragile region, Northwestern China (NWC), as an example, the motivation of this study is to
identify meteorological drought and ecological drought during 1982-2020 in the NWC from a three-dimensional perspective,
and propose a novel method to investigate the response probability of ecological drought to meteorological drought. The
remainder of the current paper is organized as follows: Section 2 briefly overviews the geographic information of NWC-
Seetion—3_and describes the datasets used in this paper, and the procedure for estimating propagation probability from
meteorological to ecological drought. The results and the comprehensive analysis of the proposed approach are presented in

section 43 and 54, respectively. Finally, the conclusions are given in section 65.

22 Materials and methods

2.1 Study area

Northwestern China (NWC; 31°35N-49°15'N, 73°25' E~111°15 E) includes the provinces of Shaanxi, Gansu, Qinghai, and the
Autonomous Regions of Xinjiang Uyghur and Ningxia Hui, covering a total surface area of 3.1 million km? (Fig—)(Figure
1Eiguret) (Zheng et al., 2021). The terrain of NWC constitutes mountains, basins, and the Gobi. The altitude ranges from —
156 m to 6647 m, showing the characteristics of “west high and east low”. Four climatic divisions, including humid, semi-
humid, semi-arid, and arid areaarcas were demarcated, based on the dryness index (Zhang et al., 2021d). As NWC is located
at the-upstream of the Yangtze, Yellow, and other large rivers, it is significant to study the impact of drought on its ecosystem

(Liu et al., 2021).
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3-12.2 Datasets

Monthly meteorological data, including surface reflectance, temperature, relative humidity, atmospheric pressure, downward
shortwave radiation, wind speed, and longwave radiation, was obtained from the ERAS5-land reanalysis dataset
(https://cds.climate.copernicus.eu) issued by_the European Centre for Medium-Range Weather Forecasts (ECWMF), which
has a spatial resolution of 0.1° x 0.1° and covers the period of 1981-2021. Root soil moisture data were obtained from the
hydrological dataset, simulated by the Noah model of the Global Land Data Assimilation System (GLDAS, 0.25°x0.25’;
https://1das.gsfc.nasa.gov/gldas), covering the period of 1948-2021. NDVI data covering the period 1981-2021 were obtained
from the National Centers for Environmental Information (NCEI) (https://www.ncei.noaa.gov/), with a spatial resolution of
0.05° x 0.05°. Land use type data (LUTD) with a spatial resolution 1 km was downloaded from China’s multi-period land
use/cover change monitoring dataset (http://www.resdc.cn); it includes the years of 1980, 1990, 1995, 2000, 2005, 2010, 2015,
2018, and 2020. In order to uniform the spatial resolution of Reetroot soil moisture, all spatial datasets were resampled to
0.25°%0.25" using the bilinear interpolation method. The temporal range of all datasets werewas extracted from January 1982

to December 2020.

2.3:2 Meteorological and ecological drought index

Previous studies found that the standardized precipitation evaporation index (SPEI) overestimated the meteorological drought
in NWC where actual atmospheric water demand is determined by precipitation variation (Ayantobo and Wei, 2019; Zhang et
al., 2019a; Zhang et al., 2021b). Additionally, precipitation is the main water resources for vegetation growth in most regions

of NWC due to the deep-phreatie-buriedgreat depth to groundwater (Cao et al., 2021). Standardized precipitation index (SPI)

was thus used in the current study to represent meteorological drought. SPI at different time scales was calculated by

aggregating n-month moving sums—

%eﬂei—eilpfeelp%eﬂ—m—}aﬁ&afy—Febma{y—aﬁd—k%feh— allowing the identification of various drought types (McKee et al.,

1993). At short time scales, drought events are characterized by high frequency and short duration, while at long time scales,

they have longer duration and lower frequency. SPI-3 has been reported to be highly representative of the impacts of

meteorological conditions on vegetation as the-vegetation variation is sensitive to three-months—acewmulated-precipitation
accumulated over three months (McKee et al., 1993; Vicente-Serrano et al., 2012; Vicente-Serrano et al., 2640 Vieenteserrane

etal; 2010). Therefore, SPI-3 was used to characterize meteorological drought in this study. Further details on SPI calculation
are available in {McKee et al- (1993).

Commonly used drought indices indirectly reflect the influence of drought on ecosystems, and they do not comprehensively
reflect the homeostasis between ecological water consumption and requirement in drought evolution (Jiang et al., 2021).
Additionally, decreases in vegetation coverage are not only caused by a persistent deficit in available water for ecosystems but

also other aspects, such as wildfire, hail, flood, and human activities (Bento et al., 2020). This limited the ability of vegetation
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indices to reflect drought conditions. Therefore, a new drought index, the standardized ecological water deficit index (SEWDI),
was constructed to monitor terrestrial ecological drought in our previous study (Jiang et al., 2021). SEWDI follows a similar

procedure as SPI-—Eeelogieal, which includes the calculation of ecological water deficit (EWD3), the selection of an optimal

distribution for fitting monthly EWD series, and the inverse normal transformation of the cumulative density distribution of
EWD. EWD is the difference between EAO-based-ecological water requirement (EWR) and-SEBS-based ecological water
consumption (EWC) (Chi et al., 2018; Jiang et al., 2021). Among them, EWR was calculated using the single crop coefficient

method recommended by the Food and Agriculture Organization (FAQO). EWC equals the actual evapotranspiration, which is

derived from latent heat fluxes calculated by the surface energy balance system (SEBS) algorithm. Therefore, SEWDI

refleetscan reflect the dynamics of energy and water balance under human activities and climate change. Additionally, the
standardization method facilitates the same threshold and evaluation criteria in monitoring two drought types (Peng et al., 2019;
Zang et al., 2020), which reduces the influence of other algorithms on final results and guarantees spatio-temporal

comparability (Liu et al., 2017). The procedure in calculating SEWDI calculation is detailed in Jiang et al (2021).

3:32.4 Drought propagation probability method

Since a reliable understanding of the drought propagation process is beneficial for drought forecasting, research interest in the
probability of drought propagation from meteorological droughts to other types of droughts has been increasing (Zhou et al.,
2021). The current study thus proposed a novel method coupling spatial and temporal connection method of two type droughts,
with machine learning model, and C-vine copula to investigate the relationship between meteorological and ecological drought.
A flow diagram of the method is depicted in Fig-—2-Figure 2Fisure2.

Investigating the relationship between the characteristics of the two drought types is key to constructing a probability model.
The approach is summarized in twethree steps as follows:

Step 1: Meteorological and ecological drought events were identified from a three-dimensional perspective, respectively
(Section 3:32.4.1).

Step2: The two drought types with a genetic relationship were paired on the basis of a certain spatio-temporal matching rule

to-extract-propagated-drought-events. Their drought characteristics, including drought affected area, drought severity, and

drought duration, were calculated according to the method described in Section 3-32.4.2.

Step 3: Taking the characteristics of meteorological drought extracted in step 2 as inputs, and propagation results as outputs,
the optimal model was selected from 11 machine learning classification models to calculate the propagated probability (P1) of
meteorological drought (Section 3-32.4.3). Then, a conditional probability model of the paired meteorological and ecological
drought events was constructed based on the C-vine copula (Section 3-32.4.4). According to the severities of all identified
ecological drought events, cumulative probabilities of 0.5, 0.75, and 0.9 were selected to demarcate moderate, serteussevere,
and extreme drought, respectively (Guo et al., 2020). The probabilities of ecological drought at different magnitudes triggered
by meteorological drought were obtained by multiplying P1 with their conditional probability
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3:32.4.1 Three-dimensional-droughtDrought identification_based on the three-dimensional clustering method

According to Andreadis et al (2005), the evolution of a drought event should be viewed as a spatio-temporal continuum
(longitude, latitude, and time). Different from the traditional one- or two-dimensional drought identification method, the three-
dimensional array of SPI-3 and SEWDI-3 were extracted to characterize the degree of meteorological and ecological droughts.

The extraction procedure involves two steps (Fig—2)(Figure 2Eisure2) (Andreadis et al., 2005; Xu et al., 2015a; Xu et al.,

2015b): firstly, the clustering method was used to identify drought patches in each month; secondly, the drought continuum

was constructed by selecting the overlapping areas of drought patches between two adjacent months, which was greater than

1.6% of the total area (explained-inSee Section 3.1 for the Diseussion-seetion)—reason).

For each drought event, three drought characteristics were extracted as follows: (1) affected area was calculated by cumulating

the area affected by drought in each month during the entire drought period. (2) Duration denotes the time of a drought event
persisted. (3) Severity is a cumulative value of SEWDI-3 or SPI-3 for the entire drought duration and areal extent, and equals

to-the volume of the three-dimensional continuum.

3:32.4.2 Spatio-temporal connection of two drought types

Liu et al (2019) developed a new method for identifying the propagation between two related drought types based on the
drought identification method from a three-dimensional perspective. The current study employed this method to identify the
propagation from meteorological to ecological drought. The key to this method is the determination of the temporal and spatial
connection between two drought types. The specific steps are as follows.

Firstly, the identified meteorological and ecological drought events are sorted in the-chronological order. Secondly, whether

the two drought types overlap in time is judged according to Eq. (1)-Eq. (2).
| MBT, < EBT, and min(MET,, EET, ) - max (MBT,, EBT, ) > 2
Overlap, = o MBT, > EBT, and min(MET,, EET, ) —max (MBT,, EBT,) > o (1)
0 if MBT, > EBT, and min(MET,, EET, ) - max (MBT,, EBT ) < a

EDD.
a :min(MﬁD" — J] 2)

where 1 and 0 denote the existence and absence of time overlap between two drought types, respectively; MBT: and EBT;
represent the beginning time of the i-th meteorological and j-th ecological drought events, respectively. Similarly, MET; and
EET; represent the end time of the i-th meteorological and j-th ecological drought events, respectively; MDD; and EDDjindicate
the duration of the i-th meteorological and j-th ecological drought events, respectively.

SeeendlyThirdly, whether the meteorological and ecological drought patches connecting at a spatial scale is judged according
to Eq. (3) and Eq. (4)
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where 1 and 0 denote the existence and absence of spatial overlap between two drought types; Avwc represents the total area
of the NWC; MDA; and EDA; represent the projected area of the i-th meteorological and j-th ecological drought events,
respectively. b is set as 15% in the current study (See DiseussienSection 3.1 for the reasony).

FhirdbyFourthly, successfully matched drought events are encoded following the—chronological order. Cells in Fig-—2Figure
2Eisure2 represent the relationship between preliminarily identified events of the two drought types. The propagation type
from meteorological to ecological drought can be classified into four categories: one ecological drought event induced by one
meteorological drought event (one—to—one), multiple ecological drought events induced by one meteorological drought event
(one-to—many), one ecological drought event induced by multiple meteorological drought events (many—to—one), and multiple
ecological drought events induced by multiple meteorological drought events (many—to—many).The codes of cells are identical
if the propagation type belong to one—to—many, many—to—one, and many—to—many.

Finally, the characteristics of meteorological and ecological drought events that belong to the same paired drought event are
integrated, respectively. Among them, total duration is the difference between the latest-ending and earliest-starting drought
events; total affected area is the projected area of all individual drought events; total severity is the sum of severities of

individual drought events.

3:32.4.3 Drought propagation identification based on_the machine learning model

The purpose of this part is to identify whether a meteorological drought event has the potential to trigger ecological drought.
Eleven commonly used machine learning classification models, including the k-neighbors classifier (KN) (Parzen, 1962),
support vector machine (SVM) classifier (Ben-Hur et al., 2000), Gaussian Process (GP) classifier (Chen et al., 2020), Decision
Tree (DT) classifier (Quinlan, 1986), Multi-layer Perceptron (MP) classifier (Cybenko, 1989), AdaBoost (AB) classifier
(Freund and Schapire, 1997), Gaussian Naive Bayes (GNB) (Chan T.F., 1982 ), Quadratic Discriminant Analysis (QDA)
(Cover, 1965), Gradient Boosting (GB) classifier (Friedman, 2001), XGBoost (XGB) classifier (Chen and Guestrin, 2016),
and Random Forest (RF) classifier (Pal, 2005), were employed for propagation judgerentjudgment. Drought duration, severity,
and affected area of meteorological drought were set as the model inputs (Fie—2)-(Figure 2Figure2). 1 and 0 were set as model

target which representrepresents propagation occurrence and non-occurrence, respectively. The-elassifiers—ef-In this study,
each medelsvere-trained-and-validatedbinary classifier was constructed using a Python package called PyCaret, which wraps

several machine-learning libraries, including scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, and Hyperopt(Ali,

2020). The tune_model() function in the PyCaret package offers simple selection of optimal hyperparameters of each model.

A 5-fold cross-validation—The was used to train and validate the classifiers in each model by setting "fold=5" in the

create_model() function. In using the compare models() function, the classifier with the highest summation of accuracy,
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precision, recall, F1 score, and Matthews correlation coefficient was selected as the optimal model. To avoid overfitting and

maintain high calculation efficiency, the L2 regularization method was selected for each model by setting the parameter

"penalty="12"".
TP+TN
accuracy = (5
TP+TN + FP+ FN
TP
recision = 6
P TP+ FP ©
TP
recall = —— (7
TP+ FN
F, score = 2 (®)

2-TP+FP+FN

vce - TP-TN — FP-FN )
J(TP+FP)-(TP+FN)-(IN + FP)-(IN + FN)

where 7P and FN represent actual positives that are correctly and wrongly predicted, respectively; TN and FP represent actual

negatives are correctly and wrongly predicted, respectively.

3:32.4.4 Drought propagation probability model based on C-vine copula

Five univariate distributions, including JehnsensbJohnson S B (Soukissian, 2013), Gamma (THOM, 1958), Exponential
(Marshall and Olkin, 1967), Pearson III (Wallis and Wood, 1985), and Weibull distribution (Thoman et al., 1969), were used
to fit affected area, duration, and severity of meteorological drought and severity of ecological drought. The optimal
distribution was selected according to the goodness of fit (GOF), which was estimated with the Kolmogorov—Smirnov (KS)
test (Marsaglia et al., 2003) and Root Mean Square Error (RMSE).

Commonly used Copulas, including elliptical Copula (GuassianGaussian) and four Archimedean Copulas (Clayton, Gumbel,
Frank, and Joe), were used to join two marginal distributions (Chang et al., 2016). The GOF of these Copulas was estimated
with RMSE and Cramer-von Mises (EMCvM) test (Genest et al., 2009).

The Vine copula function is an effective tool for integrating different bivariate distributions and calculating the conditional
probability of multiple variables (Ni et al., 2020). In a vine copula, an n-dimensional multivariate density is decomposed into
n(n—1)/2 bivariate copula densities and arranged into n-1 trees. Among numerous vine Copula structures, the C-vine copula
has a relatively simple structure and good robustness for constructing multivariate distributions (Wu et al., 2021). Therefore,
it was of primary significance to this study. The GOF of C-vine Copulas was estimated with RMSE and CvM test. theThe joint

density function of an n-dimensional C-vine Copula is expressed as Equation (10).

n n—1n—i
Fxtyex,) = Hfi(xi) X HHCi7i+j|l:(i_]) {F (xi | x1,..xi1)  F (xigj | x1, -0 xic1) }
) i1 i=1 j=I (10)
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where €f(x;,....xs) represents the joint density function. ¢ represents bivariate Copula densities, which includes Gumbel,

Gaussian, Frank, and Clayton Copula functions; F/ represents cumulative distribution function (EDF)-efjemntdistributionF

represents-CDF-of marginal distribution. i and j represent root nodes. More detailed information about the n-dimensional C-
vine copula can be referred to Wu et al (2021). By this means, the conditional probabilities of ecological drought at different
magnitudes under impacts of meteorological drought are calculated using Equation (11).

F(D>d,S>s,A>a,X >x)
F(S>s,A>a,D>d)

1=F(d)=F(s)=F (a)= F (x)+ C(F, (d). Fs (5))+ C(F, (), F, (a))

+C(F, (d), Fy (x))+ C(F, (a), Fy (

+C(Fy (%), F5 (5)) = C(F, (d), F (5),

—C(F, (d).F, (s). Fy (x)) = C(Fy(s)
( »(4).F5(5).F, (a). Fy (x))

Fy(d)=F,(a)=F(s)+ C(F,(d).F,(a))+C(F,(d).Fs(s))+

( i (a ’FS(S))_ (D( ’FA(‘Z)’FS(S)) (11

where D, 4, and S represent duration, area, and severity of propagated meteorological drought, respectively; X represents

F(X>x|D>d,A>a,S>s)=

ecological drought at moderate, serieussevere, and extreme magnitudes, which equals the cumulative probability of 0.5, 0.7,

and 0.9, respectively. C represents €BEthe cumulative distribution function of the joint distribution.

43 Results

3.1 Threshold selection

Determining overlapping areas of drought patches between two adjacent months is critical in the identification of drought

events from a three-dimensional perspective. Sheffield et al (2009) used 500,000 km? as the area threshold in global scales.
For mainland China, 150,000 km? was used as the area threshold in some studies (Wang et al., 2011; Xu et al., 2015b). Liu et
al (2019) took 1.5% of the total area as the threshold in the Loess Plateau. To determine an optimal area threshold, the number

of meteorological and ecological drought events as well as the ratio of minor drought events were calculated under different
area thresholds, respectively. Here, a minor drought is defined as a drought event with 2 months duration and average
SPI/SEWDI larger than -1. As shown in Figure 3Eisure 3, 1328 and 2305 meteorological and ecological drought events were
identified with an area threshold of 0.48% of the total area of the NWC, and the proportions of minor drought events were 44%

and 32%, respectively. The number of drought events and the proportion of minor drought events decreased with increasing
area threshold. However, this trend gradually stabilized when the area threshold was set to be larger than 1.6% of the total area

of the NWC, indicating that most minor drought events with the relatively small area were excluded. Therefore, 1.6% of the

total area of the NWC was used as the area threshold in this study.
Similarly, the sensitivity of b in Eq.(4) for matching two drought types was tested. The binding mode of absolute and relative
thresholds was employed to extract spatial intersection. b is set as 10%, 15%, 30%, 50%, 70%, and 90% to match two drought
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types. Although some of the successful matching drought events may be merged into one drought event under larger b, the
number of successful matching drought events showed little difference under different » (Table 1Fablet). In the current study,
b =15% was set because the most paired drought events could be identified for fitting machine learning models and C-vine

copula.

4-13.2 Top ten meteorological and ecological drought events according to BSdrought severity

A total of 130 meteorological drought events were identified based on SPI-3 from a three-dimensional perspective. The first
ten meteorological drought events in terms of severity in NWC during 1982-2020 are shown in Fable1-Table 2Fable-2.
Meteorological drought events with longer duration exhibited relatively larger affected area, were mainly concentrated
between 1982 and 2000. Zou et al (2005) estimated meteorological droughts with the Palmer drought severity index (PDSI)
from 1951 to 2003 in China and found that most parts of NWC experienced severe droughts during 1997-2003, which is
similar to the results of this study. As shown in Fable+Table 2Fable 2, two of ten meteorological drought events occurred

during this period. Moreover, according to the historical record, Xinjiang and Gansu previnee—experienced severe
meteorological drought during 1985-1986 (Zhang et al., 2019b). The three-dimensional identification method could
sensitively capture these events. Event No.9 started from southern Gansu in August 1985 and ended in May 1987, and ranked
Ist.

A total of 184 ecological drought events during 1982—-2020 were identified using the three-dimensional identification method.
Fable2Table 3Fable3 lists the top ten ecological drought events in terms of severity. The most severe ecological drought
event started in April 1982 and originated from central Gansu, which was induced by the persistent meteorological drought
No.0 and No.3. Compared with the characteristics of meteorological droughts, ecological droughts showed longer duration

and smaller affected area. This reveals that a longer recovery time is required for the mitigation of ecological droughts.

4:23.3 Identifying propagation from meteorological to ecological drought

A total of 46 paired drought events were successfully matched based on the spatio-temporal connection criterion. As shown in
Fig—3Figure 4Figure4, points representing paired drought events were mainly distributed along a diagonal, illustrating a
relatively high consistency between the two types of droughts on the temporal scale. The number of one—to—one, many—to—
one, one—to—many, and many—to—many were 8, 8, 4, and 26, accounting for 17.4 %, 17.4 %, 8.7 %%, and, 56.5 % of the total

number of paired drought events, respectively. Meteorological drought of OMT type showed a longer duration, a larger

affected area, and a greater severity than ecological drought. However, this is contrary to type MTO. Simultaneously,

ecological drought of type MTO showed a longer duration, a larger affected area, and a greater severity than those of type
OTM (Figure 5Eigure5).

Paired drought event No.36, comprising meteorological drought event No.87 and ecological drought event No.127, was taken

as an example to show their spatio-temporal continuums (Fig—4)-(Figure 6Figure-6). The affected area of meteorological and

ecological drought in each month swerewas extracted to show their temporal variation. Meteorological drought No.87 (Fig-
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4a(Figure 6Figure-6a) started two months ahead of ecological drought (Fig—4b(Figure 6Eigure-6b), and its effects lasted for

two months. It is noteworthy that the most severe meteorological and ecological droughts mainly occurred in central Xinjiang.
The affected area and severity of meteorological drought event No.87 and ecological drought event No.127 maintained a

similar trend of increase—decrease (Fig—5)(Figure 7Eisure7). Among them, the peaks of the meteorological drought event

appeared two months ahead (December 2007) that of the ecological drought (February 26072008). In terms of drought
trajectory (Fig—6);(Figure 8Figure-8), they all originated from the Yili Basins and showed a esuntereloekwisecounterclockwise
shift.

3.4:3 Propagation probability from meteorological to ecological drought

To estimate the propagated potential of meteorological drought, 11 commonly used machine learning models were trained

based on characteristics of 81 integrated meteorological drought events. Fable 3As can be seen in Figure 9Eisure-9 propagated

meteorological droughts have greater severity, larger affected area, and longer duration than non-propagated droughts. Table

4Fable4 lists the evaluation results of five-fold cross-validations, including accuracy, precision, recall, F1 Score, and MCC
metrics-of-five-fold-eross—validations.. The closer these values are to 1, the higher precision of the model. Therefore, the five
metrics were summed to compare the performances of the 11 models. Most models showed good performance except for

GPGaussian Process and MP-Multi-layer Perceptron. The QDA classifier with maximum total value was chosen as the best

model to identify the propagation potential of meteorological drought.

The reliability of copula function is highly dependent on the dependence between two variables, which was measured by
Kendall’s 7 and Spearman’s p (Chang et al., 2016; Feng et al., 2021). The 7 and p between affected area (M_Area), duration
(M_Duration), severity (M_Severity) of meteorological drought, and severity of ecological drought (E_Severity) both reached
significance at 0.01 level (Table S.+—1-S.2). The optimal marginal distributions of M_Area, M_Duration, M_Severity, and
E Severity are listed in Fable4-Table 5Fable-5. All the distributions passed the KS test and their RMSE werewas small.

Similarly, the parameters of bivariate distribution were estimated using the itau method;—asnd. The Copula estimation can be
cased by the itau method, which inverts Kendall's tau method (Demarta and McNeil, 2005). CvM test and RMSE were used
to evaluate their goodness of fit (Fable—5)(Table 6Fable6). The selected bivariate copulas also demonstrated a well
applicability. In the end, the C-vine copula was constructed centered on E_Severity. The CvM test, RMSE Fable-6);(Table
7Fable7), and P-P plots (Fig. S.1) indicated that the distribution can be used in probability analysis. The copula structure of
M_Area-M_Duration-M_Severity-E_Severity was shown in Fable-6-Table 7 able7.

Conditional probability is helpful in providing valuable information for_the effective allocation of water resources under a
certain drought level (Guo et al., 2020). In the current study, the occurrence probabilities of ecological drought at different

levels were determined according to the characteristics of meteorological drought (Fig—7-(Figure 10Eisure19). For example,

the occurrence probabilities of moderate, serioussevere, and extreme ecological drought events were 80%, 63%, 14.7%,
respectively, when M_DA > 17.6x10° km> N M_DD > 11.8 month N M_DS > 7.5x10° month-km?. Furthermore, the

occurrence probability was found to increase more rapidly with increasing M_DS and M DD compared with M_DA,
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indicating that the duration and severity of meteorological drought had stronger effects on ecological drought than affected
area. Additionally, meteorological drought events with a duration of two months but great severity has a high potential to
trigger ecological drought. This may be attributable to water shortage induced by meteorological droughts with extremely high
intensity (intensity is the drought severity divided by the product of drought duration and affected area).

For comparison, ternary linear and ternary quadratic models were constructed based on 46 pairs of meteorological-ecological

drought events (Table 8Fable-8). The comparisons were made in terms of three independent variables, M DS, M DD, and

M DA, and one dependent variable, E DS. As shown in Table 8Fable-8, the R? of the ternary quadratic model was evidently
higher than that of the ternary linear model, whereas the RMSE, AIC, and BIC were lower. This illustrates that M DS, M DD

M DA, and E DS follow a nonlinear relationship, and that the ternary quadratic model is more suitable for simulating their

relationship. According to the ternary quadratic model, E DS equals 1.4x10° month-km?> when M DA > 17.6x10° km* N
M DD > 11.8 month N M DS > 7.5x10° month-km?. These values correspond to the thresholds of moderate (1.7x10°

month-km?), severe (2.4x10° month-km?), and extreme (4.6%10° month-km?) ecological drought.

4 Discussion
4.1 Advantages of the proposed approach

Many studies have linked meteorological drought to hydrological drought at different time scales (Ding et al., 2021; Fang et
al., 2020; Feng and Su, 2020; Han et al., 2019; Huang et al., 2017; Ma et al., 2019). In these studies, propagated drought events
were identified on the basis of the time series between two drought types, and they focused on their lagging, attenuation,

lengthening, and pooling (Fig—9a)—Spatial(Figure 11Fisareta). The spatial and temporal drought propagation identification

method used in the current study not only preserved the characteristics identified by the low dimensional method, but also

considered the spatial overlap of two drought types (Eie—9b)-(Figure | 1EisureHb). Using this method, two types of drought

events without spatial connection would be excluded; (only 103 out of 184 ecological drought events were induced by 81 out

of 108 meteorological drought events), and more drought characteristics, such as affected area, and migration path could be

extracted. This addresses the limited applicability of the traditional method to regions with large spatial extent, and provides

more realistic—drought—propagatienreliable information-_for quantifying the relationship between characteristics of

meteorological drought and ecological drought. Additionally, we improved the method for calculating the affected area and

duration of paired drought events developed by Liu et al (2019), represented by a simple sum of characteristics of multiple
drought events. However, this method overestimates the duration and affected area of some paired drought events, which is
inconsistent with the real situation. In this study, the enhanced method could reflect the characteristics of paired drought during
the propagation process more accurately.

The conditional probability model was constructed based on paired meteorological and ecological drought events; it is not
suitable for calculating the probability of ecological drought at different levels according to meteorological drought events

without propagation potential. For example, the probability of moderate ecological drought was 63.3% if the characteristics of
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meteorological drought event No.122 (M_Area=5.1x10° km? M_Duration=6 month, M_Severity=1.89x10° month-km?) was
directly input to the conditional probability model. In reality, this meteorological drought event did not trigger ecological
drought. The QDA model added before the C-vine copula was used to address this issue, which could estimate the propagation
potential of the corresponding meteorological drought. After this modification, the probability of the propagation of
meteorological drought event No.122 to moderate ecological drought changed to 24.8%.

5:34.2 Uncertainty of the model and its improvement measures

QDA model could well simulate the propagation potential of most meteorological drought events (Fable3)(Table 4Fable4).
However, some errors occurred in humid southern Shaanxi. For example, meteorological drought eventsevent No. 22 showed
the potential to trigger ecological droughts, which were incorrectly classified as propagation occurrence. This could be
attributed to the compensation of rich water resources for short-term ecological water deficit. Additionally, this paper provides
a method for estimating the occurrence probability of ecological drought under the condition of a certain precipitation deficit.
The effects of human activities and climate change on ecological drought were not distinguished in the current study. The
proposed method may not be accurate for regions with complex water supply systems and strong anthropogenic impacts on
vegetation growth.

To improve the accuracy of the method, future studies should consider the non-consistence of ecological drought to quantify
the impacts of human activities on drought propagation. Moreover, SPI can be replaced by PDSI or scPDSI to represent
meteorological drought through which multiple water balance processes are considered to analyze their relationship with
ecological drought (Altunkaynak and Jalilzadnezamabad, 2021). However, such modification may lead new problem
associated with spatio-temporal incomparability. Nevertheless, this approach is worth applying in the ecological drought
warning. For example, when a meteorological drought event occurs, its characteristics can be applied as input to the tuned

model to estimate propagation probability from meteorological to ecological drought in different degrees.

65. Conclusions

This study proposed a method in identifying the propagation probability of meteorological drought events to trigger ecological
drought in different magnitudes. Taking NWC as an example, 130 meteorological drought and 185 ecological drought events
during 1982-2020 were extracted using the three-dimensional identification method. Compared with meteorological drought,
ecological drought events exhibited longer duration, but smaller affected area and severity, suggesting that a longer recovery
time is required for mitigating ecological drought.

A total of 46 drought events were successfully matched according to a certain spatio-temporal connection principle. The paired
drought events were divided into four categories, including one-to-one, many-to-one, one-to-many, and many-to-many. The
four categories accounted for 17.4 %, 17.4 %, 8.7 %, and 56.5 % of the total number of paired drought events, respectively.

Then, a drought propagation probability model was constructed by coupling QDA and C-vine copula. Compared with the
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traditional propagation probability model, the proposed model intuitively provides more objective probabilities of ecological
drought at different magnitudes.
The current study certainly provides a more robust method for estimating propagation probability from meteorological to

ecological drought in similar ecologically fragile regions.
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Identifying meteorological and ecological drought events from a
three-dimensional perspective
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Table 1 Sensitivity test of parameter b

Threshold N;TE;;S 25:;{: ‘
min(AM;,AH;)*90% 2
min(AM;,AH))*70% 32
min(AM;,AH))*50% 36
min(AM;,AH))*30% 39
min(AM;,AH))*15% 46
min(AM;,AH))*10% 46

650 Table 12 Top ten meteorological drought events according to severity

N Affected area Duration Severity Start time End time
o (km?) (month) (month + km?) (year—month) (year—month)
9 1764139.2 22 70730086 1985-08 1987-05
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15 1675168.9 12 35741813 1997-01 1997-12

74 1511945.1 8 29594926 2001-02 2001-09
88 1610084.0 6 28099641 2008-04 2008-09
0 1613507.4 8 21190554 1982-02 1982-09
46 1407943.0 6 19184637 1995-03 1995-08
3 1553813.5 6 17818477 1983-07 1983-12
64 1194351.2 4 17346922 2000-02 2000-05
120 954552.3 8 2642278 2017-10 2018-05
115 471019.5 5 1915975 2015-12 201604

Table 23 Top ten ecological drought events according to the severity

No. Affected area Duration Severity Start End
(km?) (month) (month + km?) (year—-month) (year—-month)
2 390824.2 25 4446071 1982-04 1984-04
35 347893.4 24 4197729 1986-07 1988-06
50 407626.7 30 4182267 1990-06 1992-11
37 3485229 21 4047585 1986-10 1988-06
3 371975.6 18 3732552 1982-04 1983-09
59 407626.7 21 3566368 1991-03 1992-11
49 399717.3 27 3555634 1990-06 1992-08
56 391178.4 23 3360346 1991-01 1992-11
58 399638.6 18 3124954 1991-03 1992-08
55 120839.9 20 3085452 1991-01 1992-08

|655 Table 34 Estimations of 11 machine learning models in identifying the potential of meteorological drought to trigger ecological

drought

Classifier Accuracy Precision Recall F1 Score MCC Total
KN 0.89 0.89 0.91 0.89 0.80 438
SVM 0.80 0.84 0.83 0.80 0.67 3.94
GP 0.43 0.22 0.50 0.30 0.00 1.45
DT 0.83 0.84 0.84 0.82 0.68 4.02
MP 0.62 0.40 0.59 0.46 0.17 2.24
AB 0.82 0.83 0.82 0.81 0.65 3.92
GNB 0.85 0.88 0.88 0.85 0.75 4.21
QDA 0.93 0.93 0.94 0.93 0.87 4.58
GB 0.83 0.83 0.84 0.82 0.67 4.00
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XGB 0.85 0.86 0.87 0.85 0.72 4.15
RF 0.87 0.87 0.89 0.86 0.76 4.25
Table 45 Goodness of fit of the marginal distribution
KS-test
Distribution Marginal distribution RMSE
Statistics P-value
M_Area JohnsensbJohnson S B 0.044 0.129 0.963
M_Duration JohnsensbJohnson S B 0.068 0.161 0.823
M_Severity Pearson IIT 0.057 0.226 0.413
E_Severity JohnsensbJohnson S B 0.079 0.194 0.615
660
Table 56 Goodness of fit of the bivariate distribution
CyM_test
—Joint variables Copula RMSE
Statistic P-value
M_Area-M_Duration Frank 0.005 0.086 0.373
M_Area-M_Severity Gaussian 0.052 0.098 0.605
M_Area-E_Severtiy Gumbel 0.032 0.042 0.933
M_Duration-M_Severity Gaussian 0.057 0.102 0.585
M_Duration-E_Severity Gaussian 0.053 0.087 0.663
M_Severity-E_Severity Frank 0.054 0.105 0.570
Table 67 Goodness of fit of the multivariate distribution
. . CyM_test
—Joint variables RMSE L -
Statistic P-value
M_Area-M_Duration-M_Severity—E_Severity 0.079 0.073 0.398

665 Table7Table 8 E DS with polynomial functions based on meteorological drought characteristics

Assessment metrics

Model types Expression
RMSE AIC BIC R
Ternary linear model £ DS=4.85x10°+0.15M DS+4099.35M DD-1.20M DA 9.24x10° 1350.67 1357.89 0.58
C ati _ — . =U. _ - o —VU. -
Ternary quadratic E _DS=1.54-0.05M DS-16.91M DD-0.08M DA 799x105 1085.75 1100.20 0.85

model

1319.23M DD*+0.03M DDxM DA
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