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Abstract. The impact of droughts on vegetation is essentially manifested as the transition of water shortage from the 

meteorological to ecological stages. Therefore, understanding the mechanism of drought propagation from meteorological to 10 

ecological drought is crucial for ecological conservation. This study proposes a method for calculating the probability of 

meteorological drought to trigger ecological drought at different magnitudes in Northwestern China. In this approach, 

meteorological and ecological drought events during 1982–2020 are identified using the three-dimensional identification 

method; the propagated drought events are extracted according to a certain spatio-temporal overlap rule; and propagation 

probability is calculated by coupling the machine learning model and C-vine copula. The results indicate that: (1) 46 drought 15 

events are successfully paired by 130 meteorological and 184 ecological drought events during 1982–2020; ecological drought 

exhibits a longer duration, but smaller affected area and severity than meteorological drought; (2) Quadratic Discriminant 

Analysis (QDA) classifier performs the best among the 11 commonly used machine learning models which isare combined 

with four-dimensional C-vine copula to construct drought propagation probability model; (3) the hybrid method considers 

more drought characteristics and more detailed propagation process which addresses the limited applicability of the traditional 20 

method to regions with large spatial extent. 

1 Introduction 

Drought is a multivariable and complex natural hazard with the characteristics of slow evolution, wide impact, and spatial 

extent (Feng et al., 2021; Wu et al., 2021; Zhang et al., 2021a; Zhang et al., 2021b). Conventionally, drought can be classified 

into meteorological drought, hydrological drought, agricultural drought, and socioeconomic drought. It is commonly accepted 25 

that all types of drought originate from meteorological drought (Mishra and Singh, 2010). Crausbay et al (2017) argued that 

existing drought typesdrought types are described through a “human-centric” lens to characterize a range of effects generated 

by meteorological drought. This implies that the response of ecosystem to drought areis generally ignored in policy 

development, which in turn elicitelicits water use conflicts between humans and ecosystems (Zhang et al., 2021c). Ecological 

Drought Working Group of Science for Nature and People Partnership (SNAPP) proposed a framework of ecological drought 30 

from an “ecology-centric” lens, which incorporates ecological, meteorological, and hydrological information (Crausbay et al., 
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2017). Ecological drought was thus defined as an episodic deficit in water availability that drives ecosystems beyond thresholds 

of resilience into a vulnerable state, impacts ecosystem services, and triggers feedbacksfeedback in natural and/or human 

systems (Bradford et al., 2020; Crausbay et al., 2017; McEvoy et al., 2018; Munson et al., 2021; Raheem et al., 2019). 

Vegetation is among the most important components in terrestrial ecosystems, and the distribution and growth of vegetation 35 

are largely influenced by meteorological factors (Wang et al., 2021; Zeng et al., 2020; Zhang et al., 2021d). Developments in 

remote sensing technology have facilitated the application of vegetation indices to reflect the response of vegetation to climate 

change (Lawal et al., 2021). For example, a simple linear relationship was found between the standardized precipitation 

evapotranspiration index (SPEI) and normalized difference vegetation index (NDVI) at the global scale (Vicente-Serrano et 

al., 2012). The correlation between SPEI and NDVI showed a positive relationship in most regions of northwestern China 40 

(NWC), with the exception of a few regions such as the western parts of the Tarim Basin, Qaidam Basin, and southeastern part 

of the area (Jiang et al., 2018). Actually, the impact of drought on vegetation is manifested as the transition of water shortage 

from the meteorological stage to the ecological stage. Therefore, this impact should be analyzed by quantifying the effect of 

decreasing precipitation on the variation of available ecological water, i.e., from the perspective of drought propagation.  

Drought propagation refers to the transition of one drought type to another, and it is vital for drought monitoring and prediction 45 

(Fang et al., 2020; Warter et al., 2021). Accordingly, drought propagation has become a hot topic in meteorology and hydrology 

fields (Apurv et al., 2017; Guo et al., 2020). Approaches to drought propagation analysis are broadly divided into model 

simulations and statistical methods (Han et al., 2019). In the former approach, hydrological responses to meteorological 

drought are analyzed by using physical based models that are considered to be effective in representing relevant hydrological 

processes (Yu et al., 1999). Nevertheless, this approach involves labor-intensive calibration processes and is not suitable at 50 

large spatial scales (Huang et al., 2017). In contrast, statistical methods with fewer assumptions are easier to use at different 

spatial scales (Huang et al., 2017). However, in such methods, the propagation process was analysed using the time series of 

an average value of drought index in a region or subregion (explained in the Discussion section). In other words,In other 

words, the temporal connection between two drought types is was only considered in the traditional statistical methods, but 

their spatial overlap is ignored, which may result in the miscalculation of drought propagation in regions with large spatial 55 

extent.  

Probabilistic model has been proved to be a better way to quantify the relationship between different types of droughts 

(Ayantobo et al., The2018; Chang et al., 2016; Das et al., 2020). This is due to that the probability information of one type of 

successive drought events is contained in another type of drought associated with itdrought (Wu et al., 2021). Therefore, a 

number of studies have attempted to assess the propagation relationships between the two drought types based on the 60 

probabilistic method. A Bayesian network is a probabilistic model that acquires probabilistic inferences over interacting 

variables of interest based on a graphical structure. Therefore, this method has been proven to be suitable for quantifying the 

probability relationship between different drought types (Ayantobo et al., 2018; Chang et al., 2016; Das et al., 2020). For 

example, Guo et al. (2020) calculated the occurrence probability of hydrological drought based on different intervals of 

duration and severityseverities of meteorological drought. Sattar et al (2019) identified the occurrence probability of different 65 
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classes and lag timetimes of hydrological drought according to the intensity of meteorological drought. Nevertheless, the 

number of drought characteristics considered in these studies are relatively few. Xu et al. (2021) found that the probability of 

agricultural drought severity increased synchronously with meteorological drought in different regions of China. Jehanzaib et 

al. (2020) concluded that in the Korean Peninsula, the probability of meteorological drought propagating into hydrological 

drought increased significantly under climate change. In general, these studies primarily focused on the relationship between 70 

duration and severity between the two drought types but ignored the relationships among affected areas. Xu et al. (2015a) 

found that the probability of drought occurrence probability would be underestimated if fewer drought characteristics 

wereaffected areas are not considered. Therefore, the traditional drought probabilistic model of drought propagation can be 

improved by introducing the three-dimensional drought identificationclustering method, which provideswould provide more 

drought information (Liu et al., 2019).  75 

Taking a typically ecological fragile region, Northwestern China (NWC), as an example, the motivation of this study is to 

identify meteorological drought and ecological drought during 1982–2020 in the NWC from a three-dimensional perspective, 

and propose a novel method to investigate the response probability of ecological drought to meteorological drought. The 

remainder of the current paper is organized as follows: Section 2 briefly overviews the geographic information of NWC. 

Section 3 and describes the datasets used in this paper, and the procedure for estimating propagation probability from 80 

meteorological to ecological drought. The results and the comprehensive analysis of the proposed approach are presented in 

section 43 and 54, respectively. Finally, the conclusions are given in section 65. 

22 Materials and methods 

2.1 Study area 

Northwestern China (NWC; 31°35´N–49°15´N, 73°25´E–111°15´E) includes the provinces of Shaanxi, Gansu, Qinghai, and the 85 

Autonomous Regions of Xinjiang Uyghur and Ningxia Hui, covering a total surface area of 3.1 million km2 (Fig. 1)(Figure 

1Figure 1) (Zheng et al., 2021). The terrain of NWC constitutes mountains, basins, and the Gobi. The altitude ranges from –

156 m to 6647 m, showing the characteristics of “west high and east low”. Four climatic divisions, including humid, semi-

humid, semi-arid, and arid areaareas were demarcated, based on the dryness index (Zhang et al., 2021d). As NWC is located 

at the upstream of the Yangtze, Yellow, and other large rivers, it is significant to study the impact of drought on its ecosystem 90 

(Liu et al., 2021). 
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3 Materials and methods 

3.12.2 Datasets 

Monthly meteorological data, including surface reflectance, temperature, relative humidity, atmospheric pressure, downward 

shortwave radiation, wind speed, and longwave radiation, was obtained from the ERA5-land reanalysis dataset 95 

(https://cds.climate.copernicus.eu) issued by the European Centre for Medium-Range Weather Forecasts (ECWMF), which 

has a spatial resolution of 0.1° × 0.1° and covers the period of 1981–2021. Root soil moisture data were obtained from the 

hydrological dataset, simulated by the Noah model of the Global Land Data Assimilation System (GLDAS, 0.25°×0.25°; 

https://ldas.gsfc.nasa.gov/gldas), covering the period of 1948–2021. NDVI data covering the period 1981–2021 were obtained 

from the National Centers for Environmental Information (NCEI) (https://www.ncei.noaa.gov/), with a spatial resolution of 100 

0.05° × 0.05°. Land use type data (LUTD) with a spatial resolution 1 km was downloaded from China’s multi-period land 

use/cover change monitoring dataset (http://www.resdc.cn); it includes the years of 1980, 1990, 1995, 2000, 2005, 2010, 2015, 

2018, and 2020. In order to uniform the spatial resolution of Rootroot soil moisture, all spatial datasets were resampled to 

0.25°×0.25° using the bilinear interpolation method. The temporal range of all datasets werewas extracted from January 1982 

to December 2020. 105 

2.3.2 Meteorological and ecological drought index 

Previous studies found that the standardized precipitation evaporation index (SPEI) overestimated the meteorological drought 

in NWC where actual atmospheric water demand is determined by precipitation variation (Ayantobo and Wei, 2019; Zhang et 

al., 2019a; Zhang et al., 2021b). Additionally, precipitation is the main water resources for vegetation growth in most regions 

of NWC due to the deep phreatic buriedgreat depth to groundwater (Cao et al., 2021). Standardized precipitation index (SPI) 110 

was thus used in the current study to represent meteorological drought. SPI at different time scales was calculated by 

aggregating n-month moving sums (McKee et al., 1993). For example, SPI–3 in March was calculated by accumulating the 

series of precipitation in January, February, and March., allowing the identification of various drought types (McKee et al., 

1993). At short time scales, drought events are characterized by high frequency and short duration, while at long time scales, 

they have longer duration and lower frequency. SPI–3 has been reported to be highly representative of the impacts of 115 

meteorological conditions on vegetation as the vegetation variation is sensitive to three months accumulated precipitation 

accumulated over three months (McKee et al., 1993; Vicente-Serrano et al., 2012; Vicente-Serrano et al., 2010; Vicenteserrano 

et al., 2010). Therefore, SPI-3 was used to characterize meteorological drought in this study. Further details on SPI calculation 

are available in (McKee et al.,  (1993). 

Commonly used drought indices indirectly reflect the influence of drought on ecosystems, and they do not comprehensively 120 

reflect the homeostasis between ecological water consumption and requirement in drought evolution (Jiang et al., 2021). 

Additionally, decreases in vegetation coverage are not only caused by a persistent deficit in available water for ecosystems but 

also other aspects, such as wildfire, hail, flood, and human activities (Bento et al., 2020). This limited the ability of vegetation 
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indices to reflect drought conditions. Therefore, a new drought index, the standardized ecological water deficit index (SEWDI), 

was constructed to monitor terrestrial ecological drought in our previous study (Jiang et al., 2021). SEWDI follows a similar 125 

procedure as SPI. Ecological, which includes the calculation of ecological water deficit (EWD)), the selection of an optimal 

distribution for fitting monthly EWD series, and the inverse normal transformation of the cumulative density distribution of 

EWD. EWD is the difference between FAO-based ecological water requirement (EWR) and SEBS-based ecological water 

consumption (EWC) (Chi et al., 2018; Jiang et al., 2021). Among them, EWR was calculated using the single crop coefficient 

method recommended by the Food and Agriculture Organization (FAO). EWC equals the actual evapotranspiration, which is 130 

derived from latent heat fluxes calculated by the surface energy balance system (SEBS) algorithm. Therefore, SEWDI 

reflectscan reflect the dynamics of energy and water balance under human activities and climate change. Additionally, the 

standardization method facilitates the same threshold and evaluation criteria in monitoring two drought types (Peng et al., 2019; 

Zang et al., 2020), which reduces the influence of other algorithms on final results and guarantees spatio-temporal 

comparability (Liu et al., 2017). The procedure in calculating SEWDI calculation is detailed in Jiang et al (2021). 135 

3.32.4 Drought propagation probability method 

Since a reliable understanding of the drought propagation process is beneficial for drought forecasting, research interest in the 

probability of drought propagation from meteorological droughts to other types of droughts has been increasing (Zhou et al., 

2021). The current study thus proposed a novel method coupling spatial and temporal connection method of two type droughts, 

with machine learning model, and C-vine copula to investigate the relationship between meteorological and ecological drought. 140 

A flow diagram of the method is depicted in Fig. 2.Figure 2Figure 2. 

Investigating the relationship between the characteristics of the two drought types is key to constructing a probability model. 

The approach is summarized in twothree steps as follows: 

Step 1: Meteorological and ecological drought events were identified from a three-dimensional perspective, respectively 

(Section 3.32.4.1).  145 

Step2: The two drought types with a genetic relationship were paired on the basis of a certain spatio-temporal matching rule 

to extract propagated drought events. Their drought characteristics, including drought affected area, drought severity, and 

drought duration, were calculated according to the method described in Section 3.32.4.2. 

Step 3: Taking the characteristics of meteorological drought extracted in step 2 as inputs, and propagation results as outputs, 

the optimal model was selected from 11 machine learning classification models to calculate the propagated probability (P1) of 150 

meteorological drought (Section 3.32.4.3). Then, a conditional probability model of the paired meteorological and ecological 

drought events was constructed based on the C-vine copula (Section 3.32.4.4). According to the severities of all identified 

ecological drought events, cumulative probabilities of 0.5, 0.75, and 0.9 were selected to demarcate moderate, serioussevere, 

and extreme drought, respectively (Guo et al., 2020). The probabilities of ecological drought at different magnitudes triggered 

by meteorological drought were obtained by multiplying P1 with their conditional probability 155 
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3.32.4.1 Three-dimensional droughtDrought identification based on the three-dimensional clustering method 

According to Andreadis et al (2005), the evolution of a drought event should be viewed as a spatio-temporal continuum 

(longitude, latitude, and time). Different from the traditional one- or two-dimensional drought identification method, the three-

dimensional array of SPI-3 and SEWDI-3 were extracted to characterize the degree of meteorological and ecological droughts. 

The extraction procedure involves two steps (Fig. 2)(Figure 2Figure 2) (Andreadis et al., 2005; Xu et al., 2015a; Xu et al., 160 

2015b): firstly, the clustering method was used to identify drought patches in each month; secondly, the drought continuum 

was constructed by selecting the overlapping areas of drought patches between two adjacent months, which was greater than 

1.6% of the total area (explained inSee Section 3.1 for the Discussion section). reason). 

For each drought event, three drought characteristics were extracted as follows: (1) affected area was calculated by cumulating 

the area affected by drought in each month during the entire drought period. (2) Duration denotes the time of a drought event 165 

persisted. (3) Severity is a cumulative value of SEWDI-3 or SPI-3 for the entire drought duration and areal extent, and equals 

to the volume of the three-dimensional continuum. 

3.32.4.2 Spatio-temporal connection of two drought types 

Liu et al (2019) developed a new method for identifying the propagation between two related drought types based on the 

drought identification method from a three-dimensional perspective. The current study employed this method to identify the 170 

propagation from meteorological to ecological drought. The key to this method is the determination of the temporal and spatial 

connection between two drought types. The specific steps are as follows. 

Firstly, the identified meteorological and ecological drought events are sorted in the chronological order. Secondly, whether 

the two drought types overlap in time is judged according to Eq. (1)–Eq. (2). 

                                                                (1) 175 

                                                                                                                                                         (2) 

where 1 and 0 denote the existence and absence of time overlap between two drought types, respectively; MBTi and EBTj 

represent the beginning time of the i-th meteorological and j-th ecological drought events, respectively. Similarly, METi and 

EETj represent the end time of the i-th meteorological and j-th ecological drought events, respectively; MDDi and EDDj indicate 

the duration of the i-th meteorological and j-th ecological drought events, respectively. 180 

SecondlyThirdly, whether the meteorological and ecological drought patches connecting at a spatial scale is judged according 

to Eq. (3) and Eq. (4) 
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where 1 and 0 denote the existence and absence of spatial overlap between two drought types; ANWC represents the total area 185 

of the NWC; MDAi and EDAj represent the projected area of the i-th meteorological and j-th ecological drought events, 

respectively. b is set as 15% in the current study (See DiscussionSection 3.1 for the reason)). 

ThirdlyFourthly, successfully matched drought events are encoded following the chronological order. Cells in Fig. 2Figure 

2Figure 2 represent the relationship between preliminarily identified events of the two drought types. The propagation type 

from meteorological to ecological drought can be classified into four categories: one ecological drought event induced by one 190 

meteorological drought event (one–to–one), multiple ecological drought events induced by one meteorological drought event 

(one–to–many), one ecological drought event induced by multiple meteorological drought events (many–to–one), and multiple 

ecological drought events induced by multiple meteorological drought events (many–to–many).The codes of cells are identical 

if the propagation type belong to one–to–many, many–to–one, and many–to–many. 

Finally, the characteristics of meteorological and ecological drought events that belong to the same paired drought event are 195 

integrated, respectively. Among them, total duration is the difference between the latest-ending and earliest-starting drought 

events; total affected area is the projected area of all individual drought events; total severity is the sum of severities of 

individual drought events. 

3.32.4.3 Drought propagation identification based on the machine learning model 

The purpose of this part is to identify whether a meteorological drought event has the potential to trigger ecological drought. 200 

Eleven commonly used machine learning classification models, including the k-neighbors classifier (KN) (Parzen, 1962), 

support vector machine (SVM) classifier (Ben-Hur et al., 2000), Gaussian Process (GP) classifier (Chen et al., 2020), Decision 

Tree (DT) classifier (Quinlan, 1986), Multi-layer Perceptron (MP) classifier (Cybenko, 1989), AdaBoost (AB) classifier 

(Freund and Schapire, 1997), Gaussian Naïve Bayes (GNB) (Chan T.F., 1982 ), Quadratic Discriminant Analysis (QDA) 

(Cover, 1965), Gradient Boosting (GB) classifier (Friedman, 2001), XGBoost (XGB) classifier (Chen and Guestrin, 2016), 205 

and Random Forest (RF) classifier (Pal, 2005), were employed for propagation judgementjudgment. Drought duration, severity, 

and affected area of meteorological drought were set as the model inputs (Fig. 2).(Figure 2Figure 2). 1 and 0 were set as model 

target which representrepresents propagation occurrence and non-occurrence, respectively. The classifiers of In this study, 

each model were trained and validatedbinary classifier was constructed using a Python package called PyCaret, which wraps 

several machine-learning libraries, including scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, and Hyperopt(Ali, 210 

2020). The tune_model() function in the PyCaret package offers simple selection of optimal hyperparameters of each model. 

A 5-fold cross-validation. The was used to train and validate the classifiers in each model by setting "fold=5" in the 

create_model() function. In using the compare_models() function, the classifier with the highest summation of accuracy, 
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precision, recall, F1 score, and Matthews correlation coefficient was selected as the optimal model. To avoid overfitting and 

maintain high calculation efficiency, the L2 regularization method was selected for each model by setting the parameter 215 

"penalty='l2'". 
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where TP and FN represent actual positives that are correctly and wrongly predicted, respectively; TN and FP represent actual 

negatives are correctly and wrongly predicted, respectively.  

3.32.4.4 Drought propagation probability model based on C-vine copula 

Five univariate distributions, including JohnsonsbJohnson S_B (Soukissian, 2013), Gamma (THOM, 1958), Exponential 225 

(Marshall and Olkin, 1967), Pearson III (Wallis and Wood, 1985), and Weibull distribution (Thoman et al., 1969), were used 

to fit affected area, duration, and severity of meteorological drought and severity of ecological drought. The optimal 

distribution was selected according to the goodness of fit (GOF), which was estimated with the Kolmogorov–Smirnov (KS) 

test (Marsaglia et al., 2003) and Root Mean Square Error (RMSE).  

Commonly used Copulas, including elliptical Copula (GuassianGaussian) and four Archimedean Copulas (Clayton, Gumbel, 230 

Frank, and Joe), were used to join two marginal distributions (Chang et al., 2016). The GOF of these Copulas was estimated 

with RMSE and Cramer-von Mises (CMCvM) test (Genest et al., 2009). 

The Vine copula function is an effective tool for integrating different bivariate distributions and calculating the conditional 

probability of multiple variables (Ni et al., 2020). In a vine copula, an n-dimensional multivariate density is decomposed into 

n(n−1)/2 bivariate copula densities and arranged into n-1 trees. Among numerous vine Copula structures, the C-vine copula 235 

has a relatively simple structure and good robustness for constructing multivariate distributions (Wu et al., 2021). Therefore, 

it was of primary significance to this study. The GOF of C-vine Copulas was estimated with RMSE and CvM test. theThe joint 

density function of an n-dimensional C-vine Copula is expressed as Equation (10). 
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where Cf(x1,...,xn) represents the joint density function. c represents bivariate Copula densities, which includes Gumbel, 240 

Gaussian, Frank, and Clayton Copula functions; F represents cumulative distribution function (CDF) of joint distribution; F 

represents CDF of marginal distribution. i and j represent root nodes. More detailed information about the n-dimensional C-

vine copula can be referred to Wu et al (2021). By this means, the conditional probabilities of ecological drought at different 

magnitudes under impacts of meteorological drought are calculated using Equation (11). 

                                 (11) 245 

where D, A, and S represent duration, area, and severity of propagated meteorological drought, respectively; X represents 

ecological drought at moderate, serioussevere, and extreme magnitudes, which equals the cumulative probability of 0.5, 0.7, 

and 0.9, respectively. C represents CDFthe cumulative distribution function of the joint distribution. 

43 Results 

3.1 Threshold selection 250 

Determining overlapping areas of drought patches between two adjacent months is critical in the identification of drought 

events from a three-dimensional perspective. Sheffield et al (2009) used 500,000 km2 as the area threshold in global scales. 

For mainland China, 150,000 km2 was used as the area threshold in some studies (Wang et al., 2011; Xu et al., 2015b). Liu et 

al (2019) took 1.5% of the total area as the threshold in the Loess Plateau. To determine an optimal area threshold, the number 

of meteorological and ecological drought events as well as the ratio of minor drought events were calculated under different 255 

area thresholds, respectively. Here, a minor drought is defined as a drought event with 2 months duration and average 

SPI/SEWDI larger than -1. As shown in Figure 3Figure 3, 1328 and 2305 meteorological and ecological drought events were 

identified with an area threshold of 0.48% of the total area of the NWC, and the proportions of minor drought events were 44% 

and 32%, respectively. The number of drought events and the proportion of minor drought events decreased with increasing 

area threshold. However, this trend gradually stabilized when the area threshold was set to be larger than 1.6% of the total area 260 

of the NWC, indicating that most minor drought events with the relatively small area were excluded. Therefore, 1.6% of the 

total area of the NWC was used as the area threshold in this study. 

Similarly, the sensitivity of b in Eq.(4) for matching two drought types was tested. The binding mode of absolute and relative 

thresholds was employed to extract spatial intersection. b is set as 10%, 15%, 30%, 50%, 70%, and 90% to match two drought 
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types. Although some of the successful matching drought events may be merged into one drought event under larger b, the 265 

number of successful matching drought events showed little difference under different b (Table 1Table 1). In the current study, 

b =15% was set because the most paired drought events could be identified for fitting machine learning models and C-vine 

copula. 

4.13.2 Top ten meteorological and ecological drought events according to DSdrought severity 

A total of 130 meteorological drought events were identified based on SPI-3 from a three-dimensional perspective. The first 270 

ten meteorological drought events in terms of severity in NWC during 1982–2020 are shown in Table 1.Table 2Table 2. 

Meteorological drought events with longer duration exhibited relatively larger affected area, were mainly concentrated 

between 1982 and 2000. Zou et al (2005) estimated meteorological droughts with the Palmer drought severity index (PDSI) 

from 1951 to 2003 in China and found that most parts of NWC experienced severe droughts during 1997–2003, which is 

similar to the results of this study. As shown in Table 1,Table 2Table 2, two of ten meteorological drought events occurred 275 

during this period. Moreover, according to the historical record, Xinjiang and Gansu province experienced severe 

meteorological drought during 1985–1986 (Zhang et al., 2019b). The three-dimensional identification method could 

sensitively capture these events. Event No.9 started from southern Gansu in August 1985 and ended in May 1987, and ranked 

1st. 

A total of 184 ecological drought events during 1982–2020 were identified using the three-dimensional identification method. 280 

Table 2Table 3Table 3 lists the top ten ecological drought events in terms of severity. The most severe ecological drought 

event started in April 1982 and originated from central Gansu, which was induced by the persistent meteorological drought 

No.0 and No.3. Compared with the characteristics of meteorological droughts, ecological droughts showed longer duration 

and smaller affected area. This reveals that a longer recovery time is required for the mitigation of ecological droughts. 

4.23.3 Identifying propagation from meteorological to ecological drought 285 

A total of 46 paired drought events were successfully matched based on the spatio-temporal connection criterion. As shown in 

Fig. 3,Figure 4Figure 4, points representing paired drought events were mainly distributed along a diagonal, illustrating a 

relatively high consistency between the two types of droughts on the temporal scale. The number of one–to–one, many–to–

one, one–to–many, and many–to–many were 8, 8, 4, and 26, accounting for 17.4 %, 17.4 %, 8.7 %%, and, 56.5 % of the total 

number of paired drought events, respectively. Meteorological drought of OMT type showed a longer duration, a larger 290 

affected area, and a greater severity than ecological drought. However, this is contrary to type MTO. Simultaneously, 

ecological drought of type MTO showed a longer duration, a larger affected area, and a greater severity than those of type 

OTM (Figure 5Figure 5). 

Paired drought event No.36, comprising meteorological drought event No.87 and ecological drought event No.127, was taken 

as an example to show their spatio-temporal continuums (Fig. 4).(Figure 6Figure 6). The affected area of meteorological and 295 

ecological drought in each month werewas extracted to show their temporal variation. Meteorological drought No.87 (Fig. 
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4a(Figure 6Figure 6a) started two months ahead of ecological drought (Fig. 4b(Figure 6Figure 6b), and its effects lasted for 

two months. It is noteworthy that the most severe meteorological and ecological droughts mainly occurred in central Xinjiang. 

The affected area and severity of meteorological drought event No.87 and ecological drought event No.127 maintained a 

similar trend of increase–decrease (Fig. 5).(Figure 7Figure 7). Among them, the peaks of the meteorological drought event 300 

appeared two months ahead (December 2007) that of the ecological drought (February 20072008). In terms of drought 

trajectory (Fig. 6),(Figure 8Figure 8), they all originated from the Yili Basins and showed a counter clockwisecounterclockwise 

shift. 

3.4.3 Propagation probability from meteorological to ecological drought 

To estimate the propagated potential of meteorological drought, 11 commonly used machine learning models were trained 305 

based on characteristics of 81 integrated meteorological drought events. Table 3As can be seen in Figure 9Figure 9 propagated 

meteorological droughts have greater severity, larger affected area, and longer duration than non-propagated droughts. Table 

4Table 4 lists the evaluation results of five-fold cross-validations, including accuracy, precision, recall, F1 Score, and MCC 

metrics of five-fold cross-validations.. The closer these values are to 1, the higher precision of the model. Therefore, the five 

metrics were summed to compare the performances of the 11 models. Most models showed good performance except for 310 

GPGaussian Process and MP.Multi-layer Perceptron. The QDA classifier with maximum total value was chosen as the best 

model to identify the propagation potential of meteorological drought. 

The reliability of copula function is highly dependent on the dependence between two variables, which was measured by 

Kendall’s τ and Spearman’s ρ (Chang et al., 2016; Feng et al., 2021). The τ and ρ between affected area (M_Area), duration 

(M_Duration), severity (M_Severity) of meteorological drought, and severity of ecological drought (E_Severity) both reached 315 

significance at 0.01 level (Table S.1–1-S.2). The optimal marginal distributions of M_Area, M_Duration, M_Severity, and 

E_Severity are listed in Table 4.Table 5Table 5. All the distributions passed the KS test and their RMSE werewas small. 

Similarly, the parameters of bivariate distribution were estimated using the itau method, and. The Copula estimation can be 

eased by the itau method, which inverts Kendall's tau method (Demarta and McNeil, 2005). CvM test and RMSE were used 

to evaluate their goodness of fit (Table 5).(Table 6Table 6). The selected bivariate copulas also demonstrated a well 320 

applicability. In the end, the C-vine copula was constructed centered on E_Severity. The CvM test, RMSE (Table 6),(Table 

7Table 7), and P–P plots (Fig. S.1) indicated that the distribution can be used in probability analysis. The copula structure of 

M_Area-M_Duration-M_Severity-E_Severity was shown in Table 6.Table 7Table 7. 

Conditional probability is helpful in providing valuable information for the effective allocation of water resources under a 

certain drought level (Guo et al., 2020). In the current study, the occurrence probabilities of ecological drought at different 325 

levels were determined according to the characteristics of meteorological drought (Fig. 7).(Figure 10Figure 10). For example, 

the occurrence probabilities of moderate, serioussevere, and extreme ecological drought events were 80%, 63%, 14.7%, 

respectively, when M_DA > 17.6×105 km2 ∩ M_DD > 11.8 month ∩ M_DS > 7.5×106 month·km2. Furthermore, the 

occurrence probability was found to increase more rapidly with increasing M_DS and M_DD compared with M_DA, 
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indicating that the duration and severity of meteorological drought had stronger effects on ecological drought than affected 330 

area. Additionally, meteorological drought events with a duration of two months but great severity has a high potential to 

trigger ecological drought. This may be attributable to water shortage induced by meteorological droughts with extremely high 

intensity (intensity is the drought severity divided by the product of drought duration and affected area). 

For comparison, ternary linear and ternary quadratic models were constructed based on 46 pairs of meteorological-ecological 

drought events (Table 8Table 8). The comparisons were made in terms of three independent variables, M_DS, M_DD, and 335 

M_DA, and one dependent variable, E_DS. As shown in Table 8Table 8, the R2 of the ternary quadratic model was evidently 

higher than that of the ternary linear model, whereas the RMSE, AIC, and BIC were lower. This illustrates that M_DS, M_DD, 

M_DA, and E_DS follow a nonlinear relationship, and that the ternary quadratic model is more suitable for simulating their 

relationship. According to the ternary quadratic model, E_DS equals 1.4×106 month·km2 when M_DA > 17.6×105 km2 ∩ 

M_DD > 11.8 month ∩ M_DS > 7.5×106 month·km2. These values correspond to the thresholds of moderate (1.7×106 340 

month·km2), severe (2.4×106 month·km2), and extreme (4.6×106 month·km2) ecological drought. 

4 Discussion 

4.1 Advantages of the proposed approach 

Many studies have linked meteorological drought to hydrological drought at different time scales (Ding et al., 2021; Fang et 

al., 2020; Feng and Su, 2020; Han et al., 2019; Huang et al., 2017; Ma et al., 2019). In these studies, propagated drought events 345 

were identified on the basis of the time series between two drought types, and they focused on their lagging, attenuation, 

lengthening, and pooling (Fig. 9a). Spatial(Figure 11Figure 11a). The spatial and temporal drought propagation identification 

method used in the current study not only preserved the characteristics identified by the low dimensional method, but also 

considered the spatial overlap of two drought types (Fig. 9b).(Figure 11Figure 11b). Using this method, two types of drought 

events without spatial connection would be excluded, (only 103 out of 184 ecological drought events were induced by 81 out 350 

of 108 meteorological drought events), and more drought characteristics, such as affected area, and migration path could be 

extracted. This addresses the limited applicability of the traditional method to regions with large spatial extent, and provides 

more realistic drought propagationreliable information. for quantifying the relationship between characteristics of 

meteorological drought and ecological drought. Additionally, we improved the method for calculating the affected area and 

duration of paired drought events developed by Liu et al (2019), represented by a simple sum of characteristics of multiple 355 

drought events. However, this method overestimates the duration and affected area of some paired drought events, which is 

inconsistent with the real situation. In this study, the enhanced method could reflect the characteristics of paired drought during 

the propagation process more accurately. 

The conditional probability model was constructed based on paired meteorological and ecological drought events; it is not 

suitable for calculating the probability of ecological drought at different levels according to meteorological drought events 360 

without propagation potential. For example, the probability of moderate ecological drought was 63.3% if the characteristics of 
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meteorological drought event No.122 (M_Area=5.1×105 km2, M_Duration=6 month, M_Severity=1.89×106 month·km2) was 

directly input to the conditional probability model. In reality, this meteorological drought event did not trigger ecological 

drought. The QDA model added before the C-vine copula was used to address this issue, which could estimate the propagation 

potential of the corresponding meteorological drought. After this modification, the probability of the propagation of 365 

meteorological drought event No.122 to moderate ecological drought changed to 24.8%. 

5.34.2 Uncertainty of the model and its improvement measures 

QDA model could well simulate the propagation potential of most meteorological drought events (Table 3).(Table 4Table 4). 

However, some errors occurred in humid southern Shaanxi. For example, meteorological drought eventsevent No. 22 showed 

the potential to trigger ecological droughts, which were incorrectly classified as propagation occurrence. This could be 370 

attributed to the compensation of rich water resources for short-term ecological water deficit. Additionally, this paper provides 

a method for estimating the occurrence probability of ecological drought under the condition of a certain precipitation deficit. 

The effects of human activities and climate change on ecological drought were not distinguished in the current study. The 

proposed method may not be accurate for regions with complex water supply systems and strong anthropogenic impacts on 

vegetation growth. 375 

To improve the accuracy of the method, future studies should consider the non-consistence of ecological drought to quantify 

the impacts of human activities on drought propagation. Moreover, SPI can be replaced by PDSI or scPDSI to represent 

meteorological drought through which multiple water balance processes are considered to analyze their relationship with 

ecological drought (Altunkaynak and Jalilzadnezamabad, 2021). However, such modification may lead new problem 

associated with spatio-temporal incomparability. Nevertheless, this approach is worth applying in the ecological drought 380 

warning. For example, when a meteorological drought event occurs, its characteristics can be applied as input to the tuned 

model to estimate propagation probability from meteorological to ecological drought in different degrees. 

65. Conclusions 

This study proposed a method in identifying the propagation probability of meteorological drought events to trigger ecological 

drought in different magnitudes. Taking NWC as an example, 130 meteorological drought and 185 ecological drought events 385 

during 1982–2020 were extracted using the three-dimensional identification method. Compared with meteorological drought, 

ecological drought events exhibited longer duration, but smaller affected area and severity, suggesting that a longer recovery 

time is required for mitigating ecological drought.  

A total of 46 drought events were successfully matched according to a certain spatio-temporal connection principle. The paired 

drought events were divided into four categories, including one-to-one, many-to-one, one-to-many, and many-to-many. The 390 

four categories accounted for 17.4 %, 17.4 %, 8.7 %, and 56.5 % of the total number of paired drought events, respectively. 

Then, a drought propagation probability model was constructed by coupling QDA and C-vine copula. Compared with the 
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traditional propagation probability model, the proposed model intuitively provides more objective probabilities of ecological 

drought at different magnitudes. 

The current study certainly provides a more robust method for estimating propagation probability from meteorological to 395 

ecological drought in similar ecologically fragile regions. 
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Figure 1:1: Elevation and four divisions of northwestern China. 
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 615 
Figure 2:2: A schematic diagram illustrating the procedure of the drought propagation identification method. 
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Figure 3: Sensitivity test of overlapping areas of drought patches between two adjacent months. 
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 620 
Figure 4: Identification results of paired meteorological and ecological drought events. 
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Figure 5. A box plot showing the intensity, duration, and affected area of paired meteorological-ecological drought among different 
types 625 
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Figure 6: Spatio-temporal continuums of (a) meteorological drought event No. 87 and (b) ecological drought event No. 127. 
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 630 
Figure 5:7: Temporal evolution of DS and DA of (a) meteorological drought event No. 87 and (b) ecological drought event No. 127. 
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Figure 6:8: Cumulative SPI/SEWDI and migration trajectory of (a) meteorological drought event No.87 and (b) ecological drought 
event No.127. 
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Figure 7:9: Three-dimensional diagram showing characteristics of meteorological drought events. Larger circles indicate greater 
severity. 

 640 
Figure 10: Conditional probability of ecological drought at different(a) extreme, (b) severe, and (c) moderate levels, given that 
characteristics of meteorological drought exceedingexceed a certain value. 
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 645 
Figure 11: Conceptual graph depicting (a) traditional and (b) spatial and temporal connectivity rule of two drought types. 

 
Table 1 Sensitivity test of parameter b 

Threshold Number of paired 
drought events 

min(AMi,AHj)*90% 23 

min(AMi,AHj)*70% 32 
min(AMi,AHj)*50% 36 
min(AMi,AHj)*30% 39 
min(AMi,AHj)*15% 46 
min(AMi,AHj)*10% 46 

 
Table 12 Top ten meteorological drought events according to severity 650 

No. Affected area 
(km2) 

Duration 
(month) 

Severity 
(month・km2) 

Start time 
(year–month) 

End time 
(year–month) 

9 1764139.2 22 70730086 1985–08 1987–05 
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15 1675168.9 12 35741813 1997–01 1997–12 

74 1511945.1 8 29594926 2001–02 2001–09 

88 1610084.0 6 28099641 2008–04 2008–09 

0 1613507.4 8 21190554 1982–02 1982–09 

46 1407943.0 6 19184637 1995–03 1995–08 

3 1553813.5 6 17818477 1983–07 1983–12 

64 1194351.2 4 17346922 2000–02 2000–05 

120 954552.3 8 2642278 2017–10 2018–05 

115 471019.5 5 1915975 2015–12 2016–04 

 

 
Table 23 Top ten ecological drought events according to the severity 

No. Affected area 
(km2) 

Duration 
(month) 

Severity 
(month・km2) 

Start 
(year–month) 

End 
(year–month) 

2 390824.2 25 4446071 1982–04 1984–04 

35 347893.4 24 4197729 1986–07 1988–06 

50 407626.7 30 4182267 1990–06 1992–11 

37 348522.9 21 4047585 1986–10 1988–06 

3 371975.6 18 3732552 1982–04 1983–09 

59 407626.7 21 3566368 1991–03 1992–11 

49 399717.3 27 3555634 1990–06 1992–08 

56 391178.4 23 3360346 1991–01 1992–11 

58 399638.6 18 3124954 1991–03 1992–08 

55 120839.9 20 3085452 1991–01 1992–08 

 
Table 34 Estimations of 11 machine learning models in identifying the potential of meteorological drought to trigger ecological 655 
drought 

Classifier Accuracy Precision Recall F1 Score MCC Total 

KN 0.89 0.89 0.91 0.89 0.80 4.38 

SVM 0.80 0.84 0.83 0.80 0.67 3.94 

GP 0.43 0.22 0.50 0.30 0.00 1.45 

DT 0.83 0.84 0.84 0.82 0.68 4.02 

MP 0.62 0.40 0.59 0.46 0.17 2.24 

AB 0.82 0.83 0.82 0.81 0.65 3.92 

GNB 0.85 0.88 0.88 0.85 0.75 4.21 

QDA 0.93 0.93 0.94 0.93 0.87 4.58 

GB 0.83 0.83 0.84 0.82 0.67 4.00 
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XGB 0.85 0.86 0.87 0.85 0.72 4.15 

RF 0.87 0.87 0.89 0.86 0.76 4.25 

 
Table 45 Goodness of fit of the marginal distribution 

Distribution Marginal distribution RMSE 
KS-test 

Statistics P-value 

M_Area JohnsonsbJohnson S_B 0.044 0.129 0.963 

M_Duration JohnsonsbJohnson S_B 0.068 0.161 0.823 

M_Severity Pearson III 0.057 0.226 0.413 

E_Severity JohnsonsbJohnson S_B 0.079 0.194 0.615 

 

 660 
Table 56 Goodness of fit of the bivariate distribution 

 Joint variables Copula RMSE 
CvM_test 

Statistic P-value 

M_Area–M_Duration Frank 0.005 0.086 0.373 

M_Area–M_Severity Gaussian 0.052 0.098 0.605 

M_Area–E_Severtiy Gumbel 0.032 0.042 0.933 

M_Duration–M_Severity Gaussian 0.057 0.102 0.585 

M_Duration–E_Severity Gaussian 0.053 0.087 0.663 

M_Severity–E_Severity Frank 0.054 0.105 0.570 

 
Table 67 Goodness of fit of the multivariate distribution 

 Joint variables RMSE 
CvM_test 

Statistic P-value 
M_Area–M_Duration–M_Severity–E_Severity 0.079 0.073 0.398 

 
Table 7Table 8 E_DS with polynomial functions based on meteorological drought characteristics 665 

Model types Expression 
Assessment metrics 

RMSE AIC BIC R2 

Ternary linear model E_DS=4.85×105+0.15M_DS+4099.35M_DD-1.20M_DA 9.24×105 1350.67 1357.89 0.58 

Ternary quadratic 
model 

E_DS=1.54-0.05M_DS-16.91M_DD-0.08M_DA-
1319.23M_DD2+0.03M_DD×M_DA 7.29×105 1085.75 1100.20 0.85 

 

 


