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Abstract 15 

Due to EC’s easy recordability and the existence of a strong correlation between EC 16 
(electrical conductivity) and discharge in certain catchments, EC is a potential predictor 17 
of discharge. This potential has not yet to be widely addressed. In this paper, we 18 
investigate the feasibility of using EC as a proxy for long-term discharge monitoring in 19 
a small karst catchment where EC always shows a negative correlation with the spring 20 
discharge. Given their complex relationship, a special machine learning architecture, 21 
LSTM (Long Short Term Memory), was used to handle the mapping from EC to 22 
discharge. LSTM results indicate that the spring discharge can be predicted well with 23 
EC, particularly in storms when the dilution dominates the EC dynamic; however, the 24 
prediction may have relatively large uncertainties in the small or middle recharge events. 25 
A small number of discharge observations are sufficient to obtain a robust LSTM for 26 
the long-term discharge prediction from EC, indicating the practicality of recording EC 27 
in ungauged catchments for indirect discharge monitoring. Our study also highlights 28 
that the random or fixed-interval discharge measurement strategy, which covers various 29 
climate conditions, is more informative for LSTM to give robust predictions than other 30 
strategies. While our study is implemented in a karst catchment, the method may be 31 
also suitable for non-karst catchments where there is a strong correlation between EC 32 
and discharge. 33 

 34 
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1 Introduction 35 

The measurement of streamflow is crucial for hydrologists and hydraulic 36 
engineers since it is the fundamental data for estimating the hydrology cycle, water 37 
resource management, the design and operation of water projects. For continuous 38 
monitoring of streamflow, depth is often recorded continuously by an automatic 39 
instrument and translated into discharge based on a defined relationship. The most 40 
convenient way is to build a standard hydraulic structure, e.g. weirs or flumes, and the 41 
discharge can be easily calculated from the depth based on the theoretical hydraulic 42 
equations (Boiten, 1993). The establishment of these structures is often laborious and 43 
costly, which limits their application. Another common approach is to establish the 44 
stage-–discharge curve of the natural channel based on historical observations (Herschy, 45 
1995; Turnipseed and Sauer, 2010). However, some natural stream beds are not always 46 
regular and may change dramatically, especially in mountain areas, due to turbulent 47 
erosion and deposition of the sediments (Weijs et al., 2013). This would lead to strong 48 
variations in the rating curve and bring a huge uncertainty to discharge estimation.  49 

Instead of depth, electrical conductivity (EC) as a bulk parameter representing 50 
overall content of ions in the water may also be a potential discharge predictor. As well 51 
as being easy to record, EC has often been observed in many catchments to have a 52 
strong correlation with discharge (Cano-paoli et al., 2019; Dzikowski and Jobard, 2012; 53 
Gurnell and Fenn, 1985). Several studies have already discussed the potential of using 54 
EC to estimate the spring discharge. For example, Weijs et al. (2013) investigated the 55 
potential of EC to predict discharge in alpine watersheds and found the EC–streamflow 56 
relationship even slightly outperforms the stage–discharge relationship. Cano-paoli et 57 
al. (2019) presented a preliminary study about the streamflow estimation from EC 58 
through calibrated functional EC-Q relationships in a snow-dominated catchment. For 59 
the typical karst aquifer without intense human interventions, a strong negative 60 
correlation is also observed between EC and discharge (Goldscheider and Drew, 2007). 61 
Higher discharge often corresponds to lower EC. Therefore, if the EC–discharge 62 
relationship can be well established, EC may provide another good proxy for discharge 63 
monitoring. 64 

The EC–discharge relationship is more complex than the stage–discharge 65 
relationship due to the existence of the hysteresis phenomenon (Toran and Reisch, 66 
2012). A simple empirical formula or regression can hardly describe this complex non-67 
linear relationship. Instead, machine learning methods, which are widely used in the 68 
field of hydrology (Feng et al., 2020; Kratzert et al., 2018; Mewes et al., 2020; Sudriani 69 
et al., 2019), may be an effective tool to handle their links. Long Short Term Memory 70 
(LSTM) architectures, as a special type of current neural networks, are well known for 71 
their capabilities to learn long-term dependencies between input and output variables 72 
due to the extra consideration of dedicated memory cells and different gates. Its 73 
advantage over other machine learning structures to process the long-sequence data has 74 
been widely reported (Gao et al., 2020; Zhang et al., 2018). This characteristic makes 75 
them an ideal candidate to cope with the hysteresis between discharge and EC.  76 
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In this paper, we investigate the potential of EC to predict the discharge of a 77 
karst spring using LSTM, and whether EC can be used as a proxy for the continuous 78 
long-term monitoring of discharge. The purpose of this paper is twofold: (1) to explore 79 
the feasibility of discharge prediction with EC; (2) to investigate the optimal strategy 80 
of discharge measurement when using EC to indirectly monitor discharge. 81 

2 Study site and data 82 

The spring S31 is the biggest karst spring in Yaji karst experimental site (Fig.1), 83 
which is located in the southwest of Guilin city, China, and it developed in the Devonian 84 
pure limestone. This karst catchment belongs to the typical peak-cluster depression 85 
landform and only receives the precipitation recharge. The study site has a typical 86 
subtropical monsoon climate, with the rainy season from April to August, during which 87 
75% of annual precipitation occurs. Storms are frequent in this season and the highest 88 
recording of rainfall is 286 mm/day. The average annual temperature is around 18.8 ℃ 89 
and the annual precipitation is 1915 mm. According to the historical record, it seldom 90 
snows in the winter.  91 

Due to the abundant rainfall and warm climate, the karstification degree of this 92 
karst system is very high, with strong developments of epikarst and conduits. The 93 
catchment area of this spring is around 1.0 km2 and mainly contains three depressions 94 
according to the previous tracer tests (Yuan et al., 1996). For each depression, there are 95 
several sinkholes at the bottom that connect to the spring directly through a main 96 
conduit. During the recharge events, these sinkholes are the main rapid recharge 97 
passages that drain the fast lateral flow within the epikarst into the conduit directly. 98 
This is also the main reason for the drastic change of the spring discharge during storms. 99 
Besides, part of the rainwater could also recharge the karst aquifer slowly through the 100 
small fissures to mainly maintain the base flow. For more details about this catchment 101 
and its internal hydrological processes, see Chang et al.(2015) and Chang et al. (2019).  102 

 103 
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Fig.1 a) Location of study site, b) locations of North railway station and Institute of karst geology 104 
relative to the study site, c) catchment area of karst spring S31 (Chang et al., 2021). 105 

The spring discharge is measured by a combination of rectangular weirs and 106 
there is a rain gauge located near spring S31 to record the precipitation with a precision 107 
of 0.2 mm. A HOBO salt conductivity data logger is used to monitor spring EC 108 
continuously at the spring outlet with a temporal resolution of 15 minutes (corrected 109 
for 25 ℃). Due to a malfunction of the rain gauge in the study site, there are two 110 
recording gaps (14.05.2018–31.07.2018 and 29.04.2019–31.07.2019), which have been 111 
filled with information from two nearby climatic stations in North railway station and 112 
Institute of Karst Geology with the distance of 11.0 km and 5.5 km (Fig.1b), 113 
respectively. According to the previous simulation result of the conceptual rainfall-114 
runoff models driven by these gap-filled data (Chang et al., 2021), most data have a 115 
relatively good quality only except the precipitation on June 21, 2018 (red dashed box 116 
in Fig.2, labelled as OBGD), which was severely overestimated by the gap-filled data.  117 

The hydrochemical composition of the spring water in the study site is 118 
dominated by calcium carbonate equilibria resulting from the dissolution of carbonate 119 
rocks. There is limited human intervention in the area. As such, the spring’s EC 120 
dynamic is mainly controlled by the rock dissolution and the dilution from the low-EC 121 
event water during storms (Liu et al., 2004). Figure 2a shows the spring’s discharge and 122 
EC measurements (corrected for 25℃) from 2017 to 2019. The spring’s EC always 123 
shows a sharp drop during a storm due to the arrival of unsaturated fast flow, and it then 124 
gradually increases after the storm, corresponding to the gradual recession of the spring 125 
discharge. For the EC observations in 2018 and 2019, we find that the spring’s initial 126 
EC after the long dry period is much higher than the following maximum EC in the 127 
rainy season. These higher EC observations are mainly caused by the flush of long-128 
stagnant water after a long dry period; as such, we do not include them in the following 129 
analysis or simulations. It is worth mentioning that the original observations of the 130 
spring’s EC in 2017 have a higher maximal EC value than the other two years, which 131 
is mainly caused by equipment drift (Chang et al., 2021). Therefore, the EC 132 
observations for 2017 were simply adjusted by subtracting a certain value (23 us/cm) 133 
to remove the drift and keep the maximum EC consistent with the other two years.  134 

 135 
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Fig. 2 a) The observed spring’s discharge and EC from 2017 to 2019. The missing EC data are due 136 
to the drying-out of the spring during the dry period or equipment malfunction. The red-dashed box 137 
indicates the severely overestimated precipitation by the gap-filled rainfall data (OBGD). b) The 138 
correlation between EC and discharge, further divided into three categories according to the 139 
discharge peak (Qpeak) in the recharge events: small recharge events (Qpeak <0.5 m3/s), middle 140 
recharge events (0.5 m3/s≤ Qpeak < 1.5 m3/s) and storms (Qpeak ≥ 1.5 m3/s). r is the linear correlation 141 
coefficient between EC and discharge. 142 

Figure 2b shows the relationship between discharge and EC using all available 143 
observations. In general, two observations show a negative correlation with the linear 144 
correlation coefficient of -0.41, but also an obvious hysteresis since the EC peak always 145 
lags several hours behind the discharge peak in the study site. To explore the 146 
relationship between discharge and EC under different rainfall conditions, the recharge 147 
events in the monitoring periods are further divided into small rain events, middle rain 148 
events and storms according to the discharge peaks (Qpeak <0.5 m3/s, 0.5 m3/s≤ Qpeak < 149 
1.5 m3/s, Qpeak ≥ 1.5 m3/s, respectively). To divide the monitoring discharge series into 150 
different recharge events, we first select all the discharge peaks and two adjacent peaks 151 
with a time interval lower than one day are considered as a same recharge event. The 152 
end point or start point of each recharge event is determined by the lowest discharge 153 
point between two selected adjacent peaks. The final correlation degree between 154 
discharge and EC in different recharge events is shown in Fig. 1b. We find that a strong 155 
relationship between discharge and EC exists mainly in storms, while the relationship 156 
is relatively weaker in the small or middle recharge events.  157 

3 Methodology 158 

To explore the feasibility of EC as a proxy for continuous discharge monitoring, 159 
we first investigate whether the discharge can be predicted with EC using LSTM. If the 160 
prediction is feasible, another fundamental concern is how to establish the stable 161 
mapping from EC to discharge in the ungauged catchment. This leads to two questions: 162 
(1) How many discharge observations should be measured? (2) What is the optimal 163 
discharge measurement strategy? To this end, we further investigate the variations of 164 
the model performances trained by a different proportion of randomly selected 165 
discharge observations. In addition, the model performances trained by several 166 
common strategies of discharge measurement were compared to inspect the potential 167 
optimal strategy. 168 

3.1 Modeling approach 169 

LSTM belongs to a special kind of recurrent neural network (RNN), aiming to 170 
overcome the weakness of the traditional RNN, i.e. the problem of vanishing or 171 
exploding gradients (Bengio et al, 1994). Due to the additional consideration of the 172 
memory cell in the hidden layer and special gates, LSTM can capture the complex 173 
correlation well in both short and long sequences, and was therefore selected to handle 174 
the mapping from EC to spring discharge. Because the EC response always lags behind 175 
the discharge, the discharge at time t (Qt) was predicted by the EC observations before 176 
and after this time with the same length (MEC): 177 
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𝑄𝑄𝑡𝑡 = 𝑓𝑓(𝐸𝐸𝐸𝐸𝑡𝑡+𝑚𝑚,𝐸𝐸𝐸𝐸𝑡𝑡+𝑚𝑚−1, … ,𝐸𝐸𝐸𝐸𝑡𝑡 ,𝐸𝐸𝐸𝐸𝑡𝑡−1,𝐸𝐸𝐸𝐸𝑡𝑡−2, … ,𝐸𝐸𝐸𝐸𝑡𝑡−𝑚𝑚)    (1) 178 

Where ECt+m and ECt-m are the EC values at time t+m and t-m, respectively. 179 

For comparison, the LSTM model was also trained by the precipitation data (MP) 180 
to predict the spring’s discharge. The discharge at time t was simulated just by the 181 
previous and current precipitation: 182 

𝑄𝑄𝑡𝑡 = 𝑓𝑓(𝑃𝑃𝑡𝑡,𝑃𝑃𝑡𝑡−1, … ,𝑃𝑃𝑡𝑡−𝑛𝑛)          (2) 183 

Where Pt-n is the precipitation at time t-n. 184 

Meanwhile, we also used precipitation and EC data together as the input to 185 
predict the spring’s discharge (MECP) to explore whether considering both sets of data 186 
in the model can improve discharge prediction.  187 

𝑄𝑄𝑡𝑡 = 𝑓𝑓(𝐸𝐸𝐸𝐸𝑡𝑡+𝑚𝑚,𝐸𝐸𝐸𝐸𝑡𝑡+𝑚𝑚−1, … ,𝐸𝐸𝐸𝐸𝑡𝑡 ,𝐸𝐸𝐸𝐸𝑡𝑡−1,𝐸𝐸𝐸𝐸𝑡𝑡−2, … ,𝐸𝐸𝐸𝐸𝑡𝑡−𝑚𝑚,𝑃𝑃𝑡𝑡,𝑃𝑃𝑡𝑡−1, … ,𝑃𝑃𝑡𝑡−𝑛𝑛)   (3) 188 

In addition to these three models, the simple linear regression between discharge 189 
and EC involving all observations was used as a benchmark to compare with the results 190 
simulated by LSTM. Considering the delay behavior of EC, the best-fitting results with 191 
7 hours forward-shifting of EC were used for comparison. Implementation of LSTM 192 
was realized using Python 3.7 based on the Keras library. 193 

For all models, the longest data series from March 1 to August 1 in 2019 was 194 
used for model training (training period) and data in the other two periods, May 12 to 195 
August 8 in 2017 (test period 1) and March 20 to August 6 in 2018 (test period 2), were 196 
used for the model test. The time step in all models is set to one hour. Given the random 197 
nature of the machine learning algorithm, each model was repeated 10 times to show 198 
its uncertainty.  199 

For each model, the mean squared error (MSE) was used as the objective for 200 
model training. According to Fig.1b, EC has a strong negative correlation with 201 
discharge mainly in storms, so it is expected that in high-flow periods EC provides 202 
better discharge predictions. Therefore, the Nash-Sutcliffe efficiency coefficient, 203 
putting more emphasis on the high flow, was used to compare the performance among 204 
different models. 205 

𝑁𝑁𝑁𝑁𝑁𝑁ℎ = 1 − ∑(𝑄𝑄𝑠𝑠−𝑄𝑄𝑜𝑜)2

∑(𝑄𝑄𝑜𝑜−𝑄𝑄𝑜𝑜����)2
                  (4) 206 

Where Qs and Qo are simulated and measured discharge. 207 

3.2 Different measurement strategies 208 

To investigate how many discharge observations are required for MP or MEC to 209 
obtain a stable prediction, we randomly selected a certain percentage of discharge data 210 
in the training period (1%, 2%, 3%, 4%, 5%, 10%, 15%, 20% … 50%) as the available 211 
measurements for the model training. The trained LSTM models were then tested in the 212 
three periods to analyze prediction performance variations with the amount of available 213 
training data.  214 
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To explore the optimal measurement strategies, the discharge measurements 215 
from four different measurement strategies were chosen to train the model, and their 216 
performances were compared: 217 

(1) Discharge was measured once in each day randomly during the daytime 218 
(9:00 A.M. – 5:00 P.M.). This situation is similar to the sampling strategy at relatively 219 
fixed intervals. Given that the training period contains five months, we consider the 220 
spring’s discharge was measured continuously in the first one month, two months, three 221 
months, four months and  five months, which accounts for 0.7%, 1.6%, 2.5%, 3.4% and 222 
4.2% of the total data, respectively. 223 

(2) Discharge was measured continuously over a short time. To compare with 224 
the results of situation (1), with 4.2% of available data, we randomly selected 4.2% 225 
continuous discharge data for the model training. To prevent the selected data all 226 
coming from the dry period, the selected data must contain a discharge higher than 1.5 227 
m3/s, that is, it should contain a certain proportion of discharge in the storms. 228 

(3) Discharge in the largest storm or two largest storms in the training period 229 
was measured continuously, which accounted for about 2.9% and 5.0%, respectively, 230 
of the total data. In addition, we also considered the situation that the discharge was 231 
measured continuously under the largest storm and the rest was measured randomly in 232 
the remaining period, which gives 4.2% of total available data. 233 

(4) Discharge was measured randomly in the training period. In contrast to 234 
situation (1), the result with 4.0% randomly measured discharge observations for 235 
investigating the data requirement was presented for comparison. 236 

For each scenario, the discharge selection was repeated 100 times to consider 237 
the uncertainty caused by the random selection. 238 

4 Results 239 

4.1 Discharge predictions by different inputs 240 

The selection of appropriate hidden layer, input length (m or n) and neuro 241 
number is crucial to apply the LSTM model to avoid overfitting or underfitting problem. 242 
In this paper, their appropriate values are determined through the performance 243 
comparison among models with different layers, input lengths or neuro numbers in the 244 
training and test period 1. The detail information about the selection procedures is 245 
shown in the appendix. Finally, the hidden layer, m and n are set to 1, 10 and 6 in three 246 
models, respectively. 247 

Figure 3a shows the model performances of three models (MP, MEC and MECP). 248 
For the training period, all three models have excellent simulation results, with Nash 249 
coefficients larger than 0.90. Their performances become a little worse in test period 1 250 
(Fig. 3b) and the median Nash values of MP, MEC and MECP are 0.78, 0.61 and 0.76, 251 
respectively. However, for test period 2 (Fig. 3c), the performances of MP and MECP 252 
deteriorate obviously probably due to the large error of precipitation observations, 253 
whereas MEC still has a relatively stable performance with a median Nash value of 0.47. 254 
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If the OBGD recharge event is removed, the median Nash values of three models 255 
increase to 0.07, 0.53 and 0.16, respectively. The performance of MEC is still better than 256 
MP and MECP. This indicates the gap-filled precipitation in test period 2 except OBGD 257 
may still have some errors that affect the simulation results of MP and MECP. Comparing 258 
MECP to the other two models, except for the training period, MECP always presents the 259 
in-between Nash value. This implies the additional integration of EC into MP can, to 260 
some degree, avoid a severe deterioration in model performance caused by the 261 
precipitation error (test period 2), but it cannot effectively improve the discharge 262 
prediction (test period 1). The Nash value of the benchmark model is 0.20. MEC always 263 
has much better prediction results than the benchmark model in all three different 264 
periods, which indicates the excellent capability of LSTM to handle the complex 265 
nonlinear relationship between EC and discharge.  266 

 267 

Fig. 3 a), b) and c) Performance comparison of three LSTM models with different input data (MP: 268 
Rainfall, MEC: EC, MECP: Rainfall + EC) in test period 1, test period 2 and train period, respectively. 269 
The red-dashed line in Fig.2b represents the Nash value of the benchmark model, which just 270 
considers the simple linear regression using all available data. d) and e) The simulation results of 271 
the spring’s discharge by MP and MEC. The simulated interval was obtained from ten repeating 272 
simulations of each model. The blue-dashed box in Fig.2d indicates the severely overestimated 273 
discharge by MP caused by the gap-filled precipitation data.  274 

When further inspecting the simulated hydrographs in the three periods, we find 275 
MP can capture the most discharge dynamics, except the severe overestimation in test 276 
period 2 caused by the precipitation error (blue dashed box in Fig.2d). Meanwhile, the 277 
simulated hydrograph by MP contains many small discharge peaks in the dry period 278 
that are not observed. In contrast, while MEC can also reproduce the spring’s discharge, 279 
especially under storms, it cannot capture small discharge peaks lower than 0.50 m3/s 280 
and the recession curve in the dry period (Fig. 3e).  281 
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Given the different correlations between discharge and EC in different recharge 282 
events as in Fig.1b, we further compare the performance of MP and MEC in three 283 
recharge events separately and the results are shown in Figure 4. MEC shows a little 284 
better performance in storm events than MP, whereas its performance in the middle 285 
recharge events is worse than MP with the mean Nash value of 0.52 and 0.82, 286 
respectively. For the small recharge events, both models show very bad results and the 287 
Nash values are lower than 0. Even though the OBGD event is removed, their 288 
performances are still not good and only MEC has a Nash value a little higher than zero.  289 

 290 

Fig. 4 Performance comparison of two models (MP and MEC) in different recharge 291 
events.  292 

4.2 Discharge predictions under different monitoring strategies 293 

To investigate the data requirement of discharge observations to obtain a stable 294 
prediction, we compare the performances of MP and MEC trained by different 295 
proportions of random selections (Fig. 5a and 5b). Our results show that the Nash 296 
coefficients of the two models gradually increase with available observations except 297 
for MP in test period 2 (precipitation error). For both models, when the percentage of 298 
selected observations is higher than 20%, their performances tend to be stable and the 299 
consideration of extra observations would not highly improve the model performance. 300 
Meanwhile, in contrast to MP driven by precipitation, MEC does not need more 301 
additional discharge observations. 302 
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 303 

Fig. 5 a) and b) Model performances in the three periods when the available discharge data is 304 
randomly selected from the training period with a certain percentage (1%, 2%, 3%, 4%, 5%, 10%, 305 
15%, …, 50%). c) and d) Model performances with different measurement strategies of discharge 306 
in the training period. Random corresponds to random discharge measurements. 1 month, 2 months, 307 
3 months, 4 months indicate that one discharge was randomly selected on one day during the 308 
daytime from one month, two months, three months and four months, respectively. Continuous 309 
selection means the discharge data were selected in a continuous way. Largest storm and two storms 310 
indicate that only the discharge data under the largest storm or the two largest storms were selected 311 
to train the model. Largest storm + random denotes that the discharge data under the largest storm 312 
was used along with a random selection of data, together accounting for 4.2% of the total data. The 313 
number in brackets shows the proportion of the randomly selected data in the training period. 314 

Figure 5c and 5d shows the performances of two models (MP and MEC) in the 315 
three periods trained by different discharge observations relating to different 316 
measurement strategies. Generally, no matter which variable is used to predict the 317 
discharge (precipitation or EC), the optimal discharge measurement strategy for 318 
obtaining the best prediction results is consistent. The model trained by the random or 319 
relatively fixed-interval observations gives the best prediction results, while the one 320 
trained by the observations under one or two largest storms has the worst performance. 321 
However, if the observations in the largest storm are combined with some random 322 
measurements to train the model, the model performance will be highly improved, but 323 
is still worse than the best prediction. This result further demonstrates the superiority 324 
of considering random observations to train the model to get a better prediction result. 325 
For the model trained by the continuous discharge observations, the model performance 326 
shows wide ranges indicating its strong dependence on the measurement period. 327 
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4 Discussion 328 

The results of this paper indicate it is feasible to predict discharge with EC using 329 
LSTM in the study catchment. However, as shown in Fig.4, EC provides different 330 
accuracies of discharge prediction under different recharge events due to the different 331 
correlation between EC and discharge (Fig. 2b). These different prediction accuracies 332 
are probably due to the different control mechanisms of EC behavior under different 333 
rainfall conditions. For the typical karst system without strong human interventions, the 334 
EC dynamic mainly results from the dilution from the new fresh rainwater and the 335 
dissolution of carbonate rocks within the catchment (Goldscheider and Drew, 2007; 336 
Chang et al., 2021). During storms, the EC dynamic is mainly dominated by dilution, 337 
which leads to the close dependence of EC reduction and discharge because larger 338 
discharge always means more new fresh rainwater. However, for the middle recharge 339 
events, the EC dynamic may be related to both the dissolution and dilution processes. 340 
The dissolution process not only depends on discharge, but also relates to the rainfall 341 
style and internal hydrological path. For example, for a same spring discharge, higher 342 
rainfall intensity may lead to more fast flow and lower EC. Therefore, the effect of 343 
dissolution on EC, to some degree, can reduce the correlation between EC and 344 
discharge and increase the prediction uncertainty of discharge. For small recharge 345 
events, the dissolution process dominates EC behavior. At the study site under small 346 
rainfall conditions, the spring’s EC always shows a very limited fluctuation or even 347 
does not change, indicating that the dissolution of carbonate rock almost reaches the 348 
equilibrium at the outlet. Therefore, under such conditions, there is a very weak 349 
correlation between EC and discharge, and large uncertainties in discharge predictions. 350 
From this aspect, EC is more suitable to be used for the large discharge monitoring 351 
when the dilution effect dominates the EC dynamic.  352 

Several studies have investigated how many discharge measurements are 353 
needed to obtain robust predictions in ungauged catchments, although most concentrate 354 
on the conceptual rainfall-runoff model. Perrin et al. (2007) find that 350 random 355 
observations sampled out of a 39 year recorded period (around 2.5% of full data), 356 
including dry and wet conditions, are sufficient to get similar calibrations to those of a 357 
full calibration based on 12 basins in the USA. Seibert and Beven (2009) report that 32 358 
random selections from each hydrological year (around 8.7%) can provide robust runoff 359 
simulations based on 11 catchments in Sweden. In contrast, our study indicates that 360 
more discharge observations are needed (around 20% of full data) for MP or MEC to 361 
reach similar discharge predictions to those predicted by the model trained using all 362 
data. This requirement is probably because LSTM is a hyperparameter model that 363 
contains many more calibrated parameters than the traditional conceptual model since 364 
a more complex model often needs more calibration data to reach a stable performance 365 
(Perrin et al., 2007).  366 

Our study also highlights the significance of the measurement strategy in model 367 
performance. The random observations are more informative for model calibration than 368 
the continuous dataset of the same length, which is consistent with previous studies 369 
(Perrin et al., 2007; Seibert and Beven, 2009; Seibert and McDonnell, 2015). In 370 

11

https://doi.org/10.5194/hess-2022-77
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



contrast to several reports (Juston et al., 2009; McIntyre and Wheater, 2004; Singh and 371 
Bárdossy, 2012), we find that the event-based sampling strategy results in much worse 372 
model performance than sampling at relatively fixed intervals. This mainly depends on 373 
the characteristic of LTSM that belongs to a pure data-driven model and has a limited 374 
extrapolation capability. Therefore, to obtain stable prediction results, LTSM should be 375 
trained by the dataset covering various climate conditions. The model trained only by 376 
event-based observations would provide large prediction uncertainties when used to 377 
predict discharge beyond the training condition. This is also the main reason that the 378 
random or relative fixed measurement strategy performs better than others. Hence, in 379 
practical applications, we should measure discharge under a variety of rainfall 380 
conditions, particularly extreme conditions as much as possible so as to obtain a robust 381 
LSTM model. 382 

Although depth is commonly used for continuous discharge monitoring based 383 
on the stage–discharge rating curve, this method is only suitable for the relatively 384 
regular channel, where the channel geometry should not change during the monitoring 385 
period (Weijs et al., 2013). In contrast, our method to use EC to substitute for discharge 386 
monitoring is independent of the channel geometry and can be applied in any channel 387 
condition. Therefore, it is more stable than the stage–discharge method when applied 388 
in a channel where the geometry may change obviously with time. In addition, the 389 
rainfall-runoff model calibrated by limited random measurements also has a huge 390 
potential to obtain long-term discharge series (Perrin et al., 2007; Pool et al., 2017; 391 
Seibert and Beven, 2009). Our study shows the LSTM trained by precipitation (Mp) 392 
always show a better prediction performance than that trained by EC (MEC) in test 393 
period 1. However, these models need accurate precipitation measurements, which 394 
often exhibit a strong spatial variability. Measuring precipitation with a sparse gauge 395 
network may produce large errors that can result in large uncertainties of discharge 396 
predictions (Oudin et al., 2006), as our study shows (MP in the test period 2, Fig. 2). 397 
Although now the satellite precipitation product can provide the precipitation data at 398 
reatively high resolutions in the ungauged site, these products still suffer from 399 
systematic, random and detection errors, which are more pronounced in mountain 400 
regions (Maggioni and Massari, 2018l; Beck et al., 2019). In contrast, the EC 401 
measurement, like the depth measurement, only needs to focus on the outlet without a 402 
spatial observation uncertainty. Therefore, compared to the rainfall-runoff model, our 403 
method still has an obvious advantage in mountain regions where the precipitation have 404 
a large spatial variability. Despite these advantages, our method also has obvious 405 
drawbacks. Firstly, the application of our method is restricted to catchments where EC 406 
has a strong relationship with discharge. Meanwhile, the EC sensor also needs a 407 
periodic calibration to avoid a strong drifting. Secondly, as discussed before, predicting 408 
discharge with EC may have large uncertainties in the small recharge events, during 409 
which the EC dynamic is strongly affected by mineral dissolution. In our study 410 
catchment, higher values of EC after a long dry period due to the flush of old water 411 
within the conduit are discarded in our model. Further research is needed to test whether 412 
more complex neuro networks can handle this situation. 413 
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5 Conclusions 414 

In this paper, we evaluate the feasibility of using EC as a proxy for the long-415 
term discharge monitoring based on a machine learning architecture LSTM in a small 416 
karst catchment where EC exhibits a strong negative correlation with discharge. The 417 
results indicate the huge potential of EC to predict discharge and it is feasible to train a 418 
robust LSTM with just a small number of discharge observations; however, in some 419 
recharge events the prediction uncertainty is relatively large. The random or fixed-420 
interval measurement strategy can give more informative values for LSTM training. 421 
Our study provides useful guidance for the application of our method in other ungauged 422 
catchments where the installation of gauging weirs or representative rainfall stations is 423 
prohibited. Furthermore, at the study site, the EC dynamic of the karst spring is 424 
relatively simple without obvious seasonal variations (Liu et al., 2007) or ‘piston effects’ 425 
(a temporal EC peak before it drops during storms) (Hess and White, 1993), further 426 
investigations are required to evaluate whether LSTM could handle more complex 427 
situations. It should also be noted that although our work was conducted in a karst 428 
region, our method and conclusion may also be useful in non-karst catchments where a 429 
strong correlation between EC and streamflow exists (Cano-paoli et al., 2019; Weijs et 430 
al. 2013). For example, Cano-paoli et al. (2019) used several empirical equations to 431 
estimate the river discharge by EC in a snow-dominated non-karst catchment and 432 
obtained relatively good prediction results. Compared to the empirical equation, LSTM 433 
show a more flexible capability to handle the relationship between discharge and EC, 434 
and therefore it is expected to get more robust results. 435 

 436 

Appendix 437 

A1 Selection of appropriate hidden layer, input length and neuro number in 438 
LSTM models 439 

The fundamental problem when using LSTM to simulate discharge is to 440 
determine the appropriate hidden layer, input length (m or n) and neuro number. The 441 
dropout technique was applied in LSTM to avoid overfitting and the value is set to 0.4 442 
(Srivastava et al., 2014). In many cases, one hidden layer is often found to be sufficient 443 
for discharge simulation (Campolo et al., 1999; Gao et al., 2020). In our study, we also 444 
found one hidden layer in LSTM is enough to simulate the discharge by precipitation, 445 
EC or both after a series of experiments. To choose the appropriate input length of 446 
precipitation or EC to simulate the discharge, we first used a relatively large neuro 447 
number (40) and then gradually increased the input length of EC (m) and precipitation 448 
(n) from 1 to 20 to compare their performances in the training and test period 1. The 449 
appropriate value of m or n was obtained based on the relative balance between the 450 
performances in these two periods. The comparison results of models using different 451 
input length of EC or precipitation were shown in Fig. 1A and Fig. 2A, and the optimal 452 
values of m and n were found to be about 10 days and 6 days. 453 
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 454 

Fig. A1 MSE variations with the input length of EC (m) increasing from 1 to 20 when the EC is 455 
used to simulate the discharge (the neuro number is 40). Based on the performance comparison in 456 
the training and test 1 period, 10-days is regarded as the best window length for EC to predict the 457 
discharge. 458 

 459 

Fig. 2A MSE variations with the input length of precipitation (n) increasing from 1 to 20 when the 460 
precipitation is used to simulate the discharge (the neuro number is set to 40). Based on the perfor-461 
mance comparison in the training and test 1 period, 6-days is regarded as the best window length 462 
for precipitation to predict the discharge. 463 

Finally, we gradually reduced the neuro number from 40 to 1 to compare the 464 
model performance with different neuron numbers and the results were shown in Fig. 465 
3A and 4A. The simulation results just exhibit pronounced deteriorations when the 466 
neuro number is smaller than 10, while the larger neuro number does not bring 467 
noticeable overfitting (performance deterioration in test period 1) which may mainly 468 
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due to the consideration of dropout technique. Therefore, for three models (MEC, MP 469 
and MECP), the neuro number is set to 10.  470 

 471 

Fig. 3A MSE variations with the neuro number decreasing from 40 to 1 gradually in MEC. 472 
 473 
 474 

 475 

Fig.4A MSE variations with the neuro number decreasing from 40 to 1 gradually in MP. 476 
 477 

Code and data availability. All data and simulation results are available from the 478 
corresponding author upon request. 479 

 480 
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