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Abstract. Spatiotemporally continuous soil moisture (SM) data are increasingly in demand for ecological and hydrological 10 

research. Satellite remote sensing has potential for mapping SM, but the continuity of satellite-derived SM is hampered by 

data gaps, resulting from inadequate satellite coverage and radio-frequency interference. Therefore, we propose a new gap-

filling approach to reconstruct daily SM time series using the European Space Agency Climate Change Initiative. The 

developed approach integrates satellite observations, model-driven knowledge, and a machine learning algorithm that 

leverages both spatial and temporal domains. Taking SM in China as an example, the reconstructed SM showed high 15 

accuracy when validated against multiple sets of in situ measurements, with root mean square error (RMSE) and mean 

absolute error (MAE) of 0.09–0.14 and 0.07–0.13 cm3/cm3, respectively. Further evaluation with a 10-fold cross validation 

revealed median values of the coefficient of determination (R2), RMSE, and MAE of 0.56, 0.025 cm3/cm3, and 0.019 

cm3/cm3, respectively. The reconstructive performance was noticeably reduced both when excluding one explanatory 

variable and keeping the other variables unchanged, and when removing the spatiotemporal domain strategy or the residual 20 

calibration procedure. In comparison with gap-filled SM data based on a satellite-derived diurnal temperature range (DTR), 

the gap-filled SM data from bias-corrected model-derived DTRs exhibited relatively lower accuracy but higher spatial 

coverage. Application of our gap-filling approach to long-term SM datasets (2005-2015) produced a promising result (R2 = 

0.72). A more accurate trend was achieved relative to that of the original CCI SM when assessed with in situ measurements 

(i.e., 0.49 versus 0.28, respectively, in terms of R2). Our findings indicate the feasibility of integrating satellite observations, 25 

model-driven knowledge, and spatiotemporal machine learning to fill gaps in short- and long-term SM time series, thereby 

providing a potential avenue for applications to similar studies.  

1. Introduction 

As an essential component of land–atmosphere interactions, soil moisture (SM) substantially impacts the energy, water, and 

carbon cycles. It plays important roles in hydrological, environmental, and agricultural applications such as 30 

http://www.youdao.com/w/coefficient%20of%20determination/#keyfrom=E2Ctranslation
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evapotranspiration (ET) estimation (Detto et al., 2006), drought assessment (Wang et al., 2011), and flood forecasting 

(Wanders et al., 2014). SM has been declared by the Global Climate Observing System (GCOS) and United Nations 

Framework Convention on Climate Change (UNFCCC) as one of the 50 vital variables in terrestrial domains (Gcos, 2010). 

Availability of spatially and temporally continuous daily all-weather SM data could facilitate improved understanding of 

ecological and hydrological processes; therefore, provision of a reliable SM dataset is urgently demanded. 35 

Various methods are available for collecting SM data. In situ measurements can capture the temporal variability of SM at the 

station scale, and many networks designed for such in situ observations have been installed regionally, nationally, and 

globally, e.g., the crop growth and farmland SM database in China, the North American Soil Moisture Database in North 

America, and the International Soil Moisture Network (ISMN) (Schaake et al., 2004; Dorigo et al., 2011). Nevertheless, 

owing to the limited number of ground stations, obtaining spatially continuous SM measurements across large-scale regions 40 

remains a challenge. In addition to ground-based observations, SM can be simulated using numerical models. The Global 

Land Data Assimilation System (GLDAS) and European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-

generation global atmospheric reanalysis (ERA5) can model the soil moisture values that have sufficient spatial coverage 

(Chen et al., 2013; Reichle et al., 2011). However, such model simulations tend to be sensitive to uncertainties related to 

model structure, forcing, and parameterization (Prihodko et al., 2008; Dorigo et al., 2017).  45 

Satellite observation is considered a powerful technique for retrieving surface SM data, especially given recent 

improvements in sensor technology. Some SM-dedicated satellites, e.g., the Advanced Microwave Scanning Radiometer-

Earth Observation System (AMSR-E), and Advanced Scatterometer (ASCAT) have used the higher C-band and X-band 

microwave frequencies to collect SM signals. Despite the sensitivity of satellite-derived SM data to atmospheric variability 

and vegetation coverage, satellites operating with lower L-band radiometers, such as the Soil Moisture and Ocean Salinity 50 

(SMOS) (Kerr et al., 2001) and Soil Moisture Active and Passive (SMAP) (Entekhabi et al., 2010), have exhibited great 

potential for collecting SM data because of the strong capacity of wavelengths in the L-band frequency range to penetrate 

vegetation. A case worth noting is that the Climate Change Initiative of the European Space Agency (ESA CCI) has 

generated one set of global SM dataset (Gruber et al., 2019; Dorigo et al., 2017). This CCI SM product blends a series of SM 

products from active passive microwave satellite sensors, enabling it one complete and consistent observational SM record. 55 

Previous studies have revealed reasonable correlation between the CCI SM dataset and in situ measurements obtained over 

different regions (Dorigo et al., 2015).  

The gap issues that remain in current satellite-based SM products relate to a various factors such as radio-frequency 

interference and orbital changes of the satellite sensors. Considerable effort has been dedicated to filling missing values in 

satellite-derived SM datasets. Traditional interpolation approaches that are applied to fill gaps rely on the spatial or temporal 60 

patterns of the target variable, such as inverse distance weighting and cokriging (Yao et al., 2013; Ford and Quiring, 2014). 

Other studies (Leng et al., 2017; Llamas et al., 2020; Meng et al., 2021) have focused on the use of statistical methods that 

mainly depend on the statistical and physical relationships between target variables and explanatory variables. Only recently 

machine learning strategies have been introduced to the problem of gap-filling in relation to satellite-derived datasets (Zhang 
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et al., 2021b; Zhang et al., 2021a). Such methods have strong capacity for depicting complex relationships of target variables 65 

and explanatory variables. For instance, Elsaadani et al. (2021) assessed the spatiotemporal deep learning method for filling 

the gaps in soil moisture observations, (Li et al., 2022c; Li et al., 2021b) further improved satellite soil moisture prediction 

using deep learning model. In comparison with statistical-based models, machine learning models might be more flexible 

and robust, especially with regard to complex scenes and extended coverage (Reichstein et al., 2019).  

Most SM gap-filling studies rely on explanatory variables that are required in describing SM dynamics. In addition to 70 

satellite-derived vegetation indexes (e.g., normalized difference vegetation index (NDVI) and enhanced vegetation index 

(EVI)), surface albedo, and land surface temperature (LST), various climatic and geographical factors have been employed 

in such studies (Almendra-Martín et al., 2021; Cui et al., 2019; Jing et al., 2018). Nevertheless, although appropriate for use 

in certain regions, most of those variables are less suitable for use in heterogeneous regions and for extended coverage. For 

example, previous studies (Song et al., 2021; Liu et al., 2020b) that focused on the NDVI and LST tended to achieve better 75 

performance in depicting SM in arid and semi-arid regions, but produced unsatisfactory performance in humid areas. 

Moreover, satellite-derived variables (e.g., optical and thermal infrared parameters) are likely to be impacted by cloud 

conditions. Accordingly, researchers have attempted to explore effective information for promoting model establishment and 

application. Some studies used the feature transform approach to extract distinct signals for driving models. Principal 

component analysis (PCA) and wavelet decomposition have been employed to reconstruct SM and other satellite-based 80 

parameters (Uebbing et al., 2017; Almendra-Martín et al., 2021). Despite reasonable model performance achieved in humid 

and semi-arid regions (Zhang et al., 2016; Almendra-Martín et al., 2021), some studies found no substantial improvement in 

model performance in areas of cropland in semi-humid regions when using the PCA (Wang et al., 2020). Other studies 

focused on the distinct dataset source for gap-filling models. Soil moisture from GLDAS, ERA5, China Meteorological 

Administration Land Data Assimilation System (CLDAS) and Fengyun Microwave Radiation Imager is considered (Long et 85 

al., 2019; Cui et al., 2020). The gap-filling models integrating these unique dataset sources are able to describe SM 

dynamics, but uncertainties remain in relation to humid regions and areas subject to the freezing-thaw process (Song et al., 

2021; Cui et al., 2019). Overall, progress regarding the availability of explanatory variables for use in models for 

reconstruction of SM is inadequately and this is especially critical for machine learning gap-filling models that are sensitive 

to the structure of the input sequences (Mao et al., 2019). 90 

Although earlier studies focused on completing SM datasets, most partially addressed a specific case of satellite observations 

but failed to consider larger continental regions. Almendra-Martín et al. (2021) and Liu et al. (2020b) applied reconstruction 

algorithms to the CCI SM product in regional Europe and Oklahoma, USA, respectively, and Cui et al. (2019) continuously 

promote this approach in the Tibetan Plateau. Such models rely on machine learning algorithms and a variety of satellite-

based variables. Furthermore, research on the challenging case of SM time series at the daily scale(Zhang et al., 2021b; Long 95 

et al., 2019), which is fundamental to the exploration of SM dynamics, and the quantification of the associated impact on the 

contribution to climate change and the water cycle is limited (Bessenbacher et al., 2022a).  
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Here, we propose a robust gap-filling methodology for reconstruction of a spatially continuous daily ESA CCI SM dataset, 

primarily based on satellite observations, model-driven knowledge, and one spatiotemporal random forest algorithm. Our 

model was tested by application to continental China, which has suitable variability in terms of landscape and climatic 100 

conditions. Specifically, the feasibility and merit of the developed model were demonstrated by the following: 1) evaluation 

of the gap-filled results using in situ measurements and holdout cross validation, and comparison against those of other 

models, and 2) examination of model uncertainty in terms of the filtered explanatory variables, and consideration of the 

extension of the proposed model to one long-term period.  

2. Study region  105 

China is located from 3°51′N to 53°33′N and from 73°33′E to 135°05′E, covering an area of approximately 9.6 × 106 km6 

(Fig. 1). A variety of terrain types are presented across China, including the plain, basin, plateau, mountain and hill. These 

diverse terrains inevitably result in noticeable spatial differences in precipitation and temperature, accompanying the 

elevation decreasing from west to east. Seven climate zones can be identified in China, including arid, semi-arid, arid/semi-

wet, wet/semi-arid, wet, moist, and over-wet climates. The identification of this zoning system is based on a China’s 110 

humidity index map produced by the National Earth System Science Data Center, National Science & Technology 

Infrastructure of China (http://www.geodata.cn). 

 

Figure 1: The study region and the selected in situ soil moisture sites. The figure in the upper-left corner shows the Digital 

Elevation Model (DEM) information. The detailed distribution of dense in situ measurements in the Maqu network is shown in the 115 
figure on the far right. Two regional areas for uncertainty analysis (i.e., northern China (NC) and southern China (SC)) are 

bordered by the rectangles. 
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3. Materials and methods 

The object of this study was to reconstruct CCI SM data gaps to produce spatially continuous data records. The basic 

principle of the proposed gap-filling approach is to efficiently determine the correlation between SM records and the 120 

corresponding explanatory variables, which can be expressed as follows: 

    (                )                                                                                                                                          (1) 

                                                                                                                                                                                (2) 

where    is the soil moisture,    is the corresponding explanatory vectors, and   is the number of the input variables.    can 

be a vector, and the sample number is determined the spatial domain ( ) and temporal domain ( ).   is one function that can 125 

be either linear or nonlinear.   represents the model residual. In machine learning ensemble,   represents a black box model 

that does not have one specific form.  

The proposed methodology involves three core steps: (i) using a regression subset selection approach and a variable 

correction procedure to filter explanatory variables from the satellite observations and model-driven knowledge, and to 

correct the systematic variable bias between them; (ii) training a machine learning algorithm to determine the SM-130 

explanatory variables correlation based on the selected optimal parameters and the available pixels identified with a 

spatiotemporal window search strategy, and then applying the established correlation to retrieve the unavailable SM pixels; 

and (iii) conducting geographically weighted regression and Gaussian filtering to calibrate the model-derived residuals. 

Figure 2 shows a schematic of the overall procedure including the dataset processing, model implementation and model 

analysis. 135 

 

Figure 2: The schematic of overall procedure. The red text denotes the core procedures conducted in the proposed model, which 

will be described in the following sections.  
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3.1 Dataset processing 

The dataset used includes satellite product, reanalysis dataset, land surface model outputs and in situ measurements (Table 1  140 

and Table S1). Details about these datasets are described in the following sections. 

Table 1. Summary of the dataset used for the proposed model. Other dataset for the preliminary analysis but not the final 

utilization of the model is exhibited in supplementary Table S1. 

ID Variables Source 
Resolution 

(spatial/temporal) 

1 Soil moisture ESA CCI 0.25°/daily 

2 Surface albedo MCD43C3 0.05°/16 day 

3 NDVI MOD13C1, MYD13C1 0.05°/16 day 

4 Land surface temperature (LST) MYD11C1 1km/instantaneous 

5 Precipitation China Meteorological Forcing Dataset 0.1°/3 hourly 

6 Potential evapotranspiration (PET) GLEAM 0.25°/daily 

7 Soil moisture ERA5 0.25°/hourly 

8 Land cover classification MCD12Q1 500/annual 

9 Digital Elevation Model (DEM) SRTM 90m 

10 Surface temperature Noah simulations from previous work 1km/3 hourly 

11 Surface temperature ERA5 0.25°/hourly 

12 Surface temperature GLDAS 0.25°/3-hourly 

13 Soil moisture GLDAS 0.25°/3-hourly 

14 Soil moisture GLEAM 0.25°/daily 

15 in situ soil moisture 
China Watershed Allied Telemetry  

Experimental Research (WATER) 
daily 

16 in situ soil moisture Chinese Ecosystem Research Network (CERN) 5 day 

17 in situ soil moisture 
Tibetan Plateau observatory of plateau scale soil 

moisture and soil temperature (Tibet-Obs) 
daily 

18 in situ soil moisture China's agrometeorological observation network 10 daily 

 

3.1.1 Satellite product 145 

The ESA CCI SM dataset is provided by the Climate Change Initiative program of the European Space Agency. This 

product is primarily composed of three types of daily dataset sources, i.e., active, passive, and active-passive combined 

microwave products (Dorigo et al., 2017). Despite the wide spatiotemporal coverage of CCI SM, the data gap remains a 

major challenge that hampers its further application. Here, we select the daily combined microwave products version 4.5, 

with a spatial resolution of 0.25°. The inconsistent data in the CCI combined SM are filtered using the quality flag variable.  150 

A variety of Moderate Resolution Imaging Spectroradiometer (MODIS) products are collected, including the daily LST 

(MYD11C1), 16-day composite albedo (MCD43C3) and vegetation indices, i.e., normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI), and the 8-day composite leaf area index (LAI) (MCD15A2H). All these 

https://www.sciencedirect.com/science/article/pii/S0034425721004272#t0005
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datasets are collected at MODIS 6 collection. We calculate the diurnal temperature range (DTR) by subtracting the night 

LST from daytime LST. The NDVI and EVI are averagely obtained from the two products: MOD13C1 and MYD13C1. All 155 

the selected products are screened out using the quality variables to maintain only the available pixels with good quality. We 

also collect the 0.05° annual land cover product (MCD12Q1) for quality control of CCI SM. 

We use the Digital Elevation Model (DEM) dataset provided by NASA’s Shuttle Radar Topography Mission (SRTM) (Van 

Zyl, 2001) to retrieve several relevant topographic metrics, including slope, aspect, and the topographic position index (TPI) 

(Guisan et al., 1999). The TPI is calculated by subtracting the focal grid elevation from the mean elevation of the eight 160 

surrounding grids. The TPI is potentially correlated better with surface variables such as snow depth and SM in comparison 

with the DEM (Cristea et al., 2017). Positive (negative) TPI values mean that the target grid is higher (lower) than the 

average of its surroundings.  

Considering the low accuracy of satellite SM for snow-covered pixels, pixels that have both daytime LST lower than 0 °C 

and albedo higher than 0.3 are removed (Cui et al., 2020). We also remove pixels for which a water body accounts of more 165 

than 20% of the total area. To overcome the spatial resolution differences among the diverse products available, all datasets 

are resampled to 0.25° spatial resolution by averaging the pixel values.  

3.1.2 Reanalysis dataset and land surface model outputs 

We collect the soil moisture data from ERA5, a global atmospheric reanalysis dataset released by the ECMWF (Balsamo et 

al., 2015). The data assimilation system used for ERA5 is the ECMWF Integrated Forecast System (IFS), and the 170 

meteorological forcing for retrieving soil moisture is from the ERA atmospheric reanalysis. Here we select the daily 

averaged SM from the first soil layer (0–7 cm) to match with satellite CCI SM.  

Daily potential evapotranspiration (PET) and surface soil moisture (0–15 cm) is collected from the Global Land-surface 

Evaporation Amsterdam Methodology (GLEAM) dataset. GLEAM is based on a general land surface model that focuses on 

soil moisture and evapotranspiration (Miralles et al., 2011). PET in the GLEAM is calculated with the Priestley–Taylor 175 

formula based on multiple reanalysis datasets, while the soil moisture is calculated with a soil-water module based on water 

cycle balance. 

Four meteorological variables, i.e., precipitation, air temperature, solar radiation and wind, are obtained from the China 

Meteorological Forcing Dataset. This dataset is generated through fusion of in situ station data, remote sensing products, and 

reanalysis datasets (He et al., 2020). Considering the lag effect of precipitation on surface water dynamics, we use the five-180 

day antecedent precipitation (AP) to replace the daily precipitation (Wei et al., 2020).  

Three surface temperature sources are additionally collected for uncertainty analysis. Two sources are collected from the 

ERA5 and GLDAS ensemble model. Considering the model uncertainties caused by regional surface characteristics and 

climatic conditions, we simulate surface temperature and surface SM (0–10 cm) by implementing a Noah model that is 

forced with meteorological variables from the Chinese regional ground meteorological dataset and the surface condition 185 

parameters from MODSI. This dataset is previously used in our work (Liu et al., 2020a; Liu et al., 2021b).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/data-assimilation
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-moisture
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3.1.3 In situ measurements 

A variety of spatially sparse in situ soil moisture measurements is collected to evaluate the accuracy of gap-filled SM. We 

collect in situ soil moisture observations at 39 sites obtained from the China Watershed Allied Telemetry Experimental 

Research (WATER) project and the Chinese Ecosystem Research Network (CERN). These validation stations are set up in a 190 

relatively large homogeneous area dominated by vegetation covers (cropland, woodland and grassland) or desert lands. In 

addition, 657 in situ soil moisture measurements covered by cropland are collected from the Chinese agro-meteorological 

and ecological observation network.  

We also collect the dense in situ measurements at the Maqu soil moisture monitoring network. The Maqu network (33°30′–

34°15′N, 101°38′–102°45′E) is located on the north-eastern border of the Tibetan Plateau (Fig. 1) (Dente et al., 2012). In this 195 

network, 20 sites are distributed over a uniform grassland cover, located in the large valley of the Yellow River. Maqu 

network has demonstrated strong capability in monitoring the spatial and temporal SM variability with high accuracy (Su et 

al., 2013; Wei et al., 2019). The locations and detailed information of all available sites are displayed in Fig.1 and Table S2. 

3.1.4 Filter explanatory variables 

Explanatory variables related to atmospheric, geophysical, ecological, and hydrological variables are conducive to capturing 200 

SM variability. The significance percentage produced by the regression subset selection model (Fu et al., 2019; Liu et al., 

2021a) is employed to measure the impacting probability of the explanatory variables, where a high significance percentage 

indicates strong capability in depicting SM (details in Text S1). We conducted the subset selection model analysis based on a 

dataset from 2005 to 2015, and 15 variables were selected as input parameters, including seven surface environmental 

variables, i.e., albedo, NDVI, EVI, LAI, DTR, PET and ERA SM, three elevation variables, i.e., TPI, aspect and slope, three 205 

climatic variables, i.e., AP, air temperature, wind, and two geographical factors, i.e., latitude and longitude. All the variables 

are available from reliable datasets at the continental scale. Gaps presented in these variables were not considered further to 

avoid introducing additional errors.  

As illustrated in Fig. 3(a), albedo, NDVI, EVI, LAI, DTR, AP, PET, ERA SM, TPI, and air temperature have the highest 

significance percentage in terms of correlation with CCI SM. We excluded aspect, slope, wind, latitude, and longitude owing 210 

to their low correlations with SM. The EVI, NDVI, and air temperature were also not considered in further application 

because the EVI and LAI are closely correlated with NDVI, and air temperature is strongly correlated with DTR. All the 

selected covariates are physically meaningful in depicting SM. Specifically, the atmospheric variables (i.e., precipitation and 

PET) are suitable for capturing the temporal dynamics of SM, and the topographic variables are included both to depict the 

orographic effects and to recapture the spatial pattern of SM. DTR exhibits correlation with SM owing to its capacity in 215 

taking account of land-atmosphere coupling. ERA surface moisture was also included to reproduce satellite SM.  

To verify the results based on the regression subset selection model, we employed the permutation feature importance to 

measure the relative importance of each predictor variable. Consistent patterns between the significance percentage and 

https://www.sciencedirect.com/science/article/pii/S0303243411001619#fig0005
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permutation importance further indicate the feasibility of the selected variables in modelling SM. Additionally, because these 

variables are derived from optical remote sensing, reanalysis datasets, and land surface model products, they have potential 220 

for extension to large regions owing to their high availability (Fig. 3(b)). 

 

Figure 3: The correlation and availability of dataset used. (a) The significance percentage and permutation importance of the 

selected variables in correlation to CCI SM. (b) The availability of the selected variables. 

3.1.5 Variable correction 225 

Systematic biases are unavoidable in reanalysis datasets and land surface model outputs, and these biases can be propagated 

in dynamic modeling. Accordingly, bias correction is required prior to the gap-filling procedure to ensure a consistent 

simulated output. Specifically, to make the modeled values (i.e., ERA SM) comparable with the satellite observations (i.e., 

ESA CCI SM), we used a correction procedure that primarily combines a variance scaling algorithm and a linear scaling 

algorithm (Long et al., 2020; Zhang et al., 2021c). The used procedure can be illustrated with the following equations: 230 

{
          (   )   (     (   ))   (     (   ))

     (    )  (      (    ))   (     (   ))  (      (    ))
                                                            (3) 

where       is the raw ERA SM time series of the target grid pixel;     is time series in which pixels the object grid are 

available;       is the ESA SM of the grid; μ and σ are the mean value and the standard deviation, respectively.     is the 

corrected ERA SM that is assumed to have a spatial pattern (i.e., consistent means and standard deviations) with the CCI 

SM. In our study, a dataset comprising time series from 2005 to 2015 was used to conduct the correction procedure to 235 

guarantee sufficient samples. Examples illustrating the performance of the ERA SM correction can be found in Fig. S1. 

Despite being conducted on SM, this calibration procedure could be applied to other parameters (e.g., DTR) when replaced 

with numerical model outputs. 

(a) (b) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/optical-remote-sensing
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3.2 Model implementation 

3.2.1 Machine learning regression  240 

Despite being easy to implement and requiring less computational resources, traditional regression-based methods such as 

generalized linear models and multivariate regression splines generally insufficiently consider the probability density 

functions in assessing model performance. Machine learning approaches could be much more flexible than conventional 

parametric models owing to their ability to handle nonlinear relationships and complex interactions. Among the machine 

various learning models, the random forest (RF) algorithm, acting as an enhanced decision tree model, is an effective and 245 

powerful tool in interpreting earth variables(Belgiu and Drăguţ, 2016). As illustrated in Fig. 4(a), RF is a hierarchical tree 

diagram that is based on a nonparametric strategy and has the capacity to add a variety of parameter layers into the model 

(Breiman, 2001). This decision tree model is composed of many nodes and edges within each tree structure, mainly 

including two types of nodes: split nodes and leaf nodes. The split node is related to a test function that is employed to split 

the input data, whereas the leaf node is associated with the final decision. Unlike the standard decision tree model that relied 250 

on the whole data set, RF trains each tree on bootstrap resamples. This model only considers the randomly selected variables 

rather than the total variables. By this means, the outcome is decided by a majority voting or averaging strategy. 

In this study, the RF model is implemented using the function ‘RF Regressor’ from the Python Library (Shahriari et al., 

2016). Specifically, the built-in functions are used to assess the importance of each covariate by using the out-of-bag 

samples. We use the ‘Bayesian Optimization’ module (http://rmcantin.github.io/bayesopt/html/bopttheory.html) to select the 255 

best hyperparameters in driving RF algorithm. Four critical parameters deciding the RF algorithm include the number of 

trees (n_estimators), the maximum tree depth (max_depth), the minimum number of samples for splitting an internal node 

(min_samples_split), and the number of features (max_features). For each specific climate region, the Bayesian optimization 

process is carried out within 20 iterations to optimal parameters. The training procedure is mainly based on the dataset 

covering 2003—2008. Optimal parameters in the seven climate regions are listed in Table S3. 260 

3.2.2 Identify spatiotemporal window  

One critical issue relate to the machine learning model is how best to efficiently explore the informative covariates. Here, we 

use a spatiotemporal strategy to capture the spatial and temporal SM and the related covariate dynamics. Our strategy 

primarily relies on the available pixels within a regional subset, thereby allowing more pixels of interest to participate in the 

regression. Figure 4(b) provides the diagram of the spatiotemporal window search strategy. 265 

An adaptive strategy is employed to determine the optimal spatiotemporal window size. Two critical variables are adopted to 

identify the window size, i.e., the size of the spatial window (sw) and the number of temporal days (nd). To find the optimal 

sw and nd, we continually increase the value of sw and nd from the initial values until the samples participating for 

regression meet the criterion, i.e., the number of available pixels within the searched window should be no less than eight 

times of the participating explanatory variables (i.e., seven) (Svetnik et al., 2003; Liu et al., 2020a). Here an initial sw is set 270 

http://rmcantin.github.io/bayesopt/html/bopttheory.html
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to 5 and an initial nd is set to 1. Considering that a fraction of gaps occur in the satellite dataset (e.g., LST and albedo) and 

the optimal window may not exist, the maximum values of sw and nd are introduced to terminate this process. A sensitivity 

analysis is conducted with the independent dataset to select the two maximum values. Specifically, we conduct a cross 

validation during 2003—2008 to evaluate the accuracy of the gap-filling model. The increasing maximum nd from 1 to 7 

with intervals of length 1 is tested, and the maximum sw is tested from 4 to 10 with intervals of length 1. The values that 275 

yield the lowest RMSE (Fig. 4(c)) are selected, and finally, we set maximum sw to 7 and the maximum nd to 4. Note that we 

also conduct sensitivity analysis for each climate region and find no substantial differences in the resulting optimal values of 

two parameters among seven climate regions. This is probably because this sensitivity analysis is more reliant on model 

structure rather than sample characteristics. 

 280 

Figure 4: (a) The diagram of the random forest model implemented for a multidimensional dataset. (b) The diagram of 

spatiotemporal window determination strategy for random forest regression. (c) The results of the sensitive analysis regarding two 

maximum values, i.e., the size of the spatial window (sw) and the number of temporal days (nd), for terminating the searching 

process. 

3.2.3 Residual calibration 285 

Considering that the machine learning model might not fully account for the variability in SM, the original reconstruction 

needs to be calibrated, which can potentially remove the bias resulting from neglected variables such as those are excluded 

for model establishment (Zhu et al., 2012; Liu et al., 2020a). In practice, we add the interpolated model residuals to the 

original reconstructions. The geographically weighted regression (GWR) model, which is an extension of the traditional 

(a) 

(b) 

(c) 
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linear regression model (Li et al., 2017), is applied to interpolate the RF-derived residuals. This procedure is based on the 290 

samples within the searched window for each target pixel. The model residual (  ) derived from Eq. (2) can be described 

using the explanatory variables as follows: 

     (     )  ∑   (     )
 
                                                                                                                                   (4) 

where   (     ) and   (     ) are the regression coefficients estimated at the  th pixel, and (     ) are the coordinates. The 

regression coefficients can be estimated using the observations within the self-adaptive searched window as follows: 295 

{
 ̂(     )  (  ( (     )) )     (     ) 

       (     )   
                                                                                                         (5) 

where  ̂(     )  is the coefficient matrix composed of coefficients from each explanatory variable;    and   are the 

explanatory variable matrix and the dependent variable (i.e., SM) vector, respectively. Here latitude, longitude and seven 

explanatory variables selected are used to implement the GWR model.  (     ) is the weight matrix composed of    ,     

is the Euclidean distance between the observation     and the  th point,   and   is the window radius.  300 

Before adding to the original reconstruction, the GWR interpolated residual is further smoothed with a normalized     

Gaussian filter with a standard deviation of  . This procedure can remove the grid-like artifacts that extensively exist in 

statistical model outcomes. Base on the optimization procedure (Sismanidis et al., 2021; Liu et al., 2019), we set   = 5 and   

=1.5. 

3.3 Model analysis 305 

3.3.1 Model validation 

Model validation was conducted using data from 2009 when sufficient number of ground measurements were collected. The 

top layer SM measurements from the in situ stations were first used to evaluate the accuracy of the reconstructed results. 

Considering the scale mismatch between the sparse distribution of in situ stations and the CCI SM product (~25 km), we 

used the Disaggregation based on Physical And Theoretical scale Change (DISPATCH) model (Merlin et al., 2012) to 310 

disaggregate the 0.25° reconstructions to 1-km resolution. Detailed descriptions regarding this disaggregation method can be 

found in Supplementary Text S2. 

Evaluating the gap-filled SM with in situ measurements is supposed to produce biases that can be caused by scale 

mismatching and disaggregation model performance. To account for this, holdout cross validation with 10 replicates was 

performed in 2009 to evaluate the model accuracy. For each replicate, we randomly held out 10% of the pixels, that is 315 

manually introducing gaps for these pixels, and trained the model with the remaining 90% of the dataset. Specifically, the 

pixels during all periods were first rearranged into a time series and then 10% of them were dropped in each replicate. After 
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the gap-filled SM series of hold-out pixels were reconstructed from the training set, they were validated against the original 

SM.  

To reveal the physical plausibility of gap-filled SM, we paid particular attention to the evaluation of gap-filling SM under 320 

extremely dry conditions. Extreme drought is defined based on meteorological condition, that is, the Palmer Drought 

Severity Index (PDSI) of less than −2 over 8 consecutive months or longer (Fig. S2). 

The statistics used for the model accuracy assessment include the coefficient of determination (R2), the root mean square 

error (RMSE), the mean absolute error (MAE), the average error bias (BIAS), and the unbiased RMSE (ubRMSE). In 

addition, Nash-Sutcliffe Efficiency (NSE) is used to measure the overall performance of the proposed model. All these 325 

metrics have been extensively used for evaluating satellite SM. 

3.3.2 Model comparison 

The proposed method was compared against four extensively used models that adopt the same explanatory variables and 

spatiotemporal window search strategy. The first one is the conventional multiple linear regression (MLR) approach. Three 

typical machine learning approaches, i.e., Extreme gradient boost (XGB), Support vector machine (SVM) and Artificial 330 

Neural Network (ANN), are also used for comparison. Detailed descriptions of four available models can be found in 

supplementary Text S3.  

3.3.3 Uncertainty analysis 

Considering the criticality of explanatory variables in simulating SM, uncertainty analyses regarding these selected variables 

were conducted. We first investigated the accuracy of the reconstruction model that excludes one participating variable. 335 

Given the critical importance of satellite-derived DTR and the severe issues of missing data in satellite-observed LST 

products, we further investigated the substitution performance of other surface temperature sources in reconstructing SM, 

i.e., i.e., Noah, ERA and GLDAS. This analysis was conducted by focusing on two regions (in Fig. 1) that have sufficient 

data sources to support our experiments (Liu et al., 2020a; Liu et al., 2021b): one region is in northern China covering 

mostly arid and semi-arid areas, while the other region is in southern China covering  mostly wet areas. 340 

Since the reanalysis SM is a vital input in our approach, we also compare it with the other two products to evaluate the 

feasibility of ERA data in reconstructing CCI SM. GLEAM and Noah surface SM are respectively employed to replace the 

ERA SM while other explanatory variables keep the rest the same. 

3.3.4 Long-term extension 

The available dataset forcing for our model has a long record, indicating potential for modelling long-term SM products. To 345 

verify this, the proposed gap-filling method was further extended to the long-term ECA CCI SM databases of 2005—2015. 

We also investigated the trend of the SM series during this period, which was obtained via Sen’s slope and M-K significance 

http://www.youdao.com/w/coefficient%20of%20determination/#keyfrom=E2Ctranslation
http://www.youdao.com/w/mean%20absolute%20error%20(mae)/#keyfrom=E2Ctranslation
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analysis (Li et al., 2021c; Liu et al., 2021a). The trends from the reconstructed SM series were also compared with those 

from the original CCI SM, which were evaluated against in situ measurements. 

4. Results and discussion 350 

4.1 Spatiotemporal patterns 

The spatiotemporal pattern of the original daily CCI SM and the corresponding gap-filled dataset in 2009 is first checked. As 

shown in Fig. 5(a) (and (Fig. S3)), a considerably large gap occurs in the original CCI SM, and this gap problem is greater in 

winter. We reconstruct the contaminated SM pixels using the spatiotemporal RF model. Most of the contaminated pixels 

(more than 85%) are reconstructed. Relatively few missing pixels are gap-filled in winter in comparison with other seasons, 355 

primarily because of the heavy contamination of clear pixels caused by frequent occurrence of cloud during this period. It 

means that the learning capacity of the spatiotemporal machine learning method is constrained when encountering limited 

satellite observations. 

Figure 5(b) shows the boxplot of the original versus gap-filled SM on selected days in 2009. Conformity exists between the 

original and reconstructed SM for most days. A similar pattern in variance and magnitude is also observed for the SM of the 360 

monthly average and the selected days, as illustrated in Fig. 5(c); that is, large difference occurs in winter and spring. This 

can be attributed to the fact that the original CCI SM provides fewer training data from October to May of the following 

year. Additionally, the distribution of CCI SM is more uneven in this period, which might reduce model performance owing 

to the limited representation of training samples (Stroud et al., 2001). 

In terms of different climate regions, minor discrepancy is evident between the original and the reconstructed SM (Figure 365 

5(d)), with bias in the median SM values of less than 8%. It means that the reconstructed SM has strong variation depicting 

capacity. Small overestimation occurs in arid regions, which originally have less soil water storage.  
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Figure 5: The comparison between CCI dataset and gap-filled SM in 2009. (a) The plots of the availability of CCI dataset and gap-

filled SM. (b) The boxplot of the CCI dataset and gap-filled SM on the selected days. (c) The boxplot of month-average CCI and 370 
gap-filled SM. (d) The boxplot of raw and gap-filled SM regarding seven climate regions. 

Figure 6 exhibits the spatial distributions of the original CCI SM and the reconstructed SM on selected days in 2009. The 

humid regions are mostly concentrated in southern China adjacent to the coast of the western Pacific, whereas the dry 

regions are mainly distributed in northern and western parts of China. A considerable fraction of contaminated pixels is 

observed on the selected days, and this contamination is severe in winter season and in mountainous areas (e.g., Tibet 375 

Plateau and Mongolian Plateau). Almost all the contaminated pixels from March to October are reconstructed; meanwhile, 

the proposed model reconstructs the most contaminated pixels for the remaining months. Owing to the additional valid 

values provided by gap-filled pixels, more spatial variation is depicted in the reconstructed SM images. Missing pixels still 

occur in the reconstructed SM images especially in the cold seasons. This can be related to the fact that the surface 

temperature, ET, and precipitation are more connected in the warm season through energy balance considerations and 380 

atmospheric circulation. Some of these invalid pixels correspond to snow- and water-covered regions that have been 

removed beforehand. Because missing earth data are to a large extent not at random, statistical measures of comparative 

analysis among them tends to produce bias (Bessenbacher et al., 2022b). To account for this, paired histograms of two 

datasets are compared to explore the value distribution properties. The histograms show the gap-filled dataset does not 

impact the SM distribution in warm seasons, that is, in agreement with the CCI dataset. There is also noticeable bias in cold 385 

seasons, especially in the very low range of SM. 

 

(a) (b) 

(c) (d) 
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Figure 6: The spatial distributions and histogram of the raw and gap-filled CCI SM on the 15th of each month in 2009.  

4.2 Accuracy validation 390 

The proposed model is first evaluated with sparse in situ measurements from WATER and CERN. As shown in Fig. 7(a), 

agreement is obtained between the 1-km CCI SM-derived values and the in situ measurements, with an R2 of 0.8. This 

accordance is also found between the 1-km reconstructed SM and the in situ measurements (Fig. 7(b)), with the R2 of 0.75. 

High accuracy is also observed when performing evaluation with in situ measurements from national agro-meteorological 

stations. The R2 value between the 1-km CCI SM-derived values and the in situ measurements is 0.81, while the R2 value 395 

between the 1-km reconstructed SM and the in situ measurements is 0.71 (Fig. 7(c) and (d)). Inconsistency evidently 

remains, and noticeable overestimations are observed in the high range of SM. Additionally, the accuracy of the gap-filling 

products tends to be diminished by drought conditions, but this impact is limited.  

We further validate the reconstructed results with the dense in situ measurements from the Maqu network. The RMSE and 

MAE values are 0.11 and 0.09 cm3/cm3 (Fig. 7(e)), respectively, for the 1-km CCI SM-derived values, and 0.12 and 0.09 400 

cm3/cm3 (Fig. 7(f)), respectively, for the 1-km reconstructed SM. It means that reasonable agreement is obtained for both the 

CCI SM product and the gap-filled SM; however, poor performance is found in the range of low values mostly because of 

the extreme conditions and the fewer samples available for model regression.  

The time series of average 0.25° CCI SM values and reconstructed SM over the dense grid are compared with the dense in 

situ observations. Both the original and the reconstructed SM match well with the in situ series, with NSE values of 0.83 and 405 

0.85, respectively. The reconstructed SM (Fig. 7(g)) mostly describes the temporal dynamics of in situ measurements; that is, 

sufficiently capturing seasonal and daily variability. In addition, the rainfall events impacting the surface dynamics are 
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observed to be well depicted in the SM temporal variations. The reconstructed SM appears to have inherited the merits of 

stability between April and November from the CCI SM, i.e., having comparable values during this period.  

Cross-validation analysis is further performed with 2009 data to evaluate model performance. The obtained metrics (Fig. 410 

8(a)) illustrate reasonable coincidence between the reconstructed and the original CCI SM, with a median R2 range of 0.51 

and 0.63. Better accuracy is also demonstrated by the metrics of RMSE, MAE, and ubRMSE. In particular, the median of 

BIAS is less than 0.01 cm3/cm3. Comparatively, better accuracy is achieved in the growth seasons (March–October), which 

can be attributed to the fact that the critical environmental factors, such as NDVI, DTR, and ERA SM, are more related to 

satellite-derived SM during the season of vegetation growth (Chen et al., 2014; Otkin et al., 2016).  415 

Figure 8(b) shows the accuracy metrics for different climate regions. A pattern similar to that of the monthly means is 

observed, that is, acceptable accuracy occurs in most regions. No significant differences in median R2 and BIAS are evident 

between the reconstructed SM of each climate region, with the bias between the maximum and minimum median R2 and 

BIAS values being less than 0.09 and 0.003 cm3/cm3, respectively. The metrics indicate relatively poor performance ( in wet 

regions having high specific heat capacity and low albedo. The lower amounts and high thermal entropy of the available 420 

variables (i.e., LST and albedo) in these areas can affect model capacity and stability (Wang et al., 2005). Notably, despite 

the relatively high RMSE, MAE, and ubRMSE values in the humid region, the R2 value is very high (Fig. 10), which might 

be attributable to the high SM variability in these areas. The accuracy is lower over the regions that experience drought due 

to perturbations of the soil water content, but without noticeably poor performances.   

The spatial distributions of the accuracy metrics in Fig. 9 further illustrate the accuracy of the proposed gap-filling model. 425 

Discrepancies are observed in some grids, but they rarely exceed 0.09 cm3/cm3 in absolute value. Spatially, the distribution 

of reconstructed SM follows a geographic gradient. The relatively low accuracies occur in areas of complex terrain in 

western China. For these regions, complex atmospheric conditions caused by high elevations tend to affect the simulation of 

surface parameters. Complex topography can result in a complicated directional anisotropy, bringing great uncertainty in 

modelling surface energy and water cycles (Hu et al., 2016).  430 

The gap-filling model could be sensitive to irrigation and drought owing to the induced inhibition and water stress of 

vegetation. On the one hand, lower accuracy is found as expected over a considerable fraction of irrigated cropland (e.g., 

Northern China), which can be partly attributed to the human irrigation drain. On the other hand, focused analyses illustrate 

the consistency of the gap-filling SM with the in-situ measurements and the original SM under extremely dry conditions (Fig. 

S4), illustrating the physical plausibility of the gap-filled values for specific application. 435 
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Figure 7: The evaluations of model results. (a), (c) and (e) are the scatter plots of 1-km CCI SM-derived values against field 

measures regarding WATER/CEERN, agro-meteorological stations, and Mauqu network, respectively, and (b), (d) and (f) are the 

scatter plots of 1-km gap-filled SM-derived values against field measures. The sub-figures in the upper corner of (a)-(d) are the 440 
scatter plots under extremely dry conditions. (g) are the time series of average CCI SM-derived values against site measures in the 

Maqu region. The shaded area in (g) denotes ±1 standard error. 

 

(a) 

(b) 

(c) (e) 

(d) (f) 

(g) 
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Figure 8: The accuracy metrics of 10-cross validation for R
2
, RMSE, MAE, BIAS, ubRMSE and NSE: (a) is averagely obtained on 445 

a month basis, and (b) is averagely obtained for each climate region and for the drought grids. 

 

 

Figure 9: The spatial distributions of accuracy metrics of 10-cross validation in 2009 for R2, RMSE, MAE, BIAS, ubRMSE and 

NSE. The slash represents the regions impacted by drought. 450 

(b) 

(a) 



20 

 

4.3 Comparison analysis 

The proposed method is further compared against four extensively used models, and the accuracy metrics of the five models 

are shown in Fig. 10. Generally, the MLR, XGB, SVM, and ANN, accompanying the RF, could potentially reconstruct the 

missing CCI SM pixels, indicating the stable suitability of these models and the feasibility of available variables. Moreover, 

the RF model demonstrates prominent performance among all the tested models, further demonstrating its capacity for 455 

reconstructing SM when integrating an effective dataset source and mining method. Our results are consistent with earlier 

studies that illustrated the robustness of the RF approach in simulating satellite parameters (Karbalaye Ghorbanpour et al., 

2021; Zhao et al., 2018). This is attributed to the strong capacity of the RF method for coping with sparse samples, in 

addition to the fact that the RF does not assume a specific functional or geometric form of the model. We also check the 

accuracy of the models excluding the residual calibration procedure, which is an essential component of the proposed model. 460 

Results (in Fig. 10) demonstrate that accuracies are lowered by ~9% when removing the residual calibration, underscoring 

the importance of residual modulation in improving SM reconstruction. Moreover, better performance brought by the 

spatiotemporal domain strategy is also exhibited when compared with the global regression. Quantitatively, the 

spatiotemporal domains can improve the accuracy by ~19% in forcing the RF regression. Overall, these analyses indicate the 

feasibility of the proposed model by integrating the modules of the residual calibration and the spatiotemporal domain 465 

strategy.  

 

Figure 10: Comparison RF-based model with other models (i.e., MLR, XGB, SVM and ANN). Error bars denote 1σ errors. The 

symbol „x‟ represents the accuracy metrics of models excluding the residual calibration, and the symbol „o‟ represents the 

accuracy metrics of the models that use the global regression rather than regional regression based on the spatiotemporal window 470 
searching strategy. 

4.4 Uncertainty analysis      

We investigate the accuracy of the reconstruction model that excludes one participating variable. As illustrated in Fig. 11(a), 

the performance of the model with six variables (i.e., excluding one) is relatively low when compared with that of a model 

with seven variables. The strategy of removing one variable can lower the accuracy by 2.2–6.4% in terms of R2 and by 10–475 

30% in terms of BIAS. This diminished performance is plausible because SM is heavily related to all the selected variables. 
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Specifically, variability in land surface characteristics (NDVI and albedo) and atmospheric conditions (i.e., precipitation and 

PET) can impact SM variability. This is plausible because satellite SM retrievals represent the signals from the upper soil 

layer, which is directly exposed to the land and the atmosphere. Meanwhile, additional covariates mean an increase in the 

number of samples participating in the regression model, therefore potentially resulting in improvement of overall accuracy. 480 

We observe that the lowest accuracy occurs when DTR is excluded, underscoring the vital role of DTR in modelling SM.  

The importance scores produced by the RF algorithm (Zhao et al., 2019b; Ramoelo et al., 2015) (Fig. S5) also show that all 

selected variables substantially impact the CCI SM simulations. Specifically, DTR shows the greatest importance, mainly 

relating to the fact that temperature variations might influence SM fluctuation. This supports the higher model performance 

observed in warm seasons, during which PET, albedo, and NDVI exhibit a higher importance score. During this period, heat 485 

from the surface can be transferred to the atmosphere via ET and sensible heat conduction, thereby modifying surface SM 

variations (Amani et al., 2017). 

 

Figure 11: (a) The accuracy of the models removing one variable, i.e., using other six variables in model regression. Error bars 

denote 1σ errors. The text denotes the relative percentage of the decreased accuracy of the model with six variables (i.e., excluding 490 
one) in comparison with that of a model with seven variables.  

 

We further investigate the substitution performance of other surface temperature products in reconstructing SM. Considering 

the bias between satellite-derived LST and modelled surface temperature, the variable correction described in section 3.1.5 is 

conducted to remove the systematic bias and make the simulated DTR comparable with the satellite observations. Minor 495 

reductions are found in the Pearson correlation and RF-derived importance score of three numerical model- simulated DTRs 

(Fig. S6) when compared with the MODIS-derived DTR, which indicates the feasibility of using each of these datasets in 

reconstructing SM.  Reductions in model accuracy are evident when replacing the satellite-derived LST with the other three 

simulated sources (Fig. 12(a) and (b)). Nevertheless, the availability of reconstructed SM products is remarkably increased 

(by ~6–11%) owing to the all-weather coverage of the reanalysis and land surface model simulations. The surface 500 

temperature source from the numerical model dataset is suggested to be an alternative for satellite LST, which is essential on 

the long-term and large extended scale, especially considering their full-coverage characteristic. However, in comparison 

with the results obtained using the correction procedure, reduction in accuracy metrics (~4%) occurs when not considering 
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the variable correction procedure. It emphasizes the indispensable contribution of the variable calibration procedures in 

reconstructing surface characteristics (Duan and Bastiaanssen, 2013; Liu et al., 2020a). 505 

We also compare the ERA SM with two other products to evaluate its feasibility in reconstructing CCI SM. GLEAM and 

Noah surface SM are separately employed to replace the ERA SM while keeping other explanatory variables the same. 

Although the GLEAM and Noah SM-based schemes can demonstrate acceptable accuracies, they exhibit slightly inferior 

accuracies in comparison with the ERA SM-based schemes, probably owing to their relatively large uncertainties in 

depicting the surface SM dynamics across the two selected regions. Nevertheless, our study focuses on only two local 510 

regions; therefore we cannot claim that the ERA product could provide the best performance across China, and more 

attention should be focused on this in further work. 

 

Figure 12: The metrics of models using different DTRs for (a) Northern China (NC) and (b) Southern China (SC). Error bars 

denote 1σ errors. The symbol „x‟ represents the accuracy metrics of the models without DTR correction procedure. The symbol „o‟ 515 
in red represents the accuracy metrics of the models using GLEAM SM to replace ERA SM, and the symbol „o‟ in blue represents 

the accuracy of the models using Noah SM to replace ERA SM. 

4.5 Long-term extension 

The proposed gap-filling method is further extended to the long-term ECA CCI SM databases. During 2005–2015, more 

than 90% of contaminated pixels can be reconstructed using our model. When evaluating the pixels against in situ 520 

measurements from the dense Maqu network, we observe that the reconstructed SM during 2005—2015 has accuracy that is 

comparable to that in 2009 (Table 4). The average R2 and RMSE values of the reconstructed SM are 0.73 and 0.12 cm3/cm3, 

respectively. The present results indicate that the proposed model has strong capacity for simulation of SM on the long-term 

scale. 

The spatial distribution and the obvious differences between the gap-filled and original SM dataset can be seen in Figure 13 525 

(a)-(c). Negative differences in SM occur in most regions, while positive differences are evident in small areas of the wet and 

arid regions. The dynamics and trends of SM are fundamental to assessing and quantifying ecohydrological regime. Owing 

to the missing satellite retrievals, the CCI SM tends to be overestimated. As shown in Fig. 13(d)-(f), the difference in valid 

participating SM values causes disparity in calculating the SM trend, i.e., bringing a lower SM trend in most wet regions but 

a higher SM trend in some dry regions when gap-filled values are introduced. Additionally, most regions with a significant 530 

(a) (b) 
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trend demonstrate a lower trend in comparison with the trends of the original SM. The confidence level of the SM trend is 

converted from a significance level to a non-significance level for a considerable fraction of the grids. This is more 

pronounced in wet regions such as northeast, northwest, and southwest parts of China, which are sensitive to monsoon 

precipitation and ice melting. Our results are corroborated by earlier studies (Zhang et al., 2018; Gunnarsson et al., 2021) 

that revealed an overestimation in the trend of missing AOD and albedo when cloudy conditions prevented satellite 535 

retrievals. It means that the variations in SM trend are related to changes in the climate variables (e.g., precipitation) and land 

management activities (Li et al., 2018). 

Table 4 Metrics for the gap-filling performance regarding Maqu network for the extended years 

Year 
R2 RMSE (cm3/cm3) MAE (cm3/cm3) Bias (cm3/cm3) ubRMSE (cm3/cm3) NSE 

CCI gap-filled CCI gap-filled CCI gap-filled CCI gap-filled CCI gap-filled CCI gap-filled 

2008 0.8 0.71 0.11 0.13 0.1 0.13 0.06 0.07 0.06 0.06 0.8 0.81 

2010 0.82 0.73 0.1 0.11 0.09 0.11 0.05 0.06 0.06 0.05 0.81 0.83 

2011 0.83 0.74 0.09 0.11 0.09 0.1 0.06 0.06 0.06 0.05 0.82 0.84 

2012 0.81 0.72 0.12 0.13 0.09 0.12 0.06 0.05 0.05 0.05 0.81 0.82 

2013 0.82 0.73 0.09 0.12 0.09 0.13 0.06 0.07 0.05 0.07 0.8 0.82 

2014 0.85 0.74 0.09 0.11 0.08 0.09 0.06 0.08 0.05 0.06 0.83 0.85 

2015 0.79 0.69 0.12 0.14 0.1 0.12 0.07 0.09 0.07 0.07 0.79 0.81 

Note: NSE is from the evaluation with the time series of average 0.25° pixels while the other five metrics are from the evaluation with 1 

km disaggregated values. 540 

 

 

Figure 13: The implementation of the proposed model to 2005-2015. (a) and (b) are the average values of raw CCI and gap-filled 

SM during 2005-2015, and (c) is the difference between them. (d) and (e) are the average trends of raw CCI and gap-filled SM 

during 2005-2015, and (f) is the difference between them. The symbol “x” in (d) and (e) denotes the significance level under 0.05. 545 

(a) (b) 

(d) 

(c) 

(e) (f) 
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The biases in SM dynamics and trends are shown more pronounced for each climate region in Fig. 14(a) and 14(b). The 

regional averages of reconstructed SM are relatively low in comparison with those from the original CCI SM, and this 

pattern is clearly reflected in the trend-cycle and seasonal component (Fig. S7). The improvement of the reconstructed 

dataset in depicting SM trends is quantitatively manifested in Fig. 14(c)-(f), that is, the R2 value between the trends from the 550 

original CCI SM and those from the in situ measurements is 0.28, while the R2 value between the trends from the 

reconstructed CCI SM and those from the observations is increased to 0.49. Overall, an effective gap-filled model is 

demanded considering its capacity from depicting the dynamics and trends of SM. 

 

Figure 14: (a) shows the temporal patterns of raw CCI SM regarding different climate regions during 2005-2015, and (b) shows 555 
the temporal patterns of gap-filled CCI SM regarding different climate regions. The shaded area in (a) and (b) denotes ±1 

standard error. (c) and (d) The scatter plot of 1-km CCI SM-derived trends against in situ measures during 2005-2014, and (c) 

shows the trends under significance level, while (d) shows all the trends. (e) and (f) The scatter plot of 1-km gap-filled SM-derived 

trends against in situ measures during 2005-2014, and (e) shows the trends under significance level, while (f) shows all the trends. 

5. Conclusions and future considerations 560 

The continuity of satellite-derived SM series is hampered by data gap problems. This study provides a novel framework for 

reconstructing a spatially continuous daily SM dataset by integrating the European Space Agency CCI SM and related 

explanatory variables. To achieve this, the random forest method taking full account of both the spatial and temporal 

domains is adopted. The explanatory variables filtered based on a spatiotemporal window search strategy exhibit substantial 

effect in driving the RF regression, resulting in efficacy improvement of ~19%. Meanwhile, model performance is enhanced 565 

by calibrating the derived residuals based on geographically weight regression and Gaussian filters. This improvement is 

(a) 

(e) 

(b) 

(d) 

(f) 

(c) 
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manifested by the fact that the accuracies of gap-filling models are lowered by ~9% when removing the residual calibration 

procedure. 

Our study illustrates the merit of identifying a sufficient number of explanatory variables from the integration of satellite 

observations and model-driven knowledge. This is clearly verified by the fact that the accuracy of reconstructed SM is 570 

noticeably reduced when excluding one of each of the participating variables in turn while retaining the remaining variables. 

The selected variables complementarily reproduce the SM dynamics in addition to capturing the spatial variations, which 

also implies that the nonlinear correlation between the SM and explanatory variables can be depicted on the spatiotemporal 

scale. In addition to the conventional variables from optical remote sensing, the essential environmental elements from 

model-driven knowledge are used to improve the performance of SM reconstruction. Earlier studies have suggested (Li et 575 

al., 2021a; Long et al., 2019; Shangguan et al., 2017) that reanalysis datasets and land surface model products could provide 

spatiotemporally continuous records, indicating the great potential of simulating land surface parameters. Here, we employ a 

machine learning model and a bias correction procedure for CCI SM simulation, which is expected to leverage the 

knowledge of the reanalysis dataset and the output from the land surface model in transfer to the CCI SM time series. The 

reconstructed SM achieves satisfactory accuracy over China, underscoring the importance of spatial coverage and continuity 580 

of the environmental factors from model-driven knowledge, and highlighting the need for multiple datasets to be involved in 

gap-filled models. We further confirm this with an uncertainty analysis showing the feasibility of using alternative data 

sources of DTR and SM, which is essential on the long-term scales, considering the full coverage characteristic of numerical 

model simulated products. Nevertheless, because numerical simulation models are generally sensitive to regional surface and 

climatic conditions, adoption of more effective machine learning models and bias correction strategies, as well as  more 585 

representative model outputs such as CLDAS and regional numerical models, could be considered in further work (Li et al., 

2022a; Li et al., 2022b).   

Machine learning is recognized as a powerful tool for reconstructing contaminated values. Despite the effectiveness of the 

RF model for in situ SM databases, its applicability to reconstructing long-term satellite observational records, especially on 

the large scale, deserves careful investigation. Here, we further confirm that the RF, combined with appropriate covariates 590 

exploiting both the spatial and temporal domains, together with a model-derived residual calibration module could be a 

robust method for gap-filling of the CCI SM database over China. The superiority of the RF-based model in reconstructing 

SM is further proved by comparison with four other models. Nevertheless, more advanced machine learning strategies, such 

as deep neural networks (DNN) and long short-term memory (LSTM), are expected to enhance simulation accuracy. 

Ensemble approaches that mainly account for the scale biases among different gridded datasets are required. For example, 595 

development of a Bayesian modelling framework that can provide simulation standard error using uncertainty quantification 

is encouraged (Zhao et al., 2019a). 

The variables forcing the proposed model are all available on the long-term scale globally. Accordingly, our framework 

could be extended to generate a promising long-term gap-filled SM dataset. This is critical considering that spatiotemporally 

continuous SM is demanded for ecological and hydrological research. Thus, the findings of our study might provide insights 600 
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regarding continuous monitoring of surface water dynamics and drought, and promote further research of water resources 

management and climate change.  
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