
Author’s response to the referees’ comments on “Forward and inverse modeling of water flow in 
unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks 
with domain decomposition” by Toshiyuki Bandai and Teamrat A. Ghezzehei 

Reviewer comments are in black, while reply to comments in red. Line numbers used in the author’s 
response correspond to the revised manuscript.  

Referee #1 

Comments on: Forward and inverse modelling of water flow in unsaturated soils with discontinuous 
hydraulic conductivities using physics-informed neural networks with domain decomposition. 

Summary  

This paper presents the results from a comprehensive study using PINNs as a forward and inverse 
numerical solution for the Richardson-Richards equation. They tested new approaches for applying the 
PINN method, including a layer-wise locally adaptative function intended to work with layered 
heterogeneous soil profiles. In addition, the authors compared their approach to well-known numerical 
solutions for the Richardson-Richards equation, namely Finite Difference and Finite Element Methods 
(FDM and FEM). The PINNs approach was also validated with soil moisture measurements performed in 
a soil column in controlled conditions.   

The paper appears to be relatively novel, being the first application of PINNs to the Richardson-Richards 
equation (to my knowledge). The literature proposed and the figures presented are of high quality. I 
enjoyed reading the paper. The results are encouraging on the applications of PINNs to model 
hydrodynamics in porous media, even if it takes much more time when compared with the classical 
approaches. We don't need to impose well-known boundaries and initial conditions, which is attractive 
once they are difficult to obtain in field applications. The domain decomposition for the layered soils is 
also very promising. Even classical approaches such as FDM and FEM struggle with heterogeneous soil 
profiles. So, I think the PINNs with the domain decomposition did quite well in modelling the soil water 
dynamics in the soil column.  

Response: We appreciate you spending time reading our preprint and giving us feedback. We would like 
to provide answers to your comments and questions.  

Specific comments/questions (that should be addressed and commented before publication):  

It would be interesting to test the inverse solution with soil matric potential measurements (data is 
available if needed).  

Response: Thank you for pointing out the possibility of using water potential as data. It is not difficult to 
modify our codes to test the inverse solution with water potential measurements. In the study, we 
preferred volumetric water content over water potential because volumetric water content sensors are 
more reliable and cover a wider range of soil moisture conditions (as stated in lines 187-189). We 
conducted additional numerical experiments using water potential data from the same HYDRUS-1D 
simulation used in the inverse modeling in the main text, and the estimated surface water flux was 
comparable to the case using volumetric water content (see Figure 1 below). We commented on this 



point in the revised manuscript (lines 187-189) and, the figure is included in the supplementary material 
now (Sect. S1.5).  

 

Figure 1. Inverse modeling to estimate surface flux from five water potential measurements in a layered soil (𝑧𝑧 ∈
{−1,−5,−9,−13,−17} 𝑐𝑐𝑐𝑐). The left figure shows the comparison between the true and PINNs’ volumetric water content. The 
right figure shows the true and estimated surface water flux.  

What is your opinion on going to 2 and 3D modelling? Could the domain decomposition proposed in the 
paper be applied to speed up 2 and 3D solutions? I think that would be the actual gain in this 
methodology. FEM applications for the fully 3D solution of Richardson-Richard's equation are still slow 
and have many complications with mesh, especially for large domains. This also applies to the boundary 
and initial conditions imposition.  

Response: Thank you for your suggestions. Yes, the domain decomposition was indeed invented for 
speeding up PINNs for large-scale simulations by dividing spatial and temporal domains into smaller 
ones (Jaqtaq and Karniadakis, 2020). Although we presented results in only 1D to understand how PINNs 
behave, we are moving toward 2D and 3D simulations using PINNs.  

What about non-Darcian conditions, macropore flow, very high clay content soils. Do you think the 
method could be applied? 

Response: We appreciate your comments on those processes. A simple answer is "as long as we can 
describe those processes as mathematical equations, we should be able to simulate those processes 
using PINNs." Please think of PINNs as numerical solvers, such as finite difference and finite element 
methods.  

The mathematical formulation of non-Darcy flow was proposed by Swartzendruber (1962), for instance, 
and this formulation can be implemented using PINNs. As for macropore flow, we believe we do not 
have a good mathematical model that can take into account the effects of macropore flow on the 
overall water flow (Nimmo, 2021). Thus, it is difficult to use PINNs for macropore simulation (same for 
traditional finite difference and finite element). 

In terms of water flow in very high clay content soils (i.e., swelling soils), we believe we can simulate 
water flow in clay-rich soils that can shrink and swell. J. Philips and D. E. Smiles studied infiltration into 
swelling soils and provided the mathematical formulation of the processes (e.g., Smiles, 1974). Note that 
the water flow rate would be flow rate "relative to soil particles" in that case, and we need to take into 
account the change in porosity. Although these simulations are not common, such mathematical models 
exist, and thus we think we can apply PINNs to clay-rich soils. 



What about root-water-uptake? How can this be included in your approach? There exist some analytical 
solutions for these problems (Yuan and Lu, 2005[1]) 

Response: I appreciate your comment and the literature you suggested. The answer to this question 
would be the same as the one before. As long as we have mathematical models for root-water-uptake, 
we can use PINNs to simulate as we do using finite difference and finite element methods. Since we 
have some root-water-uptake models (e.g., Feddes and Raats, 2004), we can include the plant-root 
water uptake as a sink term in the Richards equation and implement PINNs.   

Do you think one day the PINNs could take over the classical approaches? What is limiting it? 

Response: This is an important question. We do not see PINNs taking over the classical approaches in 
the future. We instead envision combining PINNs with classical approaches. For example, we can use a 
finite element solution for large-scale simulation with a coarse mesh size to train PINNs and later 
decrease “mesh size” (using more residual points) to get more refined solutions using PINNs, where the 
finite element method cannot be used due to a significant amount of degree of freedoms. The limitation 
of PINNs is the difficulty in training PINNs. However, we recently observed an exciting breakthrough in 
training PINNs, so we expect training PINNs to be more efficient and consistent in the future.  

What about practical applications? Irrigation management or contaminant transport in the vadose zone. 

Response: Thank you for commenting on practical applications. Current practical applications are to 
estimate rainfall estimations from soil moisture measurements (directly related to the inverse problem 
shown in the main text). As for irrigation management, we can formulate an inverse problem for 
irrigation management, where “desired soil moisture distribution” would be used to train PINNs to 
determine “required irrigation to achieve the desired soil moisture distribution.” We might be able to 
use PINNs to locate the source of contaminant from measured contaminant data in the vadose zone by 
solving an inverse problem, where a sink term in a convective-dispersion equation is to be estimated. 
We would like to emphasize that those problems are all inverse problems, so PINNs and traditional 
approaches are both applicable.  

Overall, the paper is well written. The sections are balanced, and the flow is good, making the paper 
enjoyable to read. 

Response: We thank your constructive comments and feedback. We included some of the answers here 
in the revised manuscript.  

Referee #2 

Review of “Forward and inverse modeling of water flow in unsaturated soils with discontinuous 
hydraulic conductivities using physics-informed neural networks with domain decomposition” by Bandai 
and Ghezzehei. 

In this manuscript the authors tested a physics-informed neural networks (PINNs) method to solve the 
Richardson-Richards equation for simulating unsaturated soil water dynamics. The authors also 
investigated the capability of the method for obtaining inverse solutions. As coupling data-driven and 
physics-based approaches have received much attention these days, the topic fits well with the scope of 
HESS. The authors have done a great job on demonstrating how PINNs performed when simulating 
unsaturated water flow in soils and showing applicability and limits of the method. Although the paper 



was well organized and written, I believe the paper has a room for some improvement. I have some 
comments that should be addressed prior to accepting this paper for publication. For my curiosity, I am 
wondering if this approach can be applied to simulate preferential type flow in soils. Is it going to be 
straightforward? Does it require some modifications in the model? If it can be applied to such 
phenomena, it would be a great breakthrough in the field of soil physics and hydrology. 

Response: We sincerely thank the reviewer for spending efforts in reviewing our manuscript. Before we 
answer the questions below, we would like to clarify the application of PINNs to preferential flow here. 
Although it is highly important to simulate preferential flow, the current PINNs cannot be applied to 
general preferential flows. This is because reliable mathematical models for preferential flow have not 
been developed yet. The basis of PINNs is well-defined mathematical equations (e.g., differential 
equations) that describe the processes of interest. This is an identical requirement to other traditional 
numerical methods such as finite difference and finite element methods. Nevertheless, some aspects of 
preferential flow could be simulated using PINNs. For example, Cueto-Felgueroso and Juanes (2009) 
proposed to model finger flow in a homogeneous soil by adding a fourth-order term to the Richardson-
Richards equation. The fourth term describes the formation of gravity fingers during water infiltration 
into soils. In principle, we can apply PINNs to solve the fourth-order Richardson-Richards equation, 
though it requires further computational cost due to the fourth-order term. Alternatively, it might be 
possible for us to use PINNs to study the gravity finger using laboratory infiltration experiments using 
imaging-based soil moisture data (e.g., Sadeghi et al. (2017)). Compared to traditional numerical 
methods, PINNs do not require initial and boundary conditions, which would be useful for the 
experimental laboratory setup too. In conclusion, PINNs are limited to processes that mathematical 
equations are available for. We require more experimental and theoretical work on formulating 
mathematical models for preferential flow in general (Nimmo, 2021). 

General comments: 

In Fig. 5, the evolution of PINNs solution is plotted. At the initialization, some of the solutions are 
beyond the limit of the water content as the water content values are greater than the saturated water 
content. Would it be possible to put some constraints to the solutions in PINNs? If so, would that 
improve training and overall performance? Any discussions on this matter will helpful for those who are 
interested in using this method. A similar question goes to the inverse solutions. I am wondering if any 
constraints can be applied to the target parameters that are inversely estimated. There is always a need 
to put some constrains to the parameters being estimated. 

Response: We appreciate your keen comments on Figure 5. The oversaturation at the initialization is 
because we did not implement the conditional statement such as 𝜃𝜃 = 𝜃𝜃𝑠𝑠 for 𝜓𝜓 ≥ 0. Thus, the neural 
networks gave unphysical volumetric water content over the saturated water content based on the 
Gardner model (Equation (5)).  

We had some technical issues that prevented us from implementing the conditional statement. But, we 
have now implemented such conditional statements. An example of the results from this 
implementation is shown below in addressing your questions on saturated-unsaturated flow.  

In terms of your question on the constraint on inverse modeling in general, yes, we can constrain the 
range of target variables in this framework. For example, if the range of a variable 𝛼𝛼 is 0 < 𝛼𝛼 < 1, then 
we can use the sigmoid function to represent 𝛼𝛼 (note that the range of the sigmoid function is between 



0 to 1). Alternatively, we might set bounds for each parameter by adding conditional statements. 
Nevertheless, as standard inverse modeling frameworks, imposing such bound constraints might make 
the minimization problem more difficult than that for unconstrained optimization. 

In the demonstration of getting inverse solution with PINNs, the authors used a 2-layered soil system. 
Why? If the boundary fluxes are being estimated, wouldn’t be better to start with a homogenous case? 
Was there a specific reason that the layered soil system was used in this demonstration? 

Response: We appreciate your reasonable suggestion. The reason we used a two-layered soil for the 
inverse modeling is twofold: 1) we knew PINNs work well for a homogeneous soil from our previous 
study (Bandai and Ghezzehei, 2021); 2) soil moisture sensors are inserted into multiple layers in our 
target field data, which is often the case for most situations. We believe it is important to test this 
algorithm for two-layered soils because the physical property of the very surface soil is often different 
from the below ones due to crust, organic matter accumulation, and surface processes.   

Specific comments: 

L189: It sounds a bit strange to say that soil dynamics is “controlled by the volumetric water content at 
the bottom.” 

Response: Thank you for pointing out this. To avoid confusion, we changed the sentence: 

“which corresponds to when soil moisture dynamics is controlled by the surface water flux q(0, t) (i.e., 
evaporation or infiltration) and the volumetric water content at the bottom θ(−Z, t).” 

to  

“which corresponds to when soil moisture dynamics is induced by the surface water flux q(0, t) (i.e., 
evaporation or infiltration) while the volumetric water content at the bottom θ(−Z, t) is kept to h(-Z, t).” 

L193 (Eq.15): A little bit more explanations will be helpful to understand this transformation. I have no 
idea why the beta value gives better initial guess. 

Response: We appreciate your comment. The initial guess for the homogeneous simulation is shown in 
Figure 5 (a). This distribution is determined by Equation 15 with the parameter 𝛽𝛽 and the initial neural 
network parameters Θ. The initial neural network parameters are given by the Glorot initialization (Line 
262). By tuning the parameter 𝛽𝛽, we can begin our simulation at a better initialization. The parameter 𝛽𝛽 
is also important for the question below (L311). Responding to this question, we moved the description 
of 𝛽𝛽 to Section 2.4.2. Initialization so that the reader can follow. 

L311: If the logarithmic transformation of water potential is used, the approach is limited to 
“unsaturated” systems. But there are many cases you will have both positive and negative potential 
values. How do you deal with that? 

Response: Thank you for your insightful comment. As you suggested, the output of the negative 
logarithmic transformation is always negative. However, the parameter 𝛽𝛽 in Equation (15) makes the 
PINNs possible to have positive water potential (i.e., saturated flow). For example, if we use 𝛽𝛽 = 10, the 
range of 𝜓𝜓� would be −∞ < 𝜓𝜓� < 10.  



Although we limited ourselves to unsaturated cases in this paper, we tested the applicability of PINNs to 
saturated-unsaturated cases by changing the surface flux of the homogeneous problem in the main text 
from 0.9 cm/h to 1.05 cm/h, where the saturated hydraulic conductivity is 1.0 cm/h. Figure 1 below 
shows that the volumetric water content reached the saturated volumetric water content at t = 3 h for 
half of the soil, while the water potential becomes positive, as shown in Figure 2. The slope of the water 
potential is close to 0.05 cm/cm, which is reasonable to satisfy the surface flux to be 1.05 times the 
saturated hydraulic conductivity.  

 

Figure 2. The PINNs solution for saturated-unsaturated flow into a homogeneous soil in terms of volumetric water content. 

 

Figure 3. The PINNs solution for saturated-unsaturated flow into a homogeneous soil in terms of water potential. 

We sincerely appreciate you gave us a chance to test PINNs against the saturated-unsaturated flow. 
However, we can foresee the potential difficulty of PINNs for saturated-unsaturated cases because the 
solution to the governing equation will not be smooth (i.e., not differentiable) at the saturated-
unsaturated interface, and it is difficult to know the location of the interface a priori. Please note that 
traditional numerical methods have also issues for saturated-unsaturated interfaces (convergency of 
non-linear solver). The application of PINNs to saturated-unsaturated flow requires further verification 



and comparison with other numerical methods, and we would like to limit ourselves to unsaturated 
scenarios in this paper, as suggested in the title. We will add these comments in the discussion section 
of the revised manuscript as a future perspective (Lines 690-694).    

Figure 3(b): There are some systematic differences between FDM and PINNs. Why? Are these because of 
the choice of spatial and temporal discretization in FDM? 

Response: Thank you for pointing out the systematic difference. Yes, the difference comes from the 
discretization used in FDM. In FDM, the temporal derivative is approximated by a finite difference, and 
the FDM solution and the corresponding numerical error propagate with time marching. Major errors 
come from a steep wetting front, and thus we see a clear trend in FDM errors. On the other hand, PINNs 
do not use time marching for temporal discretization and minimize the residual of the partial differential 
equations in both time and space simultaneously. Therefore, we see PINNs errors distributing broadly in 
the spatial and temporal domains.  

Figure 10: Looks like something is wrong with the texts at the top of the figures. 

Response: We regret that we left the weird texts in the figure. We fixed this in the revised manuscript.  

Figure 16: For all three cases, the PINN solutions show that the inversely estimated initial surface flux is 
much smaller than the true flux. Are there any specific reasons for this? 

Response: We appreciate your close investigation. According to our empirical experiences, PINNs tend 
to learn the solution backward in time. Please see Figure 13, where PINNs learned the solution at t = 10 
h first and other solutions backward in time. We believe the same thing happened to the inverse 
modeling case too. Please see Figure 15 (a), where the solutions at t =  0 and t = 1 are not satisfactory 
near the surface. The estimated water content at t = 0 and t = 1 would be closer to the solution at t = 3 
because neural networks are continuous, and thus estimated water content is higher than the true 
water content. If the estimated water content is higher than the true one, then there is less water flux 
required, which is the result of the underestimation (in absolute value) of initial surface water flux.  

Referee #3 

The paper is very interesting and introduces a physics-informed neural networks (PINNs) method in a 
Richards’ equation context, aimed at approximating the solution to the RRE using neural networks while 
concurrently matching available soil moisture data. In particular, in this paper authors consider domain 
decomposition for handling infiltration into layered soils. 

The topic is definitely up to date, the paper is well written, and provides all the details for implementing 
and understanding this approach. Nevertheless, I think authors should address some comments and 
issues before it can be accepted. 

Response: We appreciate that the reviewer closely read our manuscript and gave the valuable 
comments. We would like to answer the questions below.  

This PINN approach appears really fascinating because it allows to integrate physics-based models (such 
as RRE) with machine learning features. Authors ascribe the uncertainties in Richards’equation to the 
choice of boundary conditions, which is surely right. Nevertheless, I think they do not consider the (even 
more) cumbersome uncertainties arising from the choice of model parameters, which are the result of 



some non-linear fitting in laboratory experiments (I am referring to the parameters in the WRC and 
HCF). This point is a main concern for me: as a matter of facts, unsaturated flow dynamics strongly relies 
on functions parameters, rather than on ICs and BCs, which are generally easier to assess. On the other 
hand, I see authors already published a paper on this topic: I think it would be valuable to stress the 
differences between the two papers 

Response: We appreciate your comments on the concern regarding the soil hydraulic parameters. We 
deeply acknowledge the effect of the uncertainty of the soil parameters on the soil moisture dynamics. 
From our previous study (Bandai and Ghezzehei, 2021), where we attempted to estimate the 
parameters from soil moisture measurements, we recognized the importance of understanding the 
basic characteristics of PINNs constrained by the RRE and its extension to layered soils for practical 
applications. In the revised manuscript, we stressed this point (Lines 80-84).  In future studies, we will 
include the uncertainty of the parameters into this PINNs framework again.  

Lines 197-198: few more words for sketching how the partial derivatives are computed would be 
valuable 

Response: Thank you for pointing out that there needs more explanation on the automatic 
differentiation. In this method, all the computations necessary for PINNs are formulated as 
computational graphs by the software (TensorFlow in this study). Any derivatives related to the 
computations can be computed based on the reverse-mode automatic differentiation (basically, chain 
rule). The cost of computing the derivative is similar to or less than conducting the computation twice, 
regardless of the number of parameters. Therefore, this method is suitable for training neural networks 
with tens of thousands or millions of parameters. We will add an explanation of automatic 
differentiation in the revised manuscript (Lines 202-206). 

Figure 1: I think there is a typo in the box “Physics and Data Constraints”, since the partial derivative at 
the left-hand side should be accomplished with respect to time. 

Response: We regret to have left the typo in the figure. Thank you very much for noticing the mistake. 
We fixed this in the revised manuscript. 

I understand that the residual is computed between the synthetic data and the computed (by the PINNs) 
ones; in this framework, what is the rationale of comparing the PINNs output with any Richards solver 
(as Hydrus)? 

Response: The comparison with other RRE solvers (such as HYDRUS-1D) was conducted in the forward 
modeling, where we verified the ability of PINNs to approximate the solution to the RRE. It is important 
to make sure the performance of PINNs for the forward modeling because the performance of PINNs for 
the inverse modeling partially depends on the performance of the forward modeling.  

As far as I understand, the power of this approach is to combine physics-based models with data driven 
ones; according to my knowledge, this is also the spirit of Data Assimilation (DA) methods, which 
incorporate measurements into a physics based model, albeit  in a very different framework; these 
methods have also been treated in Richards’ equation context (see for instance Berardi et al CPC 
https://doi.org/10.1016/j.cpc.2016.07.025, Medina et al HESS https://doi.org/10.5194/hess-18-2521-
2014, Liu et al JoH https://doi.org/10.1016/j.jhydrol.2020.125210 ); what is authors’ opinion about this? 
What would be the pros and cons of PINNs approach with respect to DA one?  Also DA methods allow to 



assimilate boundary conditions, as in this case, and hydraulic parameters, as well as states.  As a matter 
of fact, with respect to DA methods, this PINNs approach seems to me more on the theoretical side 
(which is definitely fine, of course) rather than application oriented. 

Response: We appreciate that the reviewer pointed out the relation with data assimilation (DA). Our 
view is that both PINNs and DA are methods for inverse problems, where we aim to extract information 
from measurement data (Asch et al., 2016). We answer the questions by dividing DA methods into 3-D 
or 4-D variational methods (also called adjoint methods) and Kalman filter methods.   

Adjoint methods are closely related to PINNs. In fact, we are currently working on the comparison 
between PINNs and adjoint methods. The difference comes from, for instance, the basis functions 
(linear functions for adjoint methods and neural networks for PINNs) and the method of minimizing the 
objective function. However, the methods might give very similar results based on our experiences. We 
would like to report this finding in future studies. 

As the reviewer commented, the Kalman filter method might be more practical because it can also give 
an uncertainty of the results in addition to the point estimate. To the best of our knowledge, we are not 
aware of the comparison between the Kalman filter method and PINNs. 

To conclude, our opinion is that all the methods mentioned here are within inverse modeling. The 
efficacy of each method would depend on the system of interest and the available data. As a research 
community, we need some benchmark problems to compare the methods.  

Authors mention the possibility to drop loss terms for IC or BC at line 225. However, they have not 
presented any experiment for this scenario. Could you please comment on this ill-posed configuration? 
How would it perform with respect to classical solver? 

Response: It might have been unclear in the current manuscript. The ill-posed setting was used for the 
inverse modeling, where no initial and boundary conditions were enforced, and only measurement data 
were used to train PINNs. In terms of classical solvers (finite difference or finite element), it is also 
possible to deal with such ill-posed settings by treating the missing information (e.g., initial condition) as 
inversion parameters and formulating the problem as inverse modeling. This type of inverse modeling is 
hard to implement in standard hydrology software (e.g., HYDRUS-1D) because the number of 
parameters can be very large. However, in geophysics or optimal control fields, it is common to deal 
with this inverse problem using adjoint methods (e.g., Petra and Stadler, 2011; we added this literature 
to the revised manuscript).  

Figure 11 and 3. Please replace “Fintie” with “Finite”. 

Response: Thank you very much for noticing the mistake. We fixed this in the revised manuscript.  

Authors make use of synthetic data: I had hard times to find where the reference to used data is 
described. Of course the use of synthetic data is fine, but they should highlight it at the beginning of the 
paper. Moreover, could you please explain how your method of synthetic data generation could 
compare to real measurement data? In other words, how robust is your result with respect to outliers, 
sensor noise and other technical issues when it comes to real data? 

Response: We appreciate that the reviewer pointed out that it was not clear if the data are synthetic in 
the current manuscript. We emphasized that regard in the introduction of the revised manuscript (Line 



90). The robustness of the algorithm against the sensor noise was addressed by incorporating the 
Gaussian noise into the synthetic data used in the inverse modeling section (Line 567-568). The other 
technical difficulties (e.g., outliers and model errors) were not addressed in this manuscript. In the real 
setting, outliers should be removed and not be fed into the algorithm because the algorithm assumes 
soil moisture dynamics can be described by the Richardson-Richards equation. As for model errors, as 
long as they can be described by the Gaussian distribution, they can be interpreted as the Gaussian 
noise as in the current manuscript. For example, we did not consider the effect of hysteresis on soil 
moisture dynamics in this study. The model error due to hysteresis might be described by the Gaussian 
noise for wetting and drying situations. However, If there are biases that cannot be described by the 
Gaussian in the model error, we need to update the model by incorporating those processes as forms of 
mathematical equations. 
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