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Review of “Forward and inverse modeling of water flow in unsaturated soils with discontinuous 

hydraulic conductivities using physics-informed neural networks with domain decomposition” by 

Bandai and Ghezzehei. 

In this manuscript the authors tested a physics-informed neural networks (PINNs) method to solve 

the Richardson-Richards equation for simulating unsaturated soil water dynamics. The authors 

also investigated the capability of the method for obtaining inverse solutions. As coupling data-

driven and physics-based approaches have received much attention these days, the topic fits well 

with the scope of HESS. The authors have done a great job on demonstrating how PINNs 

performed when simulating unsaturated water flow in soils and showing applicability and limits 

of the method. Although the paper was well organized and written, I believe the paper has a room 

for some improvement. I have some comments that should be addressed prior to accepting this 

paper for publication. For my curiosity, I am wondering if this approach can be applied to simulate 

preferential type flow in soils. Is it going to be straightforward? Does it require some 

modifications in the model? If it can be applied to such phenomena, it would be a great 

breakthrough in the field of soil physics and hydrology. 

Response: We sincerely thank the reviewer for spending efforts in reviewing our manuscript. 

Before we answer the questions below, we would like to clarify the application of PINNs to 

preferential flow here. Although it is highly important to simulate preferential flow, the current 

PINNs cannot be applied to general preferential flows. This is because reliable mathematical 

models for preferential flow have not been developed yet. The basis of PINNs is well-defined 

mathematical equations (e.g., differential equations) that describe the processes of interest. This 

is an identical requirement to other traditional numerical methods such as finite difference and 

finite element methods. Nevertheless, some aspects of preferential flow could be simulated using 

PINNs. For example, Cueto-Felgueroso and Juanes (2009) proposed to model finger flow in a 

homogeneous soil by adding a fourth-order term to the Richardson-Richards equation. The fourth 

term describes the formation of gravity fingers during water infiltration into soils. In principle, 

we can apply PINNs to solve the fourth-order Richardson-Richards equation, though it requires 

further computational cost due to the fourth-order term. Alternatively, it might be possible for us 

to use PINNs to study the gravity finger using laboratory infiltration experiments using imaging-

based soil moisture data (e.g., Sadeghi et al. (2017)). Compared to traditional numerical methods, 

PINNs do not require initial and boundary conditions, which would be useful for the experimental 

laboratory setup too. In conclusion, PINNs are limited to processes that mathematical equations 

are available for. We require more experimental and theoretical work on formulating 

mathematical models for preferential flow in general (Nimmo, 2021). 

  

General comments: 

 



In Fig. 5, the evolution of PINNs solution is plotted. At the initialization, some of the solutions 

are beyond the limit of the water content as the water content values are greater than the saturated 

water content. Would it be possible to put some constraints to the solutions in PINNs? If so, would 

that improve training and overall performance? Any discussions on this matter will helpful for 

those who are interested in using this method. A similar question goes to the inverse solutions. I 

am wondering if any constraints can be applied to the target parameters that are inversely 

estimated. There is always a need to put some constrains to the parameters being estimated. 

Response: We appreciate your keen comments on Figure 5. The oversaturation at the initialization 

is because we did not implement the conditional statement such as 𝜃 = 𝜃𝑠 for 𝜓 ≥ 0. Thus, the 

neural networks gave unphysical volumetric water content over the saturated water content based 

on the Gardner model (Equation (5)).  

We had some technical issues that prevented us from implementing the conditional statement. 

But, we have now implemented such conditional statements. An example of the results from this 

implementation is shown below in addressing your questions on saturated-unsaturated flow.  

In terms of your question on the constraint on inverse modeling in general, yes, we can constrain 

the range of target variables in this framework. For example, if the range of a variable 𝛼 is 0 <

𝛼 < 1, then we can use the sigmoid function to represent 𝛼 (note that the range of the sigmoid 

function is between 0 to 1). Alternatively, we might set bounds for each parameter by adding 

conditional statements. Nevertheless, as standard inverse modeling frameworks, imposing such 

bound constraints might make the minimization problem more difficult than that for 

unconstrained optimization. 

In the demonstration of getting inverse solution with PINNs, the authors used a 2-layered soil 

system. Why? If the boundary fluxes are being estimated, wouldn’t be better to start with a 

homogenous case? Was there a specific reason that the layered soil system was used in this 

demonstration? 

Response: We appreciate your reasonable suggestion. The reason we used a two-layered soil for 

the inverse modeling is twofold: 1) we knew PINNs work well for a homogeneous soil from our 

previous study (Bandai and Ghezzehei, 2021); 2) soil moisture sensors are inserted into multiple 

layers in our target field data, which is often the case for most situations. We believe it is important 

to test this algorithm for two-layered soils because the physical property of the very surface soil 

is often different from the below ones due to crust, organic matter accumulation, and surface 

processes.   

 

Specific comments: 

 

L189: It sounds a bit strange to say that soil dynamics is “controlled by the volumetric water 

content at the bottom.” 

Response: Thank you for pointing out this. To avoid confusion, we will change the sentence: 

“which corresponds to when soil moisture dynamics is controlled by the surface water flux q(0, 

t) (i.e., evaporation or infiltration) and the volumetric water content at the bottom θ(−Z, t).” 

to  



“which corresponds to when soil moisture dynamics is induced by the surface water flux q(0, t) 

(i.e., evaporation or infiltration) while the volumetric water content at the bottom θ(−Z, t) is kept 

to h(-Z, t).” 

L193 (Eq.15): A little bit more explanations will be helpful to understand this transformation. I 

have no idea why the beta value gives better initial guess. 

Response: We appreciate your comment. The initial guess for the homogeneous simulation is 

shown in Figure 5 (a). This distribution is determined by Equation 15 with the parameter 𝛽 and 

the initial neural network parameters Θ. The initial neural network parameters are given by the 

Glorot initialization (Line 262). By tuning the parameter 𝛽, we can begin our simulation at a better 

initialization. The parameter 𝛽 is also important for the question below (L311). 

 

L311: If the logarithmic transformation of water potential is used, the approach is limited to 

“unsaturated” systems. But there are many cases you will have both positive and negative 

potential values. How do you deal with that? 

Response: Thank you for your insightful comment. As you suggested, the output of the negative 

logarithmic transformation is always negative. However, the parameter 𝛽 in Equation (15) makes 

the PINNs possible to have positive water potential (i.e., saturated flow). For example, if we use 

𝛽 = 10, the range of �̂� would be −∞ < �̂� < 10.  

Although we limited ourselves to unsaturated cases in this paper, we tested the applicability of 

PINNs to saturated-unsaturated cases by changing the surface flux of the homogeneous problem 

in the main text from 0.9 cm/h to 1.05 cm/h, where the saturated hydraulic conductivity is 1.0 

cm/h. Figure 1 below shows that the volumetric water content reached the saturated volumetric 

water content at t = 3 h for half of the soil, while the water potential becomes positive, as shown 

in Figure 2. The slope of the water potential is close to 0.05 cm/cm, which is reasonable to satisfy 

the surface flux to be 1.05 times the saturated hydraulic conductivity.  

 

Figure 1. The PINNs solution for saturated-unsaturated flow into a homogeneous soil in terms of volumetric water 

content. 



 

Figure 2. The PINNs solution for saturated-unsaturated flow into a homogeneous soil in terms of water potential. 

We sincerely appreciate you gave us a chance to test PINNs against the saturated-unsaturated 

flow. However, we can foresee the potential difficulty of PINNs for saturated-unsaturated cases 

because the solution to the governing equation will not be smooth (i.e., not differentiable) at the 

saturated-unsaturated interface, and it is difficult to know the location of the interface a priori. 

Please note that traditional numerical methods have also issues for saturated-unsaturated 

interfaces (convergency of non-linear solver). The application of PINNs to saturated-unsaturated 

flow requires further verification and comparison with other numerical methods, and we would 

like to limit ourselves to unsaturated scenarios in this paper, as suggested in the title. We will add 

these comments in the discussion section of the revised manuscript as a future perspective.    

Figure 3(b): There are some systematic differences between FDM and PINNs. Why? Are these 

because of the choice of spatial and temporal discretization in FDM? 

Response: Thank you for pointing out the systematic difference. Yes, the difference comes from 

the discretization used in FDM. In FDM, the temporal derivative is approximated by a finite 

difference, and the FDM solution and the corresponding numerical error propagate with time 

marching. Major errors come from a steep wetting front, and thus we see a clear trend in FDM 

errors. On the other hand, PINNs do not use time marching for temporal discretization and 

minimize the residual of the partial differential equations in both time and space simultaneously. 

Therefore, we see PINNs errors distributing broadly in the spatial and temporal domains.  

 

Figure 10: Looks like something is wrong with the texts at the top of the figures. 

Response: We regret that we left the weird texts in the figure. We will fix this in the revised 

manuscript.  

Figure 16: For all three cases, the PINN solutions show that the inversely estimated initial surface 

flux is much smaller than the true flux. Are there any specific reasons for this? 

Response: We appreciate your close investigation. According to our empirical experiences, 

PINNs tend to learn the solution backward in time. Please see Figure 13, where PINNs learned 

the solution at t = 10 h first and other solutions backward in time. We believe the same thing 

happened to the inverse modeling case too. Please see Figure 15 (a), where the solutions at t =  0 

and t = 1 are not satisfactory near the surface. The estimated water content at t = 0 and t = 1 would 



be closer to the solution at t = 3 because neural networks are continuous, and thus estimated water 

content is higher than the true water content. If the estimated water content is higher than the true 

one, then there is less water flux required, which is the result of the underestimation (in absolute 

value) of initial surface water flux.  
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