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Abstract.  

Reliable streamflow forecasts with associated uncertainty estimates are essential to manage and make better use of Australia's 

scarce surface water resources. Here we present the development of an operational 7-day ensemble streamflow forecasting 15 

service for Australia to meet the growing needs of users, primarily water and river managers, for probabilistic forecasts to 

support their decision making. We test the modelling methodology for 100 catchments to learn the characteristics of different 

rainfall forecasts from Numerical Weather Prediction (NWP) models, the effect of statistical processing on streamflow 

forecasts, the optimal ensemble size, and parameters of a bootstrapping technique for calculating forecast skill. A conceptual 

hourly rainfall-runoff model, GR4H (hourly) and lag and route channel routing model that are in-built in the Short-term Water 20 

Information Forecasting Tools (SWIFT) hydrologic modelling package are used to simulate streamflow from input rainfall 

and potential evaporation. The statistical Catchment Hydrologic Pre-Processor (CHyPP) is used for calibrating rainfall 

forecasts, and the Error Reduction and Representation In Stages (ERRIS) model is used to reduce hydrological errors and 

quantify hydrological uncertainty. Calibrating raw forecast rainfall with CHyPP is an efficient method to significantly reduce 

bias and improve reliability for up to 7 lead- days. We demonstrate that ERRIS significantly improves forecast skill up to 7 25 

lead- days. Forecast skills are highest in temperate perennially flowing rivers, while it is lowest in intermittently flowing rivers. 

A sensitivity analysis for optimising the number of streamflow ensemble members for the operational service shows that more 

than 200 members are needed to represent the forecast uncertainty. We show that the bootstrapping block size is sensitive to 

the forecast skill calculation. aA bootstrapping block size of one month is recommended to capture maximum possible 

uncertainty. We present benchmark criteria for accepting forecast locations for the public service. Based on the criteria, 209 30 

forecast locations out of a possible 2831 are selected in different hydro-climatic regions across Australia for the public service. 

The service, which has been operational since 2019, provides daily updates of graphical and tabular products of ensemble 

streamflow forecasts along with performance information, for up to 7 lead- days with daily updates. 
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1 Introduction  

Optimal management of water resources requires support from accurate, reliable, and timely streamflow forecasts to make 35 

decisions. Practical and scientific benefits of predictive modelling of hydrological processes are evident (Shmueli, 2010) and 

have long been recognised. Water forecasting models can make significant contributions to drought mitigation and alleviation, 

optimal management of urban and agricultural water allocations, basin planning, hydropower generation, and flood 

management and mitigation (Buizer et al., 2016). Skilful streamflow forecasts can significantly contribute to improving 

reservoir operation, water supply storage reliability, and environmental allocation (Delaney et al., 2020). In the long term, 40 

these predictive hydrological models can potentially bring enormous benefits to the environment and society, ensuring 

economic growth and environmental sustainability (Talukder and Hipel, 2020). 

Water and flood managers need accurate streamflow forecast information at the longest possible with a useful lead time to 

make optimal water management decisions. The useful lead-time can be hours to years depending on the type of application 

and actions required. There is a wide range of modelling techniques, from conceptual, physically-based, statistical, and 45 

stochastic time series to modern hybrid artificial intelligence (AI) models that can be used for streamflow forecasting. 

Conceptual and physically-based models are more commonly used for short- and medium-term streamflow forecasting. 

Statistical models such as the Bayesian Joint Probability (BJP) model (Robertson and Wang, 2012; Zhao et al., 2016; Charles 

et al., 2018) are mostly used for monthly or seasonal time scales streamflow forecasting. Recently, machine learning tools 

based on data pre-processing techniques and swarm intelligence algorithms have been successfully used for short-term 50 

streamflow forecasting (Niu et al., 2020). Commonly, rainfall forecasts from a Numerical Weather Prediction (NWP) model 

are used as input to a calibrated hydrological model for streamflow forecasting. Over the last few decades, NWP has moved 

from deterministic to probabilistic (ensemble) forecasting. As a result, probabilistic streamflow forecasting has become 

increasingly popular across the globe (Pappenberger et al., 2016; Wu et al., 2020; Roy et al., 2017). Probabilistic forecasts 

provide estimates of uncertainty involved in the forecasts that assist users in making informed decisions from the different 55 

scenarios available. 

There are several large-scale (continental and global) hydrological models systems run by communities around the world 

(Bierkens et al., 2015; Emerton et al., 2016). The Global Flood Awareness System (GloFAS) is one such forecasting system 

that can skilfully predict extreme events in large river basins up to 1 month ahead (Alfieri et al., 2013). The European Flood 

Awareness System (EFAS, Smith et al., 2016), operational since 2012, is a European Commission initiative developed by the 60 

Joint Research Centre (JRC) for riverine flood preparedness across Europe. The service aims to provide harmonised early 

warnings and hydrological information to national agencies across Europe. The U.S. Hydrologic Ensemble Forecast Service 

(HEFS), run by the National Weather Services (NWS), provides ensemble streamflow forecasts that seamlessly span lead 

times from less than 1 hour up to several years and that are spatially and temporally consistent for river basins across the U.S. 

(Demargne et al., 2014). Siddique and Mejia (2017) report that the ensemble streamflow forecasts in the U.S. mid-Atlantic 65 
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region remain skilful for lead times up to 7 days. Post-processing of the forecasts increased forecast skills across lead times 

and spatial scales. The past researchse studies demonstrates that ensemble streamflow predictions at different temporal scale 

is possiblepossible, but the skills vary from one geographical location to another. These findings give us greater confidence 

for the development of an operational ensemble streamflow forecasting service for Australia. 

Australia is a land of extremes from droughts to floods and raging fires. It has a wide range of geographical and topographical 70 

features with a large central arid or semi-arid zone. The southeast and southwest regions are temperate, and the north has a 

tropical climate (Stern et al., 2000). These unique geographical features result in the most significant inter-annual variability 

of streamflow, floods, and droughts compared with other continents (Poff et al., 2006). During 2001-2009 south-eastern 

Australia experienced its most severe drought since 1901, known as the 'Millennium Drought' 

(http://www.bom.gov.au/climate/drought/knowledge-centre/previous-droughts.shtml). The region had the most extended 75 

period of below-median rainfall and, as a result, inflows to major reservoirs were very low (Van Dijk et al., 2013). In particular, 

inflow to reservoirs located within the Murray-Darling River Basin, Australia's food bowl, was 50% of the previously recorded 

minimum. The drought had wide, long-lasting societal, economic and environmental impacts (Bureau of Meteorology, 2021). 

As a result, the federal government passed the Water Act 2007 (https://www.legislation.gov.au/Details/C2017C00151) to 

implement a water security plan for the nation. One of the critical components of implementing the water security plan was 80 

developing and operationalising streamflow forecasting services at different temporal scales with special emphasis on short-

term (hours to days) and medium-term (months to seasons) forecasts. The Bureau of Meteorology (BoM) launched a seasonal 

streamflow forecasting service (Woldemeskel et al., 2018; Feikema et al., 2018) in 2010 

(http://www.bom.gov.au/water/ssf/history.shtml). A 7-day deterministic streamflow forecasting service (Hapuarachchi et al., 

2016) was progressively developed during 2010-2017 and released to the public. More recently, stakeholders showed greater 85 

interest in probabilistic streamflow forecasts as it provides information on the uncertainty involved in the forecasts and supports 

users in making an informed decisions with associated uncertainties. In response, the BoM launched the 7-day ensemble 

streamflow forecasting (SDF) service (http://www.bom.gov.au/water/7daystreamflow/) in December 2019, upgrading the 

existing deterministic service. The upgraded service provides a set of forecasts to give an indication of a range of possible 

streamflow outcomes based on input forecast rainfall uncertainties for up to 7 days lead-time at an hourly scale at different 90 

river gauge stations with useful skill and reliability.  

This paper describes the development of a SDF service, including the characteristics of different Numerical Weather Prediction 

(NWP) model rainfall forecasts, application of calibration to forecast rainfall, error modelling of streamflow forecasts, the 

optimal ensemble size required to represent the forecast uncertainty band, parameters of a bootstrapping technique for 

calculating forecast skill, operational implementation of the service, and future work. The next sections of the paper describe 95 

the methodology, verification metrics, catchments and data, results,, and discussion and future work. 
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2 Modelling methodology 

The adopted hybrid dynamical-statistical streamflow forecasting method consists of several components. It includes – NWP 

calibration, hydrological modelling and hydrological error modelling and we firstly introduce the components of the system. 

The forecasting system is premised on separating rainfall forecasting from hydrological modelling. This includes separating 100 

the estimation of uncertainty in rainfall forecasts from the estimation of uncertainty in hydrological model. The system is thus 

a hybrid dynamical-statistical forecasting system. This setup has several key benefits: it makes the system highly modular, 

allowing new models (e.g., new NWPs) to be substituted into the system without the need to revise other components (e.g., 

the hydrological model). Second, it means that more appropriate techniques can be applied to estimate forecast uncertainty in 

each case: for example, error models are better able to handle the strong autocorrelation in streamflow than statistical 105 

calibration methods typically applied to rainfall forecasts. There is only a few streamflow forecast systems around the world 

use the hybrid technology. The Hydrologic Ensemble Forecast System (HEFS, Demargne et al., 2014) is a hybrid forecast 

system. It applies a calibration to rainfall, and an error model.  However, in an operational setting, it uses 'in-the-loop' flood 

forecasters to manually do data assimilation, which may impede the ability to produce reliable ensemble forecasts. The 

European Flood Awareness System (EFAS) and Global Flood Awareness System (GloFAS) use dynamical models only. 110 

Operationalisation of the system requires many practical scientific questions to be addressed. In this paper we seek to identify: 

(a) the minimum ensemble size that can be used while maintaining robust performance 

(b) how best to describe forecast skill when only limited hindcast dataset is available. 

Our methods then describe the approach taken to answer these questions. A verification strategy is critical to answer the 

operationalisation questions and alsoand provide an assessment of the forecast performance. We finally describe the 115 

verification strategy adopted for this study. 

2.1 Calibration and evaluation of rainfall forecasts 

Three NWP rainfall forecast products (Table 1) are evaluated for 100 catchments (at the outlets) in this study to understand 

their characteristics and to explore the impact of calibration. These are the European Centre for Medium-Range Weather 

Forecasts (ECMWF) atmospheric model ensemble forecasts (Richardson, 2000), Australian Community Climate and Earth-120 

System Simulator-Global Ensemble (ACCESS-GE2) forecasts (O’Kane et al., 2008), and the BoM's Poor Man's Ensemble 

(PME) (Ebert, 2001), the ensemble mean of NWP models from Australia, UK, USA, Canada, Europe, and Japan. Note that 

ACCESS-GE2 was a pre-operational product made available for this study, and a newer version (ACCESS-GE3) is now 

available. A catchment is delineated to sub-catchments and finer sub-areas to represent a semi-distributed model structure. A 

hydrological model is applied to each sub-area with average areal rainfall (see section 2.2.1). The average areal rainfall of each 125 

sub-areacatchment per each ensemble member is calculated by taking the area-weighted average of gridded forecast rainfall 

for all grid cells intersecting the catchmentsub-area. The average forecast rainfall is post-processed using the Catchment 

Hydrologic Pre-processor (CHyPP) model (Robertson et al., 2013) (Robertson et al., 2013), which is based on a Bayesian Joint 
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Probability (BJP) model that defines a spatially variable probabilistic relationship between NWP model forecast rainfall and 

observed rainfall. The BJP model relates forecast rainfall to corresponding observations using a log-sinh transformed bivariate 130 

normal distribution. The log-sinh transformation is applied to normalise observed and forecast rainfall data and to homogenise 

its variance. The Schaake shuffle (Clark et al., 2004) method used in the CHyPP generates spatially and temporally coherent 

calibrated forecasts by linking samples from forecast probability distributions at each consecutive lead-time within the entire 

hindcast period for each forecast location within the catchment.  

A leave-one-month-out cross-validation procedure (Hapuarachchi et al., 2016) is applied to calibrate and validate the CHyPP 135 

model for the data period of 36 months from 2014 to 2016. ACCESS-GE2 hindcast data is limited and 2014-2016 is the 

common period of data available for the selected NWP rainfall products. Given that PME is a merged post-processed product 

of many global NWP products, it shows negligible improvement when CHyPP is used on it (Shrestha et al., 2020). Therefore, 

the PME forecasts are not post-processed. We also call a raw super-ensemble, a merged product of ECMWF, ACCESS-GE2, 

and PME with 75 members (Table 1). The 3 and 6 hourly NWP data (Table 1) are disaggregated to hourly using linear 140 

interpolation within CHyPP.  Bennett et al. (Bennett et al., 2016) showed that even converting daily rainfall totals to hourly 

using linear interpolation produces plausible rainfall-runoff model outputs. By calibrating the forecasts with CHyPP, we 

generate x number of bias-corrected statistically reliable ensemble members for each rainfall forecast product, ACCESS-GE2 

and ECMWF and concatenate merge them with PME (total OES members) that is referred to as a post-processed super-

ensemble. The x to be determined based on the analysis on optimum ensemble size (present below). Raw and post-processed 145 

rainfall forecasts are evaluated independently (Table 2) for different lead times at the catchment scale for bias, precision, and 

reliability (see section 2.5 for details). Note that PME is included here mainly for generating a deterministic streamflow forecast 

to embed in the ensemble plume of the forecast products of the operational service. 

 

Table 1. Raw rainfall forecast products 150 

Product 
Lead-time 

(Hours) 

Ensemble 

members 

Spatial 

Resolution (km) 
Temporal Resolution (Hours) 

ECMWF 360 501 20 
3 (0 – 144 lead), 

6 (144 – 360 lead) 

PME 228 1 50 3 

ACCESS-GE2 240 24 60 3 

Super-ensemble 240 75 Areal average 1 
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2.2 Generating and evaluating streamflow forecasts 

2.2.1 Rainfall-runoff model and channel routing 

The core hydrologic modelling package used here is the Short-term Water Information Forecasting Tools (SWIFT), (Perraud 

et al., 2015). SWIFT consists of many hydrologic modelling tools including conceptual hydrologic models, catchment routing 

models, channel routing models, streamflow error models, and parameter optimization methods. It supports deterministic and 155 

ensemble hydrologic modelling for the retrospective evaluation of catchment models using hindcast data and real-time 

forecasting. Previous research conducted in Australia  (Perrin et al., 2003; Coron et al., 2012; Van Esse et al., 2013; Bennett 

et al., 2016; Kunnath-Poovakka and Eldho, 2019) as well as elsewhere have shown that GR4J (Perrin et al., 2003) and its 

variants perform at least as well as other conceptual models in a range of environments at daily and hourly time-steps. 

Therefore, the GR4H rainfall-runoff model (Bennett et al., 2014), an hourly variant of the daily GR4J model and lag and route 160 

channel routing is implemented here.  

A nationally consistent flow direction map from the Australian Hydrological Geospatial Fabric (Geofabric), (Atkinson et al., 

2008) is used to delineate each catchment into sub-catchments and sub-areas  to represent a semi-distributed model structure. 

The number of sub-areas varies for each catchmentcatchment, and it depends on catchment size and availability of gauging 

locations. For the 100 catchments, size of a sub-area varies from 30 to 4000 km2 of which the mean and median values are 600 165 

and 450 km2 respectively. Larger sub-areas are present where the rainfall gradient is insignificant, and rainfall and water level 

gauge networks are sparse. A collection of sub-areas makes a sub-catchment where a streamflow gauge exists at the outlet. 

GR4H is applied to each sub-area. Runoff generated in each sub-area is routed to the catchment outlet using the lag and route 

method. The model parameters are calibrated for each sub-catchment using the Shuffle Complex Evolution-University of 

Arizona (SCE-UA) algorithm (Duan et al., 1994) within the SWIFT package.  170 

2.2.2 Hydrological error modelling 

In addition to errors contributing to streamflow forecasts from observed and forecast rainfall (see section 3.2), there are errors 

in both hydrological model structure and in calibrated model parameters. For an operational forecasting service, it is essential 

to reduce the forecast uncertainty due to these errors as much as possible to provide highly reliable and accurate forecasts to 

users. Using the Error Representation and Reduction In Stages (ERRIS) (Bennett et al., 2021; Li et al., 2021) method, we 175 

explore the impact of error modelling on streamflow forecasts. ERRIS is applied to address different statistical properties of 

the forecast error in four stages: i) hydrological model forecast and data normalisation, ii) non-linear bias correction, iii) 

restricted autoregressive (AR) model updating, and iv) adjustment of residual distribution. After the hydrologic model and 

routing model parameters are calibrated, the ERRIS parameters are calibrated for each sub-catchment from upstream to 

downstream. In simulation mode, observed discharge is passed downstream at each sub-catchment outlet. If the observed 180 

discharge is missing, post-processed streamflow is used instead of observed. In forecast mode, post-processed streamflow is 

passed downstream. Note that ERRIS accounts only for uncertainty from the hydrological modelling component of the system, 
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and not uncertainties in rainfall forecasts. For the streamflow forecasts to be reliable overall, uncertainty from ERRIS must 

sum to the uncertainty from rainfall forecasts. 

2.2.3 Cross-validation and forecast verification 185 

A leave-two-year-out cross-validation approach (Hapuarachchi et al., 2016) is implemented for all catchment models using 

observed hourly data from 2007 to 2016. The first year of the leave-out period in each iteration is used for model validation. 

The purpose of the second year is to avoid propagating any hydrological effects from the validation period into the model 

calibration to make it independent (Hapuarachchi et al., 2016). A longer leave-out period is preferred, but this would shorten 

the available data for model calibration. The duration of two years is determined as appropriate after considering the limited 190 

data available. This approach is applied to all catchment models (Fig. 1a). Once a model is validated, we use the whole dataset 

to calibrate the model to obtain the final parameter set for each sub-catchment.  Raw and post-processed streamflow forecasts 

are generated using the post-processed super-ensemble rainfall forecasts (Table 2) for the 36 months from 2014 to 2016 

(Fig. 1b). Streamflow forecasts before and after error modelling are independently evaluated for different lead times at the 

outlets of the selected 100 catchments for bias, accuracy, and reliability, as described in section 2.5.  195 

 

 

Table 2. Forecast evaluation experiments  

Rainfall product Ensemble 

members (raw) 

Rainfall evaluation Streamflow evaluation 

Raw Calibrated Raw ERRIS 

ECMWF 50 Yes Yes   

ACCESS-GE2 24 Yes Yes   

Super-ensemble 75 Yes Yes Yes Yes 

 

 200 
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Figure 1. Rainfall and streamflow forecast evaluation framework: (a) Cross-validation, (b) Forecast verification 

2.3 Determination of optimal ensemble size 

It is essential to optimise computational efficiency and storage requirements of an operational system without compromising 205 

forecast quality. We conduct a sensitivity analysis using 6 catchments, located in different hydroclimatic regions, to estimate 

the smallest ensemble size that does not significantly reduce critical measures of forecast performance. We set the maximum 

ensemble size to 1000 members based on the operational computational capacity. ACCESS-GE2 and ECMWF are calibrated 

to generate 1000 forecast rainfall members for each product using the hindcast data from 2014 to 2016 (1096 days). Then we 

generate a 1000-member error corrected (ERRIS) streamflow forecast, corrected with ERRIS, from the rainfall hindcast. We 210 

randomly select m (<1000) ensemble members from the 1000-member streamflow ensemble dataset (without removing 

ensemble members) and repeat the process 100 times. In this exercise, m is 50, 100, 200, 300, and 500. Alternatively, different 

number of ensemble member (m) samples can be generated independently and analyse them. However, it needs extensive 

computational resources that is unavailable to us. Another method is to dress the ensembles to create more members for each 

forecast time. However, we want to ensure that the forecasts are true ensembles - i.e., each ensemble member can be summed 215 
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across time to produce reliable forecasts of accumulations (e.g., 7-day streamflow totals). 'Ensemble dressing’ methods that 

simply add noise to a given lead time are not suitable for this type of calculation. 

 In this exercise, m is 50, 100, 200, 300, and 500. WThen we calculate the Continuous Ranked Probability Score (CRPS, see 

section 2.5) for the randomly selected samples and compare them with the CRPS of the original 1000-member sample. The 

optimal ensemble size is decided considering the computational efficiency and the statistical characteristics of the randomly 220 

selected samples compared to the original 1000-member sample. 

2.4 Streamflow forecast quality assessment 

Skill score (see section 2.5.35) is a measure of expected forecast skill for a particular forecast location over a specified time 

periodperiod. The CRPS is the metric used in this study. Streamflow forecast skill is calculated using a bootstrapping technique 

(Efron and Tibshirani, 1994) to obtain fair and reliable skill statistics. The bootstrapping is implemented to provide an 225 

understanding of the possible range of skills that might be realised over a long period of record when only a short record of 

hindcasts is available. We also calculate the reliability for verifying forecast quality. A sensitivity analysis is conducted as 

described below to i) select the optimum block size used in the bootstrapping method; and ii) check the effect of the number 

of bootstrapping iterations on forecast skill. The steps taken are: 

1. ACCESS-GE2 and ECMWF are calibrated to generate x forecast rainfall ensemble members of each product using 230 

the hindcast data from 2014 to 2016 (1096 days). For each day, there is an hourly rainfall forecast to 7 days lead-

time.  

2. Calibrated ACCESS-GE2, ECMWF, and raw PME forecast ensembles are combined merged to generate aan OES-

member super-ensemble.  

3. From the rainfall super-ensemble in (2), generate OES members of hourly streamflow forecasts. This dataset has the 235 

dimension of OES x 24lt x d data points where lt = 7 is lead time (days) and d =1096 (days).  

4. Since we calculate the forecast skill per lead- day, the hourly streamflow data is aggregated to daily values. and 

Continuous Ranked Probability Score (CRPS) per day is calculated using the OES ensemble members to generate a 

matrix MC with the dimension of lt x d CRPS values. 

5. Data in MC per lead- day is bootstrapped to calculate forecast skill. We randomly and iteratively select a block of 240 

data from the MC for each lead-day p times such that the total data points are equal to d and calculate the Continuous 

Ranked Probability Skill Score (CRPSS, see section 2.5). For an initial investigation, block sizes explored in this 

study are a week and a month. From now on, we refer to the block sizes, w-block for a week and m-block for a month. 

For example, if the block size is a month, then p is 36 (iei.e.,. 1096/average no. days per month). 

6. Repeat step (5) for k times where k is 100, 200, 500 and 1000.  245 

We do not select a block size of one day as the high autocorrelation of daily samples means they are not sufficiently 

independent.  
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2.5 Verification metrics 

2.5.1 Bias 

It is important to assess model bias to ensure the model is not consistently underestimating or overestimating streamflow. Bias 250 

(Bias) can be positive (underestimation) or negative (overestimation), and is calculated for each lead time using: 

𝐵𝑖𝑎𝑠 (%) =
∑ (ீିௌ)

సభ

∑ ீ

సభ

× 100    (1) 

where G is observed value (rainfall or streamflow), S is simulated/forecast (median of the ensemble) value, and n is total 

number of observations. 

2.5.2 Nash-Sutcliffe Efficiency (NSE) 255 

The Nash-Sutcliffe efficiency (NSE) quantifies the relative magnitude of residual variance compared to the measured data 

variance, by: 

𝑁𝑆𝐸 = 1 −
∑ (ீିௌ)మ

సభ

∑ (ீିீ̅)
సభ

మ      (2) 

where  �̅� is mean observed streamflow. In this study, NSE is used to assess the quality of GR4H streamflow simulations 

(deterministic), not forecasts.  260 

2.5.3 Continuous Ranked Probability Skill Score (CRPSS) 

Continuous Ranked Probability Score (CRPS) measures the error of all ensemble members with respect to observations by 

integrating the squared distance between forecast and observed cumulative distribution functions (Hersbach, 2000), and is 

given by: 

xdxFxF
T

CRPS
T

t

x

x

o
t

f
t 








1

2))()((
1

   (3) 265 

Relative CRPS (%)=RE = 
ோௌ

ீ̅
× 100    (4) 

where F is the cumulative distribution function (CDF), )(xF f
t  is the forecast probability CDF for the tth forecast case and 

)(xF o
t  is the observed probability CDF (Heaviside function) and T is the number of forecasts. Smaller CRPS values are the 

better, and CRPS tends to increase with increased (positive or negative) forecast bias. For a deterministic forecast, the CRPS 

is replaced with the mean absolute error (MAE), which is the limiting value of CRPS when forecast spread tends to zero. The 270 

relative CRPS is represented as percentage% of daily observations. Relative CRPS standardises errors to allow easy 

comparison between catchments. 

Skill is a measure of relative improvement of the forecast over a reference forecast. The Continuous Ranked Probability Skill 

Score (CRPSS) is given by: 
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𝐶𝑅𝑃𝑆𝑆 = 1 −
ோௌೝೌೞ

ோௌೝೝ
      (5) 275 

where 𝐶𝑅𝑃𝑆  is the reference forecast. For this study, we use climatology as the reference forecast. Data from 1990 to 

2016 are used for climatological streamflow calculation. For any given day of the year, the climatology value is the median of 

the period from 2 weeks before that day to 2 weeks after (i.e., 29 days) over the climatology period excluding the forecast year. 

2.5.4 Probability Integral Transform (PIT) uniform probability plots 

We use the probability integral transform uniform probability (PIT) diagram to assess the reliability of ensemble forecasts 280 

(Laio and Tamea, 2007). PIT is uniformly distributed for reliable forecasts. It is the CDF of the forecasts )( tt fF evaluated at 

observations 𝐺௧ and is given by: 

𝑃𝐼𝑇௧ = 𝐹௧(𝐺௧)      (65) 

The empirical CDF of the PIT values falls on the 1:1 line when the forecasts are perfectly reliable. Deviation from the 1:1 line 

indicates a less reliable forecast. To summarise and compare PIT values for many catchments, we use PIT-alpha (Renard et 285 

al., 2010) according to: 

𝛼 = 1 −  
ଶ

்
∑ ቚ𝑃𝐼𝑇௧

∗ −
௧

்ାଵ
ቚ்

௧ୀଵ      (76) 

where 𝑃𝐼𝑇௧
∗ is the sorted 𝑃𝐼𝑇௧ . An alpha value of 0 indicates the lowest reliability and 1 indicates perfect reliability. As the 

minimum rainfall amount measurable by tipping bucket rain gauges is 0.2 mm, we have set rainfall values less than 0.2 mm 

as censored data for PIT calculation.  290 

2.5.5 Continuous Ranked Probability Skill Score (CRPSS) 

Skill is a measure of relative improvement of the forecast over a reference forecast. The Continuous Ranked Probability Skill 

Score is given by: 

𝐶𝑅𝑃𝑆𝑆 = 1 −
ோௌೝೌೞ

ோௌೝೝ
      (7) 

where 𝐶𝑅𝑃𝑆  is the reference forecast. For this study, we use climatology as the reference forecast. Data from 1990 to 295 

2016 are used for climatological streamflow calculation. For any given day of the year, the climatology value is the median of 

the period from 2 weeks before that day to 2 weeks after (i.e. 29 days) over the climatology period excluding the forecast year. 

3 Catchment selection and data  

3.1 Catchment selection 

Australia has several climate zones as defined by KöppenKöppen Kappen Climate Classification (Stern et al., 2000), including 300 

equatorial, tropical and subtropical regions in the north and temperate regions in the south. The vast interior regions are covered 
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by grassland and desert. There are 13 drainage divisions (Fig. 2), and) and mean annual rainfall (Fig. 13) for these divisions 

varies from 276 to 2816 mm (Table 3) calculated using data for the period from 1990 to 2016. Annual average potential 

evaporation (PE) is generally higher than annual average rainfall in most areas. Therefore, streamflow generation processes 

are mainly controlled by water-limited environments (Milly et al., 2005) except for the Tasmania division. The pattern of 305 

rainfall-runoff and PE distribution within a year across different drainage divisions vary significantly. In the southern part of 

Australia, the wet season begins in June-July and ends in December-January, while in the northern part of Australia, the wet 

season starts in November-December and ends in March-April (Bureau of Meteorology, 2021).  

 

 310 

Figure 2. Map of Australia showing forecast locations, catchment boundaries and drainage divisions 
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For development of the SDF service, we select 100 catchments in consultation with the state and federal government 

entities and water management agencies in different jurisdictions and consider their strategic value (high economic, 

environmental, and social significance), data availability and other factors that support developing a successful useful 

model. Most catchments are in the coastal regions (Fig. 2), covering most of Australia's populated centres. For the 315 

operational service, 2831 potential forecast locations are identified within the selected catchments. There are no forecast 

locations selected in the South-western Plateau, Lake Eyre and North-western Plateau Divisions (Fig. 2), because there is 

no significant user demand, and the gauging network is very sparse. Testing and verification of the modelling methodology 

is done for the outlets of the selected 100 catchments. The same methodology is implemented for modelling all forecast 

locations within a given catchment. 320 

Table 3. Drainage divisions (see Fig. 23) and catchment attributes 

Drainage division   
No. of 

catchments 

No. of 

forecast 

locations 

Area (km2) 
Mean annual 

rainfall (mm) 
PE (mm) Aridity Index 

Min Max Min Max Min Max Min Max 

North EastNorth East 

Coast 
11 22 240 35985 549 2816 1504 1973 0.28 1.79 

South East Coast 18 48 88 13700 605 1328 988 1431 0.46 1.34 

Tasmania 14 28 227 3445 584 1530 758 978 0.65 2.02 

Murray-Darling Basin 35 76 364 43720 462 1270 1048 1909 0.25 1.08 

South Australia Gulf 3 4 345 701 570 825 1243 1293 0.44 0.66 

South West Coast 9 21 26 18971 407 1034 1199 1625 0.29 0.70 

Pilbara-Gascoyne 1 3 - 71222 - 276 - 2103 - 0.13 

Tanami-Timor Sea 

Coast 
5 19 658 83100 707 1567 2179 2259 0.32 0.72 

Carpentaria coast 4 5 6020 17148 463 1062 2092 2252 0.22 0.47 

Note: Statistics are calculated for the period from 1990 to 2016 using data from all forecast locations in the operational service. Catchment 

mean annual rainfall is calculated using the hourly rainfall at sub-area centroids computed by interpolating the rainfall of the nearest four 

gauges. Min and max rainfall and PE, and the Aridity Index, are calculated from the mean values of rainfall and PE of the catchments within 

a drainage division. The Pilbara-Gascoyne Division has only one catchment, thus min=max. Three drainage divisions with no forecast 325 

locations are not included in the table. 
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3.2 Observed data 

This study collates relevant historical observations for consistent retrospective analyses across all catchments from the 

Bureau'sBoM's databases. Hourly observed streamflow (1990 to 2016) and rainfall data (2007 to 2016) are extracted from the 

BoM'sureau's internal databases and external data provided by water agencies. Due to the limited availability of hourly rainfall 330 

data before 2007, the daily rainfall data are extracted from the Australian Water Availability Project (AWAP, Raupach et al., 

2009) and disaggregated to hourly time-steps by linear interpolation. The disaggregated hourly rainfall data (1990 to 2006),The 

disaggregated hourly rainfall data (from 1990 to 2006) is used for hydrological model warm-up, sincewarm-up since the quality 

of disaggregated rainfall data is low at the hourly scale. It isWe have shown previously that disaggregated daily rainfalls can 

provide good estimates of states in hourly hydrological models (Bennett et al., 2016). The rainfall and streamflow observations 335 

go through a comprehensive quality checking using a semi-automated workflow by visualising streamflow and nearby rainfall 

station data side by side. This allows the modeller to identify the connection between rainfall and streamflow (i.e., there should 

be a high rainfall event for high discharge). This approach assists the modeller to confidently make necessary corrections to 

the observed data. Rainfall data are checked for extreme values, by comparing with data from different sources, and then 

removing any suspicious values. Streamflow is further checked for rating issues, the rate of change, and continuous zero values 340 

because in some locations, missing values are replaced with zeros. Then the quality checked data are visually checked (plots) 

for further quality assurance. The corrections/modifications made to the original data are recorded (a data file) for future 

reference by other users of the dataset. 

The average areal observed rainfall for each sub-area is calculated using the inverse-distance squared-weighted averaging 

method, where the distance is calculated between the rainfall gauge and the sub-area centroid. Monthly gridded PE data (1990 345 

to 2016) at each sub-area centroid is extracted from the AWAP. PE is first disaggregated to daily values by assuming that 

monthly mean PE occurs in the middle day of each month, then linearly interpolating between these mid-monthly values. Note 

that this PE disaggregation method ignores the patterns of diurnal cycle and any correlation (negative) with rainfall. However, 

we note that the method is adequate for this study as Andréassian (2004) showed that GR4J is less sensitive to changes in PE 

inputs. To generate streamflow forecasts, we use climatological averages of PE calculated over the period 1990 to 2016. 350 

4 Results 

We cross-validate parameters for GR4H, channel routing, and ERRIS for each of the 100 catchment models. We In the model 

validation, found 97 of 100 forecast locations exceed the NSE value of 0.6 in the model validation. Catchments with NSE 

values lower than 0.6 contain intermittent or ephemeral rivers (Table 4). This may be partially due to the lack of representation 

of nonlinear dynamics in the ephemeral catchment hydrologic processes, including the interaction between groundwater and 355 

stream channel, in the GR4H conceptual model. Below, we present detailed results of the experiments (Table 2) to identify the 

optimal ensemble size, effects of statistical processing, optimal parameters for the bootstrapping method, and acceptance 

criteria for selecting forecast locations for the operational service. 
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4.1 Optimal ensemble size 

The number of ensemble members needed require to maintain an acceptable forecast skill (see acceptance criteria in section 360 

4.5) is important for an operational service as the service will generate a large volume of data through daily updates for 100 

catchments. Optimal ensemble size is a balance between preserving the statistical properties while not creating unduly large 

data volumes. We implement the methodology described in section 2.3 to find the optimal ensemble size. The results are 

consistent across all the selected catchments, so for simplicity, we present results for one catchment. Figure 3 shows the 

sensitivity of ensemble size on streamflow forecast accuracy (CRPS) with reference to a 1000-member sample for the Tully 365 

catchment (QLD). Streamflow forecasts using the ACCESS-GE2, and ECMWF products show similar accuracy for the same 

sample size (Fig. 3a and 3b). Generally, the forecast accuracy is proportional to the ensemble size. However, the relative 

increment of forecast accuracy is inversely proportional to the ensemble size. The overall results indicate that having more 

than 200 members are sufficient to can preserve greater than 98% statistical properties of simulated streamflow timeseries. 

Noting that multi-model rainfall forecasts provide complementary benefits, and improve the streamflow forecast quality and 370 

the robustness of the operational forecast system when the reporting of an NWP product is delayed or unavailable, we 

recommend using 200 calibrated members (x=200, section 2.4) of each rainfall forecast product (ACCESS-GE2 and ECMWF), 

for generating streamflow forecasts for the operational service. Merging calibrated ACCESS-GE2, and ECMWF products will 

not negatively impact on the forecast accuracy (see section 4.3) since they show similar forecast accuracy for the same sample 

size. The recommendation of 200 calibrated ensemble members from each of the two rainfall forecast products is drawn 375 

considering the results shown in Figure 3, particularly to meet the operational comnputational efficiency and resources 

availability at the BoM. In the rest of the paper, we use calibrated ACCESS-GE2 and ECMWF, and raw PME merged product 

called super-ensemble (OES=401 members) for streamflow forecast evaluation. The streamflow forecast skill of the super-

ensemble is present in the section 4.3. 

 380 

  

Figure 3. Sensitivity of ensemble size to forecast accuracy with reference to a 1000-member sample for rainfall forecasts (a) 
ACCESS-GE2 and (b) ECMWF for the Tully River at Euramo site (QLD). 

(a) ACCESS-GE2 (b) ECMWF 
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4.2 Effect of rainfall calibration 

Results for the rainfall evaluation across lead times, day-1 to day-7 (daily total), are presented using boxplot diagrams (Fig. 4-385 

6). For each lead time, there are six boxes representing two raw rainfall products, ECMWF and ACCESS-GE2 and the super-

ensemble, and their respective calibrated rainfall products. Figure 4 shows the bias (%) of different raw and calibrated rainfall 

forecast products for different lead times for the 100 catchments. Bias (%) is calculated for the ensemble median. Among the 

raw rainfall forecast products, the ECMWF forecasts show smaller bias across most catchments. The bias of ACCESS-GE2 

for different catchments is found to be more variable compared with to ECMWF. For raw rainfall, bias increases with lead-390 

time, whereas for calibrated rainfall, the bias variation with increasing lead time is marginal. Calibrated rainfall forecasts show 

a significant improvement of bias across all catchments and lead times, irrespective of rainfall product, location, and catchment 

size as indicated by the greatly reduced variation in bias. Also, the calibrated super-ensemble is less biased across the 

catchments than the calibrated ACCESS-GE2 or ECMWF alone (Fig. 4). The bias correction using the CHyPP modelling 

approach is more sophisticated than only correcting mean bias of the rainfall ensemble. CHyPP utilises different marginal 395 

distributions, and log-sinh transformed bivariate normal distribution for the raw NWP rainfall forecasts and observed data, 

which allows for a non-linear bias correction (Robertson et al., 2013) resulting in much reduced variability of bias in the 

calibrated forecast rainfall.  

 

 400 

Figure 4. Bias (%) of raw and calibrated (using CHyPP) forecast rainfall products, ACCESS-GE2, ECMWF, and the super-

ensemble for the 100 catchments. 
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Figure 5 shows reliability (PIT-alpha) of the different rainfall products. Among the raw rainfall forecast products, ascending 

order of the reliability across a majority ofmost catchments for all lead times is ACCESS-GE2, ECMWF, and the super-405 

ensemble. Similar to bias (%), calibration substantially improves forecast reliability for all lead times for the tested rainfall 

products regardless of different catchment characteristics. Overall, calibration improves bias and reliability for all lead times.  

 

Figure 5. Reliability (PIT-alpha) of different rainfall products (raw and calibrated using CHyPP), ACCESS-GE2, ECMWF, 

and the super-ensemble for the 100 catchments. 410 

 

The CRPS (error) value is highly related to catchment characteristics. For example, catchments having considerably long dry 

periods have numerically low average daily CRPS values. Therefore, we present the relative CRPS error (RE) where it is 

estimated by dividing CRPS by the mean rainfall and converting to a percentage value. Figure 6 shows the distribution of RE 

for raw and calibrated rainfall forecast products with lead-time, where lower error values are better. As expected, RE for all 415 

rainfall forecast products (raw and calibrated) increases with lead-time while the spread of the error distribution for raw rainfall 

reduces with lead-time. A narrower spread of error distribution over the forecast horizon is observed for all calibrated rainfall 

products compared to the raw data. Calibration reduces RE at shorter lead times but makes it slightly higher than raw rainfall 

at long lead times, while increasing the reliability significantly (Fig. 5). Normally calibrated rainfall values are closer to 

climatology values at long lead times giving more weight to improving the reliability. This is an inherent characteristic of the 420 

CHyPP methodology and there is a trade-off between sharpness and reliability. Further research is needed to explore on how 

to keep the balance between the sharpness and reliability of the calibrated forecast rainfall at long lead times. 
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Figure 6. Relative CRPS (% of daily observations) of different rainfall products (raw and calibrated using CHyPP), ACCESS-425 

GE2, ECMWF, and the super-ensemble for the 100 catchments. 

4.3 Effect of streamflow error modelling 

Figure 7 shows bias (%) of streamfloww generated before and after error modelling using the ERRIS model with the forecast 

rainfall super-ensemble (calibrated) for 100 catchments. Bias (%) is calculated for the ensemble median. The bias increases 

with lead-time for both raw and ERRIS-corrected streamflow forecasts. ERRIS-corrected streamflow forecasts (PSF) 430 

demonstrate relatively low bias consistently across all the lead times compared to the raw streamflow forecasts (RSF) though 

the magnitude of reduction varies across the continent. PSF show significantly reduced bias at short lead times for all forecast 

locations. For lead day-1, median bias is less than 25% for all the forecast locations (Fig. 7a), whereas for lead day-7, the 

median bias is less than 40% for about 40% of forecast locations (Fig. 7b). 

   435 

(a) (b) 
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Figure 7. (a) Median bias (%) before (raw) and after streamflow error modelling with ERRIS for the 100 forecast locations; 

and (b) percentage of forecast locations not exceeding median bias (%) for ERRIS-corrected streamflow forecasts for different 

lead times. 

 

The reliability of streamflow forecasts across all catchments is significantly improved consistently over the lead times with 440 

ERRIS (Fig. 8a), but the improvement is more prominent for the first three days. This improvement could partially be attributed 

to i) the effect of streamflow error modelling using ERRIS and ii) the improvement in the reliability and reduction of bias in 

rainfall forecasts. However, the reliability across different catchments, which are located in different hydroclimatic regions 

(Fig. 4), varies significantly; PIT-alpha is >75% for more than 80% of the catchments (Fig. 8b). A wide range of reliability 

across different forecast locations indicate that ERRIS performance highly relates to specific catchment hydro-climatic 445 

characteristics (Table 4). 

 

     

Figure 8. (a) Reliability (PIT) before and after streamflow applying ERRIS for the 100 forecast locations; and (b) percentage 

of forecast locations exceeding PIT (%) for ERRIS-corrected streamflow forecasts for different lead times. 450 

 
Forecast skill (CRPSS) reduces with lead-time for both raw and error-modelled streamflow forecasts (Fig. 9). The degree of 

improvement of forecast skill provided by error modelling decreases with lead time (Fig. 9a). For lead day-1, all the forecast 

locations exceed 50% CRPSS (Fig. 9b) for error-modelled streamflow. Positive CRPSS means the forecast is considered better 

than using climatology. For lead day-7, CRPSS is positive for 60% of the forecast locations and it is 80% for lead day-6. Out 455 

of about 40% forecast locations where CRPSS is negative for lead- day-7day 7, most are located where observation networks 

are sparsesparse, and the rivers are intermittent or ephemeral due to dry climates. Further details are present in the discussion 

section. 

 

 460 

 

 

 

(a) (b) 



20 
 

 

  465 

Figure 9. (a) CRPSS (%) of streamflow for raw and ERRIS-corrected forecasts; and (b) percentage of forecast locations (total 

100) exceeding CRPSS (%) for ERRIS-corrected streamflow forecasts for different lead times. 

4.4 Streamflow forecast skill 

Forecast skills for hydrologic models are generally low for extreme events that rarely occur and only a few extreme events are 

present in a relatively short period (e.g.e.g., 3 years) within the datasetd used here. Bootstrapping allows exploration of model 470 

forecast skill for a combination of various conditions, such as prolonged wet and/or dry periods, where the sequence of events 

(e.g., continuously a few wet or dry events) could be absent in the original dataset. Bootstrapped samples of the 3-year dataset 

might contain more or fewer wet or dry periods than in the original 3-year dataset, thus providing a better indication of skill 

variability across a more realistically varying sample. We test the methodology described in Section 2.4 for six catchments. 

Similar results are found for all the catchments. For the explanation of results, Figure 10 shows bootstrapped forecast skill for 475 

the Acheron River at Taggerty site for different number of iterations and block sizes. Forecast skill (CRPSS) is sensitive to 

block size (Fig. 10), and it reduces with lead-time for both the weekly-block (w-block) and the monthly-block (m-block) 

sample sizes. Forecast skill calculated using w-block (Fig. 10a) shows less variation and narrower spread with lead-time than 

when m-block is used (Fig. 10b). For the catchments we tested, the forecast skill is independent of the number of iterations for 

the w-block size (Fig. 10a). For the m-block size (Fig. 10b), the forecast skill varies with the number of iterations. There is 480 

marginal variation in the spread of the skill for iterations 500 and 1000 compared with iterations 100 and 200. This implies 

that the m-block size captures uncertainty in the forecasts slightly better than the w-block size. Also, the m-block requires 

fewer computation resources. Therefore, we adopt an m-block size for calculating the forecast skill for the operational service. 

There is no significant variation of the results for a different number of iterations for both block sizes. This result may be 

partially attributed to the small sample size of forecast data. To make sure we properly capture uncertainties in skill score 485 

calculation, we adopt 500 iterations for the operational service. Note that the block size may be catchment dependant, e.g., on 

catchment characteristics such as geomorphology, hydro-climatology, and upstream area etc. An alternative way of defining 

a block could be by identifying wet, dry, and normal periods from the original dataset for bootstrapping. However, this process 

is unique to each catchmentcatchment, and it is time consuming to implement for an operational service. Further research is 

required to investigate block size dependency on catchment characteristics. 490 

 

(a) (b) 
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Figure 10. Bootstrapped forecast skill for the Acheron River at Taggerty site for different number of iterations and block sizes 495 

- (a) weekly; (b) monthly. 

4.5 Acceptance criteria 

It is essential for an operational service to maintain a certain standard for the quality of products provided to the users. In 

consultation with key stakeholders, we developed criteria, based on model performanceperformance and forecast skill, for 

accepting forecast locations for the operational service. However, we relaxed the acceptance criteria for the locations with 500 

social and economic significance in consultation with the stakeholders. The first criterion is that the Nash Sutcliffe Efficiency 

(NSE) of simulated streamflow is 0.6 or greater (Chew and McMahon, 1993) is greater than 0.6 for the a forecast location in 

the model validation (see section 2.2.3). This requirement was adopted in consultation with the stakeholders to maintain the 

service standard. This It ensures the hydrological model is robust and produces acceptable results with observed data. If the 

first criterion is met, then forecast skill (CRPSS, see section 2.5), with reference to climatology, should be consecutively 505 

positive up to three days lead-time (Fig. 11). We calculate model performance metrics for each forecast location, and only if 

the criteria for a forecast location are satisfied, it is added to the public service. Poor quality forecasts possibly lead to 

miscommunicating the flow conditions with the public. It impacts the reputation of the service and the organization. If only 

the first criterion is satisfied, we consider releasing the forecasts only to registered users based on stakeholder requirements 

and the social and economic importance of forecasts at the location. Some water agencies use their own tools to generate 510 

streamflow forecasts. Therefore, consistently maintaining the forecast quality is important for a national operational service. 

If the first criterion is not met, then the forecast location is unsuitable for the service, and further revision of the model is 

required. We modelmodelled 2831 potential forecast locations in 100 catchments for the current service, and of these, 209 

forecast locations in 99 catchments pass the acceptance criteria and are released to the public. On users’ request, a further 17 

forecast locations (including one additional catchment) with forecast skill slightly below the acceptance benchmark, are 515 

released to registered users only due to the economic and social significance of the forecasts.  

 

(a) (b) (a) 
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 520 

 

 

 

 

 525 

 

Figure 11. Forecast skill (CRPSS%) and reliability (PIT-alpha%) for the 209 forecast locations in the operational public 

service. 

5 Description of the operational forecast system 

We developed the operational 7-day ensemble streamflow forecasting system based on the evidence derived from the above 530 

results. We designed the SDF forecast system to use multi-model rainfall forecasts to improve the quality of streamflow 

forecasts and minimise the potential risk of system failure due to the absence of NWP rainfall input. The rainfall forecasts used 

in the SDF service are ECMWF and PME (Fig. 12). We also planned to use the ACCESS-GE product for the service and 

conducted an extensive evaluation as presented in this paper. However, the operational delivery of the ACCESS-GE had been 

delayed, and therefore, it is to be included in the service in the near future. In the absence of ACCESS-GE data, the CHyPP 535 

model is used to calibrate ECMWF forecasts and generate 400 (instead of 200 as described in Section 4.1) bias-corrected and 

statistically reliable hourly rainfall forecast members. We combine calibrated ECMWF and PME rainfall forecasts and input 

them into the SWIFT model to generate 401 members of hourly streamflow forecasts (Fig. 12) in the operational system. 

Ensemble streamflow forecasts are fed into a product generator to produce plots, tables, and data files and publish in a web 
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portal (www.bom.gov.au/water/7daystreamflow). In addition to the web plots, users can extract data through the web portal 540 

and ingest forecast data to their operational systems via a File Transfer Protocol (FTP) link. The forecasts are generated daily 

in the BoM's operational platform, Hydrological Forecasting System (HyFS) (Robinson et al., 2016). It is the central national 

platform that supports flood forecasting and warning as well in Australia. HyFS is a Delft-FEWS (Flood Early Warning 

System) based forecasting environment (see http://oss.deltares.nl/web/delft-fews/about). HyFS allows ingestion and 

processing of real-time observations and numerical weather prediction (NWP) model rainfall forecasts, running routine 545 

workflows, model internal state management and forecast visualisation. The process is fully automated (Fig. 12), and forecasts 

are updated daily between 10:00 AM and 12:00 AM AEST. 

 

 

Figure 12. Operational forecast system (HyFS workflow level) 550 

56 Discussion and future work  

65.1 Interpretation of forecast skill 

Model performance statistics of validation and forecast verification for lead day-3 for 2831 potential forecast locations in the 

seven jurisdictions of Australia are shown in Table 4. Figure 13 shows the forecast skills (CRPSS%) of the potential forecast 

locations for lead-days one and three with the mean annual rainfall in the background. In model validation, SA models have 555 

the poorest NSE compared to other jurisdictions. Overall, 40% of forecast locations in South Australia and 23% in Western 

Australia fail the first acceptance criterion (NSE>0.6) while it is less than 12% for other jurisdictions. We note that some 

forecast locations in WA, TAS, and inland areas of NSW, QLD, and VIC show poor NSE. These areas have intermittently 
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flowing rivers due to arid or semi-arid climates (see the Aridity Index in Table 3). Much of continental Australia to the west 

of the Great Dividing Range (an area of >5 million km2) where the mean annual rainfall is <400 mm (Fig. 13) is sparsely 560 

populated and characterised by intermittent and ephemeral streamflows. Therefore, the observation network is also sparse and 

there is not enough benefit to justify the cost for expanding the observation network. Ephemeral rivers  are subject to strongly 

non-linear relationships that are less well understood in rainfall and runoff and are inherently more challenging to model than 

perennial catchments (Gutierrez-Jurado et al., 2021). The forecast skill (CRPSS%) is also poor for SA,  and inland parts of 

TAS, NSW, and QLD (mean annual rainfall <400 mm) and some parts of VIC and TAS (Fig 12). For these areas, the forecast 565 

skill significantly drops from lead-day one to three. This is partially due to the poor quality of rainfall forecasts (Shresta et al., 

2013). Arid regions are generally characterised by high rainfall variability, and often these rainfalls are underestimated by 

NWP models. It may be difficult for NWP models to replicate the complex meteorological processes that drive the high rainfall 

variability with limited observations. Therefore, improving forecast skill in ephemeral catchments is likely to remain 

challenging. 570 

Table 4. Hydrologic model performance statistics for 2831 forecast locations 

Jurisdiction 
No. of 

forecast 
locations 

Validation Forecast (for lead-day 3) 

NSE (%) CRPSS (%) PIT-alpha (%) 
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NSW 69 48 80 95 98 -22 29 53 61 59 80 89 91 

NT 17 65 87 97 99 25 43 68 69 64 79 87 87 

QLD 42 56 82 97 98 -763 18 45 60 46 77 89 89 

SA 9 -56 66 81 84 -344 3 10 12 9 79 93 93 

TAS 33 41 79 94 97 3 24 41 44 59 83 94 95 

VIC 72 48 77 95 98 2 37 62 77 65 79 92 95 

WA 39 19 83 97 98 10 41 78 92 30 77 89 93 

Note: y% is yth percentile, NSW: New South Wales, NT: NothernNorthern TeritoryTerritory, QLD: Queensland, SA: South Australia, TAS: 

Tasmania, VIC: Victoria, and WA: Western Australia. CRPSS and PIT-alpha values are the median of the respective bootstrapped samples. 
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   575 

Figure 13. Forecast skill, CRPSS (%) for the 283 forecast locations. (a) for lead-day one, and (b) for lead-day three. The mean 

annual rainfall (mm) in Australia is shown in the background. 

NWP rainfall calibration using CHyPP reduces bias and increases reliability across all catchments (Fig. 4, Fig. 5). In doing so, 

there is a compromise in relative CRPS – an improvement in shorter lead times but there is no discernible improvement – or 

in some cases a slight decline - at longer lead times (Fig. 6). However, relative improvements in forecast skill in ephemeral 580 

catchments are less prominent compared with perennial catchments. Similar results were found by Li et al. (2021). These 

results are discussed with many stakeholders across the country as part of development of the operational service. A clear 

message from them is that reliable streamflow forecasts are more important than precise forecasts for long lead times to 

downstream users, andusers and will be beneficial to their decision making.  

Streamflow forecast skill calculated using the bootstrapping technique appears to be realistic for most forecast locations. This 585 

gives some confidence that we can expect similar performance under operational conditions. However, in this study, 

bootstrapping is only able to sample within the evaluation period, which is three years from 2014 to 2016. The years 2014 and 

2015 were average to dry years for most of the selected catchments, which are located along Australia's coastal regions (Fig. 2). 

The year 2016 was a wet year for South Australia, VictoriaVictoria, and Tasmania, where about a half of the selected 

catchments are located. Overall, there were only a few wet events in the evaluation dataset. Therefore, we recommend that 590 

users are cautious when interpreting the forecast skill for wet events. A more extended period of data, with balanced wet and 

dry events, is recommended for a better evaluation of streamflow forecast skill. In addition, short-term verification statistics 

on daily basis will be useful for the users for better decision making. 
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We demonstrate with various performance measures that calibration adds value to raw NWP rainfall forecasts, and the relative 

improvement is different for each product. For example, raw ECMWF rainfall is less biased compared to ACCESS-GE2 595 

(Fig. 4). Therefore, the selection of rainfall forecast products for the operational forecasting system may effectaffect the quality 

of streamflow forecasts (see Section 6). In this study, our criteria for selecting NWP rainfall forecast products are availability 

of the product at the BoM, hindcast period, and ease of use (i.e.i.e., format, extent, file size). Where a range of suitable products 

are available, we recommend conducting a thorough evaluation before selecting NWP products to use.  

65.2 Uncertainties in forecasts 600 

Input data (observations and forecasts) and hydrological model structural uncertainties contribute to the streamflow forecast 

uncertainties. We try to minimise input data uncertainty by calibrating NWP rainfall forecasts using the CHyPP model and 

minimise the hydrologic uncertainty by applying the ERRIS error model to simulated discharge. We demonstrate that 

calibrated NWP rainfall forecasts improve streamflow forecast skill. Similar results are found in Canada and South America 

(Rogelis and Werner, 2018; Jha et al., 2018). However, uncertainties may also arise from the observed data used to calibrate 605 

parameters in the hydrologic models. The most common issues are precision of the instruments that measure the water level 

(stage) and rainfall, derivation of the stage-discharge relationship (rating tables), the accuracy of gauged rainfall interpolation 

methods (e.g.e.g., inverse-distance squared-weighted averaging), and data disaggregation methods. Measurement and rating 

curve uncertainties in streamflow, particularly for low and high flows, bring additional complexities in model 

calibration/validation and ultimately model performance (Tomkins, 2014).  610 

There are advanced methods for estimating the uncertainty caused by instrument and rating errors. Maldonado et al. (2018) 

present a method for estimating the uncertainty associated with stage-discharge relations using Bayesian inference with the 

likelihood estimator approach. However, maintaining the precision of observation instruments and updating rating tables is the 

responsibility of data providers, including state water management entities, irrigators, hydropower generators and water 

utilities and is out of scope of this study. Although there are many complex methods available for climate data disaggregation 615 

(Breinl and Di Baldassarre, 2019; Görner et al., 2021; Mehrotra and Singh, 1998), for simplicity, we use a simple method, 

linear interpolation for disaggregating daily rainfall and PE data to hourly. PE varies with the diurnal cycle and usually shows 

some degree of (negative) correlation with rainfall that could have been considered in the disaggregation. However, we note 

that the impact of rainfall uncertainty has been shown to be more significant than PE in hydrological modelling  (Paturel, 

Servat and Vassiliadis, 1995; ‘Evaluation of the transferability of hydrological model parameters for simulations under 620 

changed climatic conditions’, 2011; Guo et al., 2017). Therefore, the accuracy of spatially averaged gauged rainfall data 

through interpolation and disaggregation may have a greater effect on hydrologic model calibration. Perry and Hollis (2005) 

and Legg (2015) found the accuracy of gridded rainfall data depends on density of the rain gauge network, with more 

significant errors associated with sparse gauge coverage. The sparseness of the rainfall observation network in much of inland 
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Australia (particularly in the inland desert regions and in northwest Australia) remains a challenge for the development of any 625 

streamflow forecasting system.  

65.3 Streamflow error modelling method 

Modelling hydrological errors using the ERRIS model significantly reduces the bias and improves the forecast skill (Fig. 7). 

Improvements in forecast skill depend on location, season, and lead time (Hegdahl et al., 2021; Jha et al., 2018). However, 

calibration of ERRIS is sensitive to the quality of observations (Li et al., 2016). ERRIS uses a log-sinh transformation to 630 

normalise streamflow prediction errors, and the transformation amplifies errors related to low simulated flow and modulating 

errors related to high simulated flow. Therefore, if there are large uncertainties in low streamflow observations, these will 

result in large residual variances in the transformed space and lead to large forecast uncertainties. As a result, forecasts may 

be reliable, but have low precision particularly, at long lead times.  

The ERRIS model applies corrections to hydrological model output, but it does not address the underlying cause of the forecast 635 

errors. Relatively simple error models like ERRIS try to characterise prediction errors that arise from many different causes 

and persist over many different time horizons. For example, error models may try to address: (i) long-term or average forecast 

errors related to the hydrological model calibration, (ii) forecast errors that persist for intermediate time periods of days to 

months that may arise from the effects of errors in magnitude of catchment rainfall estimates for a significant event, and (iii) 

transient errors related to incorrectly assumed diurnal pattern in potential evapotranspiration or small errors in the timing of 640 

catchment rainfall. On the other hand, data assimilation methods seek to address underlying causes of some hydrological 

simulation errors, particularly those that persist over long and intermediate timeframes, by updating model state variables 

(initial conditions) and forcing, so that model predictions better reflect observations. However, implementation of a data 

assimilation method for probabilistic streamflow forecasting in a semi-distributed modelling setup is challenging due to: (i) 

the complexity in inter-dependencies of uncertainty contributing sources such as an ensemble of model forcing data, (ii) model 645 

state variables and/or model parameters, and (iii) compromise in landscape water balance which may lead to long term biases 

in streamflow forecasts (Moradkhani et al., 2005; Li et al., 2016). In a forecasting context, the objective is to ensure that the 

initial condition set in a hydrological model better reflects reality and therefore forecast errors are likely to be smaller. 

However, even after updating state variables, hydrological model predictions are unlikely to be perfect, and therefore, a role 

for an error model such as ERRIS in an operational system is still worth exploring. Decreased dependence on error corrections 650 

through weaker bias corrections, lower autocorrelation parameters, and lower residual variances when ERRIS is calibrated 

using updated streamflow forecasts by a data assimilation technique, may improve the overall streamflow forecast skill. Further 

exploration for implementing data assimilation for the service is planned. 
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65.4 Challenges in operational forecasting and opportunities 

Over the last two decades, the number of studies in ensemble streamflow forecasting has increased significantly. However, 655 

applications of ensemble forecasting vary significantly in terms of geographical distribution, forecast horizon, methodology 

and evaluation. This could partially be due to the evolution of ensemble streamflow forecasting science from research to 

operations. There are many challenges in the large-scale operational adoption of ensemble streamflow forecasting (Pagano et 

al., 2014; Wu et al., 2020). Some of these challegeschallenges relevant to Australian context  critical areas for future focus and 

consideration for ensemble streamflow forecasting research, operational application, adoptionadoption, and benefit to the 660 

community are: 

 Best use of the available data: In Australia, observed rainfall at a sub-daily time scale is available for most stations. 

Length of the sub-daily rainfall recodsrecords vary from one station to another – to a maximum of 50 years. However, 

the number of rainfall stations is declining over time, and some of the catchments already have a sparse network. 

Measurement of PE data is rare across the country. Simulated monthly PE data from the AWAP (Raupach et al., 665 

2009) is disaggregated to hourly for hydrological model application. Streamflow gauging stations where the 

automated facility is available for reporting in real-time are ingested in tointo the BoM system. These observed data 

are the backbone of the hydrological model construction, calibration, validation, and forecasting. Any improvements 

in measurement and rating curve uncertainties may result in better performance in streamflow forecasting. Updating 

measurement stations with automation facilities may result in better quality data which could be useful for more 670 

skilful forecasting. This study demonstrates that improvements in NWP rainfall forecasts directly contributes to 

improvements in streamflow. Any further improvements in NWP rainfall forecasts will result in more accurate and 

reliable streamflow predictions. Possible improvements in different flow regimes, particularly low and high flows, 

will be explored in the future. Endeavours should also be undertaken to explore emerging science, including merging 

radar rainfall with NWP forecasts (Velasco-Forero et al., 2021).  675 

 Extending the forecast horizon: In addition to the 7-day ahead forecasts, the Bureau also provides operational 

seasonal predictions (http://www.bom.gov.au/water/ssf/index.shtml) from one to three months ahead (Woldemeskel 

et al., 2018). Potentially the gap between these two forecast ranges could be minimised by extending the 7-day 

streamflow forecasts to multi-week forecasts. Rainfall forecast data to at least 30 days ahead are now available, and 

the multi-model ensemble approach could be used to increase the predictability and reliability of these rainfall 680 

forecasts (Specq et al., 2020). The potential use of the rainfall forecast data for extending the streamflow forecasts to 

30 days ahead could be explored in the future. A novel Multi-Temporal Hydrological Residual Error (MuTHRE) 

model (McInerney et al., 2020) has been recently developed to enable reliable streamflow streamflow forecasting 

beyond one week. The model has been tested for 11 catchments to generate sub-seasonal forecasts (lead-time 1-30 

days) using the GR4J hydrologic model and calibrated rainfall forecasts from the ACCESS-Seasonal NWP model 685 

(McInerney et al., 2020). They found that forecast performance was improved compared to the current seasonal 
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streamflow forecasts in terms of sharpness, volumetric bias, and skill. This approach could be further explored for 

wider-scale applications across Australia for seamless streamflow forecasting.   

 Forecasting in managed river systems: At present, the BoM'sureau's operational streamflow forecasting services 

do not receive real-time and future water releases from dams and reservoirs. Therefore, the 7-day streamflow 690 

forecasting service is developed for catchments with minimal or no anthropogenic influences (e.g., releases from 

storage, extractions). Catchments in this study (Fig. 2) are all upstream of dams, reservoirs, or weirs, and have no 

significant water extraction or irrigation return flows. Further investigation to account for these anthropogenic 

processes will lead to greater expansion and application of the forecast service. Research should be conducted to 

understand how these anthropogenic influences impact the forecasts and incorporate practical and innovative 695 

solutions into the hydrological forecasting models. 

 Effective communication: The 7-day ensemble streamflow forecasting service produces large volumes of 

information. Therefore, key messages must be conveyed clearly and efficiently for correct interpretation, allowing 

for well-informed decision making and common understanding among end-user communities. The user communities 

in Australia may range from experts in water management in decision-making entities to those with no experience in 700 

using ensemble forecast products. To effectively communicate forecasts with end-users in mind, the BoM consults 

widely and frequently with stakeholders, considers their needs, and provides clear and effective forecast 

visualisations, including the website and forecast products. The BoM continually improves the forecast products 

through stakeholder consultation and feedback. 

 Maintaining operational service: Maintaining the an operational 7-day streamflow forecasting service is a big task 705 

– and requires a well-trained, dedicated team of staff with expert knowledge of the catchments and experience with 

hydrologic model application and forecast system configuration. Particulaerly, if poor quality observed data is 

ingested to a model, we find discontinuity in the output when transition from simulation to forecast due to the 

instability of the ERRIS model. If this occurs, the model is taken temporarily out of the service by the monitoring 

team, and the user community is notified through the website. Losing in-house modelling or systems expertise due to 710 

limited funding or incentives may result in suboptimal forecast quality and end-user benefits.   

 

Each of these challenges shares a real-world perspective and its relative importance vary across different geographical regions 

of Australia. It and opens ongoing research and development opportunities, resulting in a greater update of ensemble 

streamflow forecasting for operational decision-making. 715 

6 Description of the operational forecast system 

We develop the operational 7-day ensemble streamflow forecasting system based on the evidence derived form the above 

results. We design the SDF forecast system to use multi-model rainfall forecasts to improve the quality of streamflow forecasts 



30 
 

and minimise the potential risk of system failure due to the absence of NWP rainfall input. The rainfall forecasts used in the 

SDF service are ECMWF and PME (Fig. 12). We also planned to use the ACCESS-GE2 product for the service and conducted 720 

an extensive evaluation as presented in this paper. However, the operational delivery of the ACCESS-GE2 had been delayed, 

and therefore, it is to be included in the service in the near futurelater. The CHyPP model is used to calibrate ECMWF forecasts 

and generate 400 (instead of 200 as described in Section 4.1) bias-corrected and statistically reliable hourly rainfall forecast 

members. We combine calibrated ECMWF and PME rainfall forecasts and input them into the SWIFT model to generate 401 

members of hourly streamflow forecasts (Fig. 12) in the operational system. Ensemble streamflow forecasts are fed into a 725 

product generator to produce plots, tables, and data files and publish in a web portal (www.bom.gov.au/water/7daystreamflow). 

In addition to the web plots, users can extract data through the web portal and ingest forecast data to their operational systems 

via a File Transfer Protocol (FTP) link. The forecasts are generated daily in the Bureau of Meteorology's operational platform, 

Hydrological Forecasting System (HyFS) (Robinson et al., 2016). It is the central national platform that supports flood 

forecasting and warning as well in Australia. HyFS is a Delft-FEWS (Flood Early Warning System) based forecasting 730 

environment (see http://oss.deltares.nl/web/delft-fews/about). HyFS allows ingestion and processing of real-time observations 

and numerical weather prediction (NWP) model rainfall forecasts, running routine workflows, model internal state 

management and forecast visualisation. The process is fully automated (Fig. 12), and forecasts are updated daily between 10:00 

AM and 12:00 AM AEST. 

 735 

 

Figure 12. Operational forecast system (HyFS workflow level) 
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7 Summary and conclusions  

We present the development of a 7-day ensemble streamflow forecasting service for Australia 

(http://www.bom.gov.au/water/7daystreamflow/). The service has been operational since December 2019 and provides daily 740 

updates of streamflow forecasts up to 7 lead days for 209 forecast locations in 99 catchments for the public and an 

aditonaladditional 17 forecast locations including one catchment to the registered users. The forecast system is capable of 

ingesting and calibrating multi-model ensemble NWP rainfall forecasts using the CHyPP model, which combines a Bayesian 

joint probability model and the Schaake Shuffle method. Calibrated ensemble rainfall forecasts are fed into a hydrological 

modelling package, SWIFT, which then generates error-corrected ensemble streamflow forecasts.  745 

We show that calibrating NWP rainfall forecasts using the CHyPP model significantly reduces bias and improves 

relaibilityreliability. Error modelling of streamflow forecasts using ERRIS further improves their accuracy and reliability. A 

sensitivity analysis for optimising the number of streamflow ensemble members for the operational service shows that more 

than 200 members are needed to represent the forecast uncertainty. We show that the bootstrapping block size is sensitive to 

the forecast skill calculation and a month is better than a week as the monthly block size allows to capture maximum possible 750 

uncertainty. Acceptance criteria is defined based on model validation and verification results for selecting locations with an 

adequate forecast quality for the operational service. The acceptance criteria isare defined as an NSE greater than 0.6 in model 

validation, and a median of bootstrapped model verification skill (CRPSS) that is positive (greater than zero) for consecutive 

3-days lead-time. Incorporation of ACCESS-GE3 rainfall forecasts into the operational service is planned, and continued 

stakeholder feedback will be used to guide further enhancements of the service. 755 
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