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Abstract. We introduce a hierarchical Bayesian model for modeling spatial rainfall for extreme events of a specified 

duration that could be used with regional hydrologic models to perform a regional hydrologic risk analysis.  An extreme 

event is defined if any gaging site in the watershed experiences an annual maximum rainfall event, and the spatial field of 10 

rainfall at all sites corresponding to that occurrence is modeled. Applications to data from New York City demonstrate the 

effectiveness of the model for providing spatial scenarios that could be used for simulating loadings into the urban drainage 

system. Insights as to the homogeneity in spatial rainfall and its implications for modeling are provided by considering 

partial pooling in the Hierarchical Bayesian framework. 

1 Introduction 15 

For an existing urban drainage network, a proper consideration of the spatial structure of extreme rainfall events is important 

for an assessment of the effectiveness of the network for handling urban flooding subsequent to rainfall events of varying 

duration, especially as concerns emerge as to the resilience of the system under a changing climate. Often, investigators 

focus on a return period analysis of extreme rainfall at a site considering annual maxima or peaks over threshold for a 

specific rainfall duration. In a regional context, spatial models of annual maximum rainfall are sometimes considered 20 

(Renard et al., 2006; Renard and Lang, 2007; Dyrrdal et al., 2015). However, since the annual maximum is unlikely to 

always occur for the same event at all sites, these models do not represent the actual structure of potential extreme rainfall 

events. We address this situation in this note by considering that the rainfall events of interest for a specified duration are 

ones where any one of the sites in the region experiences an annual maximum event, and the spatial field or rainfall of 

interest is then the field associated with each such event.  25 

In the exploratory analyses performed for New York City we noted that the structure of storms that lead to annual maximum 

events at different gages in the region may not be the same and that the basic statistics of rainfall vary across sites. We 

assemble a dataset of the annual maximum rainfall for each specified duration at each station. Let’s denote this as Adjt, for 

duration d, site j and year t.  These events may not occur on the same day of each year across the stations. Second, we 
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consider the rainfall field at all stations associated with the annual maximum at any one station and call this the “spatial 30 

field” (SF), Rdjki, where i is identified as an event such that Rdkki = Adkt for site k = j for year t.  Rdjki then has the rainfall at all 

sites j, for the event where site k has an annual maximum. As a result, the total number of events, i may be much larger than 

the total number of years of data, N.  A spatial event field of rainfall is thus conditional on the occurrence of an annual 

maximum rainfall for any station. This is similar to the temporally concurrent extreme maxima rainfall fields used in Asquith 

and Famigletti (2000). The hierarchical Bayesian models developed consider the spatial field SF with the goal of providing 35 

an approach for stochastically generating representative spatial fields of rainfall for a specified duration, such that at least 

one site in the region experiences an annual maximum event.  

In Section 2, we present the data and the context for the application to the Greater New York area. In Section 3, we describe 

the details of the multivariate hierarchical Bayesian models. The results are discussed in Section 4. Finally, in Section 5, we 

present a summary and conclusions. 40 

2 Data Description  

2.1 Greater New York Area Context 

The Greater New York City area has high density of man-made infrastructure and hence a complex hydrological landscape. 

Like many older cities, sanitary and industrial wastewater, and rainwater and street runoff are collected in the same sewers 

and conveyed together to treatment plants. Approximately 60 percent of NYC’s drainage area is served by these combined 45 

sewers.  Flooding and combined sewer overflows (CSOs) are a concern, and innovative solutions for using the sewer system 

itself as flood storage by pumping water to different areas during a storm has been suggested. Such hydrologic system 

upgrades need to be informed by the spatial variability of extreme precipitation.  

There are very few rain gauge records that are longer than twenty or thirty years. Persistent data quality issues further reduce 

the available data. This challenge of reconciling sparse data with spatially variable hydrological networks and meteorological 50 

phenomena is common to many urban areas. Widely accepted design standards are derived from a set of intensity-duration-

frequency curve developed using a daily rainfall record from 1903 to 1951 (NYCDEP 2008). An analysis of precipitation 

extremes for the region is offered in Wilks and Cember (1993), using daily rainfall data, and McKay and Wilks (1995), using 

hourly rainfall data. None of these analyses consider the spatial correlation of rainfall. 

2.2 Precipitation Data 55 

The precipitation data was obtained from the National Climatic Data Center (NCDC 2013). Rain gauges were selected based 

on the proximity to New York City, data quality, and length of the historical record. Twenty-nine stations were initially 

identified as lying within a 100-mile radius of Central Park with over 25 years of continuous hourly rainfall records. Sixteen 

stations were excluded since the resulting data quality was too poor. The final dataset consists of the remaining nine stations 

(Table 1); abbreviations for each station used in the figures throughout are provided in the first column. 60 
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[Table 1 - in here] 

 

2.3 Diagnostics and Spatial Dependence  

The Shapiro-Wilks test (Shapiro and Wilk, 1965; Royston, 1992) was applied to the log-transformed annual maxima series 

at each station for each storm duration from 1-hour to 24-hours. For these 216 time series, the null hypothesis of the 65 

appropriateness of the Log Normal distribution was not rejected for 98% of the sites at the 1% level, 88% at the 5% level, 

and 81% at the 10% level. Though other distributions, such as the GEV, Pearson, Log Pearson Type III (LP3) are popular for 

extreme precipitation modeling, in our application to the spatial field of rainfall, only one of the sites experiences the annual 

maximum event and others may not be extreme values. In such a setting, the Log Normal distribution can often be an 

appropriate representation (Raiford et al. 2007), as seen here. Consequently, to illustrate the idea, we consider a lognormal 70 

distribution with spatial correlation across the sites for the NYC example. Other choices could very well be made.  

A heat map showing the fraction of annual maximums that occur simultaneously is provided in Figure 1. For these plots, we 

define simultaneous storms to be those beginning within +/- n hours of each other (where n is a multiple of the event 

duration) to allow for the movement of a storm event over the area, and to identify distinct, independent rainfall events. We 

see that precipitation extremes, even within a relatively local area, are frequently not simultaneous.  As expected, the 75 

simultaneous fraction of concurrent area increases as the storm duration increases.  However, even for a 24-hour duration 

less than 60 percent of the events are concurrent. This is true even for the four closest stations – JFK, LGA, Central Park and 

Staten Island that are typically used to inform hydrologic design in New York City.  

 [Figure 1 - in here] 

This diagnostic analysis highlights the importance of considering the spatial structure of extreme rainfall for an event with a 80 

specified duration. 

3 Methodology 

A hierarchical Bayesian approach that provides the ability to partially pool model parameters across the rain gauge sites was 

developed. Full pooling would imply that a parameter (e.g., the mean, variance etc. of the distribution) was homogeneous 

across the sites. No pooling would imply that each site is independent. Partial pooling is an intermediate step that allows 85 

information to be shared across sites at a level informed by the data. This results in a multi-level model, where model 

parameters are estimated at each site, but are assumed to be drawn from the parameters of distributions that are specified at 

the regional level for each parameter (Gelman and Hill 2007). Such an approach has been implemented for 
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hydrometeorological extremes in Lima and Lall (2010) and Kwon et al. (2008), and for paleoclimate reconstructions by 

Devineni et al (2013). 90 

3.1 Spatial Fields Hierarchical Model conditioned on the site experiencing an annual maximum 

In this model, we consider a conditional process, where site k has experienced an annual maximum event, and the 

corresponding rainfall amounts, Rdjki at all sites are observed. The logarithm of rainfall is considered to be Normally 

distributed, and a multivariate Normal distribution is specified for each site k, where an annual maximum has occurred. For 

each such condition, we consider partial pooling of the mean rainfall across all sites, and consider the spatial covariance 95 

across sites. We consider that the spatial field of rainfall may actually be different depending on which site experiences an 

annual maximum. The hierarchical model is described as below. 

𝒀𝒌 ~ 𝑀𝑉𝑁(𝝁𝒌,  𝜮𝒌) 

𝜇𝑘𝑗  ~ 𝑁(𝜔𝑘 ,  𝜎𝑘
2) 

Priors 100 

 𝜮𝒌 ~ 𝐼𝑛𝑣 − 𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (Ʌ, 𝒗) 

𝜔𝑘  ~ 𝑁(0,1000)             (2) 

 𝜎𝑘
2 ~ 𝑈(0,100) 

𝒀𝒌 is the log of the rainfall field Rdjki across all sites corresponding to when station k has an annual maximum. For the New 

York City application, it is a matrix of 64 (years) by 9 (stations) for a given duration, and station k. Yk is assumed to follow a 105 

multivariate normal distribution with a vector of station means 𝝁𝒌 and covariance across stations specified by a 9-by-9 

matrix Σk.  At the second level of the model, the station-specific means 𝜇𝑗 are assumed to be Normally distributed with a 

common mean 𝜔𝑘  and variance 𝜎𝑘
2. This is a partial pooling approach with no covariates, as outlined in Gelman and Hill 

(2007). A non-informative conjugate prior, the inverse-Wishart distribution, is assumed for Σk where Ʌ is the scale matrix 

and ν is the degrees of freedom (Gelman et al. 2004). If Σk is a j-by-j matrix, we assume ν equivalent to (j + 1) and Ʌ equal 110 

to the j-by-j identity matrix (I). This is equivalent to a uniform prior on each variance element of the correlation matrix 

(Gelman and Hill 2007).  We give 𝜎𝑘
2 a non-informative uniform prior, and 𝜔𝑘   a non-informative conjugate normal prior, 

for computational convenience (Gelman and Hill 2007; Gelman et al. 2004).  

There are nine stations, and therefore there are nine distinct datasets 𝒀𝒌 and nine distinct models for each storm duration. For 

extreme rainfall events, i.e., those that exceed a nominal design return period, we outline a simulation strategy from these 115 

models that pools simulated fields together that represent regional extreme events. 
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3.2 Spatial Fields Single-Level Model 

We consider a subset of the previous model where the assumption that the mean log-rainfall is drawn from a common spatial 

mean is relaxed. This leads to the simpler, no-pooling model represented below. 

𝒀𝒌 ~ 𝑀𝑉𝑁(𝝁𝒌𝒔, 𝚺𝒌𝒔) 120 

𝜇𝑘𝑗𝑠~ 𝑁(0, 1000)             (3)  

𝚺𝒌𝒔 ~ 𝐼𝑛𝑣 − 𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (Ʌ, 𝒗)  

As in the hierarchical model, 𝒀𝒌 is the log of the SF when station k is at an annual maximum. The vector of precipitation 

means across j stations (including station k) is 𝝁𝒌𝒔, with a subscript s to indicate single-level model. 

3.3 Spatial Fields Simulation for a regional T-year return period 125 

The Spatial Fields model can be used to simulate rainfall fields corresponding to an annual maximum occurring at any one of 

the sites, k.  Next, if we are interested in design rainfall fields represented by the T-year return period across the domain we 

follow a two-step process. First, based on the model that is fit, we identify the T year return period annual maximum rainfall 

even for each site, k. Then from simulations of the multivariate rainfall fields using the model we identify all cases where the 

rainfall at site k exceeds the T-year event for that site, and take the corresponding simulated rainfall field across all sites, j. 130 

The process is outlined below: 

i. Threshold Calculation: For each return period (T) and rainfall duration (D) a precipitation threshold is computed for 

each station using the posterior mean and variance from the station k’s hierarchical Bayesian model. The threshold 

was computed using frequency factors K for the normal distribution (Guo 2006) and the equation below.  

 135 

log(𝑌𝑇,𝑑𝑘) =  𝜇𝑘̃ + 𝐾(𝑇) ∗ 𝛴𝑘𝑘̃   (4) 

 

For example, letting k = 1 for Central Park, we compute the SF model from Y1. We extract 𝜇11, the Central Park 

mean and Σ11, the Central Park variance and use them in equation 4 above.  

ii. Simulate Multivariate field for Yk:  From the hierarchical Bayesian model defined in (2) simulate a large number of 140 

realizations M (e.g., equal to 10,000), of the rainfall fields Yk corresponding to the case when site k has an annual 

maximum. These are based on draws from the posterior distributions of the parameters, and hence incorporate a 

consideration of parameter uncertainty.  

iii. Extract Subset of Simulations that exceed the T-Year event at site k:  Retain a subfield Zk from Yk, such that Ydkkm> 

YT,dk, and m = 1…M,  is the index of the simulation.  145 
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iv. Pool the T-year return period fields: The Zk are subsamples of rainfall fields from each of the nine models, such 

that an equal number of draws from each of the k fields is selected. For T=100 years, on average 100 such samples 

will be generated for M=10000, from each station, and 900 total fields are then available for our application to the 

New York City data for design or reliability analyses. Note that since there may be multiple sites with annual 

maxima per event i in the original Rdjki data, and that these are contained in each random field indexed by k, and we 150 

modeled this spatial field, the concurrence of high rainfall at those sites will also be reproduced in the simulations. 

Similarly, the incidence of high rainfall at multiple stations will also be correctly reproduced across the pooled data 

across the K simulations.  

3.4 Model Fitting and Convergence  

Fifty-four models (one for each duration and each site) were fit using WinBUGS, using a software extension to R (Lunn et 155 

al. 2000; Spiegelhalter et al. 1996). It uses a Markov chain Monte Carlo (MCMC) simulation algorithm (a Gibbs Sampler for 

the current example), to simulate the posterior probability distribution of parameters. A random normal distribution was used 

for vector of station means (𝝁, 𝝁𝒌, 𝝁𝒌𝒔) and a random Wishart distribution was used for the precision. In WinBUGS, the 

normal distribution is parameterized in terms of precision instead of covariance (𝜮,  𝜮𝒌, 𝚺𝒌𝒔) as is noted by convention in the 

model formulas above. We simulated four chains, ran the model for 20,000 iterations and the first half of the simulations 160 

were discarded as burn-in. 

4 Results and Analysis 

4.1 Bayesian Model Checking  

For each model, the convergence of the posterior distribution of each parameter was checked using the shrink factor 

proposed by Gelman and Rubin (1992) - values under 1.1 for all parameters suggest that the model has converged. For each 165 

run 20,000 MCMC iterations, using four chains, were specified. Convergence plots (showing the mixing of the four chains) 

were visually checked for all cases. All models converged appropriately with each parameter attaining a shrink factor 

between 1.0 and 1.1, and the large majority reaching 1.0.  

We compare the performance of the two SF models using the Deviance Information Criterion (DIC) and pD, recommended 

in Gelman et al. (2004).  The scores were virtually identical for the two types of SF models for each rainfall duration. Next, 170 

we considered whether the common mean in the hierarchical model converged as successfully as other parameters; it did. 

Gelman and Hill (2007) suggest that when there are only a small number of groups and the group-level standard deviation is 

large, multi-level modeling may not add much information. The resulting model will not necessarily perform worse and will 
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likely resemble the model without pooling (as it does here). The posterior parameters for the resulting simulations are 

essentially identical (Figure 2a) and the posterior for the mean only very slightly shrunk (Figure 2b). 175 

[Figure 2 - in here] 

Next, we consider how the return period thresholds identified in the models compare to observed events. We do so by 

plotting the posterior density of the return period event estimated from a sample of 500 simulations and comparing it with 

the empirical return period event. Though the Bayesian models can easily simulate any return period (the highest presented 

here is 500 years), the reliability of the empirical estimate is dependent on the length of record so it is only reliable as a 180 

goodness of fit measure for shorter return periods. The empirical return period for the ten-year event is estimated as the 

accumulated precipitation measurement nearest to the 90th percentile value. Three stations – Central Park, Essex Fells, and 

Staten Island – exemplify a range of results (Figure 3). 

[Figure 3 - in here] 

The empirical quantiles for Central Park fall towards the mean of the simulations, the Essex Fells empirical estimate lies 185 

significantly to the left; and the Staten Island empirical estimate lies to the left even of the 5% to 95% range (in blue). Plots 

of the remaining stations for 12-hour storm and ten-year return period are provided in Figure A1 of the appendix. The plots 

for all nine stations at the 1-hr and 24-hr durations and ten-year return period are provided in Figure A2 and Figure A3 

respectively, of the appendix. Differences across stations and across storm durations are not always consistent though some 

patterns emerge. For four stations – Central Park, New Brunswick, LGA, and New Milford – empirical quantiles fall within 190 

the 5% to 95% range across storm durations and are even sometimes close to the mean of the simulations (see Figures A1, 

A2, and A3 in the appendix for individual plots).  

The empirical quantiles for Staten Island are consistently underestimated.  For the 10-yr return period, the empirical estimate 

falls below the 5% mark of the simulations for the 1-hr, 12-hr, and 24-hr storms. It’s difficult to identify exactly why this 

might be the case without significant additional exploratory analysis of the Staten Island data.  However, reducing the return 195 

period to five-years does improve the results with the empirical estimate falling within the 5% to 95% range for the 12-hr 

and 24-hr storms, but still outside for the 1-hour storm (Figure 4).   

[Figure 4 - in here] 

This suggests that the distortion in the return period estimate due to the shorter duration of the record is at least partially 

responsible for the relatively poor fit of the model. It is important to remember that the simulations reflect additional 200 

information provided by correlating across stations in the model and that an empirical estimate from a short time period, 

while one of the only data comparisons we have available to us, has an element of bias and uncertainty as well. 
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5 Summary and Conclusions 

For larger cities, a consideration of the drainage network, and the spatial dependence in rainfall at different durations is 

important to consider, at least from the perspective of assessing the performance and resilience of the network, and perhaps 205 

also for design considerations. We were interested in formulating and testing a simple model that could directly explore 

whether or not, and to what extent there was opportunity to pool regional information on extreme rainfall events to describe 

plausible spatial fields of extreme rainfall. This led to postulating and testing a Bayesian model that considers the spatial 

field of rainfall associated with an annual maximum occurrence at any site. We considered the application of model to 

relatively long rainfall time series from the New York City region. Initial exploratory analyses suggested that the rainfall 210 

characteristics and storm tracks varied by event and by season across the region, such that distinct clusters could be 

identified, suggesting that the region had a heterogeneous spatial structure with respect to extreme rainfall (Hamidi et al. 

2017). Our applications further clarified the nature of this heterogeneity. It is interesting to also note from the New York City 

analysis that there is support for pooling the spatial covariance of rainfall across all sites (irrespective of which one 

experienced an annual maximum rain event for a given duration), even though often the exceedance probability distributions 215 

of rainfall for a given duration may differ across sites, even after partial pooling. The hierarchical Bayesian framework 

permits a consideration of the uncertainty in parameter and model structure and helps us identify the level of homogeneity 

that may be appropriate for representing the processes underlying a particular data set. 

Rain gauges are the preferred data source for extreme event modeling because of their long-record, but incorporating radar in 

addition to rain gauges could provide the spatial density needed to explore how event rainfall characteristics relate to specific 220 

meteorological phenomena or to provide comparable simulations to existing stochastic models. The radar information would 

contain considerably more spatial detail necessary for building the type of model exemplified here. However, radar rainfall 

records are much shorter, and consequently, one needs to develop a methodology to appropriately blend the shorter but 

spatially richer radar data with the longer but spatially sparse gage data. Our algorithm can be readily applied to a mix of 

radar and rain gauge data. However, some extensions need to be pursued to address the very different record lengths of each 225 

data source.  

We used a Log Normal distribution applied to rainfall for each duration, to illustrate our approach. The goodness of fit tests 

supports this assumption, and this permits some confidence in the kind of conclusions we drew from the applications to the 

New York City data. However, other models such as the GEV or Generalized Pareto or other choices for the distribution 

could very well be considered. The point here was to highlight the need to consider spatial covariance and an appropriate 230 

blending of local and regional data sources through partial pooling. 
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Appendix 

Auxiliary Figures 

This appendix includes Figure A1, Figure A2, and Figure A3 which are the plots of the probability distributions of the 1-hr, 235 

12-hr and 24-hr ten-year return period events from the SF models for the nine stations in and around New York City. 

Code Availability 

The code for conducting the analysis presented in this paper can be made available upon request. 

Data Availability 

Rainfall data for the analysis of the nine sites in and around New York City can be obtained from the public source provided 240 

in the references, National Climate Data Center, https://www.ncdc.noaa.gov/data-access/quick-links. The authors can be 

contacted for any details on the methodology. 
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Table 1: Rain gauge stations in New York City and surroundings 

Abb. Location Latitude Longitude 
Elevation 

(ft) 
Start End 

CP 

New York Central Park 

Observation Belvedere 

Tower, NY 

40.66889 -73.9602 39.6 5/1/1948 7/29/2012 

EF 
Essex Fells Service 

Building, NJ 
40.8314 -74.2858 106.7 7/4/1949 8/1/2012 

JFK 

New York JF Kennedy 

International Airport, 

NY 

40.63861 -73.7622 3.4 1/1/1949 7/29/2012 

LGA 
New York LaGuardia 

Airport 
40.77944 -73.8803 3.4 5/1/1948 7/29/2012 

NW 
Newark International 

Airport, NJ 
40.6825 -74.1694 2.1 5/1/1948 7/29/2012 

NB 
New Brunswick 3 SE, 

NJ 
40.4719 -74.4365 26.2 6/1/1968 2/1/2006 

NM New Milford, NJ 40.961 -74.015 3.7 5/31/1946 6/30/1980 

SI 
New York Westerleigh, 

NY (Staten Island) 
40.63333 -74.1167 24.4 5/1/1948 9/1/1992 

WT Watchung, NJ 40.66222 -74.4164 79.2 6/1/1948 8/1/2012 

 

 295 
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 300 

Figure 1:  Percent of simultaneous or near-simultaneous annual maxima events shown for the site-by-site comparison for nine sites 

and 1-hr, 6-hr, 12-hr, and 24-hr storms. 
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 310 

 

 

Figure 2: Density plot of 

posterior distribution of (a) 

simulations and (b) mean 315 
parameters for Central Park 

12-hour hierarchical and 

non-hierarchical SF model. 

Posterior means and 

simulations are shown on an 320 
untransformed scale (i.e., the 

mean is log mean). 
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 345 

 

Figure 3: Density plots of the 12-hr ten-year return period 

event from SF models for Central Park (top), Essex Fells 

(center), and Staten Island (bottom). The empirical 10-year 

event is the dotted line and the 5% - 95% range of 350 

simulations is shaded in blue. 
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Figure 4: Density plots of 5-year return period events for 

24-hour (top), 12-hour (middle) and 1-hour (bottom) 380 

storms from Staten Island SF model simulations. The 

empirical 5-year event is shown as a dotted line and the 5% 

- 95% range of the simulations is shaded in blue. 
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 440 

 

 

 

Figure A1. Density plots of the 12-hr ten-year return period event from SF models for the other six stations (JFK, LGA, New 

Brunswick - top to bottom, left panel; Newark, New Milford, Watchung - top to bottom, right panel). The empirical 10-year event 445 

is the dotted line, and the 5% - 95% range of simulations is shaded in blue. 
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 450 

 

Figure A2. Density plots of the 1-hr ten-year return period event from SF models for the nine stations (Central Park, Essex Fells, 

Staten Island – top to bottom left panel; JFK, LGA, New Brunswick - top to bottom, middle panel; Newark, New Milford, 

Watchung - top to bottom, right panel). The empirical 10-year event is the dotted line, and the 5% - 95% range of simulations is 

shaded in blue. 455 
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Figure A3. Density plots of the 24-hr ten-year return period event from SF models for the nine stations (Central Park, Essex Fells, 

Staten Island – top to bottom left panel; JFK, LGA, New Brunswick - top to bottom, middle panel; Newark, New Milford, 

Watchung - top to bottom, right panel). The empirical 10-year event is the dotted line, and the 5% - 95% range of simulations is 470 

shaded in blue. 
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