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Abstract. We introduce a hierarchical Bayesian model for the spatial distribution of rainfall corresponding to an extreme 

event of a specified duration that could be used with regional hydrologic models to perform a regional hydrologic risk 

analysis.  An extreme event is defined if any gaging site in the watershed experiences an annual maximum rainfall event, and 10 

the spatial field of rainfall at all sites corresponding to that occurrence is modeled. Applications to data from New York City 

demonstrate the effectiveness of the model for providing spatial scenarios that could be used for simulating loadings into the 

urban drainage system. Insights as to the homogeneity in spatial rainfall and its implications for modeling are provided by 

considering partial pooling in the Hierarchical Bayesian framework. 

1 Introduction 15 

For an existing urban drainage network, a proper consideration of the spatial structure of extreme rainfall events is important 

for an assessment of the effectiveness of the network for handling urban flooding subsequent to rainfall events of varying 

duration, especially as concerns emerge as to the resilience of the system under a changing climate. Often, investigators 

focus on return period analysis of extreme rainfall at a site considering annual maxima or peaks over threshold for a specific 

rainfall duration. In a regional context, spatial models of annual maximum rainfall are sometimes considered (Renard et al., 20 

2006; Renard and Lang, 2007; Dyrrdal et al., 2015). However, since the annual maximum is unlikely to occur for a given 

event at all sites, these models do not represent the actual structure of potential extreme rainfall events. Thus, existing 

models for spatial rainfall extremes cannot be used to provide forcing for the performance of an existing drainage network 

(natural or constructed) under an extreme rainfall event. We address this situation in this note by considering that the rainfall 

events of interest for a specified duration are ones where any one of the sites in the region experiences an annual maximum 25 

event, and the spatial field or rainfall of interest is then the field associated with each such event.  

In the exploratory analyses performed for New York City we noted that the structure of storms that lead to annual maximum 

events at different gages in the region may not be the same and that the basic statistics of rainfall vary across sites. We 

assemble a dataset of the annual maximum rainfall for each specified duration at each station. Let’s denote this as Adjt, for 
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duration d, site j and year t.  These events may not occur on the same day of each year across the stations. Second, we 30 

consider the rainfall field at all stations associated with the annual maximum at any one station and call this the “spatial 

field” (SF), Rdjki, where i is identified as an event such that Rdkki = Adkt for site k = j for year t.  Rdjki then has the rainfall at all 

sites j, for the event where site k has an annual maximum. As a result, the total number of events, i, may be much larger than 

the total number of years of data, N.  A spatial event field of rainfall is thus conditional on the occurrence of an annual 

maximum rainfall for any station. Of interest is f(Rdjki|Adkt)f(Adkt), where f(.|.) and f(.) refer to a conditional and marginal 35 

probability distribution, respectively. For example, in 1979, the annual maximum 12-hour rainfall for Central Park rainfall 

gage is 3.29 inches. At this time of the day, eight other rainfall stations around New York City had 12-hour rainfall 

accumulations of 1.70 inches (Essex Fells), 2 inches (JF Kennedy International Airport), 2.73 inches (LaGuardia Airport), 

0.79 inches (Newark International Airport), 1.68 inches (New Brunswick), 0.67 inches (New Milford), 0.98 inches (Staten 

Island), and 0.87 inches (Watchung), respectively. However, not all of those other accumulations are annual maximum 40 

events in their respective sites. Hence, A12-CP-1979 = 3.29 inches, and R12-j-CP-i = [3.29, 1.70, 2.00, 2.73, 0.79, 1.68, 0.67, 0.98, 

0.87]. This is similar to the issue noted by Asquith and Famigletti (2000). See Table A.1 in the appendix for a full example 

of the spatial rainfall fields in 1979. The hierarchical Bayesian models developed consider the spatial field SF with the goal 

of providing an approach for stochastically generating representative spatial fields of rainfall for a specified duration, such 

that at least one site in the region experiences an annual maximum event. This is fundamentally different from the traditional 45 

rainfall frequency analysis which models annual maximum data at each site independently or using a covariance structure 

from the annual maximum data at all sites. In this paper, we formulated and tested a simple model that could directly explore 

whether or not, and to what extent there was opportunity to pool regional information on extreme rainfall events to describe 

plausible spatial fields of extreme rainfall.  

In Section 2, we present the data and the context for the application to the Greater New York area. In Section 3, we describe 50 

the details of the multivariate hierarchical Bayesian models. The results are discussed in Section 4. Finally, in Section 5, we 

present a summary and conclusions.  

 

2 Data Description  

2.1 Greater New York Area Context 55 

The Greater New York City area has high density of man-made infrastructure and hence a complex hydrological landscape. 

Like many older cities, sanitary and industrial wastewater, and rainwater and street runoff are collected in the same sewers 

and conveyed together to treatment plants. Approximately 60 percent of NYC’s drainage area is served by these combined 

sewers.  Flooding and combined sewer overflows (CSOs) are a concern, and innovative solutions for using the sewer system 

itself as flood storage by pumping water to different areas during a storm has been suggested. Such hydrologic system 60 

upgrades need to be informed by the spatial variability of extreme precipitation.  
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There are very few rain gage records that are longer than twenty or thirty years. Persistent data quality issues further reduce 

the available data. This challenge of reconciling sparse data with spatially variable hydrological networks and meteorological 

phenomena is common to many urban areas. Widely accepted design standards are derived from a set of intensity-duration-

frequency curve developed using a daily rainfall record from 1903 to 1951 (NYCDEP 2008). An analysis of precipitation 65 

extremes for the region is offered in Wilks and Cember (1993), using daily rainfall data, and McKay and Wilks (1995), using 

hourly rainfall data. None of these analyses consider the spatial correlation of rainfall. 

2.2 Precipitation Data 

The precipitation data was obtained from the National Climatic Data Center (NCDC 2013). Rain gages were selected based 

on the proximity to New York City, data quality, and length of the historical record. Twenty-nine stations were initially 70 

identified as lying within a 100-mile radius of Central Park with over 25 years of continuous hourly rainfall records. Sixteen 

stations were excluded since the resulting data quality was too poor. The final dataset consists of the remaining nine stations 

(Table 1); abbreviations for each station used in the figures throughout are provided in the first column. 

[Table 1 - in here] 

 75 

2.3 Diagnostics and Spatial Concordance  

The Shapiro-Wilks test (Shapiro and Wilk, 1965; Royston, 1992) was applied to the log-transformed annual maxima series 

at each station for each storm duration from 1-hour to 24-hours. For these 216 time series, the null hypothesis of the 

appropriateness of the Log Normal distribution was not rejected for 98% of the sites at the 1% level, 88% at the 5% level, 

and 81% at the 10% level. Though other distributions, such as the Generalized Extreme Value (GEV), Pearson, Log Pearson 80 

Type III (LP3) are popular for extreme precipitation modeling, in our application to the spatial field of rainfall, only one of 

the sites experiences the annual maximum event and others may not be extreme values. In such a setting, the Log Normal 

distribution can often be an appropriate representation (Raiford et al. 2007), as seen here. Consequently, to illustrate the idea, 

we consider a lognormal distribution with spatial correlation across the sites for the NYC example. Other choices could very 

well be made.  85 

A heat map showing the fraction of annual maximums that occur simultaneously is provided in Figure 1. For these plots, we 

define simultaneous storms to be those beginning within +/- n hours of each other (where n is a multiple of the event 

duration) to allow for the movement of a storm event over the area, and to identify distinct, independent rainfall events. We 

see that precipitation extremes, even within a relatively local area, are frequently not simultaneous.  As expected, the 

simultaneous fraction of concurrent area increases as the storm duration increases.  However, even for a 24-hour duration 90 

less than 60 percent of the events are concurrent. This is true even for the four closest stations – JFK, LGA, Central Park and 

Staten Island that are typically used to inform hydrologic design in New York City.  
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 [Figure 1 - in here] 

This diagnostic analysis highlights the importance of considering the spatial structure of extreme rainfall for an event with a 

specified duration. 95 

3 Methodology 

A hierarchical Bayesian approach that provides the ability to partially pool model parameters across the rain gage sites was 

developed. Full pooling would imply that a parameter (e.g., the mean, variance etc. of the distribution) was homogeneous 

across the sites. No pooling would imply that each site is independent. Partial pooling is an intermediate step that allows 

information to be shared across sites at a level informed by the data. This results in a multi-level model, where model 100 

parameters are estimated at each site, but are assumed to be drawn from the parameters of distributions that are specified at 

the regional level for each parameter (Gelman and Hill 2007). Such an approach has been implemented for 

hydrometeorological extremes in Lima and Lall (2010) and Kwon et al. (2008), and for paleoclimate reconstructions by 

Devineni et al (2013). 

3.1 Spatial Fields Hierarchical Model conditioned on the site experiencing an annual maximum 105 

In this model, we consider a conditional process, where site k has experienced an annual maximum event, and the 

corresponding rainfall amounts, Rdjki at all sites are observed. The logarithm of rainfall is considered to be Normally 

distributed, and a multivariate Normal distribution is specified for each site k, where an annual maximum has occurred. For 

each such condition, we consider partial pooling of the mean rainfall across all sites, and consider the spatial covariance 

across sites. We consider that the spatial field of rainfall may actually be different depending on which site experiences an 110 

annual maximum. The hierarchical model is described as below. 

𝒀𝒌 ~ 𝑀𝑉𝑁(𝝁𝒌,  𝜮𝒌) 

𝜇𝑘𝑗  ~ 𝑁(𝜔𝑘 ,  𝜎𝑘
2) 

Priors 

 𝜮𝒌 ~ 𝐼𝑛𝑣 − 𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (Ʌ, 𝒗) 115 

𝜔𝑘  ~ 𝑁(0,1000)             (1) 

 𝜎𝑘
2 ~ 𝑈(0,100) 

𝒀𝒌 is the log of the rainfall field Rdjki across all sites corresponding to when station k has an annual maximum. For the New 

York City application, it is a matrix of 64 (years) by 9 (stations) for a given duration, and station k. Yk is assumed to follow a 

multivariate normal distribution with a vector of station means 𝝁𝒌 and covariance across stations specified by a 9-by-9 120 
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matrix Σk.  At the second level of the model, the station-specific means 𝜇𝑗 are assumed to be Normally distributed with a 

common mean 𝜔𝑘  and variance 𝜎𝑘
2. This is a partial pooling approach with no covariates, as outlined in Gelman and Hill 

(2007). A non-informative conjugate prior, the inverse-Wishart distribution, is assumed for Σk where Ʌ is the scale matrix 

and ν is the degrees of freedom (Gelman et al. 2004). If Σk is a j-by-j matrix, we assume ν equivalent to (j + 1) and Ʌ equal 

to the j-by-j identity matrix (I). This is equivalent to a uniform prior on each variance element of the correlation matrix 125 

(Gelman and Hill 2007).  We give 𝜎𝑘
2 a non-informative uniform prior, and 𝜔𝑘   a non-informative conjugate normal prior, 

for computational convenience (Gelman and Hill 2007; Gelman et al. 2004).  

There are nine stations, and therefore there are nine distinct datasets 𝒀𝒌 and nine distinct models for each storm duration. For 

extreme rainfall events, i.e., those that exceed a nominal design return period, we outline a simulation strategy from these 

models that pools simulated fields together that represent regional extreme events. 130 

3.2 Spatial Fields Single-Level Model 

We consider a subset of the previous model where the assumption that the mean log-rainfall is drawn from a common spatial 

mean is relaxed. This leads to the simpler, no-pooling model represented below. 

𝒀𝒌 ~ 𝑀𝑉𝑁(𝝁𝒌𝒔, 𝚺𝒌𝒔) 

𝜇𝑘𝑗𝑠~ 𝑁(0, 1000)             (2)  135 

𝚺𝒌𝒔 ~ 𝐼𝑛𝑣 − 𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (Ʌ, 𝒗)  

As in the hierarchical model, 𝒀𝒌 is the log of the SF when station k is at an annual maximum. The vector of precipitation 

means across j stations (including station k) is 𝝁𝒌𝒔, with a subscript s to indicate single-level model. 

3.3 Spatial Fields Simulation for a regional T-year return period 

The Spatial Fields model can be used to simulate rainfall fields corresponding to an annual maximum occurring at any one of 140 

the sites, k.  Next, if we are interested in design rainfall fields represented by the T-year return period across the domain we 

follow a two-step process. First, based on the model that is fit, we identify the T year return period annual maximum rainfall 

event for each site, k. Then from simulations of the multivariate rainfall fields using the model we identify all cases where 

the rainfall at site k exceeds the T-year event for that site, and take the corresponding simulated rainfall field across all sites, 

j. The process is outlined below: 145 

i. Threshold Calculation: For each return period (T) and rainfall duration (D) a precipitation threshold is computed for 

each station using the posterior mean and variance from the station k’s hierarchical Bayesian model. The threshold 

was computed using frequency factors K for the normal distribution (Guo 2006) and the equation below.  
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log(𝑌𝑇,𝑑𝑘) =  𝜇�̃� + 𝐾(𝑇) ∗ 𝛴𝑘�̃�   (3) 150 

 

For example, letting k = 1 for Central Park, we compute the SF model from Y1. We extract 𝜇11, the Central Park 

mean and Σ11, the Central Park variance and use them in equation 3 above.  

ii. Simulate Multivariate field for Yk:  From the hierarchical Bayesian model defined in (1) simulate a large number of 

realizations M (e.g., equal to 10,000), of the rainfall fields Yk corresponding to the case when site k has an annual 155 

maximum. These are based on draws from the posterior distributions of the parameters, and hence incorporate a 

consideration of parameter uncertainty.  

iii. Extract Subset of Simulations that exceed the T-Year event at site k:  Retain a subfield Zk from Yk, such that Ydkkm> 

YT,dk, and m = 1…M,  is the index of the simulation.  

iv. Pool the T-year return period fields: The Zk are subsamples of rainfall fields from each of the nine models, such 160 

that an equal number of draws from each of the k fields is selected. For T=100 years, on average 100 such samples 

will be generated for M=10000, from each station, and 900 total fields are then available for our application to the 

New York City data for design or reliability analyses. For our illustrations here, we sampled the same number of 

fields that are obtained from applying steps (i) to (iv) on the observed rainfall fields data. In essence, the spatial 

fields corresponding to a T-year return period event are first derived from observed rainfall fields data; these T-year 165 

return period spatial rainfall fields then form the baseline to which the simulated T-year return period spatial rainfall 

fields derived from the posterior runs of the hierarchical model are compared to. Note that since there may be 

multiple sites with annual maxima per event i in the original Rdjki data, and that these are contained in each random 

field indexed by k, and we modeled this spatial field, the concurrence of high rainfall at those sites will also be 

reproduced in the simulations. Similarly, the incidence of high rainfall at multiple stations will also be correctly 170 

reproduced across the pooled data across the K simulations.  

3.4 Model Fitting and Convergence  

Two hundred and sixteen models (one for each duration and each site) were fit using JAGS (Just Another Gibbs Sampler) 

(Plummer et al., 2003; Denwood et al., 2016). It uses a Markov chain Monte Carlo (MCMC) simulation algorithm (a Gibbs 

Sampler for the current example), to simulate the posterior probability distribution of parameters. A random normal 175 

distribution was used for vector of station means (𝝁, 𝝁𝒌, 𝝁𝒌𝒔) and a random Wishart distribution was used for the precision. 

Similarly, a non-informative conjugate normal prior for 𝜔𝑘  and a non-informative uniform prior for 𝜎𝑘
2  are assumed. In 

JAGS, the normal distribution is parameterized in terms of precision instead of covariance (𝜮,  𝜮𝒌 , 𝚺𝒌𝒔) as is noted by 

convention in the model formulas above. We simulated four chains, ran the model for 20,000 iterations and the first half of 

the simulations were discarded as burn-in. 180 
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4 Results and Analysis 

4.1 Bayesian Model Checking  

For each model, the convergence of the posterior distribution of each parameter was checked using the shrink factor 

proposed by Gelman and Rubin (1992) - values under 1.1 for all parameters suggest that the model has converged. 

Convergence plots (showing the mixing of the four chains) were visually checked for all cases. All models converged 185 

appropriately with each parameter attaining a shrink factor between 1.0 and 1.1, and the large majority reaching 1.0.  

We compare the performance of the two SF models using the Deviance Information Criterion (DIC) and pD, recommended 

in Gelman et al. (2004).  The scores were virtually identical for the two types of SF models for each rainfall duration. Next, 

we considered whether the common mean in the hierarchical model converged as successfully as other parameters; it did. 

Gelman and Hill (2007) suggest that when there are only a small number of groups and the group-level standard deviation is 190 

large, multi-level modeling may not add much information. The resulting model will not necessarily perform worse and will 

likely resemble the model without pooling (as it does here). The posterior parameters for the resulting simulations are 

essentially identical (Figure 2a) and the posterior for the mean only very slightly shrunk (Figure 2b). 

[Figure 2 - in here] 

Next, we consider how the return period spatial rainfall fields identified in the SF hierarchical models compare to observed 195 

return period spatial fields. We do so by plotting the empirical cumulative distribution function of the return period event 

field estimated from the hierarchical model and comparing it with the empirical cumulative distribution function of the 

return period event field derived from the observed data. The 99% credible interval obtained from the posterior simulations 

of the hierarchical models is also presented to represent the uncertainty. Though the Bayesian models can easily simulate any 

return period, the reliability of the empirical estimate is dependent on the length of record so it is only reliable as a goodness 200 

of fit measure for shorter return periods. Results from all nine stations for the 10-year 12 hour accumulated rainfall are 

presented in Figure 3. The plots for all nine stations at the 1-hr and 24-hr durations and ten-year return period are provided in 

Figure A1 and Figure A2 respectively, of the appendix.  

[Figure 3 - in here] 

The observed 10-year 12 hour return period fields for all stations are within the 99% credible interval of the simulations, for 205 

the most part. The SF model simulated tails that are much greater in magnitude than the observed, as expected. The 

uncertainty band is also wider at the tail end of the distribution. New Milford is an exception with slight underprediction of 

the left tail. These differences are amplified at the left tail for higher durations (i.e., the 24 hour storms). The shorter 

durations (1 hour storms) seem to be modeled well, albeit with wider credible intervals.  
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Figure 4 presents a slightly different view of the results with a focus on how well various durations for a shorter return 210 

period event (5-year events) are simulated for a specific station – Staten Island. While 1-hour 5-year return period storm 

fields are well simulated, there seems to be a bias (with the observed field’s left tail falling outside the 99% credible interval 

of the simulated) with increasing durations.  It’s difficult to identify exactly why this might be the case without significant 

additional exploratory analysis of the Staten Island data. However, we note that the simulations reflect additional information 

provided by the other stations in the model. In this application the Staten Island site record is twenty years shorter than the 215 

record at the other sites, and the shift in the simulations reflects the shift in the rainfall in the other sites over this period. 

Thus, the pooling strategy is instrumental in using the joint distribution across sites from the common period of record to 

provide simulations that cover the shift in the period. Of course, if the correlation across sites has also changed over the 

period of missing data, the algorithm is incapable of replicating such a change.    

[Figure 4 - in here] 220 

5 Summary and Conclusions 

For larger cities, a consideration of the drainage network, and the spatial dependence in rainfall at different durations is 

important to consider, at least from the perspective of assessing the performance and resilience of the network, and perhaps 

also for design considerations. We were interested in formulating and testing a simple model that could directly explore 

whether or not, and to what extent there was opportunity to pool regional information on extreme rainfall events to describe 225 

plausible spatial fields of extreme rainfall. This led to postulating and testing a Bayesian model that considers the spatial 

field of rainfall associated with an annual maximum occurrence at any site. We considered the application of model to 

relatively long rainfall time series from the New York City region. Initial exploratory analyses suggested that the rainfall 

characteristics and storm tracks varied by event and by season across the region, such that distinct clusters could be 

identified, suggesting that the region had a heterogeneous spatial structure with respect to extreme rainfall (Hamidi et al. 230 

2017). Our applications further clarified the nature of this heterogeneity. It is interesting to also note from the New York City 

analysis that there is support for pooling the spatial covariance of rainfall across all sites (irrespective of which one 

experienced an annual maximum rain event for a given duration), even though often the exceedance probability distributions 

of rainfall for a given duration may differ across sites, even after partial pooling. The hierarchical Bayesian framework 

permits a consideration of the uncertainty in parameter and model structure and helps us identify the level of homogeneity 235 

that may be appropriate for representing the processes underlying a particular data set. 

Rain gages are the preferred data source for extreme event modeling because of their long-record, but incorporating radar in 

addition to rain gages could provide the spatial density needed to explore how event rainfall characteristics relate to specific 

meteorological phenomena or to provide comparable simulations to existing stochastic models. The radar information would 



9 

 

 

contain considerably more spatial detail necessary for building the type of model exemplified here. However, radar rainfall 240 

records are much shorter, and consequently, one needs to develop a methodology to appropriately blend the shorter but 

spatially richer radar data with the longer but spatially sparse gage data. Our algorithm can be readily applied to a mix of 

radar and rain gage data. However, some extensions need to be pursued to address the very different record lengths of each 

data source.  

We used a Log Normal distribution applied to rainfall for each duration, to illustrate our approach. The goodness of fit tests 245 

supports this assumption, and this permits some confidence in the kind of conclusions we drew from the applications to the 

New York City data. However, other models such as the GEV or Generalized Pareto or other choices for the distribution 

could very well be considered. The point here was to highlight the need to consider spatial covariance and an appropriate 

blending of local and regional data sources through partial pooling. 

Appendix 250 

Auxiliary Figures 

This appendix includes Table A1, Figure A1, and Figure A2. Table A1 provides an example derivation of extreme rainfall 

fields. Figure A1 and A2 provide the results and baseline comparisons of the 1-hour and 24-hour ten year return period 

events from the SF models for the nine stations in and around New York City. 

Code Availability 255 

The code for conducting the analysis presented in this paper can be made available upon request. 

Data Availability 

Rainfall data for the analysis of the nine sites in and around New York City can be obtained from the public source provided 

in the references, National Climate Data Center, https://www.ncdc.noaa.gov/data-access/quick-links. The authors can be 

contacted for any details on the methodology. 260 
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Table 1: Rain gage stations in New York City and surroundings 

Abb. Location Latitude Longitude 
Elevation 

(ft) 
Start End 

CP 

New York Central Park 

Observation Belvedere 

Tower, NY 

40.66889 -73.9602 39.6 5/1/1948 7/29/2012 

EF 
Essex Fells Service 

Building, NJ 
40.8314 -74.2858 106.7 7/4/1949 8/1/2012 

JFK 

New York JF Kennedy 

International Airport, 

NY 

40.63861 -73.7622 3.4 1/1/1949 7/29/2012 

LGA 
New York LaGuardia 

Airport 
40.77944 -73.8803 3.4 5/1/1948 7/29/2012 

NB 
New Brunswick 3 SE, 

NJ 
40.4719 -74.4365 26.2 6/1/1968 2/1/2006 

NW 
Newark International 

Airport, NJ 
40.6825 -74.1694 2.1 5/1/1948 7/29/2012 

NM New Milford, NJ 40.961 -74.015 3.7 5/31/1946 6/30/1980 

SI 
New York Westerleigh, 

NY (Staten Island) 
40.63333 -74.1167 24.4 5/1/1948 9/1/1992 

WT Watchung, NJ 40.66222 -74.4164 79.2 6/1/1948 8/1/2012 
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Figure 1:  Percent of simultaneous or near-simultaneous annual maxima events shown for the site-by-site comparison for nine sites 

and 1-hr, 6-hr, 12-hr, and 24-hr storms. 
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 340 

Figure 2: Empirical cumulative distribution function of the 

posterior distribution of (a) simulations and (b) mean 

parameters for Central Park 12-hour hierarchical and non-

hierarchical SF model. Posterior means and simulations are 

shown on an untransformed scale (i.e., the mean is log 345 
mean). The Empirical cumulative distribution function 

derived from the observed data is also shown in 2(a) along 

with the band that depicts the 99% credible interval of the 

posterior simulations. 
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 375 

Figure 3: Empirical cumulative distribution function of the 12-hr ten-year return period event from SF hierarchical models for the 

nine stations (Central Park, LGA, New Milford – top to bottom left panel; Essex Fells, New Brunswick, Staten Island - top to 

bottom, middle panel; JFK, Newark, Watchung - top to bottom, right panel). The Empirical cumulative distribution function 

derived from the observed 12-hr ten-year return period field is also shown. The band depicts the 99% credible interval of the 

posterior simulations. 380 
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Figure 4: Empirical cumulative distribution function of 5-year return period events for 1-hour (top left), 6-hour (top right), 12-385 

hour (bottom left), and 24-hour (bottom right) storms from Staten Island SF hierarchical model simulations. The empirical 

cumulative distribution function of the observed 5-year return period event fields at the respective durations are also shown. The 

band depicts the 99% credible interval of the posterior simulations. 

 



17 

 

 

Table A.1: Illustration of spatial rainfall fields for an example year, 1979 for 12-hour accumulated rainfall. Anchor 390 

station column is the condition where annual maximum rainfall is identified (Adkt). The corresponding row presents 

the rainfall for other stations when the anchor station is experiencing an annual maximum event (Rdjki|Adkt). For 

instance, the third row shows the spatial rainfall field when JF Kennedy International Airport has an annual 

maximum event in 1979 (2.03 inches of 12-hour rainfall is shown in bold font to indicate the annual maximum rainfall 

at the conditioning station). The 12-hour rainfall recorded at the other stations simultaneously are presented across, 395 

in the row. Notice that none of those other stations’ recorded rainfall is the at-site annual maximum event.  

 Other Stations that form the Spatial Field (Rdjki) 

CP  EF JFK LGA NW NB NM SI WT 

Anchor 

Stations 

(Adkt) 

CP 3.29  1.70  2.00  2.73  0.79  1.68  0.67  0.98  0.87 

EF 0.56  2.56 NA 0.13 0.49 0.46 1.02 0.31 0.48 

JFK 3.25 1.70 2.03 2.71 0.79 1.68 0.65 0.89 0.88 

LGA 3.29 1.70 2.00 2.73 0.79 1.68 0.67 0.98 0.87 

NW 1.44 1.22 1.48 1.23 2.01 1.92 1.30 2.20 1.73 

NB 1.27 0.94 0.57 1.04 0.22 2.61 0.40 0.86 1.81 

NM 2.29 1.03 1.52 1.77 0.44 1.99 2.41 1.76 0.77 

SI 0.65 2.08 0.58 0.32 NA 1.46 0.23 3.66 1.62 

WT 1.84 1.32 1.64 1.56 1.72 2.07 1.62 2.03 1.92 
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 400 

 

Figure A1: Empirical cumulative distribution function of the 1-hr ten-year return period event from SF hierarchical models for 

the nine stations (Central Park, LGA, New Milford – top to bottom left panel; Essex Fells, New Brunswick, Staten Island - top to 

bottom, middle panel; JFK, Newark, Watchung - top to bottom, right panel). The Empirical cumulative distribution function 

derived from the observed 1-hr ten-year return period field is also shown. The band depicts the 99% credible interval of the 405 

posterior simulations. 
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 410 

 

Figure A2: Empirical cumulative distribution function of the 24-hr ten-year return period event from SF hierarchical models for 

the nine stations (Central Park, LGA, New Milford – top to bottom left panel; Essex Fells, New Brunswick, Staten Island - top to 

bottom, middle panel; JFK, Newark, Watchung - top to bottom, right panel). The Empirical cumulative distribution function 

derived from the observed 24-hr ten-year return period field is also shown. The band depicts the 99% credible interval of the 415 

posterior simulations. 
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