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Abstract. Accurate and reliable sub-seasonal precipitation forecasts are of great socioeconomic value for 

various aspects. The atmospheric intraseasonal oscillation (ISO), which is one of the leading sources of sub-

seasonal predictability, can be potentially used as predictor for sub-seasonal precipitation forecasts. However, 

the relationship between atmospheric intraseasonal signals and sub-seasonal precipitation is of high 10 

uncertainty. In this study, we develop a spatial-temporal projection based Bayesian hierarchical model (STP-

BHM) for sub-seasonal precipitation forecasts. The coupled co-variance patterns between preceding 

atmospheric intraseasonal signals and precipitation are extracted, and the corresponding projection 

coefficients are defined as predictors. A Bayesian hierarchical model (BHM) is then built to address the 

uncertainty in the relationship between atmospheric intraseasonal signals and precipitation. The STP-BHM 15 

model is applied to predict both pentad mean precipitation amount and pentad mean precipitation anomalies 

for each hydroclimatic region over China during the boreal summer monsoon season. The model performance 

is evaluated through a leave one-year-out cross-validation strategy. Our results suggest that the STP-BHM 

model can provide skillful and reliable probabilistic forecasts for both pentad mean precipitation amount and 

pentad mean precipitation anomalies at leads of 20-25 days over most hydroclimatic regions in China. The 20 

results also indicate that the STP-BHM model outperforms the National Centers for Environmental Prediction 

(NCEP) sub-seasonal to seasonal (S2S) model when the lead time is beyond 5 days for pentad mean 

precipitation amount forecasts. The Intraseasonal signals of 850-hPa and 200-hPa zonal wind (U850 and 

U200), 850-hPa and 500-hPa geopotential height (H850 and H500) contribute more to the overall forecast skill 

of pentad mean precipitation amount predictions. In comparison, the outgoing longwave radiation anomalies 25 

(OLRA) contribute most to the forecast skill of pentad mean precipitation anomalies predictions. Other sources 

of sub-seasonal predictability, such as soil moisture, snow cover, and stratosphere-troposphere interaction, 

will be included in the future to further improve sub-seasonal precipitation forecast skill. 
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1. Introduction 

Accurate and reliable sub-seasonal precipitation forecasts can provide vital information for many management 30 

decisions in water resources, agriculture, and disaster mitigation (Vitart et al., 2012; Vitart and Robertson, 

2018). One approach for sub-seasonal precipitation forecasts is to run dynamical models such as Global 

Climate Models (GCMs). Projects such as the Subseasonal-to-Seasonal Prediction Project (S2S) and the 

Subseasonal Experiment (SubX) have been launched to provide sub-seasonal precipitation forecasts with lead 

time up to 60 days from GCMs (Pegion et al., 2019; Vitart et al., 2017). However, the sub-seasonal precipitation 35 

forecasts derived directly from GCMs are of low accuracy as the physical equations are always simplified and 

small-scale processes cannot be well represented in the GCMs (De Andrade et al., 2019). Post-processing is 

always required to improve the accuracy and reliability of GCM forecasts before it can be used for other 

applications. Schepen et al. (2018) and our previous study (Li et al., 2020) used the Bayesian Joint Probability 

(BJP) method to post-process sub-seasonal precipitation forecasts over different regions, and the results 40 

suggested that the forecast skill and reliability were improved compared to raw GCM forecasts. Vigaud et al. 

(2020) proposed a new spatial correction method to improve sub-monthly precipitation forecasts derived from 

multimodel ensembles. Nevertheless, the results also indicated that the accuracy of post-processed sub-

seasonal precipitation forecasts were still limited when the lead time was beyond 10-14 days. 

 45 

An alternative approach for sub-seasonal precipitation forecasts is to establish statistical models based on the 

relationship between precipitation and preceding atmospheric or oceanic indices. Although dynamical models 

are more performant for short- to medium-term forecasts, statistical models are still found to be useful 

especially for long-term forecasts (Tuel and Eltahir, 2018; Abbot and Marohasy, 2014; Mekanik et al., 2013; Lü 

et al., 2011; Kirono et al., 2010). Schepen et al. (2012) suggested that the lagged climate indices were 50 

potentially useful for seasonal precipitation forecasts over Australia. Plenty of statistical algorithms, such as 

multiple linear regression or canonical correlation analysis, have been developed for seasonal precipitation 

forecasts based on the assumption that the seasonal anomalies are caused by slow-varying sea surface 

temperature, sea ice, snow cover, and other boundary conditions (Hwang et al., 2001; Barnston and Smith, 

1996; Eden et al., 2015). A new cluster-based empirical method was proposed to predict winter precipitation 55 

anomalies over the European and Mediterranean Regions (Totz et al., 2017). This method used the sea surface 

temperature, geopotential height, sea level pressure, snow cover extent, and sea ice concentration as 

predictors. A random forest based statistical model, which the predictors were identified from the gridded sea 

surface temperature, was developed to predict central and south Asia seasonal precipitation (Gerlitz et al., 
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2016).  60 

 

However, much fewer statistical models have been built and applied for sub-seasonal precipitation forecasts 

as the sources of sub-seasonal predictability are not yet fully understood. Compared to seasonal precipitation 

forecasts, the slow-varying boundary forcings may have limited impact on sub-seasonal precipitation as the 

time scale is too short. The atmospheric intraseasonal oscillation (ISO), which is the dominant mode of sub-65 

seasonal variability, is one of the leading sources of sub-seasonal predictability (Robertson and Vitart, 2018). 

The boreal summer intraseasonal oscillation (BSISO) in the tropics, which is also known as Madden-Julian 

Oscillation (MJO) in winter, is characterized as a slow-moving system with a period of 30-90 days in the tropical 

atmosphere (Madden and Julian, 1971, 1972; Zhang, 2005; Woolnough, 2019; Wang and Xie, 1997). The 

circulation anomalies associated with the intraseasonal oscillation (ISO) are identified to have an impact on 70 

monsoon activities and heavy rainfall events (Annamalai and Slingo, 2001; Chen et al., 2004). Zhang et al. 

(2009) found that the rainfall patterns in Southeast China were transited from being enhanced to being 

suppressed when the MJO center moved from the Indian Ocean to the Western Pacific Ocean. Jia et al. (2011) 

suggested that the MJO influenced the rainfall patterns in China mainly by modulating the circulation in the 

subtropics and mid-high latitudes in winter. This suggests that the ISO signals could be potentially used for 75 

predicting sub-seasonal precipitation not only in tropical regions but in extra-tropical regions as well. 

 

Several statistical models have been built to predict sub-seasonal precipitation based on the relationship 

between atmospheric intraseasonal signals and precipitation. The spatial-temporal projection (STP) model, 

which extracts the coupled patterns of predictors and predictand, has been developed in recent years 80 

(Hsu et al., 2020; Zhu and Li, 2017a, b, c, 2018). Hsu et al. (2015) established a set of spatial-temporal 

projection models (STPMs) to predict sub-seasonal precipitation at a lead time of 10-30 days over southern 

China. Their results suggested that the forecast skill was still promising at a 20-25-day lead time. Zhu and Li 

(2017a) predicted sub-seasonal precipitation by constructing STPMs over entire China, and independent 

forecasts of rainfall anomalies during the period of Olympic Games in 2008 and Shanghai World Expo in 2010 85 

suggested that the STPMs were able to reproduce intraseasonal rainfall patterns at a 20-day lead time. 

However, we should note that the relationship between ISO signals and precipitation is highly uncertain and 

depend on the region and lead time. In previous studies, an optimal ensemble (OE) strategy was applied to 

generate probabilistic forecasts by picking up best predictors (Zhu and Li, 2017a; Zhu et al., 2015). 

Nevertheless, the number of best predictors was always limited. Further statistical assumptions were required 90 
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to interpret limited ensembles as probabilistic forecasts. The uncertainty in relationship between preceding ISO 

signals of atmospheric field and precipitation has not been fully considered yet. 

 

There are several ways to address the above challenge. Lepore et al. (2017) established an extended logistic 

regression model to link the relationship between El Nin෤o-Southern Oscillation (ENSO) and convective storm 95 

activity. Sohrabi et al. (2021) coupled the large-scale climate indices with a stochastic weather generator to 

provide ensemble streamflow forecasts. Compared to the above-mentioned traditional probabilistic model 

solutions, the Bayesian statistical models are more flexible and more efficient for assessing multiple sources 

of uncertainties. Wang et al. (2009) proposed a multivariate normal distribution based Bayesian joint probability 

(BJP) approach to predict seasonal streamflow over Australia using antecedent streamflow, ENSO indices, 100 

and other climate indicators as predictors. Peng et al. (2014) utilized the same BJP approach to predict 

seasonal precipitation over China using lagged oceanic-atmospheric indices. The Bayesian hierarchical model 

(BHM) has also been developed in recent years (Gelman and Hill, 2006). The BHMs are always constructed 

with several model layers. The predictand is assumed to follow distribution with unknown parameters in the 

first layer, and the parameters are linked with the predictors using linear regression models in the second layer. 105 

The regression coefficients are given hyperprior distributions with the BHMs. The utility of BHMs has been 

demonstrated in modelling spatiotemporal variability of hydrological variables in many studies (Renard, 2011; 

Reza Najafi and Moradkhani, 2013; Bracken et al., 2016; Lima and Lall, 2010; Lima and Lall, 2009; Devineni 

et al., 2013). The BHMs are also used for seasonal predictions in many fields. Chen et al. (2014) used the 

BHM to predict summer rainfall and streamflow over the Huai River basin, while Chu and Zhao (2007) 110 

developed a BHM model to predict seasonal tropical cyclone activity over the Central North Pacific. However, 

the BHMs have not been used to predict sub-seasonal precipitation before. In this study, we follow a similar 

BHM structure proposed by Devineni et al. (2013) to predict sub-seasonal precipitation.  

 

China is located in east Asia, and is frequently subject to rainstorm and flood disasters during the boreal 115 

summer monsoon season. Accurate and reliable sub-seasonal precipitation forecasts can provide valuable 

information for mitigating the risks from rainstorm and flood disasters. However, the origin of intraseasonal 

precipitation variability is of high complexity owing to the mixed impact of tropical convection, forcing of Tibetan 

Plateau, and mid-high latitude systems (Zhu and Li, 2017a). In this study, we develop a STP-BHM probabilistic 

forecast model to predict both pentad mean precipitation amount and pentad mean precipitation anomalies 120 

over each hydroclimatic region in China during the boreal summer monsoon season. The performance of the 
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STP-BHM model is evaluated through a leave one-year-out cross-validation strategy. 

 

In the following section, the dataset, main model components, including intraseasonal signal extraction, 

predictor definition, and Bayesian hierarchical model construction, and verification methods are introduced. 125 

The forecast skill of both pentad mean precipitation amount and pentad mean precipitation anomalies is 

presented in Sect. 3. Section 4 discusses the forecast skill, possible mechanism, limitations, and future work. 

Key findings are summarized in Sect. 5. 

2. Data and Methodology 

2.1 Data 130 

In this study, China is divided into 17 hydroclimatic regions as suggested by Lang et al. (2014). The division is 

based on both watershed division standard and climate classifications. This will ensure that the climatic 

characteristics are nearly uniform in each region. The southeastern hydroclimatic regions are mostly of 

temperate and warm/hot summer climate without dry season (Cfb/Cfa), while the northwestern regions are 

mostly arid with limited precipitation (Bwk, Bsh, Bsk climate types) (Peel et al., 2007) (Figure 1). The observed 135 

precipitation is derived from the Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) 

dataset. The MSWEP V2 dataset is of high spatial (0.1°) and temporal (3 hourly) resolution. Compared to other 

gridded datasets, the MSWEP V2 exhibits more realistic spatial patterns, and higher accuracy over land (Wu 

et al., 2018; Beck et al., 2019). The 0.1° gridded precipitation data is area-weighted averaged through 17 

hydroclimatic regions over China from May to October. 140 
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Figure 1. 17 hydroclimatic regions over China. 

The intraseasonal oscillation is always represented by outgoing longwave radiation (OLR), zonal winds in the 

upper (200 hPa) and lower (850 hPa) troposphere. Although several indices, including the RMM (Realtime 

Multivariate MJO) index (Wheeler and Hendon, 2004) and BSISO index (Lee et al., 2013), have been proposed 145 

to monitor the propagation of oscillation, these indices may not cover patterns which might be important for 

sub-seasonal precipitation in certain regions. To overcome this problem, we analyze the correlation between 

ISO signals of preceding global OLR, zonal wind at 850 hPa (U850), zonal wind at 200 hPa (U200) and 

precipitation for each grid cell. In addition, the correlation between geopotential height at 850 hPa, 500 hPa, 

and 200 hPa (H850, H500, H200) are also analyzed. The H850, H500, and H200 have been proved to be as 150 

capable of reflecting the MJO structure as the zonal wind (Leung and Qian, 2017). The OLR data used in this 

study is derived from National Climate Data Center (NCDC) on a 1.0° squared resolution over the globe. The 

OLR data is developed from high resolution infrared radiation sounder instruments, and is valuable to a wide 

range of applications. A more detailed description of the OLR dataset can be found at 

https://www.ncdc.noaa.gov/news/new-outgoing-longwave-radiation-climate-data-record. The global gridded 155 

daily average U850, U200, H850, H500, H200 data are derived from the ERA5 reanalysis dataset at 

https://cds.climate.copernicus.eu/. The ERA5 reanalysis dataset is produced using advanced 4D-Var data 

assimilation scheme, and its horizontal resolution is approximately 30 km with 137 pressure levels in the 

vertical (Hersbach et al., 2020). It provides hourly record of global atmosphere, land surface and ocean waves 

from 1950 to present. To focus on large-scale features and increase computational efficiency, both the OLR 160 
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data and the ERA5 reanalysis data are bilinearly interpolated onto 2.5° × 2.5° latitude-longitude resolution. 

Moreover, we choose to focus on the period of 1979-2016 to be consistent with the temporal coverage of 

observed precipitation data. 

 

The STP-BHM model we built in this study is compared to the dynamical models to provide a benchmark for 165 

sub-seasonal precipitation forecasts. However, the dynamical models are not always able to provide pentad 

mean precipitation forecasts for the same period as the STP-BHM model as the hindcast initial time, hindcast 

period, and hindcast frequency are different. The comparison may be unfair if the predictand of the statistical 

model and dynamical models are not the same. To overcome this problem, we compare our results of the STP-

BHM model with the NCEP model archived in the S2S Database for the same period of 1999-2010 from May 170 

to October (http://apps.ecmwf.int/datasets/data/s2s/). The NCEP hindcasts are produced by the Climate 

Forecast System version 2 (CFSv2), which is composed of land, ocean and atmosphere components. The 

system provides a 4-member ensemble run every day from 1st January 1999 to 31 December 2010. More 

details of the NCEP hindcasts are available at 

https://confluence.ecmwf.int/display/S2S/NCEP+Model+Description. The pentad mean precipitation amount 175 

forecasts of the NCEP model are generated to be consistent with the STP-BHM model. 

2.2 Methodology 

2.2.1 Modeling structure 

The spatial-temporal projection based Bayesian hierarchical model (STP-BHM) falls into three parts as shown 

in Figure 2. The first part (Sect. 2.2.2) extracts intraseasonal signals of each global atmospheric field (U850, 180 

U200, OLR, H850, H500, and H200) and precipitation using a non-filtering method proposed by Hsu et al. 

(2015). In the second part (Sect. 2.2.3), the cell-wise correlation between ISO signals of atmospheric field and 

precipitation is analyzed in the six preceding pentads. The spatial-temporal coupled co-variance patterns are 

constructed for grid points where the correlation statistically significant at the 5% level. The predictor is then 

defined by summing the product of the co-variance field and atmospheric intraseasonal signals of atmospheric 185 

field at each preceding pentad. In the statistical modeling step (Sect. 2.2.4), both predictors and predictand 

are transformed to follow normal distributions. A Bayesian hierarchical model is then built to address the 

uncertainty in relationship between the predictors and predictand. The model is applied to generate 

probabilistic sub-seasonal precipitation forecasts after parameter inference. 
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 190 

Figure 2. workflow of the spatial-temporal projection based Bayesian hierarchical model (STP-BHM). 

2.2.2 Intraseasonal signal extraction 

As briefly introduced in previous section, extracting meaningful intraseasonal signals is important for sub-

seasonal precipitation forecasts. However, high-frequency (unpredictable) noises exist for both raw daily 

atmospheric variables (U850, U200, OLR, H850, H500, and H200) and raw daily precipitation. Band-pass 195 

filtering methods, such as the fast Fourier transformation, are always used to isolate intraseasonal low-

frequency (10-60-day) signals from raw data (Zhang, 2005). However, traditional band-pass filtering method 

is impractical for real time applications as future information beyond the current date is needed. In this study, 

a non-filtering method proposed by Hsu et al. (2015) is used to extract 10-60-day signals of both atmospheric 

variables and precipitation. Compared to traditional intraseasonal signal extraction method, this approach is 200 

easy to implement and could be used for real time applications. The climatological annual cycle of raw daily 

data is first removed by subtracting 90-day low-pass filtered climatological component: 
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𝑋ᇱ ൌ 𝑋 െ 𝑋ത                                 (1) 

where 𝑋 is the raw daily data of atmospheric field or precipitation. 𝑋ത is the corresponding climatological 90-

day low-pass filtered component derived by Lanczos filtering method during the period of 1981-2010 (Duchon, 205 

1979). In a second step, lower-frequency signals longer than 60 days are removed by subtracting the last 30-

day running mean,  

𝑋ᇱᇱ ൌ 𝑋ᇱ െ 𝑋ᇱതതതଷ଴ௗ
                            (2) 

where 𝑋ᇱതതതଷ଴ௗ
 is the last 30-day running mean of 𝑋ᇱ. 

The higher-frequency signals are then removed by taking a pentad mean, 210 

𝑋∗ ൌ 𝑋ᇱᇱതതതതହௗ
                                (3) 

The so-derived variable represents the 10-60-day signals of daily atmospheric field or precipitation. The daily 

intraseasonal signals are then averaged to pentad data to further reduce the noise and improve the 

predictability. The pentad mean 10-60-day signal of precipitation is also referred as pentad mean precipitation 

anomalies in the following sections. 215 

2.2.3 Predictor definition 

To identify relevant areas of atmospheric fields that could affect 10-60-day precipitation variability, we analyze 

the correlation between preceding 10-60-day signals of atmospheric fields and precipitation for each 

hydroclimatic region during the period of 1979-2016 from May to October. Owing to the data persistence 

introduced by the filtering method, the effective degree of freedom for each grid cell and each preceding pentad 220 

is estimated following Livezey and Chen (1983). 

 

As an example, Figure 3 and Figure 4 presents the correlation between preceding pentad mean 10-60-day 

signals of U850, U200, OLRA, H850, H500, H200 and precipitation over Region 1 (Inland Rivers in Xinjiang) 

at different lead times. At leads 25 to 20 days, the significantly correlated U850 signals are mainly over western 225 

Indian Ocean. The U850 signals are then propagating eastward toward Equatorial Indian Ocean at the lead of 

15 to 10 days. The U850 anomalies then gradually moved eastward and northward toward West Pacific Ocean, 

Mongolia plateau, Iranian plateau, and Qinghai-Tibet plateau from the lead of 10 to 0 days. The U200 signals 

are more pronounced compared to U850 signals. The spatial distribution of potential predictive U200 regions 

is rather concentrated, indicating more robust statistical relationships. The OLR anomalies appear near the 230 

Bay of Bengal at 20 to 15 day leads. At lead 5 to 0 day, the significantly correlated OLR signals are mainly over 

the East European Plain and West Siberian Plain.  
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Figure 3. Correlation coefficient between preceding pentad mean 10-60-day signals of U850, U200, OLRA 235 

and precipitation over Region 1 (Inland Rivers in Xinjiang) at different lead times during the period of 

1979~2016 from May to October. Correlation coefficients statistically significant at the 5% level are shaded. 

 

The H850 anomalies appear near the equatorial Indian Ocean and Philippine Sea at the lead of 25 days to 20 

days. At leads 15 to 20 days, the significantly correlated H850 signals are mainly over Africa. The signals 240 

gradually move eastward and northward toward Indian Ocean, Iranian plateau, and Central Asia from the lead 

of 10 to 0 days. Unlike the H850 fields that originated over Africa, the H200 anomaly appears to originate from 

Arabian Sea, southern Indian Ocean, and West Pacific Ocean from leads of 25 to 15 days. At lead 10 to 0 

days, the significantly correlated H200 signals are mainly over East European Plain, West Siberian Plain, and 

Central Siberian plateau.  245 
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Figure 4. Same as Figure 3, but for H850, H500, and H200. 

The correlation maps between preceding pentad mean 10-60-day signals of U850, U200, OLRA, H850, H500, 

H200 and precipitation over other regions are presented in Figures S1 to S32. 

 250 

The spatial-temporal coupled co-variance patterns are then constructed for grid point where the correlation 

statistically significant at the 5% level. The predictor is then defined by summing the product of the co-variance 

patterns and ISO signals of atmospheric field at each preceding pentad, 

𝑐𝑜𝑣ሺ𝑋௜,௣, 𝑌ሻ ൌ
ଵ

்
∑ ሺ𝑦௧ െ 𝐸ሺ𝑦ሻሻሺ𝑥௜,௣,௧ െ 𝐸ሺ𝑥௜,௣ሻሻ்

௧ୀଵ                      (4) 

𝑋௣ ൌ ∑ 𝑐𝑜𝑣ሺ𝑋௜,௣, 𝑌ሻ ∗ 𝑋௜,௣
ே
௜ୀଵ                              (5) 255 

where 𝑋௜,௣ denotes the pentad mean 10-60-day signal of 𝑝௧௛ atmospheric field where the correlation 

statistically significant at the 5% level for grid 𝑖, 𝑝 ൌ 1,2, ⋯ ,6. 𝑌 denotes the pentad mean precipitation 

amount or pentad mean precipitation anomalies. 𝑇 is the total number of pentads, and 𝑁 is the total 

number of grid points where the correlation statistically significant at the 5% level. Thus, there is only one 

predictor 𝑋௣ for each atmospheric field and each preceding pentad. 260 
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2.2.4 Statistical modelling 

In previous steps, we defined predictors by analyzing the relationship between ISO signals of atmospheric field 

and precipitation. The so-derived predictors can be used to predict pentad mean precipitation amount as well 

as pentad mean precipitation anomalies. Consider, for example, predicting pentad mean precipitation amount 

for the period between 1st May and 5th May, 1979. In this case, pentad mean ISO signals of atmospheric field 265 

on 26th~30th April, 21th~25th April, 16th~20th April, 11th~15th April, 6th~10th April, 1st~5th April 1979 are used as 

predictors to generate precipitation forecasts at different lead times. A leave-one-year-out cross-validation 

strategy is implemented for both data normalization, model building, parameter inference, and verification to 

avoid any bias in skill (Michaelsen, 1987). For instance, to produce sub-seasonal precipitation forecasts in 

1979, the predictors (preceding ISO signals) and predictand (pentad mean precipitation) during the period of 270 

1980-2016 are pooled together for statistical modelling. The forecasts for the year 1979 are then issued by 

models trained on 1980-2016, and the performance is evaluated against the observations. This cross-

validation strategy ensures that the data used for evaluation is never used for statistical modelling. 

 

Before establishing the Bayesian hierarchical model, the predictors 𝑿் ൌ ሾ𝑋ଵ 𝑋ଶ ⋯ 𝑋௉ሿ  are normalized to 275 

𝑿௡௢௥௠
் ൌ ൣ𝑋௡௢௥௠,ଵ 𝑋௡௢௥௠,ଶ ⋯ 𝑋௡௢௥௠,௉൧ through the Yeo-Johnson transformation method as the input variables are 

allowed to be negative (Yeo and Johnson, 2000). The predictand 𝑌 is normalized to 𝑌௡௢௥௠ using the Yeo-

Johonson method for pentad mean precipitation anomalies. However, the pentad mean precipitation amount 

is highly skewed with numerous zero values. Here, we normalize the pentad mean precipitation amount 𝑌 to 

𝑌௡௢௥௠ using the log-sinh transformation method proposed by Wang et al. (2012). The normalization parameters 280 

are estimated using the SCE-UA (shuffled complex evolution method developed at The University of Arizona) 

method that maximize the log-likelihood function for both the Yeo-Johnson transformation method and log-sinh 

transformation method.  

 

There are many versions and variations of BHMs. In this study ,we establish the BHM model following Devineni 285 

et al. (2013) and Chen et al. (2014). The spatial correlation of precipitation over different regions is not 

considered here. A traditional no-pooling BHM is built for each hydroclimatic region separately. The normalized 

predictand 𝑌௡௢௥௠ is assumed to follow the normal distribution, 

𝑌௡௢௥௠~𝑁ሺ𝜇, 𝜎ଶሻ                                    (6) 

We then link the parameter 𝜇 with the normalized predictors using a linear model, 290 

𝜇 ൌ 𝛽଴ ൅ ∑ 𝛽௣𝑋௡௢௥௠,௣
௉
௣ୀଵ                               (7) 
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where 𝛽௣ is the slope term corresponding to the normalized predictor 𝑋௡௢௥௠,௣, and 𝑃 is the total number of 

predictors used for prediction. 

 

To complete the hierarchical formulation, we assume the unknown parameters, including 𝜎, 𝛽଴, ⋯, 𝛽௉, follow 295 

non-informative priors: 

ଵ

 ఙమ ~Uሺ0, 100ሻ                                    (8) 

𝛽଴~𝑁ሺ0, 10ସሻ                                       (9) 

𝛽௣~𝑁ሺ0, 10ସሻ,         𝑝 ൌ 1, ⋯ , 𝑃                         (10) 

This implies that the information used for posterior distribution inference is only provided by the data.  300 

 

Given  𝜽 ൌ ሼሺ𝜎 , 𝛽଴ , 𝛽௣ሻ, 𝑝 ൌ 1, ⋯ , 𝑃ሽ  denotes parameters in the Bayesian hierarchical model for a certain 

region and lead time, the full posterior of the parameters is given as: 

𝑝ሺ𝜽|𝑌௡௢௥௠, 𝑿௡௢௥௠
் ሻ ∝ 𝑝ሺ𝑌௡௢௥௠|𝜽, 𝑿௡௢௥௠

் ሻ𝑝ሺ𝜽ሻ                            (11) 

where 𝑝ሺ𝑌௡௢௥௠|𝜽, 𝑿௡௢௥௠
் ሻ is the likelihood, and 𝑝ሺ𝜽ሻ is the prior of parameters 𝜽. As the posterior distributions 305 

of parameters 𝜽 are not standard distributions, it is difficult to conduct analytical integration. In this study, we 

use the R package runjags (Denwood, 2016) to estimate the parameters of the BHM. The runjags offers an 

interface to facilitate calibrating BHMs employ a Gibbs sampling algorithm in Just Another Gibbs sampler 

(JAGS). The initial values of model parameters 𝜽 are first randomly sampled from prior distributions. The 

parameters 𝜽 are then updated based on the full conditional distributions. We use five independent Markov 310 

chains in each model run, with a total number of 10, 000 iterations for each chain. The convergence is ensured 

by the potential scale reduction factor 𝑅෠  (Brooks and Gelman, 1998). An approximate convergence is 

diagnosed when the 𝑅෠ is less than 1.1 for all parameters. 

 

Once the parameters are sampled, the Bayesian hierarchical model can be used to predict pentad mean 315 

precipitation amount or pentad mean precipitation anomalies using preceding ISO signals. Given new 

preceding predictors 𝑿∗் ൌ ሾ𝑋ଵ
∗ 𝑋ଶ

∗ ⋯ 𝑋௉
∗ሿ , the normalized predictors 𝑿௡௢௥௠

∗் ൌ ൣ𝑋௡௢௥௠,ଵ
∗  𝑋௡௢௥௠,ଶ

∗ ⋯ 𝑋௡௢௥௠,௉
∗ ൧  are 

found using the estimated transformation parameters during the training period. The posterior predictive 

distribution of normalized predictand is given as: 

 𝑌௡௢௥௠
∗ ~𝑁ሺ𝜇∗, 𝜎ଶሻ                                  (12) 320 

𝜇∗ ൌ 𝛽଴ ൅ ∑ 𝛽௣𝑋௡௢௥௠,௣
∗௉

௣ୀଵ                           (13) 

Again, the Gibbs sampling algorithm is used to obtain samples of 𝑌௡௢௥௠
∗  by giving each of the 1000 sets of 



14 
 

parameter values 𝜽 . The samples of 𝑌௡௢௥௠
∗   are then back-transformed to produce ensemble precipitation 

forecasts of 𝑌∗. 

 325 

2.2.5 Verification 

In this study, we assess the performance of the STP-BHM model for both pentad mean precipitation amount 

and pentad mean precipitation anomalies. The Continuous Ranked Probability Score (CRPS) is used to 

provide an overall evaluation of the accuracy of probabilistic forecasts for both the pentad mean precipitation 

amount and pentad mean precipitation anomalies: 330 

𝐶𝑅𝑃𝑆 ൌ
ଵ

ே
∑ ሾ𝐹௜ሺ𝑦ሻ׬ െ 𝐻ሺ𝑦 െ 𝑜௜ሻሿଶ𝑑𝑦ே

௜ୀଵ                                         (14) 

where 𝐹௜ሺሻ is the cumulative distribution function of the ensemble forecasts for pentad mean precipitation 

amount or pentad mean precipitation anomalies for case 𝑖; and 𝐻ሺሻ is the Heaviside step function defined as: 

𝐻ሺ𝑦 െ 𝑜௜ሻ ൌ ൜
0       𝑦 ൏ 𝑜௜
1       y ൒ 𝑜௜

                            (15) 

where 𝑜௜ is the corresponding observation. 335 

 

The CRPS skill score is then calculated by comparing the CRPS of ensemble forecasts with the CRPS of 

reference forecasts: 

𝐶𝑅𝑃𝑆ௌௌ ൌ
஼ோ௉ௌೃಶಷି஼ோ௉ௌ

஼ோ௉ௌೃಶಷ
ൈ 100%                                          (16) 

The reference forecasts are generated using the Bayesian hierarchical model with no predictors used for 340 

prediction. This is also referred as the cross-validated climatology. A skill score of 100% indicates that the 

ensemble forecasts are the same as the observations, whereas a skill score of 0% suggests that the ensemble 

forecasts show no improvement over the cross-validated climatology. A negative skill score means that the 

ensemble forecasts are inferior to the cross-validated climatology. 

 345 

We also use the Brier Score (BS) to assess the capability of the STP-BHM model for predicting below-normal 

and above-normal events. The below-normal and above-normal events are defined using the terciles of pentad 

mean precipitation amount or pentad mean precipitation anomalies of cross-validated climatology. 

𝐵𝑆 ൌ
ଵ

ே
∑ ሺ𝑝௜ െ 𝑜௜ሻଶே

௜ୀଵ                                                     (17) 

where 𝑝௜ is the forecast probability of the below- or above-normal event for case 𝑖; and 𝑜௜ is the observed 350 

occurrence (0 or 1). 
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The Brier skill score (BSS) is then calculated as follows: 

𝐵𝑆𝑆 ൌ
஻ௌೃಶಷି஻ௌ

஻ௌೃಶಷ
ൈ 100%                                          (18) 

where the 𝐵𝑆ோாி is the 𝐵𝑆 of the cross-validated climatology. The 𝐵𝑆𝑆 measures the relative skill of the 

forecast compared to climatology. Like the CRPS skill score, the Brier skill score takes the value 100% for 355 

perfect forecasts and 0% for the cross-validated climatology. 

 

In this study, we use the attribute diagram to assess the reliability, resolution, and sharpness of probabilistic 

forecasts for both below-normal event and above-normal event. The attribute diagram shows the observed 

frequencies against its forecast probabilities for a given event with binary outcomes (Hsu and Murphy, 1986). 360 

The forecast probability is binned as 5 equal-width intervals, which are [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), 

and [0.8, 1.0]. The corresponding observed relative frequency is plotted against the mean forecast probability 

in each bin. The forecasts are reliable if the scatters are along the 45-degree diagonal. The sharpness is also 

shown on the attribute diagram. The forecasts are sharp if the probabilities tend to be either very high (e.g. > 

90%) or very low (e.g. <10%) (Peng et al., 2014). The size of each dot represents the fraction of forecasts that 365 

fall into a particular probability bin. Thus, the sharpness is indicated by the size of dots in each bin. The attribute 

diagram requires a large number of samples to draw robust conclusions. In this study, the probabilistic 

forecasts over the 17 hydroclimatic regions are pooled together to increase the sample size for each lead time. 

3. Results 

3.1 Forecast skill of pentad mean precipitation amount 370 

Figure 5 presents the cross-validated CRPS skill scores for sub-seasonal forecasts of pentad mean 

precipitation amount at different lead times (lag times). Positive CRPS skill scores are found over all 

regions and all lead times, indicating that the STP-BHM model outperforms the cross-validated 

climatological forecasts. The CRPS skill scores are mostly over 10% in southern China even when the 

lead time is beyond 10 days. On the contrary, the performance of the STP-BHM model is relatively poorer 375 

in northern China with CRPS skill scores ranging from 5% to 10% at the same lead time. 
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Figure 5. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean precipitation 

amount forecasts at different lead times during the period of 1979-2016 from May to October. 

 380 

Figure 6 illustrates the brier skill scores of the STP-BHM model for both below-normal and above-normal 

events at different lead times. As can be seen in Fig. 6, the brier skill scores are mostly above 15% for 

both the below-normal and above-normal events. This indicates that the STP-BHM model can provide 

skillful sub-seasonal forecasts for extreme events as well. Furthermore, the brier skill scores are most 

ranging from 20% to 25% in southern China at leads of 20-25 days for below-normal events. The STP-385 

BHM model shows lower forecast skills for above-normal events, which the brier skill scores are mostly 

between 15% and 20%. This indicates that the below-normal events are more predictable compared to 

the above-normal events. 
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Figure 6. The Brier skill scores of the STP-BHM model for the prediction of below-normal and above-390 

normal events of pentad mean precipitation amount at different lead times during the period of 1979-2016 

from May to October. 

 

To help identify the main sources of sub-seasonal precipitation predictability, we also establish the STP-

BHM model for each atmospheric field separately. Figure 7 compares the CRPS skill scores of pentad 395 

mean precipitation forecasts with different predictors. In general, U850, U200, H850, and H500 show 

higher forecast skill compared to OLRA and H200 for almost all hydroclimatic regions and lead times. 

This suggests that the ISO signals of these atmospheric fields contribute more to the overall forecast skill. 

Compared to the STP-BHM model built with only one predictor, the forecast skill is further improved when 

all ISO signals of atmospheric fields are used. 400 
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Figure 7. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean precipitation amount 

forecasts with different predictors (U850, U200, OLRA, H850, H500, H200). ALL denotes that the ISO signals 

of all atmospheric fields are used as predictors. 

 405 

The attribute diagrams of sub-seasonal forecasts of pentad mean precipitation amount for below-normal 

and above-normal event at different lead times are shown in Figure 8. Most points fall near the 1:1 line 

for both below-normal and above-normal events at all lead times. This suggests that the probabilistic 

forecast distributions are reliable. However, the forecast probabilities deviate slightly from the 1:1 line at 

higher forecast probabilities for above-normal event, indicating that the sharpness for above-normal event 410 

should be further improved. 
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Figure 8. The attribute diagram of the STP-BHM model for the prediction of below-normal and above-

normal events of pentad mean precipitation amount at different lead times. Forecast probability is binned 

with width of 0.2. The size of each dot represents the fraction of forecasts that fall into a particular 415 

probability bin. 

 

Figure 9 compares the CRPS skill scores of the STP-BHM model and the NCEP model from May to 

October during the period of 1999~2010. Although the NCEP model is not the top scoring model for sub-

seasonal precipitation forecasts, the hindcast frequency of the NCEP model makes it able to generate 420 

pentad mean precipitation forecasts for the same period as the STP-BHM model from 1999 to 2010. It is 

not surprise that the NCEP model outperforms the STP-BHM model when the lead time is within 5 days. 

However, we should note that the STP-BHM model shows much higher probabilistic forecast skill 

compared to the NCEP model at longer lead times. Positive CRPS skill scores are observed for the STP-

BHM model over most hydroclimatic regions, whereas the skill scores are mostly negative for the NCEP 425 

model. 



20 
 

 

Figure 9. The comparison of the CRPS skill scores of the STP-BHM model and the NCEP model during 

the period of 1999~2010 from May to October. 

3.2 Forecast skill of pentad mean precipitation anomalies 430 

The cross-validated CRPS skill scores for sub-seasonal forecasts of pentad mean precipitation anomalies 

are shown in Figure 10. The STP-BHM model shows positive CRPS skill scores over most hydroclimatic 

regions, except Inland rivers in Xinjiang (Region 1) and Inland rivers in northern Tibet (Region 2). This 

may be explained by the relatively lower variability of pentad mean precipitation anomalies in these 

regions. In addition, the STP-BHM model shows higher forecast skill in eastern China with CRPS skill 435 

scores range from 10% to 15%. In comparison, the forecast skill in Inland Rivers in Inner Mongolia 

(Region 3), Upper Yellow River (Region 5), Upper Yangtze River (Region 9), Southwest rivers in southern 

Tibet (Region 11), Southwest rivers in Yunnan (Region 12), Yangtze River (Region 13), and Pearl River 

(Region 16) are lower. Similar results are also found by Zhu and Li (2017a), which the southwestern 

China shows lowest forecast skill compared to other regions. 440 
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Figure 10. Same as Figure 5, but for pentad mean precipitation anomalies. 

 

The brier skill scores of pentad mean precipitation anomalies for below-normal and above-normal events 

are presented in Figure 11. Positive brier skill scores are found over all regions and all lead times, 445 

indicating that the STP-BHM model outperforms the cross-validated climatological forecasts for extreme 

events. Meanwhile, the differences of brier skill scores in different hydroclimatic regions are small, where 

the brier skill scores are mostly ranging from 5%~15% for both below-normal and above-normal events. 
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Figure 11. Same as Figure 6, but for pentad mean precipitation anomalies. 450 

Figure 12 compares the CRPS skill scores of pentad mean precipitation anomalies with different 

predictors. Overall, the STP-BHM model with OLRA used as predictor shows higher forecast skill 

compared to other predictors for almost all hydroclimatic regions and lead times. This suggests that the 

OLRA contributes most to the overall forecast skill of pentad mean precipitation anomalies. 
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 455 

Figure 12. Same as Figure 7, but for pentad mean precipitation anomalies. 

 

Shown in Figure 13 is the attribute diagram of sub-seasonal forecasts of pentad mean precipitation 

anomalies for below-normal and above-normal event at different lead times. Most points fall close to the 

1:1 line for both below-normal and above-normal events. This suggests that the probabilistic forecast 460 

distributions are reliable for pentad mean precipitation anomalies as well. The sharpness of STP-BHM 

model is also observed especially for below-normal event. 



24 
 

 

Figure 13. Same as Figure 8, but for pentad mean precipitation anomalies. 

 465 

4. Discussion 

4.1 Forecast skill and possible mechanism 

In this study, we first analyze the relationship between preceding ISO signals of atmospheric fields and 

precipitation. The coupled patterns are extracted and the corresponding projection coefficients are defined as 

predictors. A Bayesian hierarchical model is then established and applied to predict both pentad mean 470 

precipitation amount and pentad mean precipitation anomalies over China. Our results suggest that the STP-

BHM model can provide skillful and reliable probabilistic forecasts for both pentad mean precipitation amount 

and pentad mean precipitation anomalies at a lead of 20-25 days over most hydroclimatic regions in China. 

However, the spatial patterns of skill scores suggest that the STP-BHM model is more skillful over southern 

China. This may be explained by the different characteristics of intraseasonal variability and different possible 475 

mechanism over different hydroclimatic regions. Wang (2007) analyzed the precipitation variability from April 

to September over China, and the results suggested that the seasonal component accounted for nearly 70% 
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of the total variability over northeastern China. The intraseasonal (10-90 days) component only accounted for 

nearly 7% of the total variability, which indicate that the intraseasonal precipitation over these regions have no 

significant frequency peak. In comparison, the sub-seasonal component accounted for over 20% of the total 480 

variability in southeastern China. Ouyang and Liu (2020) also found that the boreal summer monsoon 

intraseasonal variability of precipitation over the lower Yangtze River basin was mainly dominated by the 

relatively low-frequency 12-20-day variability and high-frequency 8-12-day variability. Wang and Duan (2015) 

demonstrated that the Quasi-biweekly oscillation (QBWO, 10-20 days oscillation) was the dominant mode of 

intraseasonal variability of summer precipitation over the Tibetan Plateau. The relations between atmospheric 485 

intraseasonal oscillation and the low-frequency variability of precipitation vary from region to region as well. 

Ren and Shen (2016) suggested that the impact of tropical atmospheric intraseasonal oscillation on 

precipitation were more significant in regions in southern China and the Tibetan Plateau areas during the boreal 

summer.  

 490 

We should also note that the CRPS skill scores of the STP-BHM model are lower than NCEP dynamical models 

at short lead times. The Calibration, Bridging, and Merging (CBaM) method, which makes the best use of GCM 

outputs, has been proved to be efficient for improving seasonal precipitation over many regions (Strazzo et al., 

2019; Schepen and Wang, 2013; Peng et al., 2014). Recently, Specq and Batté (2020) proposed a similar 

statistical-dynamical approach to improve sub-seasonal precipitation forecasts over the southwest tropical 495 

Pacific. In the future, the statistical forecasts generated from lagged atmospheric indices should be included 

in the calibrated forecasts to further improve sub-seasonal precipitation forecast skill. 

 

4.2 Limitations and future work 

In this study, the correlation between ISO signals of atmospheric fields and precipitation is analyzed using the 500 

whole record despite the cross-validation strategy used for statistical modelling. This may introduce artificial 

skill into the model to some extent. However, the correlation analysis for each step of the cross-validation is 

difficult in practice. We analyze the spatial patterns of correlations between preceding ISO signals of U850 and 

precipitation over Region 1 at the lead time of 0-day for the period of 1979-2016 and 1980-2016 (Figure S33). 

The results show small variability between the cross-validated correlation and the whole-period correlation. In 505 

addition, the cross-validation strategy used in the statistical modelling procedure can also reduce the chance 

of overfitting (Vehtari and Lampinen, 2002; Delsole and Shukla, 2009).  
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Another limitation of this study is the treatment of zero values adopted in the statistical modelling procedure. 

We treat the zero values as censored data, which is also referred as “explicit” approach in Mcinerney et al. 510 

(2019). Although this treatment performed well in “low-ephemeral” and “mid-ephemeral” catchments, the 

performance of this “explicit” approach was poor in “high-ephemeral” (> 50% zero flows) catchments. Further 

development is required to overcome this problem. The copula functions are flexible in choosing marginal 

distributions, and have been widely used in hydrological simulations in recent years (Zhang and Singh, 2007; 

Vernieuwe et al., 2015; De Michele and Salvadori, 2003). Compared to the Bayesian statistics we used in this 515 

study, the copula functions are more general and the normalization may not be required when the skewed 

distributions are used as the marginal distribution of precipitation. This may provide a possible solution to 

overcome the problems caused by the large amount of zero values.  

 

We built the Bayesian hierarchical model for each hydroclimatic region separately. However, the spatial 520 

patterns of precipitation have not been considered yet. The spatial Bayesian hierarchical model, which can 

capture the spatial dependence of precipitation between different regions, could be used to provide sub-

seasonal precipitation forecasts with spatial coherence (Reza Najafi and Moradkhani, 2013; Bracken et al., 

2016). An alternative way to reconstruct the spatial patterns of probabilistic precipitation forecasts is to use the 

Schaake Shuffle method or Ensemble Copula Coupling method (Roman et al., 2013; Clark et al., 2004). Higher 525 

spatial or temporal resolution of precipitation forecasts are also needed for sub-seasonal streamflow forecasts. 

However, our previous studies indicated that post-processed daily precipitation forecasts from GCMs are of 

low accuracy when the lead time is beyond 10-14 days (Li et al., 2020). In this study, the large-scale ISO 

signals are only used to predict pentad mean precipitation as the noise of daily precipitation is too large. Spatial 

or temporal disaggregation may be required in the future to provide daily precipitation forecasts as inputs for 530 

hydrological models.  

5. Conclusions 

Accurate and reliable sub-seasonal precipitation forecasts are difficult as the predictability from atmospheric 

initialization is lost after two weeks, while the slowly varying boundary conditions do not have substantial impact 

at such a time scale. The intraseasonal oscillation (ISO) is considered as one of the leading sources of sub-535 

seasonal predictability. However, the relationship between atmospheric intraseasonal signals and precipitation 

is of high uncertainty. In this study, we first analyze the correlation between preceding atmospheric 
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intraseasonal signals (U850, U200, OLRA, H850, H500, and H200) and precipitation. The spatial-temporal 

coupled co-variance patterns are constructed for grid points where the correlation statistically significant at the 

5% level. The predictors are then defined by summing the product of the co-variance fields and ISO signals of 540 

atmospheric field. A Bayesian hierarchical model (BHM) is then built to address the uncertainty in the 

relationship between the ISO signals of atmospheric fields and precipitation. The posterior distributions of the 

model parameters are sampled using a Gibbs sampling algorithm. The STP-BHM model is used to predict 

both pentad mean precipitation amount and pentad mean precipitation anomalies after parameter inference. 

The performance is evaluated through a leave one-year-out cross-validation strategy. 545 

 

Our results suggest that the STP-BHM model we built in this study can provide skillful and reliable probabilistic 

forecasts for both pentad mean precipitation amount and pentad mean precipitation anomalies at a lead of 20-

25 days over most hydroclimatic regions in China when all ISO signals of atmospheric fields are used as 

predictors. In addition, the STP-BHM model shows useful predictive skill for below-normal and above-normal 550 

events as well, and positive Brier skill scores are observed at all lead times. The spatial patterns of skill scores 

suggest that the STP-BHM model is more skillful over southern China compared to other regions. The STP-

BHM model outperforms the NCEP S2S dynamical model when the lead time is beyond 5 days. To help identify 

the main sources of sub-seasonal precipitation predictability, we also establish the STP-BHM model for U850, 

U200, OLRA, H850, H500, and H200, separately. The results suggest that the ISO signals of U850, U200, 555 

H850, and H500 contribute more to overall forecast skills for pentad mean precipitation amount predictions. In 

comparison, the OLRA contributes most to the forecast skill for predictions of pentad mean precipitation 

anomalies. 

 

In this study, the spatial patterns between ISO signals of the zonal wind at 850 and 200 hPa, Outgoing 560 

Longwave Radiation, and the geopotential height at 850, 500, and 200 hPa are extracted and used to define 

predictors. Other sources of sub-seasonal predictability, such as soil moisture, snow cover, and stratosphere-

troposphere interaction, will be included in the Bayesian hierarchical model to further improve sub-seasonal 

precipitation forecasts. The Calibration, Bridging, and Merging (CBaM) method can also be investigated at 

sub-seasonal time scale to further improve the forecast skill (Schepen and Wang, 2013; Schepen et al., 2014). 565 
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