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Abstract. Accurate and reliable sub-seasonal precipitation forecasts remain challenging.are of great 

socioeconomic value for various aspects. The atmospheric intraseasonal oscillation (ISO), which is one of the 

leading sources of sub-seasonal predictability, couldcan be potentially used as predictorspredictor for sub-seasonal 10 

precipitation forecasts... However, the relationshipsrelationship between ISOatmospheric intraseasonal signals and 

sub-seasonal precipitation areis of high uncertainty. In this study, we first define potential predictors by analyzing 

the relationship between develop a spatial-temporal projection based Bayesian hierarchical model (STP-BHM) for 

sub-seasonal precipitation forecasts. The coupled co-variance patterns between preceding atmospheric 

ISOintraseasonal signals and precipitation for 17 hydroclimatic regions are extracted, and the corresponding 15 

projection coefficients are defined as predictors. A Bayesian hierarchical model (BHM) is then built to address the 

uncertainty in the relationship between atmospheric intraseasonal signals and precipitation. The STP-BHM model 

is applied to predict both pentad mean precipitation amount and pentad mean precipitation anomalies for each 

hydroclimatic region over China during the boreal summer monsoon season. The Least Absolute Shrinkage and 

Selection Operator (LASSO) and stepwise regression approaches are used to narrow down the number of potential 20 

predictors. A Bayesian hierarchical model is then established to predict sub-seasonal precipitation. The model 

performance is evaluated through a leave one-year-out cross-validation strategy for both deterministic and 

probabilistic forecasts. The. Our results suggest that the statistical model we built in this study could provide skillful 

deterministicSTP-BHM model can provide skillful and reliable probabilistic forecasts for both pentad mean 

precipitation amount and pentad mean precipitation anomalies at leads of 20-25 days over most hydroclimatic 25 

regions in China. The results also indicate that the STP-BHM model outperforms the National Centers for 

Environmental Prediction (NCEP) sub-seasonal precipitation forecasts over southeastern and southwestern 
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hydroclimatic regions at a to seasonal (S2S) model when the lead time of 20-25 days. However, the deterministic 

forecast skills are much lower over northeastern China, owing to the underestimation of intraseasonal variability in 

these regions. The probabilisticis beyond 5 days for pentad mean precipitation amount forecasts are more 30 

promising, and the results indicate that the Bayesian hierarchical model could provide skillful and reliable sub-

seasonal precipitation forecasts for all hydroclimatic regions from 0-day to 25-day leads.. The Intraseasonal signals 

of 850-hPa and 200-hPa zonal wind (U850 and U200), 850-hPa and 500-hPa geopotential height (H850 and H500) 

contribute more to the overall forecast skill of pentad mean precipitation amount predictions. In comparison, the 

outgoing longwave radiation anomalies (OLRA) contribute most to the forecast skill of pentad mean precipitation 35 

anomalies predictions. Other sources of sub-seasonal predictability would, such as soil moisture, snow cover, and 

stratosphere-troposphere interaction, will be included in the future to further improve sub-seasonal precipitation 

forecast skillsskill. 
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1. Introduction 

Accurate and reliable sub-seasonal precipitation forecasts can provide vital information for many management 40 

decisions in water resources, agriculture, and disaster mitigationsmitigation (Vitart et al., 2012; Vitart and 

Robertson, 2018). One approach for sub-seasonal precipitation forecasts is to run dynamical models such as 

Global Climate Models (GCMs). Projects such as the Subseasonal-to-Seasonal Prediction Project (S2S) and 

the Subseasonal Experiment (SubX) have been lunchedlaunched to provide sub-seasonal precipitation 

forecasts with lead time up to 60 days from GCMs (Pegion et al., 2019; Vitart et al., 2017). However, the sub-45 

seasonal precipitation forecasts derived directly from GCMs are of low accuracy as the physical equations are 

always simplified and small-scale processes could notcannot be well represented in the GCMs (De Andrade 

et al., 2019). Post-processing is always required to improve the accuracy and reliability of GCM forecasts 

before it couldcan be used for other applications. Schepen et al. (2018) and our previous study (Li et al., 2020) 

used the Bayesian Joint Probability (BJP) method to post-process sub-seasonal precipitation forecasts over 50 

different regions, and the results suggested that the forecast skillsskill and reliability were improved compared 

to raw GCM forecasts. Vigaud et al. (2020) proposed a new spatial correction method to improve sub-monthly 

precipitation forecasts derived from multimodel ensembles. Nevertheless, the results also indicated that the 

accuracy of post-processed sub-seasonal precipitation forecasts were still limited when the lead time was 

beyond 10-14 days. 55 

 

An alternative approach for sub-seasonal precipitation forecasts is to establish statistical models based on the 

relationshipsrelationship between precipitation and preceding atmospheric- or oceanic indices. Although 

dynamical models are dominantmore performant for short- to medium-term forecasts, statistical models are 

still found to be useful especially for long-term forecasts (Tuel and Eltahir, 2018; Abbot and Marohasy, 2014; 60 

Mekanik et al., 2013; Lü et al., 2011; Kirono et al., 2010). Schepen et al. (2012) suggested that the lagged 

climate indices were potentially useful for seasonal precipitation forecasts over Australia. Plenty of statistical 

algorithms, such as multiple linear regression or canonical correlation analysis, have been developed for 

seasonal precipitation forecasts based on the assumption that the seasonal anomalies are caused by slow-

varying sea surface temperature, sea ice, snow cover, and other boundary conditions (Hwang et al., 2001; 65 

Barnston and Smith, 1996; Eden et al., 2015). Totz et al. (2017) proposed a new cluster-based empirical 

method to predict winter precipitation anomalies over the European and Mediterranean Regions, whichA new 

cluster-based empirical method was proposed to predict winter precipitation anomalies over the European and 



 

4 

 

Mediterranean Regions (Totz et al., 2017). This method used the sea surface temperature, geopotential height, 

sea level pressure, snow cover extent, and sea ice concentration were included as predictors. A random forest 70 

based statistical model, which the predictors were identified from the gridded sea surface temperature, was 

developed to predict central and south Asia seasonal precipitation (Gerlitz et al., 2016).  

 

However, much fewer statistical models have been built and applied for sub-seasonal precipitation forecasts 

as the sources of sub-seasonal predictability are not yet fully understood at such a time scale.. Compared to 75 

seasonal precipitation forecasts, the slow-varying boundary forcings may have limited impact on sub-seasonal 

precipitation as the time scale is too short. The atmospheric intraseasonal oscillation (ISO), which is the 

dominant mode of sub-seasonal variability, is one of the leading sources of sub-seasonal predictability 

(Robertson and Vitart, 2018). The boreal summer intraseasonal oscillation (BSISO) in the tropics, which is also 

known as Madden-Julian Oscillation (MJO) in winter, is characterized as a slow-moving system with a period 80 

of 30-90 days in the tropical atmosphere (Madden and Julian, 1971, 1972; Zhang, 2005; Woolnough, 2019; 

Wang and Xie, 1997). The circulation anomalies associated with the intraseasonal oscillation (ISO) are 

identified to have an impact on monsoon activities and heavy rainfall events (Annamalai and Slingo, 2001; 

Chen et al., 2004). Zhang et al. (2009) found that the rainfall patterns in Southeast China were transited from 

being enhanced to being suppressed when the MJO center moved from the Indian Ocean to the Western 85 

Pacific Ocean. Jia et al. (2011) suggested that the MJO influenced the rainfall patterns in China mainly by 

modulating the circulation in the subtropics and mid-high latitudes in winter. This suggests that the ISO signals 

could be potentially used for predicting sub-seasonal precipitation not only in tropical regions but in extra-

tropical regions as well. 

 90 

Several statistical models have been built to predict sub-seasonal precipitation based on the relationships 

between ISO signals and precipitation.relationship between atmospheric intraseasonal signals and 

precipitation. The spatial-temporal projection (STP) model, which extracts the coupled patterns of 

predictors and predictand, has been developed in recent years (Hsu et al., 2020; Zhu and Li, 2017a, b, 

c, 2018). Hsu et al. (2015) established a set of spatial-temporal projection models (STPMs) to predict sub-95 

seasonal precipitation at a lead time of 10-30 days over southern China. Their results suggested that the 

forecast skills wereskill was still promising at a 20-25-day lead time. Zhu and Li (2017)Zhu and Li (2017a) 

predicted sub-seasonal precipitation by constructing STPMs over entire China, and independent forecasts of 

rainfall anomalies during the period of Olympic Games in 2008 and Shanghai World Expo in 2010 suggested 
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that the STPMs were able to reproduce intraseasonal rainfall patterns at a 20-day lead time. However, we 100 

should note that the relationships between ISO signals and precipitation are of high uncertainty for different 

regions at different lead times. Chen and Wang (2021) suggested that different BSISO events would have 

distinct impact on monsoon systems. To our best knowledge, the uncertainties of relationships between 

preceding ISO signals and sub-seasonal precipitation have not been fully considered in sub-seasonal 

precipitation forecasts in previous studiesrelationship between ISO signals and precipitation is highly uncertain 105 

and depend on the region and lead time. In previous studies, an optimal ensemble (OE) strategy was applied 

to generate probabilistic forecasts by picking up best predictors (Zhu and Li, 2017a; Zhu et al., 2015). 

Nevertheless, the number of best predictors was always limited. Further statistical assumptions were required 

to interpret limited ensembles as probabilistic forecasts. The uncertainty in relationship between preceding ISO 

signals of atmospheric field and precipitation has not been fully considered yet. 110 

 

There are several ways to address the above challenge. Lepore et al. (2017) established an extended logistic 

regression model to link the relationship between El Niño-Southern Oscillation (ENSO) and convective storm 

(SCS) activity. Sohrabi et al. (2021) coupled the large-scale climate indices with a stochastic weather generator 

to provide ensemble streamflow forecasts. Compared to the above-mentioned traditional probabilistic model 115 

solutions, the Bayes-theorem basedBayesian statistical models are more flexible and more efficient for 

assessing multiple sources of uncertainties. Wang et al. (2009) proposed a multivariate normal distribution 

based Bayesian joint probability (BJP) approach to predict seasonal streamflow over Australia using 

antecedent streamflow, ENSO indices, and other climate indicators as predictors. Peng et al. (2014) utilized 

the same BJP approach to predict seasonal precipitation over China using lagged oceanic-atmospheric indices. 120 

Another Bayes-theorem based approach, theThe Bayesian hierarchical model (BHM),) has also been 

developed in recent years (Gelman and Hill, 2006). The BHMs are always constructed with several model 

layers. The predictand is assumed to follow distribution with unknown parameters in the first layer, and the 

parameters are linked with the predictors using linear regression models in the second layer. The regression 

coefficients are given hyperprior distributions with the BHMs. The utility of BHMs has been demonstrated in 125 

modelling spatiotemporal variability of hydrological variables in many studies (Renard, 2011; Reza Najafi and 

Moradkhani, 2013; Bracken et al., 2016; Lima and Lall, 2010; Lima and Lall, 2009; Devineni et al., 2013). The 

BHMs are also used for seasonal predictions in many fields. Chen et al. (2014) used the BHM to predict 

summer rainfall and streamflow over the Huai River basin, while Chu and Zhao (2007) developed a BHM 

model to predict seasonal tropical cyclone activity over the Central North Pacific. However, the BHMs have not 130 
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been used to predict sub-seasonal precipitation before. In this study, we follow a similar BHM structure 

proposed by Devineni et al. (2013) to predict sub-seasonal precipitation.  

 

China is located in east Asia, and is frequently influenced bysubject to rainstorm and flood disasters during the 

boreal summer monsoon season. Accurate and reliable sub-seasonal precipitation forecasts can provide 135 

valuable information for mitigating the risks from rainstorm and flood disasters. However, the origin of 

intraseasonal precipitation variability is of high complexity owing to the mixed impact of tropical convection, 

forcing of Tibetan Plateau, and mid-high latitude systems (Zhu and Li, 2017). In this study, we first define 

potential predictors by analyzing the correlations between preceding ISO signals and precipitation for each 

hydroclimatic region. In a second step, smaller groups of robust predictors are selected and the Bayesian 140 

hierarchical model is established to predict sub-seasonal precipitation. The model performance for both 

deterministic and probabilistic forecasts are(Zhu and Li, 2017a). In this study, we develop a STP-BHM 

probabilistic forecast model to predict both pentad mean precipitation amount and pentad mean precipitation 

anomalies over each hydroclimatic region in China during the boreal summer monsoon season. The 

performance of the STP-BHM model is evaluated through a leave one-year-out cross-validation strategy. 145 

 

In the following section, the observations, reanalysis dataset, ISOmain model components, including 

intraseasonal signal extraction, potential predictor selection, definition, and Bayesian hierarchical model 

calibrationconstruction, and evaluationverification methods are introduced. The deterministic and probabilistic 

forecast skills areskill of both pentad mean precipitation amount and pentad mean precipitation anomalies is 150 

presented in Sect. 3. Section 4 discusses the forecast skillsskill, possible mechanism, limitations, and future 

work. Key findings are summarized in Sect. 5. 

 

2. Data and Methodology 

2.1 Data 155 

In this study, China is divided into 17 hydroclimatic regions as suggested by Lang et al. (2014). The division is 

based on both watershed division standard and climate classifications. This will ensure that the climatic 

characteristics are nearly uniform in each region. The southeastern hydroclimatic regions are mostly of 

temperate and warm/hot summer climate without dry season (Cfb/Cfa), while the northwestern regions are 

mostly arid with limited precipitation (Bwk, Bsh, Bsk climate types) (Peel et al., 2007) (Figure 1). The observed 160 



 

7 

 

precipitation is derived from the Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) 

dataset. The MSWEP V2 dataset is of high spatial (0.1°) and temporal (3 hourly) resolution. Compared to other 

gridded datasets, the MSWEP V2 exhibits more realistic spatial patterns, and higher accuracy over land (Wu 

et al., 2018; Beck et al., 2019). The 0.1° gridded precipitation data is area-weighted averagingaveraged 

through 17 hydroclimatic regions over China from May to October. After that, the 3-hourly regional precipiation 165 

data is summarized to pentad data to reduce the noise and improve the predictability. 

 

Figure 1. 17 hydroclimatic regions over China. 

The intraseasonal oscillation is always represented by outgoing longwave radiation (OLR), zonal winds in the 

upper (200 hPa) and lower (850 hPa) troposphere. Although several indices, including the RMM (Realtime 170 

Multivariate MJO) index (Wheeler and Hendon, 2004) and BSISO index (Lee et al., 2013), have been proposed 

to monitoringmonitor the propagation of oscillation, these indices may not cover patterns which might be 

important for sub-seasonal precipitation in certain regions. To overcome this problem, we analyze the 

correlation between regional precipitation andISO signals of preceding global gridded OLR, zonal wind at 850 

hPa (U850), zonal wind at 200 hPa (U200) and precipitation for each grid cell. In addition, the correlation 175 

between geopotential height at 850 hPa, 500 hPa, and 200 hPa (H850, H500, H200), which) are also analyzed. 

The H850, H500, and H200 have been proved to be as capable of reflecting the MJO structure as the zonal 

wind (Leung and Qian, 2017), are also analyzed. The OLR-daily Climate Data Record (CDR). The OLR data 

used in this study is derived from National Climate Data Center (NCDC) on a 1.0° squared resolution over the 

globe. The OLR-daily CDR data is developed from high resolution infrared radiation sounder instruments, and 180 
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is valuable to a wide range of applications. A more detailed description of the OLR dataset can be found at 

https://www.ncdc.noaa.gov/news/new-outgoing-longwave-radiation-climate-data-record. The global gridded 

daily average U850, U200, H850, H500, H200 data are derived from the ERA5 reanalysis dataset at 

https://cds.climate.copernicus.eu/. The ERA5 reanalysis dataset is produced using advanced 4D-Var data 

assimilation scheme, and its horizontal resolution is approximately 30 km with 137 pressure levels in the 185 

vertical (Hersbach et al., 2020). It provides hourly record of global atmosphere, land surface and ocean waves 

from 1950 to present. To focus on large-scale features and increase calculatingcomputational efficiency, both 

the OLR-daily CDR dataset data and the daily average ERA5 reanalysis datasetdata are bilinearly interpolated 

onto 2.5° × 2.5° latitude-longitude resolution. Moreover, we choose to focus on the period of 1979-2016 to be 

consistent with the temporal coverage of observed precipitation data. 190 

 

The STP-BHM model we built in this study is compared to the dynamical models to provide a benchmark for 

sub-seasonal precipitation forecasts. However, the dynamical models are not always able to provide pentad 

mean precipitation forecasts for the same period as the STP-BHM model as the hindcast initial time, hindcast 

period, and hindcast frequency are different. The comparison may be unfair if the predictand of the statistical 195 

model and dynamical models are not the same. To overcome this problem, we compare our results of the STP-

BHM model with the NCEP model archived in the S2S Database for the same period of 1999-2010 from May 

to October (http://apps.ecmwf.int/datasets/data/s2s/). The NCEP hindcasts are produced by the Climate 

Forecast System version 2 (CFSv2), which is composed of land, ocean and atmosphere components. The 

system provides a 4-member ensemble run every day from 1st January 1999 to 31 December 2010. More 200 

details of the NCEP hindcasts are available at 

https://confluence.ecmwf.int/display/S2S/NCEP+Model+Description. The pentad mean precipitation amount 

forecasts of the NCEP model are generated to be consistent with the STP-BHM model. 

2.2 Methodology 

2.2.1 10-60-day ISO signal extraction 205 

2.2.1 Modeling structure 

The spatial-temporal projection based Bayesian hierarchical model (STP-BHM) falls into three parts as shown 

in Figure 2. The first part (Sect. 2.2.2) extracts intraseasonal signals of each global atmospheric field (U850, 

U200, OLR, H850, H500, and H200) and precipitation using a non-filtering method proposed by Hsu et al. 

(2015). In the second part (Sect. 2.2.3), the cell-wise correlation between ISO signals of atmospheric field and 210 

https://www.ncdc.noaa.gov/news/new-outgoing-longwave-radiation-climate-data-record
https://confluence.ecmwf.int/display/S2S/NCEP+Model+Description
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precipitation is analyzed in the six preceding pentads. The spatial-temporal coupled co-variance patterns are 

constructed for grid points where the correlation statistically significant at the 5% level. The predictor is then 

defined by summing the product of the co-variance field and atmospheric intraseasonal signals of atmospheric 

field at each preceding pentad. In the statistical modeling step (Sect. 2.2.4), both predictors and predictand 

are transformed to follow normal distributions. A Bayesian hierarchical model is then built to address the 215 

uncertainty in relationship between the predictors and predictand. The model is applied to generate 

probabilistic sub-seasonal precipitation forecasts after parameter inference. 

 

Figure 2. workflow of the spatial-temporal projection based Bayesian hierarchical model (STP-BHM). 

2.2.2 Intraseasonal signal extraction 220 

As briefly introduced in previous section, extracting meaningful ISOintraseasonal signals is important for sub-

seasonal precipitation forecasts. However, the high-frequency (unpredictable) noises exist for both raw daily 

precipitation dataatmospheric variables (U850, U200, OLR, H850, H500, and H200) and raw daily large-scale 
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circulation variables.precipitation. Band-pass filtering methods, such as the fast Fourier transformation, should 

beare always used to isolate intraseasonal low-frequency (10-60-day) signals from raw data (Zhang, 2005). 225 

However, traditional band-pass filtering method is impractical for real time applications as future information 

beyond the current date is needed. In this study, a non-filtering method proposed by Hsu et al. (2015) is used 

to extract sub-seasonal component with a period between 10 and -60 days for-day signals of both the 

ISOatmospheric variables and precipitation. Compared to traditional ISOintraseasonal signal extraction 

method, this approach is easy to implement and could be used for real time applications. The climatological 230 

annual cycle of raw daily data is first removed by subtracting 90-day low-pass filtered climatological component: 

𝑥′ = 𝑥 −  �̅�𝑋′ = 𝑋 − �̅�                                 (1) 

where 𝑥𝑋 is the areal-weightedraw daily data of atmospheric field or precipitation data for each hydroclimatic 

region or the gridded large-scale circulation variable U850, U200, OLR, H850, H500, or H200, �̅�. �̅� is the 

corresponding climatological 90-day low-pass filtered component derived by Lanczos filtering method forduring 235 

the period of 1981-2010 (Duchon, 1979). In a second step, lower-frequency signals longer than 60 days are 

removed by subtracting the last 30-day running mean,  

𝑥′′ = 𝑥′ − 𝑥 ′̅30𝑑
𝑋′′ = 𝑋′ − 𝑋′̅̅ ̅30𝑑

                            (2) 

where 𝑥 ′̅30𝑑
𝑋′̅̅ ̅30𝑑

 is the last 30-day running mean of 𝑥′𝑋′. 

The higher-frequency signals are then removed by taking a pentad mean, 240 

𝑥∗ = 𝑥′′̅̅̅̅ 5𝑑
𝑋∗ = 𝑋′′̅̅ ̅̅ 5𝑑

                                (3) 

The so-derived variables represent the 10-60-day component of ISO signals and precipitation. 

 

2.2.2 Defining potential predictors 

The so-derived variable represents the 10-60-day signals of daily atmospheric field or precipitation. The daily 245 

intraseasonal signals are then averaged to pentad data to further reduce the noise and improve the 

predictability. The pentad mean 10-60-day signal of precipitation is also referred as pentad mean precipitation 

anomalies in the following sections. 

2.2.3 Predictor definition 

To identify relevant areas of large-scale circulationatmospheric fields that could affect 10-60-day precipitation 250 

variability, we analyze the correlation between extracted ISO signals in the preceding six pentads and 10-60-

day componentsignals of atmospheric fields and precipitation for each hydroclimatic region during the period 

of 1979-2016 from May to October. Owing to the data persistence introduced by the filtering method, the 
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effective degree of freedom for each grid cell and each preceding pentad is estimated following Livezey and 

Chen (1983). The identified significantly correlated preceding ISO signals are then used to establish the 255 

Bayesian hierarchical model to produce a 0-25-day lead time precipitation forecasts.  

 

As an example, Figure 23 and Figure 4 presents the correlation between preceding pentad mean 10-60-day 

signals of U850, U200, OLROLRA, H850, H500, H200 and 10-60-day component of precipitation over Region 

1 (Inland Rivers in Xinjiang) at different lead times. At leads 25 to 20 days, the significantly correlated U850 260 

signals are mainly over the Arabian Sea and the Bay of Bengal.western Indian Ocean. The U850 signals are 

then propagating eastward toward South China Sea and Philippine SeaEquatorial Indian Ocean at the lead of 

15 to 10 days. The U850 anomalies then gradually moved eastward and northward toward West Pacific Ocean, 

Mongolia plateau, Iranian plateau, and Qinghai-Tibet plateau from the lead of 10 to 0 days. The U200 ISO 

signals are more pronounced compared to U850 signals. The spatial distribution of potential predictive U200 265 

regions is rather concentrated, indicating more robust statistical relationships. The OLR anomalies appear 

near the Indian OceanBay of Bengal at 20 to 15 day leads. At lead 5 to 0 day, the significantly correlated OLR 

signals are mainly over the East European Plain and West Siberian Plain.  

 

 270 
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Figure 3. Correlation coefficient between preceding pentad mean 10-60-day signals of U850, U200, OLRA 

and precipitation over Region 1 (Inland Rivers in Xinjiang) at different lead times during the period of 

1979~2016 from May to October. Correlation coefficients statistically significant at the 5% level are shaded. 

 

The H850 and H500 high anomalies appear near the Africaequatorial Indian Ocean and Philippine Sea at the 275 

lead of 25 days to 20 days to 15 days, and. At leads 15 to 20 days, the significantly correlated H850 signals 

are mainly over Africa. The signals gradually move eastward and northward toward Indian Ocean, Iranian 

plateau, and Central Asia from the lead of 10 to 0 days. Unlike the H850 and H500 fields that originated over 

the Africa, the H200 anomaly appears to originate from theArabian Sea, southern Indian Ocean, and West 

Pacific Ocean from leads of 25 to 15 days. At lead 10 to 0 days, the significantly correlated H200 signals are 280 

mainly over the East European Plain, West Siberian Plain, and Central Siberian plateau.  

 

Figure 4. Same as Figure 3, but for H850, H500, and H200. 

The correlation maps 

To avoid defining too many predictors, which would lead to overfitting, we define potential predictors by 285 

averaging U850, U200, OLR, H850, H500, H200 signals in the areas of significant correlations at different lead 

times. The irregular boundaries of significant correlated areas are identified by the Python package scikit-
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image (Walt et al., 2014). A total number of about one or two dozen potential predictors are defined for each 

hydroclimatic region and each preceding pentad. 

 290 

 

Figure 2. Correlation between preceding ISOpentad mean 10-60-day signals of U850, U200, OLROLRA, H850, 

H500, H200 and 10-60-day component of precipitation over Region 1 (Inland Rivers in Xinjiang)other regions 

are presented in Figures S1 to S32. 

 295 

The spatial-temporal coupled co-variance patterns are then constructed for grid point where the correlation 

statistically significant at the 5% level. The predictor is then defined by summing the product of the co-variance 

patterns and ISO signals of atmospheric field at different lead times. Correlation coefficientseach preceding 

pentad, 
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𝑐𝑜𝑣(𝑋𝑖,𝑝, 𝑌) =
1

𝑇
∑ (𝑦𝑡 − 𝐸(𝑦))(𝑥𝑖,𝑝,𝑡 − 𝐸(𝑥𝑖,𝑝))𝑇

𝑡=1                      (4) 300 

𝑋𝑝 = ∑ 𝑐𝑜𝑣(𝑋𝑖,𝑝, 𝑌) ∗ 𝑋𝑖,𝑝
𝑁
𝑖=1                              (5) 

where 𝑋𝑖,𝑝 denotes the pentad mean 10-60-day signal of 𝑝𝑡ℎ atmospheric field where the correlation 

statistically significant at the 5% level are shadedfor grid 𝑖 , 𝑝 = 1,2, ⋯ ,6 . 𝑌  denotes the pentad mean 

precipitation amount or pentad mean precipitation anomalies. 𝑇 is the total number of pentads, and 𝑁 

is the total number of grid points where the correlation statistically significant at the 5% level. Thus, there 305 

is only one predictor 𝑋𝑝 for each atmospheric field and each preceding pentad. 

 

2.2.32.2.4 Statistical modelling 

In previous steps, we defined potential predictors by analyzing the relationship between ISO signals of 

atmospheric field and 10-60-day component of precipitation. The so-derived predictors couldcan be used to 310 

predict sub-seasonal precipitation amount as well as precipitation indices (Li et al., 2016; Leung and Qian, 

2017). Here, the defined predictors are used to predict pentad mean precipitation amount as it could also be 

used for hydrological applications.well as pentad mean precipitation anomalies. Consider, for example, 

predicting pentad mean precipitation amount for the period between 1th1st May and 5th May, 1979. In this case, 

pentad mean ISO signals extractedof atmospheric field on 26th~30th April, 21th~25th April, 16th~20th April, 315 

11th~15th April, 6th~10th April, 1st~5th April 1979 are used as predictors to producegenerate precipitation 

forecasts at different lead times. A leave-one-year-out cross-validation strategy is implemented for both 

potential predictor selection,data normalization, model building, parameter inference, and verification to avoid 

any bias in skill (Michaelsen, 1987). For instance, to produce sub-seasonal precipitation forecasts in 1979, the 

predictors (preceding ISO signals) and predictand (pentad mean precipitation) during the period of 1980-2016 320 

are pooled together for statistical modelling. The forecasts for the year 1979 are then issued by models trained 

on 1980-2016, and the performance is evaluated against the observations. This cross-validation strategy 

ensures that the data used for evaluation is never used for statistical modelling. 

 

Before establishing the Bayesian hierarchical model, the predictors 𝑿𝑇 = [𝑋1 𝑋2 ⋯ 𝑋𝑃] are normalized 325 

to 𝑿𝑛𝑜𝑟𝑚
𝑇 = [𝑋𝑛𝑜𝑟𝑚,1 𝑋𝑛𝑜𝑟𝑚,2 ⋯ 𝑋𝑛𝑜𝑟𝑚,𝑃]  through the Yeo-Johnson transformation method as the input 

variables are allowed to be negative (Yeo and Johnson, 2000). Potential predictor selection 

The number of potential predictors defined previously is still too large for statistical modelling. To narrow down 

the number of potential predictors, we first use the Least Absolute Shrinkage and Selection Operator (LASSO) 
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regression to select a smaller subset of robust potential predictors. LASSO is a regularization method that 330 

reduces the absolute value of large coefficients. It has been proved to be efficient in selecting predictors and 

reducing model complexity in many fields (Hammami et al., 2012; Chu et al., 2020). A detailed description of 

LASSO could be found in (Nardi and Rinaldo, 2011; Mcneish, 2015). After that, we utilize a combined forward 

and backward variable selection process, which is also known as the stepwise regression, to further select the 

most informative predictors for each hydroclimatic region and each preceding pentad. 335 

 

Bayesian hierarchical model framework 

Before establishing the Bayesian hierarchical model, we standardize and normalize the pentad mean 

precipitation data 𝑌𝑠,𝑡 over Region 𝑠 at the lead time of 𝑡 to 𝑉𝑠,𝑡The predictand 𝑌 is normalized to 𝑌𝑛𝑜𝑟𝑚 

using the Yeo-Johonson method for pentad mean precipitation anomalies. However, the pentad mean 340 

precipitation amount is highly skewed with numerous zero values. Here, we normalize the pentad mean 

precipitation amount 𝑌 to 𝑌𝑛𝑜𝑟𝑚 using the log-sinh transformation method proposed by Wang et al. (2012). 

The zero values of pentad mean precipitation are treated as censored data. The selected preceding potential 

predictors 𝑿𝑠,𝑡
𝑇 = [𝑋1,𝑠,𝑡  𝑋2,𝑠,𝑡 ⋯ 𝑋𝑛,𝑠,𝑡] are standardized and normalized to 𝑼𝑠,𝑡

𝑇 = [𝑈1,𝑠,𝑡  𝑈2,𝑠,𝑡 ⋯ 𝑈𝑛,𝑠,𝑡] through 

the Yeo-Johnson transformation method as the input variables are allowed to be negative (Yeo and Johnson, 345 

2000). The normalization parameters are estimated using the SCE-UA (shuffled complex evolution method 

developed at The University of Arizona) method that maximize the log-likelihood function. A more detailed 

description of the log-sinh normalization method can be found in Wang et al. (2012). for both the Yeo-Johnson 

transformation method and log-sinh transformation method.  

 350 

There are many versions and variations of BHMs. In this study ,we establish the BHM model following Devineni 

et al. (2013) and Chen et al. (2014). However, theThe spatial correlation of precipitation over different regions 

is not considered here. A traditional no-pooling BHM is built for each hydroclimatic region separately. 

Meanwhile, the potential predictors have been selected using the LASSO and stepwise regression previously. 

This indicates that the predictors used for establishing the BHM are independent. Thus, it is reasonable to 355 

model the related regression coefficients in the BHM independently. The transformed pentad mean 

precipitation 𝑉𝑠,𝑡The normalized predictand 𝑌𝑛𝑜𝑟𝑚 is assumed to follow the normal distribution, 

𝑉𝑠,𝑡𝑌𝑛𝑜𝑟𝑚~𝑁(𝜇𝑠,𝑡 , 𝜎𝑠,𝑡
2 𝜇, 𝜎2)                                    (46) 

We then link the parameter 𝜇𝑠,𝑡𝜇 with the normalized predictors using a linear model, 

𝜇𝑠,𝑡 = 𝛽0,𝑠,𝑡 + ∑ 𝛽𝑖,𝑠,𝑡𝑈𝑖,𝑠,𝑡
𝑛
𝑖=1                               (5) 360 
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𝜇 = 𝛽0 + ∑ 𝛽𝑝𝑋𝑛𝑜𝑟𝑚,𝑝
𝑃
𝑝=1                               (7) 

where 𝛽𝑖,𝑠,𝑡𝛽𝑝 is the slope term for Region 𝑠 at the lead time of 𝑡 corresponding to the normalized predictor 

𝑈𝑖,𝑠,𝑡 . This indicates that the regression coefficients are modeled independently𝑋𝑛𝑜𝑟𝑚,𝑝 , and 𝑃  is the total 

number of predictors used for prediction. 

 365 

To complete the hierarchical formulation, we assume the unknown parameters, including 𝜎𝑠,𝑡,𝜎, 𝛽0,𝑠,𝑡𝛽0, ⋯, 

𝛽𝑛,𝑠,𝑡𝛽𝑃, follow non-informative priors: 

1

𝜎𝑠,𝑡
2

1

 𝜎2 ~U(0, 100)                                    (68) 

𝛽𝑖,𝑠,𝑡𝛽0~𝑁(0, 104)                                       (9) 

𝛽𝑝~𝑁(0, 104),         𝑖 = 0, ⋯ , 𝑛                         (7𝑝 = 1, ⋯ , 𝑃                         (10) 370 

This implies that the information used for posterior distribution inference is only provided by the data.  

 

Given  𝜽 = {(𝜎𝑠,𝑡,𝜎, 𝛽𝑖,𝑠,𝑡), 𝑖 = 0, ⋯ , 𝑛}𝛽0, 𝛽𝑝), 𝑝 = 1, ⋯ , 𝑃} denotes parameters in the Bayesian hierarchical 

model for Region 𝑠  at the a certain region and lead time 𝑡 , 𝑉  denotes the normalized pentad mean 

precipitation data, and 𝑼 denotes the normalized preceding predictors, the full posterior of the parameters is 375 

given as: 

𝑝(𝜽|𝑼, 𝑉) ∝ 𝑝(𝑉|𝑌𝑛𝑜𝑟𝑚 , 𝑿𝑛𝑜𝑟𝑚
𝑇 ) ∝ 𝑝(𝑌𝑛𝑜𝑟𝑚|𝜽, 𝑼)𝑿𝑛𝑜𝑟𝑚

𝑇 )𝑝(𝜽)                            (811) 

where 𝑝(𝑉|𝑌𝑛𝑜𝑟𝑚|𝜽, 𝑼)𝑿𝑛𝑜𝑟𝑚
𝑇 )  is the likelihood, and 𝑝(𝜽)  is the prior of parameters 𝜽 . As the posterior 

distributions of parameters 𝜽 are not standard distributions, it is difficult to conduct analytical integration. In 

this study, we use the R package runjags (Denwood, 2016) to calibrateestimate the parameters of the BHM. 380 

The runjags offers an interface to facilitate calibrating BHMs employ a Gibbs sampling algorithm in Just Another 

Gibbs sampler (JAGS). The initial values of model parameters 𝜽  are first randomly sampled from prior 

distributions. The parameters 𝜽  are then updated based on the full conditional distributions. We use five 

independent Markov chains in each model run, with a total number of 10, 000 iterations for each chain. The 

convergence is ensured by the potential scale reduction factor �̂� (Brooks and Gelman, 1998). An approximate 385 

convergence is diagnosed when the �̂� is less than 1.1 for all parameters. 

 

Once the parameters are sampled, the Bayesian hierarchical model can be used to forecast sub-

seasonalpredict pentad mean precipitation amount or pentad mean precipitation anomalies using preceding 

large-scale circulationISO signals. Given new preceding predictors 𝑿𝑠,𝑡
∗ = [𝑋1,𝑠,𝑡

∗ ⋯ 𝑋𝑛,𝑠,𝑡
∗ ]𝑇 at the lead time of 390 

𝑡,𝑿∗𝑇 = [𝑋1
∗ 𝑋2

∗ ⋯ 𝑋𝑃
∗], the normalized predictors 𝑼𝑠,𝑡

∗ = [𝑈1,𝑠,𝑡
∗ ⋯ 𝑈𝑛,𝑠,𝑡

∗ ]𝑇𝑿𝑛𝑜𝑟𝑚
∗𝑇 = [𝑋𝑛𝑜𝑟𝑚,1

∗  𝑋𝑛𝑜𝑟𝑚,2
∗ ⋯ 𝑋𝑛𝑜𝑟𝑚,𝑃

∗ ] are 
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found using the estimated transformation parameters during the training period. The posterior predictive 

distribution of normalized pentad mean precipitationpredictand is given as: 

 𝑉𝑠,𝑡
∗  𝑌𝑛𝑜𝑟𝑚

∗ ~𝑁(𝜇𝑠,𝑡
∗ , 𝜎𝑠,𝑡

2 𝜇∗, 𝜎2)                                  (912) 

𝜇𝑠,𝑡
∗ = 𝛽0,𝑠,𝑡 + ∑ 𝛽𝑖,𝑠,𝑡𝑈𝑖,𝑠,𝑡

∗𝑛
𝑖=1                           (10) 395 

𝜇∗ = 𝛽0 + ∑ 𝛽𝑝𝑋𝑛𝑜𝑟𝑚,𝑝
∗𝑃

𝑝=1                           (13) 

Again, the Gibbs sampling algorithm is used to obtain samples of 𝑉𝑠,𝑡
∗ 𝑌𝑛𝑜𝑟𝑚

∗  by given giving each of the 1000 

sets of parameter value sets 𝜃.values 𝜽. The samples of 𝑉𝑠,𝑡
∗ 𝑌𝑛𝑜𝑟𝑚

∗  are then back-transformed to produce 

ensemble precipitation forecasts of 𝑌𝑠,𝑡
∗  over Region 𝑠 at the lead time of 𝑡.𝑌∗. 

2.2.4 Deterministic and Probabilistic Evaluation 400 

The deterministic sub-seasonal precipitation forecast skills are evaluated using 

2.2.5 Verification 

In this study, we assess the Kling-Gupta Efficiency (KGE): 

KGE = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                        (11) 

𝑟 =
∑ (𝑦𝑖−�̅�)(𝑜𝑖−�̅� )𝑁

𝑖=1

√∑ (𝑦𝑖−�̅� )2𝑁
𝑖=1 √∑ (𝑜𝑖−�̅�)2𝑁

𝑖=1

                                                                 (12) 405 

    𝛽 =    
𝜇𝑦

𝜇𝑜

                                                                                          (13) 

   𝛾 =  
𝜎𝑦

𝜎𝑜
                                                                              (14) 

where 𝑦𝑖 is the ensemble mean forecasts for case 𝑖, 𝑖 = 1,2, ⋯ , 𝑁; 𝑜𝑖 is the corresponding observation. 𝜇𝑦 

is the forecast mean for all cases; while 𝜇𝑜 is the observation mean for all cases. 𝜎𝑓 is the standard deviation 

in ensemble mean forecasts; while 𝜎𝑜 is the standard deviation in observations. 𝑟 represents the correlation 410 

coefficient between ensemble mean forecasts and the observations, 𝛽 represents the forecast bias, and 𝛾 

measures the variability error. Compared with other evaluation metrics, the KGE offers an insight into the 

model performance as the decomposition into correlation, bias, and variability term. A full discussion of the 

KGE-statistics sees Gupta et al. (2009) and Kling et al. (2012). The KGE ranges from negative infinity to one. 

A value of one suggests that the ensemble mean forecasts are the same as the observations. 415 

 

STP-BHM model for both pentad mean precipitation amount and pentad mean precipitation anomalies. The 

Continuous Ranked Probability Score (CRPS) is used to provide an overall evaluation of the accuracy of 

probabilistic sub-seasonalforecasts for both the pentad mean precipitation forecastsamount and pentad mean 

precipitation anomalies: 420 
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CRPS𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫[𝐹𝑖(𝑦) − 𝐻(𝑦 − 𝑜𝑖)]2𝑑𝑦𝑁

𝑖=1                                         (1514) 

where 𝐹𝑖() is the cumulative distribution function of the ensemble forecasts for pentad mean precipitation 

amount or pentad mean precipitation anomalies for case 𝑖; and 𝐻() is the Heaviside step function defined as: 

𝐻(𝑦 − 𝑜𝑖) = {
0       𝑦 < 𝑜𝑖

1       y ≥ 𝑜𝑖
                            (1615) 

where 𝑜𝑖 is the corresponding observation. 425 

 

The CRPS skill score is then calculated by comparing the CRPS of ensemble forecasts with the CRPS of 

reference forecasts: 

CRPSSS =
CRPSREF−CRPS

CRPSREF
𝐶𝑅𝑃𝑆𝑆𝑆 =

𝐶𝑅𝑃𝑆𝑅𝐸𝐹−𝐶𝑅𝑃𝑆

𝐶𝑅𝑃𝑆𝑅𝐸𝐹
× 100%                                          (1716) 

The reference forecasts are generated using the Bayesian hierarchical model with no predictors used for 430 

prediction. This is also referred as the cross-validated climatology. A skill score of 100% indicates that the 

ensemble forecasts are the same as the observations, whereas a skill score of 0% suggests that the ensemble 

forecasts show no improvement over the cross-validated climatology. A negative skill score means that the 

ensemble forecasts are inferior to the cross-validated climatology. 

 435 

We also use the Brier Score (BS) to assess the capability of the STP-BHM model for predicting below-normal 

and above-normal events. The below-normal and above-normal events are defined using the terciles of pentad 

mean precipitation amount or pentad mean precipitation anomalies of cross-validated climatology. 

𝐵𝑆 =
1

𝑁
∑ (𝑝𝑖 − 𝑜𝑖)

2𝑁
𝑖=1                                                     (17) 

where 𝑝𝑖 is the forecast probability of the below- or above-normal event for case 𝑖; and 𝑜𝑖 is the observed 440 

occurrence (0 or 1). 

The Brier skill score (BSS) is then calculated as follows: 

𝐵𝑆𝑆 =
𝐵𝑆𝑅𝐸𝐹−𝐵𝑆

𝐵𝑆𝑅𝐸𝐹
× 100%                                          (18) 

where the 𝐵𝑆𝑅𝐸𝐹  is the 𝐵𝑆 of the cross-validated climatology. The 𝐵𝑆𝑆 measures the relative skill of the 

forecast compared to climatology. Like the CRPS skill score, the Brier skill score takes the value 100% for 445 

perfect forecasts and 0% for the cross-validated climatology. 

 

In this study, we use the attribute diagram is used here to evaluateassess the reliability, resolution, and 

sharpness of the probabilistic forecasts for both below-normal event and above-normal event. The attribute 
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diagram shows the observed frequencies against its forecast probabilities for a given event with binary 450 

outcomes (Hsu and Murphy, 1986). In this study, the three class events of below-, near-, and above normal is 

defined by equally dividing the cross-validated climatology into terciles. The forecast probability is binned as 5 

equal-width intervals., which are [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1.0]. The corresponding 

observed relative frequency is plotted against the mean forecast probability in each bin. The forecasts are 

reliable if the scatters are along the 45-degree diagonal. The sharpness is also shown on the attribute diagram. 455 

The forecasts are sharp if the probabilities tend to be either very high (e.g. > 90%) or very low (e.g. <10%) 

(Peng et al., 2014). TheThe size of each dot represents the fraction of forecasts that fall into a particular 

probability bin. Thus, the sharpness is indicated by the size of dots in each bin. The attribute diagram requires 

a large number of samples to draw robust conclusions. In this study, the probabilistic forecasts over the 17 

hydroclimatic regions are pooled together to increase the sample size for each lead time. 460 

 

3. Results 

3.1 Deterministic forecast skill 

Figure 3 summaries the KGE values for all regions and all lead times. Skillful deterministic sub-seasonal 

precipitation forecasts are observed mainly in regions in southeastern and southwestern China. The KGE 465 

values are above 0.2 over Region 2 (Inland Rivers in northern Tibet), Region 9 (Upper Yangtze River), Region 

11 (Southwest Rivers in Southern Tibet), Region 12 (Southwest Rivers in Yunnan), Region 13 (Yangtze River), 

and Region 16 (Pearl River) for almost all lead times. Although the KGE values are lower in Region 1 (Inland 

Rivers in Xinjiang), Region 7 (Songhua River), Region 14 (Middle Yangtze River), Region 15 (Lower Yangtze 

River), and Region 17 (Southeast Rivers), positive KGE values still can be found when the lead time is beyond 470 

10 days. This indicates that the deterministic forecasts still can provide useful in formation at longer lead times 

over these regions. Much lower predictive skills are observed in northern and northeastern regions, that is 

Region 3 (Inland Rivers in Inner Mongolia), Region 4 (Yellow River), Region 5 (Upper Yellow River), Region 6 

(Hai River), Region 8 (Liao River), and Region 10 (Huai River). The KGE values over these regions are near 

or below zero when the lead time is beyond 5 days. 475 

 

Figure 4 shows the ensemble mean forecasts during the period of 1979~2016, alongside 50% and 95% 

confidence intervals from the Bayesian hierarchical model over Region 1 (Inland Rivers in Xinjiang) at different 

lead times. The positive KGE values suggest that the established Bayesian hierarchical model can provide 
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skillful deterministic precipitation forecasts up to 25-days ahead for Region 1. The correlation coefficient 𝑟 is 480 

always above 0.35, the biases are below 20% for all lead times. However, we should also note that the 

variability ratio 𝛾  is below 0.5 when the lead time is beyond 5 days. This suggests that the observed 

precipitation variability is underestimated for ensemble mean forecasts. 

 

 485 

Figure 3. Kling-Gupta Efficiency of Pentad mean precipitation forecasts at different lead times over 17 

hydroclimatic regions during the boreal summer monsoon. 
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Figure 4. Pentad mean precipitation forecasts at different lead times over Region 1 (Inland Rivers in Xinjiang) 490 

during the boreal summer monsoon from 1979 to 2016. The ensemble mean forecasts are shown by the red 

line, observations by the black line, alongside 50% (shaded in blue) and 95% (shaded in powderblue) 

confidence intervals. CI = confidence interval. 

 

3.2 Probabilistic forecast skill 495 

The positive CRPS skill scores shown in Figure 5 suggest that the Bayesian hierarchical model is able to 

provide skillful probabilistic forecasts for all regions and all lead times. The CRPS skill scores are mostly over 

10% over regions where positive KGE values are observed, including Region 2 (Inland Rivers in northern 

Tibet), Region 9 (Upper Yangtze River), Region 11 (Southwest Rivers in Southern Tibet), Region 12 (Southwest 

Rivers in Yunnan), Region 13 (Yangtze River), and Region 16 (Pearl River). Although the KGE values are 500 

negative over Region 3 (Inland Rivers in Inner Mongolia), Region 4 (Yellow River), Region 5 (Upper Yellow 

River), Region 6 (Hai River), Region 8 (Liao River), and Region 10 (Huai River) when the lead time is beyond 
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5 days, the positive CRPS skill scores suggest that the probabilistic forecasts still can provide valuable 

information compared to climatological forecasts at longer lead times. 

 505 

Figure 5. Continuous Ranked Probability Skill Score of Pentad mean precipitation forecasts at different lead 

times over 17 hydroclimatic regions during the boreal summer monsoon. 

 

3.1 Attribute diagrams of Forecast skill of pentad mean precipitation amount 

Figure 5 presents the cross-validated CRPS skill scores for sub-seasonal forecasts of pentad mean 510 

precipitation amount at different lead times (lag times). Positive CRPS skill scores are found over all 

regions and all lead times, indicating that the STP-BHM model outperforms the cross-validated 

climatological forecasts. The CRPS skill scores are mostly over 10% in southern China even when the 

lead time is beyond 10 days. On the contrary, the performance of the STP-BHM model is relatively poorer 
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in northern China with CRPS skill scores ranging from 5% to 10% at the same lead time. 515 

 

Figure 5. The cross-validated CRPS skill scores of the sub-seasonal STP-BHM model for pentad mean 

precipitation probabilisticamount forecasts at different lead times during the period of 1979-2016 from May 

to October. 

 520 

Figure 6 illustrates the brier skill scores of the STP-BHM model for both below-normal and above-normal 

events at different lead times. As can be seen in Fig. 6, the brier skill scores are mostly above 15% for 

both the below-normal and above-normal events. This indicates that the STP-BHM model can provide 

skillful sub-seasonal forecasts for extreme events as well. Furthermore, the brier skill scores are most 

ranging from 20% to 25% in southern China at leads of 20-25 days for below-normal events. The STP-525 

BHM model shows lower forecast skills for above-normal events, which the brier skill scores are mostly 

between 15% and 20%. This indicates that the below-normal events are more predictable compared to 

the above-normal events. 
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Figure 6. The Brier skill scores of the STP-BHM model for the prediction of below-normal and above-530 

normal events of pentad mean precipitation amount at different lead times during the period of 1979-2016 

from May to October. 

 

To help identify the main sources of sub-seasonal precipitation predictability, we also establish the STP-

BHM model for each atmospheric field separately. Figure 7 compares the CRPS skill scores of pentad 535 

mean precipitation forecasts with different predictors. In general, U850, U200, H850, and H500 show 

higher forecast skill compared to OLRA and H200 for almost all hydroclimatic regions and lead times. 

This suggests that the ISO signals of these atmospheric fields contribute more to the overall forecast skill. 

Compared to the STP-BHM model built with only one predictor, the forecast skill is further improved when 

all ISO signals of atmospheric fields are used. 540 
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Figure 7. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean precipitation amount 

forecasts with different predictors (U850, U200, OLRA, H850, H500, H200). ALL denotes that the ISO signals 

of all atmospheric fields are used as predictors. 

 545 

The attribute diagrams of sub-seasonal forecasts of pentad mean precipitation amount for below-normal 

and above-normal event at different lead times are shown in Figure 68. Most points fall near the 1:1 line 

for allboth below-normal and above-normal events andat all lead times, indicating. This suggests that the 

probabilistic forecast distributions are reliable. The results also suggest that the probabilistic forecasts are 

sharp at all lead times, especially for below-normal and above normal categoriesHowever, the forecast 550 

probabilities deviate slightly from the 1:1 line at higher forecast probabilities for above-normal event, 

indicating that the sharpness for above-normal event should be further improved. 
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Figure 6. Attribute8. The attribute diagram of the STP-BHM model for the prediction of below-normal and 555 

above-normal events of pentad mean precipitation forecasts during the boreal summer monsoon for tercile 

based categoriesamount at different lead times. Forecast probability is binned with width of 0.2, and the. 

The size of each dot represents the dots indicatesfraction of forecasts that fall into a particular probability 

bin. 

 560 

Figure 9 compares the sharpness of CRPS skill scores of the STP-BHM model and the NCEP model from 

May to October during the period of 1999~2010. Although the NCEP model is not the top scoring model 

for sub-seasonal precipitation forecasts, the hindcast frequency of the NCEP model makes it able to 

generate pentad mean precipitation forecasts for the same period as the STP-BHM model from 1999 to 

2010. It is not surprise that the NCEP model outperforms the STP-BHM model when the lead time is 565 

within 5 days. However, we should note that the STP-BHM model shows much higher probabilistic 

forecastsforecast skill compared to the NCEP model at longer lead times. Positive CRPS skill scores are 

observed for the STP-BHM model over most hydroclimatic regions, whereas the skill scores are mostly 

negative for the NCEP model. 
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 570 

Figure 9. The comparison of the CRPS skill scores of the STP-BHM model and the NCEP model during 

the period of 1999~2010 from May to October. 

3.2 Forecast skill of pentad mean precipitation anomalies 

The cross-validated CRPS skill scores for sub-seasonal forecasts of pentad mean precipitation anomalies 

are shown in Figure 10. The STP-BHM model shows positive CRPS skill scores over most hydroclimatic 575 

regions, except Inland rivers in Xinjiang (Region 1) and Inland rivers in northern Tibet (Region 2). This 

may be explained by the relatively lower variability of pentad mean precipitation anomalies in these 

regions. In addition, the STP-BHM model shows higher forecast skill in eastern China with CRPS skill 

scores range from 10% to 15%. In comparison, the forecast skill in Inland Rivers in Inner Mongolia 

(Region 3), Upper Yellow River (Region 5), Upper Yangtze River (Region 9), Southwest rivers in southern 580 

Tibet (Region 11), Southwest rivers in Yunnan (Region 12), Yangtze River (Region 13), and Pearl River 

(Region 16) are lower. Similar results are also found by Zhu and Li (2017a), which the southwestern 

China shows lowest forecast skill compared to other regions. 
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Figure 10. Same as Figure 5, but for pentad mean precipitation anomalies. 585 

 

The brier skill scores of pentad mean precipitation anomalies for below-normal and above-normal events 

are presented in Figure 11. Positive brier skill scores are found over all regions and all lead times, 

indicating that the STP-BHM model outperforms the cross-validated climatological forecasts for extreme 

events. Meanwhile, the differences of brier skill scores in different hydroclimatic regions are small, where 590 

the brier skill scores are mostly ranging from 5%~15% for both below-normal and above-normal events. 
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Figure 11. Same as Figure 6, but for pentad mean precipitation anomalies. 

Figure 12 compares the CRPS skill scores of pentad mean precipitation anomalies with different 

predictors. Overall, the STP-BHM model with OLRA used as predictor shows higher forecast skill 595 

compared to other predictors for almost all hydroclimatic regions and lead times. This suggests that the 

OLRA contributes most to the overall forecast skill of pentad mean precipitation anomalies. 
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Figure 12. Same as Figure 7, but for pentad mean precipitation anomalies. 

 600 

Shown in Figure 13 is the attribute diagram of sub-seasonal forecasts of pentad mean precipitation 

anomalies for below-normal and above-normal event at different lead times. Most points fall close to the 

1:1 line for both below-normal and above-normal events. This suggests that the probabilistic forecast 

distributions are reliable for pentad mean precipitation anomalies as well. The sharpness of STP-BHM 

model is also observed especially for below-normal event. 605 



 

32 

 

 

Figure 13. Same as Figure 8, but for pentad mean precipitation anomalies. 

 

4. Discussion 

4.1 Forecast skill and possible mechanism 610 

In this study, we first define potential predictors by analyzinganalyze the relationsrelationship between pentad 

mean precipitation and preceding 10-60-day ISO large-scale circulation signals. Robust predictors of 

atmospheric fields and precipitation. The coupled patterns are identified using the Lasso regressionextracted 

and stepwise regression approaches.the corresponding projection coefficients are defined as predictors. A 

Bayesian hierarchical model is then established and applied to predict sub-seasonal precipitation for each 615 

hydroclimatic region. Our results demonstrate that the Bayesian hierarchical model could provide skillful 

deterministic sub-seasonalboth pentad mean precipitation amount and pentad mean precipitation anomalies 

over China. Our results suggest that the STP-BHM model can provide skillful and reliable probabilistic 

forecasts over southeastern and southwesternfor both pentad mean precipitation amount and pentad mean 

precipitation anomalies at a lead of 20-25 days over most hydroclimatic regions in China. However, the 620 
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deterministic predictive skills over northeastern China are much lower. The decomposition of KGE 

valuesspatial patterns of skill scores suggest that the intraseasonal variabilitySTP-BHM model is 

underestimated in these regionsmore skillful over southern China. This may be explained by the different 

characteristics of intraseasonal variability and different possible mechanism over different hydroclimatic 

regions. Wang (2007) analyzed the precipitation variability from April to September over China, and the results 625 

suggested that the seasonal component accounted for nearly 70% of the total variability over northeastern 

China. The intraseasonal (10-90 days) component only accounted for nearly 7% of the total variability, which 

indicate that the intraseasonal precipitation over these regions have no significant frequency peak. In 

comparison, the sub-seasonal component accounted for over 20% of the total variability in southeastern and 

southwestern China. Ouyang and Liu (2020) also found that the boreal summer monsoon intraseasonal 630 

variability of precipitation over the lower Yangtze River basin was mainly dominated by the relatively low-

frequency 12-20-day variability and high-frequency 8-12-day variability. Wang and Duan (2015) demonstrated 

that the Quasi-biweekly oscillation (QBWO, 10-20 days oscillation) was the dominant mode of intraseasonal 

variability of summer precipitation over the Tibetan Plateau. The relations between atmospheric intraseasonal 

oscillation and the low-frequency variability of precipitation vary from region to region as well. Ren and Shen 635 

(2016) suggested that the impact of tropical atmospheric intraseasonal oscillation on precipitation were more 

significant in regions in southern China and the Tibetan Plateau areas during the boreal summer.  

 

Compared to deterministic forecasts, the probabilistic forecasts are more promising, especially at longer lead 

times. The CRPS skill scores are over 10% in southeastern and southwestern China when the lead time is 640 

beyond 10 days. The skill scores still reach a value of over 5% in other hydroclimatic regions. In contrast, the 

CRPS skill scores of the BJP calibrated sub-seasonal precipitation forecasts were almost 0% at the lead time 

of 10-30 days (Li et al., 2020). This suggests that the Bayesian hierarchical model could provide useful forecast 

information at longer lead times when preceding ISO signals are used as predictors. However, we should also 

note that the highest CRPS skill scores of the Bayesian hierarchical model are lower than 30% when the lead 645 

time is between 0-10 days, while that of the calibrated forecasts are over 50%. This indicates that the calibrated 

forecasts are more skillful for short to medium range precipitation forecasts.We should also note that the CRPS 

skill scores of the STP-BHM model are lower than NCEP dynamical models at short lead times. The Calibration, 

Bridging, and Merging (CBaM) method, which makes the best use of GCM outputs, has been proved to be 

efficient for improving seasonal precipitation over many regions (Strazzo et al., 2019; Schepen and Wang, 650 

2013; Peng et al., 2014). Recently, Specq and Batté (2020) proposed a similar statistical-dynamical approach 
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to improve sub-seasonal precipitation forecasts over the southwest tropical Pacific. In the future, the statistical 

forecasts generated from lagged atmospheric indices should be included in the calibrated forecasts to further 

improve sub-seasonal precipitation forecast skillsskill. 

 655 

4.2 Limitations and future work 

In this study, the potential predictors are identified correlation between ISO signals of atmospheric fields and 

precipitation is analyzed using the whole record in spite ofdespite the cross-validation strategy used for 

statistical modelling. This may introduce artificial skill into the modelsmodel to some extent. However, defining 

potential predictorsthe correlation analysis for each step of the cross-validation is difficult in practice. The 660 

potential predictors were defined by averaging signals in the areas of significant correlations with large extent 

for each hydroclimatic region and lead time in this study. Nevertheless, this procedure was time consuming. 

Although we identified the irregular boundaries of significant correlated areas automatically by the Python 

package scikit-image (Walt et al., 2014), we should note the correlation did not equal causation. We carefully 

selected potential predictors by analyzing the possible mechanism of sub-seasonal precipitation for each 665 

hydroclimatic region and each lead time. In addition, the definition of potential predictors for each step of the 

cross-validation is likely to yield similar results. Here, we analyzed We analyze the spatial patterns of 

correlations between laggedpreceding ISO signals of U850 and filtered precipitation over Region 1 at the lead 

time of 0-day for each stepthe period of the leave-one-year out cross-validation.1979-2016 and 1980-2016 

(Figure S33). The results showed littleshow small variability compared tobetween the cross-validated 670 

correlation patterns shown in Figure 2. Theand the whole-period correlation. In addition, the cross-validation 

strategy used in the statistical modelling procedure couldcan also reduce the chance of overfitting (Vehtari and 

Lampinen, 2002; Delsole and Shukla, 2009).  

 

Another limitation of this study is the treatment of zero values adopted in the statistical modelling procedure. 675 

We treatedtreat the zero values as censored data, which wasis also referred as “explicit” approach in 

Mcinerney et al. (2019). Although this treatment performed well in “low-ephemeral” and “mid-ephemeral” 

catchments, the performance of this “explicit” approach was poor in “high-ephemeral” (> 50% zero flows) 

catchments. Further development is required to overcome this problem. The copula functions are flexible in 

choosing marginal distributions, and have been widely used in hydrological simulations in recent years (Zhang 680 

and Singh, 2007; Vernieuwe et al., 2015; De Michele and Salvadori, 2003). Compared to the Bayesian 
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statistics we used in this study, the copula functions are more general and the normalization may not be 

required when the skewed distributions are used as the marginal distribution of precipitation. This may provide 

a possible solution to overcome the problems caused by the large amount of zero values.  

 685 

We built the Bayesian hierarchical model for each hydroclimatic region separately. However, the spatial 

patterns of precipitation have not been considered yet. The spatial Bayesian hierarchical model, which is able 

tocan capture the spatial dependence of precipitation between different regions, could be used to provide sub-

seasonal precipitation forecasts with spatial coherence (Reza Najafi and Moradkhani, 2013; Bracken et al., 

2016). An alternative way to reconstruct the spatial patterns of probabilistic precipitation forecasts is to use the 690 

Schaake Shuffle method or Ensemble Copula Coupling method (Roman et al., 2013; Clark et al., 2004). Higher 

spatial or temporal resolution of precipitation forecasts are also needed for sub-seasonal streamflow forecasts. 

However, our previous studies indicated that post-processed daily precipitation forecasts from GCMs are of 

low accuracy when the lead time is beyond 10-14 days. In this study, the large-scale ISO signals was only 

used to predict pentad mean precipitation as the daily precipitation noise was too large.  (Li et al., 2020). In 695 

this study, the large-scale ISO signals are only used to predict pentad mean precipitation as the noise of daily 

precipitation is too large. Spatial or temporal disaggregation may be required in the future to provide daily 

precipitation forecasts as inputs for hydrological models.  

 

5. Conclusions 700 

SubAccurate and reliable sub-seasonal precipitation forecasts are difficult as the predictability from 

atmospheric initialization is lost after two weeks, while the slowly varying boundary conditions do not have 

substantial impact at such a time scale. The intraseasonal oscillation (ISO) is considered as one of the leading 

sources of sub-seasonal predictability. However, the relationshipsrelationship between ISOatmospheric 

intraseasonal signals and precipitation areis of high uncertainty. In this study, we first defined potential 705 

predictors by analyzinganalyze the correlationscorrelation between preceding ISO signals atmospheric 

intraseasonal signals (U850, U200, OLRA, H850, H500, and H200) and precipitation. The spatial-temporal 

coupled co-variance patterns are constructed for each hydroclimatic region and each lead time. The LASSO 

and stepwise regression approaches were used to narrow downgrid points where the number of potential 

predictors.correlation statistically significant at the 5% level. The predictors are then defined by summing the 710 

product of the co-variance fields and ISO signals of atmospheric field. A Bayesian hierarchical model was then 
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established to predict sub-seasonal (BHM) is then built to address the uncertainty in the relationship between 

the ISO signals of atmospheric fields and precipitation during the boreal summer monsoon season. The . The 

posterior distributions of the model parameters are sampled using a Gibbs sampling algorithm. The STP-BHM 

model is used to predict both pentad mean precipitation amount and pentad mean precipitation anomalies 715 

after parameter inference. The performance wasis evaluated through a leave one-year -out cross-validation 

strategy for both deterministic and probabilistic forecasts. 

 

Our results suggested that the statistical model we built in this study could provide skillful deterministic sub-

seasonal precipitation forecasts over southeastern and southwestern hydroclimatic regions at a lead time of 720 

20-25 days. However, the deterministic forecast skills are much lower over northeastern China, partly owing 

to the underestimation of intraseasonal variability in these regions. The probabilistic forecasts are more 

promising, especially at longer lead times. The skill scores and attribute diagrams demonstrated that the 

statistical model was able to provide skillful and reliable sub-seasonal precipitation forecasts for all 

hydroclimatic regions from 0-day to 25-day leads compared to climatological forecasts. This suggests that the 725 

probabilistic forecasts still could provide useful information by addressing the uncertainties of relationships 

between ISO signals and precipitation at sub-seasonal time scalesOur results suggest that the STP-BHM 

model we built in this study can provide skillful and reliable probabilistic forecasts for both pentad mean 

precipitation amount and pentad mean precipitation anomalies at a lead of 20-25 days over most hydroclimatic 

regions in China when all ISO signals of atmospheric fields are used as predictors. In addition, the STP-BHM 730 

model shows useful predictive skill for below-normal and above-normal events as well, and positive Brier skill 

scores are observed at all lead times. The spatial patterns of skill scores suggest that the STP-BHM model is 

more skillful over southern China compared to other regions. The STP-BHM model outperforms the NCEP 

S2S dynamical model when the lead time is beyond 5 days. To help identify the main sources of sub-seasonal 

precipitation predictability, we also establish the STP-BHM model for U850, U200, OLRA, H850, H500, and 735 

H200, separately. The results suggest that the ISO signals of U850, U200, H850, and H500 contribute more 

to overall forecast skills for pentad mean precipitation amount predictions. In comparison, the OLRA 

contributes most to the forecast skill for predictions of pentad mean precipitation anomalies. 

 

In this study, the spatial patterns between ISO signals of. 740 

 

In this study, the large-scale circulation ISO signals were extracted from the zonal wind at 850 and 200 hPa, 
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Outgoing Longwave Radiation, and the geopotential height at 850, 500, and 200 hPa. are extracted and used 

to define predictors. Other sources of sub-seasonal predictability, such as soil moisture, snow cover, and 

stratosphere-troposphere interaction, couldwill be included in the Bayesian hierarchical model to further 745 

improve sub-seasonal precipitation forecasts. The Calibration, Bridging, and Merging (CBaM) method 

couldcan also be investigated at sub-seasonal time scale to further improve the forecast skillsskill (Schepen 

and Wang, 2013; Schepen et al., 2014). 
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