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Editor decision: 

Dear authors, 

Thank you for responding to the two reviews. You have responded to most comments carefully. Because the 

comments are substantial and both reviewers suggest major revisions before the manuscript can be 

reconsidered, your revised manuscript will be sent to the referees again. 

 

Please revise the manuscript accordingly. I look forward to receiving your revised manuscript. 

 

Sincerely, 

Yi He, HESS Editor 

 

We are grateful to you for the kind decision. We have conducted a thorough revision to improve the manuscript 

as suggested by the insightful and constructive comments of the reviewers. The point-by-point responses are 

provided in the following. 
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Responses to Comments on “Sub-seasonal precipitation forecasts using preceding atmospheric intraseasonal 

oscillation signals in a Bayesian perspective” (Referee #1) 

Anonymous Referee #1 Received and published on 28 March 2022. 

Our responses are in blue and revisions are in blue and italics, with the reviewer’s comments shown as normal 

text. 

 

General comment 

The authors established a Bayesian hierarchical model (BHM) to predict the 10-60d precipitation for 17 

hydroclimatic regions over China during the boreal summer monsoon season (May to October) by using the 

previous atmospheric intraseasonal signals. Both deterministic and probabilistic evaluations showed that the 

BHM provides skillful subseasonal forecasts over southeastern and southwestern hydroclimatic regions at a 

lead time of 20-25 days while the skills are poor over northeastern China, owing to the underestimation of 

intraseasonal variability. 

The authors have conducted numerous calculations and employed many different statistical analysis methods. 

However, the explanation for their choice of the calculation and methods are deficient. Moreover, I cannot tell 

whether the BHM proposed in this paper show any superior skills than other statistical models or even 

dynamical S2S models. From this point of view, I incline to reject the manuscript, but I give an opportunity to 

the authors to improve the manuscript. 

The authors thank the referee’s valuable comments. As introduced in the introduction section, several 

statistical models have been developed to generate sub-seasonal precipitation forecasts. The Spatial-

Temporal Projection Model (STPM), which extracts the coupled patterns of predictors and predictand, has 

been widely used in recent years (Hsu et al., 2020; Zhu and Li, 2017a, b, c, 2018). The STPM1 is based on 

the singular value decomposition (SVD) analysis, while the STPM2 is constructed by analyzing the spatial-

temporal coupled co-variance patterns between predictors and predictand (Figure S1). A more detailed 

description of STPM1 and STPM2 can be found in Hsu et al. (2015). 

 

Figure S1. Major steps of STPM1 and STPM2 prediction model (Hsu et al., 2015). 

However, we should note that the uncertainty of sub-seasonal precipitation forecasts may be underestimated 

in STPM models. In previous studies, an optimal ensemble (OE) strategy was applied to pick up best predictors 

and generate probabilistic forecasts (Zhu and Li, 2017a; Zhu et al., 2015). Nevertheless, the number of best 

predictors was always limited. Further statistical assumptions were required to interpret limited ensembles as 

probabilistic forecasts.  
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Compared to OE-based probabilistic forecasts, the Bayes-theorem based statistical models are more flexible 

and more efficient for assessing multiple sources of uncertainties. The Bayes-theorem based models have 

been widely used for various aspects, and the predictive probability distributions could be generated through 

Markov chain Monte Carlo sampling algorithms. Thus, we develop a STP-BHM probabilistic forecast model by 

taking full advantages of both STPM and Bayesian statistical modelling. We no longer define potential 

predictors by averaging ISO signals in the areas of significant correlations. Instead, the predictors are defined 

by extracting the coupled patterns between atmospheric intraseasonal oscillation signals and precipitation, 

which is also known as STPM2 in Fig. S1. The BHM model is then built to address the parameter uncertainty 

in the transfer function shown in Fig. S1. 

 

We added the spatial-temporal projection part in the predictor definition section from L. 251 to L. 260 as follows: 

The spatial-temporal coupled co-variance patterns are then constructed for grid point where the correlation 

statistically significant at the 5% level. The predictor is then defined by summing the product of the co-variance 

patterns and ISO signals of atmospheric field at each preceding pentad, 

𝑐𝑜𝑣ሺ𝑋,, 𝑌ሻ ൌ
ଵ

்
∑ ሺ𝑦௧ െ 𝐸ሺ𝑦ሻሻሺ𝑥,,௧ െ 𝐸ሺ𝑥,ሻሻ்

௧ୀଵ                            (4) 

𝑋 ൌ ∑ 𝑐𝑜𝑣ሺ𝑋,, 𝑌ሻ ∗ 𝑋,
ே
ୀଵ                                      (5) 

where 𝑋,  denotes the pentad mean 10-60-day signal of 𝑝௧  atmospheric field where the correlation 

statistically significant at the 5% level for grid 𝑖, 𝑝 ൌ 1,2, ⋯ ,6. 𝑌 denotes the pentad mean precipitation amount 

or pentad mean precipitation anomalies. 𝑇 is the total number of pentads, and 𝑁 is the total number of grid 

points where the correlation statistically significant at the 5% level. Thus, there is only one predictor 𝑋 for 

each atmospheric field and each preceding pentad. 

 

We also rewritten the statistical modelling section to be consistent with the predictor definition from L. 262 to 

L. 324 as follows: 

In previous steps, we defined predictors by analyzing the relationship between ISO signals of atmospheric field 

and precipitation. The so-derived predictors can be used to predict pentad mean precipitation amount as well 

as pentad mean precipitation anomalies. Consider, for example, predicting pentad mean precipitation amount 

for the period between 1st May and 5th May, 1979. In this case, pentad mean ISO signals of atmospheric field 

on 26th~30th April, 21th~25th April, 16th~20th April, 11th~15th April, 6th~10th April, 1st~5th April 1979 are used as 

predictors to generate precipitation forecasts at different lead times. A leave-one-year-out cross-validation 

strategy is implemented for both data normalization, model building, parameter inference, and verification to 

avoid any bias in skill (Michaelsen, 1987). For instance, to produce sub-seasonal precipitation forecasts in 

1979, the predictors (preceding ISO signals) and predictand (pentad mean precipitation) during the period of 

1980-2016 are pooled together for statistical modelling. The forecasts for the year 1979 are then issued by 

models trained on 1980-2016, and the performance is evaluated against the observations. This cross-

validation strategy ensures that the data used for evaluation is never used for statistical modelling. 

 

Before establishing the Bayesian hierarchical model, the predictors 𝑿் ൌ ሾ𝑋ଵ 𝑋ଶ ⋯ 𝑋ሿ are normalized to 

𝑿
் ൌ ൣ𝑋,ଵ 𝑋,ଶ ⋯ 𝑋,൧ through the Yeo-Johnson transformation method as the input variables 

are allowed to be negative (Yeo and Johnson, 2000). The predictand 𝑌 is normalized to 𝑌 using the Yeo-
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Johonson method for pentad mean precipitation anomalies. However, the pentad mean precipitation amount 

is highly skewed with numerous zero values. Here, we normalize the pentad mean precipitation amount 𝑌 to 

𝑌  using the log-sinh transformation method proposed by Wang et al. (2012). The normalization 

parameters are estimated using the SCE-UA (shuffled complex evolution method developed at The University 

of Arizona) method that maximize the log-likelihood function for both the Yeo-Johnson transformation method 

and log-sinh transformation method.  

 

There are many versions and variations of BHMs. In this study ,we establish the BHM model following Devineni 

et al. (2013) and Chen et al. (2014). The spatial correlation of precipitation over different regions is not 

considered here. A traditional no-pooling BHM is built for each hydroclimatic region separately. The normalized 

predictand 𝑌 is assumed to follow the normal distribution, 

𝑌~𝑁ሺ𝜇, 𝜎ଶሻ                                              (6) 

We then link the parameter 𝜇 with the normalized predictors using a linear model, 

𝜇 ൌ 𝛽  ∑ 𝛽𝑋,

ୀଵ                                           (7) 

where 𝛽 is the slope term corresponding to the normalized predictor 𝑋,, and 𝑃 is the total number of 

predictors used for prediction. 

 

To complete the hierarchical formulation, we assume the unknown parameters, including 𝜎, 𝛽, ⋯, 𝛽, follow 

non-informative priors: 
ଵ

 ఙమ ~𝑈ሺ0, 100ሻ                                           (8) 

𝛽~𝑁ሺ0, 10ସሻ                                           (9) 

𝛽~𝑁ሺ0, 10ସሻ,         𝑝 ൌ 1, ⋯ , 𝑃                            (10) 

This implies that the information used for posterior distribution inference is only provided by the data.  

 

Given  𝜽 ൌ ሼሺ𝜎, 𝛽 , 𝛽ሻ, 𝑝 ൌ 1, ⋯ , 𝑃ሽ denotes parameters in the Bayesian hierarchical model for a certain 

region and lead time, the full posterior of the parameters is given as: 

𝑝ሺ𝜽|𝑌, 𝑿
் ሻ ∝ 𝑝ሺ𝑌|𝜽, 𝑿

் ሻ𝑝ሺ𝜽ሻ                            (11) 

where 𝑝ሺ𝑌|𝜽, 𝑿
் ሻ is the likelihood, and 𝑝ሺ𝜽ሻ is the prior of parameters 𝜽. As the posterior distributions 

of parameters 𝜽 are not standard distributions, it is difficult to conduct analytical integration. In this study, we 

use the R package runjags (Denwood, 2016) to estimate the parameters of the BHM. The runjags offers an 

interface to facilitate calibrating BHMs employ a Gibbs sampling algorithm in Just Another Gibbs sampler 

(JAGS). The initial values of model parameters 𝜽 are first randomly sampled from prior distributions. The 

parameters 𝜽 are then updated based on the full conditional distributions. We use five independent Markov 

chains in each model run, with a total number of 10, 000 iterations for each chain. The convergence is ensured 

by the potential scale reduction factor 𝑅  (Brooks and Gelman, 1998). An approximate convergence is 

diagnosed when the 𝑅 is less than 1.1 for all parameters. 

 

Once the parameters are sampled, the Bayesian hierarchical model can be used to predict pentad mean 

precipitation amount or pentad mean precipitation anomalies using preceding ISO signals. Given new 

preceding predictors 𝑿∗் ൌ ሾ𝑋ଵ
∗ 𝑋ଶ

∗ ⋯ 𝑋
∗ሿ, the normalized predictors 𝑿

∗் ൌ ൣ𝑋,ଵ
∗  𝑋,ଶ

∗ ⋯ 𝑋,
∗ ൧ are 



5 

 

found using the estimated transformation parameters during the training period. The posterior predictive 

distribution of normalized predictand is given as: 

 𝑌
∗ ~𝑁ሺ𝜇∗, 𝜎ଶሻ                                         (12) 

𝜇∗ ൌ 𝛽  ∑ 𝛽𝑋,
∗

ୀଵ                                      (13) 

Again, the Gibbs sampling algorithm is used to obtain samples of 𝑌
∗  by giving each of the 1000 sets of 

parameter values 𝜽. The samples of 𝑌
∗  are then back-transformed to produce ensemble precipitation 

forecasts of 𝑌∗. 

 

We also agree that it is of great importance to compare the skill scores of STP-BHM model we built in this 

study and the raw dynamical models. However, we note that the configurations of the statistical model are not 

the same as the dynamical models. The dynamical models are not always able to provide pentad mean 

precipitation forecasts for the same period as the STP-BHM model because the hindcast initial time, hindcast 

period, and hindcast frequency are different (Table 1). The comparison may be unfair if the predictand of the 

statistical model and dynamical models are not the same.  

 

To overcome this problem, we have compared our results of the STP-BHM model with the NCEP model in the 

S2S Database. Although the NCEP model is not the top scoring model for sub-seasonal precipitation forecasts 

(De Andrade et al., 2019), the hindcast frequency of the NCEP model makes it able to generate pentad mean 

precipitation forecasts for the same period as the BHM model from 1999 to 2010 (Table S1). 

Table S1. Configuration of S2S model hindcasts 

S2S 
model 

Time range 
(days) 

Spatial resolution 
Hindcast 
frequency

Hindcast 
period

Ensemble 
size 

Ocean 
coupling

ECMWF* 46 
Tco639/Tco319, 

L91 
2/week Past 20 years 11 

Yes 

NCEP 44 T126, L64 Daily 1999-2010 4 Yes
JMA 33 TL479/TL319, L100 3/month 1981-2010 5 No

KMA* 60 N216, L85 4/month 1991-2010 3 Yes
UKMO* 60 N216, L85 4/month 1993-2016 7 Yes
CNRM 61 T255, L91 2/month 1993-2014 15 Yes
ECCC* 32 0.45°X0.45°, L40 Weekly 1998-2017 4 No

ISAC 31 0.75°X0.56°, L54 
Every 5 

days
1981-2010 5 

No 

BOM 62 T47, L17 6/month 1981-2013 33 Yes
CMA 60 T106, L40 Daily 1994-2014 4 Yes

HMCR* 61 1.1°X1.4°, L28 Weekly 1985-2010 10 No
*Hindcasts are produced on the fly (model version is not fixed) 

 

We added the reason for the choice of the NCEP model from L. 165 to L. 175 as follows: 

The STP-BHM model we built in this study is compared to the dynamical models to provide a benchmark for 

sub-seasonal precipitation forecasts. However, the dynamical models are not always able to provide pentad 

mean precipitation forecasts for the same period as the STP-BHM model as the hindcast initial time, hindcast 

period, and hindcast frequency are different. The comparison may be unfair if the predictand of the statistical 

model and dynamical models are not the same. To overcome this problem, we compare our results of the 

STP-BHM model with the NCEP model archived in the S2S Database for the same period of 1999-2010 from 

May to October (http://apps.ecmwf.int/datasets/data/s2s/). The NCEP hindcasts are produced by the Climate 

Forecast System version 2 (CFSv2), which is composed of land, ocean and atmosphere components. The 

system provides a 4-member ensemble run every day from 1st January 1999 to 31 December 2010. More 
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details of the NCEP hindcasts are available at 

https://confluence.ecmwf.int/display/S2S/NCEP+Model+Description. The pentad mean precipitation 

amount forecasts of the NCEP model are generated to be consistent with the STP-BHM model. 

 

We added the comparison of the STP-BHM model and the NCEP model from L. 418 to L. 426 as follows: 

Figure 9 compares the CRPS skill scores of the STP-BHM model and the NCEP model from May to October 

during the period of 1999~2010. Although the NCEP model is not the top scoring model for sub-seasonal 

precipitation forecasts, the hindcast frequency of the NCEP model makes it able to generate pentad mean 

precipitation forecasts for the same period as the STP-BHM model from 1999 to 2010. It is not surprise that 

the NCEP model outperforms the STP-BHM model when the lead time is within 5 days. However, we should 

note that the STP-BHM model shows much higher probabilistic forecast skill compared to the NCEP model at 

longer lead times. Positive CRPS skill scores are observed for the STP-BHM model over most hydroclimatic 

regions, whereas the skill scores are mostly negative for the NCEP model. 

 

Figure 9. The comparison of the CRPS skill scores of the STP-BHM model and the NCEP model from May to 

October during the period of 1999~2010. 

 

Major comments: 

1. The intraseasonal variability and the intraseasonal oscillation are different terms. The authors focus on the 

prediction of intraseasonal precipitation (10-60d) over China during summer (May to October). Although the 

selected predictors are atmospheric intraseasonal signals, no specific BSISO or MJO pattern can be found in 

the previous correlation maps. The title may be more consistent with the content after removing “oscillation”. 
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Thanks for this comment. We have removed the word "oscillation", and the title has been justified as follows: 

Probabilistic sub-seasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a 

Bayesian perspective 

 

2. The selected intraseasonal signals and the physical processes of their influencing on precipitation over 

China should be provided. 

Thanks for this comment. We have provided the intraseasonal signals and physical processes of their 

influencing on precipitation over China as supplementary file in the revised manuscript in Figures S1 to S32.  

 

3. For each region and each pentad from May to October, a BHM is built to forecast precipitation at different 

lead time. The detail information should be shown in caption of Fig.2, Fig.3, Fig.5. Are the results in these 

figures for a specific pentad or the average mean from May to October? If the latter is the case, will the skill 

for each pentad be similar throughout the whole summer? 

Thanks for this comment. We have revised the figure captions to give more details of the results as follows: 

L. 235 to L. 237: Figure 3. Correlation coefficient between preceding pentad mean 10-60-day signals of U850, 

U200, OLRA and precipitation over Region 1 (Inland Rivers in Xinjiang) at different lead times during the period 

of 1979~2016 from May to October. Correlation coefficients statistically significant at the 5% level are shaded. 

L. 378 to L. 379: Figure 5. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean 

precipitation amount forecasts at different lead times during the period of 1979-2016 from May to October. 

L. 390 to L. 392: Figure 6. The Brier skill scores of the STP-BHM model for the prediction of below-normal 

and above-normal events of pentad mean precipitation amount at different lead times during the period of 

1979-2016 from May to October. 

 

We also agree that the forecast skill is different throughout the whole summer. Figure S2 gives an 

example of the correlation coefficients between the ensemble mean of STP-BHM model forecasts and 

observations for pentad mean precipitation anomalies over Region 1. Overall, the correlations show great 

diversity at different pentads from May to October. However, these results are beyond the main scope of 

this study. We will analyze the possible reasons of these diversities in the future. 
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Figure S2. Correlation coefficients between ensemble mean of STP-BHM model forecasts and the 

observations for pentad mean precipitation anomalies over Region 1 (Inland Rivers in Xinjiang). The 

predictors are defined by the ISO signals of atmospheric fields of U850, U200, OLRA, H850, H500, and 

H200. 

 

4. Figure 1 shows the division of the hydroclimatic regions. However, this is not a scientific way to divide China 

with respect to rainfall variation. Does the precipitation in each region have the coherent intraseasonal variation? 

If not, the correlation map is meaningless because they are calculated based on the areal-mean precipitation. 

Moreover, do we really need 17 regions? 

The authors appreciate this suggestion. We agree that the intraseasonal variation of rainfall vary in different 

parts of China. Zhu and Li (2017a) used the rotated empirical orthogonal function (REOF) method to divide 

the entire China into 10 sub regions as shown in Fig. S3. However, we would like to keep the division of 17 

hydroclimatic regions in the revised manuscript for several reasons. We admit that the division proposed by 

Zhu and Li (2017a) could ensure that the precipitation in each region have coherent intraseasonal variation. 

However, this division may be difficult for other applications, especially for hydrological modelling purpose. In 
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this study, the sub-seasonal precipitation forecasts for each hydroclimatic region could be potentially used as 

inputs of conceptual hydrologic models to generate sub-seasonal streamflow forecasts. Meanwhile, the 

division of 17 hydroclimatic regions is based on both watershed division standard and climate classifications. 

This will ensure that the climatic characteristics are nearly uniform in each region. A more detailed description 

of the division could be found in Lang et al. (2014). 

 

Figure S3. The division of China based on REOF of the 10–80-day summer rainfall (a) regions in west of China 

(b) regions in east of China (Zhu and Li, 2017a). 

 

Fig. S4. 17 hydroclimatic regions over China. 

1) No evidences are provided to justify the advantage of this prediction model. Does this model have better 

performance than the ECMWF S2S model? Or the spatial-temporal projection models (STPM)? The authors 

need to make some comparison. 

Thanks for this comment. As mentioned above, we build a STP-BHM model by taking full advantages of both 

STPM and Bayesian statistical modelling. We have compared our results of the STP-BHM model with the 

NCEP model in the S2S Database. Although the NCEP model is not the top scoring model for sub-seasonal 

precipitation forecasts, the hindcast frequency of the NCEP model makes it able to generate pentad mean 

precipitation forecasts for the same period as the STP-BHM model from 1999 to 2010. The STP-BHM model 

shows much higher forecast skill compared to the NCEP model when the lead time is beyond 5 days (Figure 
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9 in the revised manuscript). Positive CRPS skill scores are observed over most hydroclimatic regions for the 

STP-BHM model, whereas the skill scores are mostly negative for the raw NCEP model. 

 

Figure 9. The comparison of the CRPS skill scores of the STP-BHM model and the NCEP model from May to 

October during the period of 1999~2010. 

 

2) From Figure 4, I can see the prediction skills mainly came from the annual cycle (which is quite stable), 

rather than the pentad variation (the intraseasonal component). How about the skills if only anomaly 

precipitation is verified? I think the skill is very limited. 

Thanks for this comment. We have revised the methodology section, and a STP-BHM model is built to predict 

both pentad mean precipitation amount and pentad mean precipitation anomalies. The CRPS skill scores of 

the STP-BHM model are presented in Figure 5 and Figure 10. In addition, we also assess the capability of the 

STP-BHM model for predicting the above-normal and below-normal events. The Brier skill scores are 

presented in Figure 6 and Figure 11. Positive CRPS skill scores and Brier skill scores are found over almost 

all regions and all lead times, indicating that the STP-BHM model outperforms the cross-validated 

climatological forecasts. 
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Figure 5. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean precipitation amount 

forecasts at different lead times during the period of 1979-2016 from May to October. 

 

Figure 10. Same as Figure 5, but for pentad mean precipitation anomalies. 
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Figure 6. The Brier skill scores of the STP-BHM model for the prediction of below-normal and above-normal 

events of pentad mean precipitation amount at different lead times during the period of 1979-2016 from May 

to October. 

 

Figure 11. Same as Figure 6, but for pentad mean precipitation anomalies. 

 

Minor comments: 

1. Page 1 Line 9, ”..” is “.”. 

Thanks for this comment. The redundant period has been removed.  

 

2. Page 9 Line 208, the order of Fig. 2 is confusing for the reader to discern the evolution of intraseasonal 

atmospheric signals from Lead 25d to Lead 0d. The figure can be sliced to two figures with the first one showing 

the correlation between preceding U850, U200, OLR and 10-60d precipitation from Lead 25d to Lead 0d, and 

the second one showing the remaining H850, H500, and H200. 

Thanks for this comment. We have sliced Fig. 2 into two figures in the revised manuscript as follows: 
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Figure 3. Correlation coefficient between preceding pentad mean 10-60-day signals of U850, U200, OLRA and 

precipitation over Region 1 (Inland Rivers in Xinjiang) at different lead times during the period of 1979~2016 

from May to October. Correlation coefficients statistically significant at the 5% level are shaded. 
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Figure 4. Same as Fig. 3, but for H850, H500, and H200. 

 

3. Page 15 Line 355, Fig. 3. The skill of Kling-Gupta Efficiency (KGE) in region 2, region 9 and region 12 

increases with time, why? Could you please show r, β and γ before you show KGE? Because correlation 

coefficient and bias are the basic metric for forecast verification. 

Thanks for this comment. The Kling-Gupta Efficiency, correlation coefficient, and bias are mainly used to 

evaluate deterministic forecast skill. In the revised manuscript, we mainly focus on the probabilistic forecast 

skill of the STP-BHM model we built in this study. Thus, the CRPS skill score is used to evaluate the overall 

probabilistic forecast skill, while the Brier skill score is used to evaluate the model performance for predicting 

above-normal and below-normal events. The reliability of probabilistic forecasts is evaluated through the 

attribute diagram. The KGE, correlation coefficient, and bias metrics are no longer used in the revised 

manuscript. 
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4. Page 15 Line 355, Fig. 3. The prediction skill (KGE) of region 1 is the best in 17 regions, but in Fig. 4, the 

BHM model shows no skills for extreme events. Please explain the reason.  

Thanks for this comment. We have revised the methodology section, and a STP-BHM model is built to predict 

pentad mean precipitation amount and pentad mean precipitation anomalies. The model performance of 

predicting extreme events is assessed through the Brier skill score for above-normal and below-normal events 

in Figure 6 and Figure 11. The results suggest that the newly built model can provide skillful forecasts for 

extreme events as well, and positive Brier skill scores are observed over all hydroclimatic regions and lead 

times. 

 

Figure 6. The Brier skill scores of the STP-BHM model for the prediction of below-normal and above-normal 

events of pentad mean precipitation amount at different lead times during the period of 1979-2016 from May 

to October. 

 

Figure 11. Same as Figure 6, but for pentad mean precipitation anomalies. 

 

5.Page 16 Line 365. What is the standard of efficient prediction in KGE and Continuous Ranked Probability 

Score (CRPS)? In the paper, the authors use “0.2” and “positive” as the standards, what is the reason? 
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Thanks for this comment. Positive KGE values are always used as indicative 'good' simulations in hydrological 

simulations (Knoben et al., 2019). However, we mainly focus on probabilistic forecast skill in the revised 

manuscript. Thus, the KGE is no longer used in this study. 

 

A CRPS skill score of 100% indicates that the ensemble forecasts are the same as the observations, whereas 

a skill score of 0% suggests that the ensemble forecasts show no improvement over the cross-validated 

climatology. A negative skill score means that the ensemble forecasts are inferior to the cross-validated 

climatology. Like the CRPS skill score, the Brier skill score takes the value 100% for perfect forecasts and 0% 

for the reference forecasts. Positive skill scores indicate that the forecast skill is higher than the cross-validated 

climatology. 

 

6.Page 18 Line 385. The prediction skill over northeast China is relatively lower than that over southeastern 

and southwestern China. Although the number of samples will be induced, the results of southeastern and 

southwestern China can better demonstrate the skill of BHM. 

Thanks for this comment. We have revised the manuscript, and the spatial patterns of skill scores also indicate 

that the STP-BHM model performs better in southern China. 

 

7.Page 18 Line 385. There is no caption of a detail description of the size of dots.  

Thanks for this comment. We have revised the caption of the attribute diagrams from L. 413 to L. 416 as 

follows: 

Figure 8. The attribute diagram of the STP-BHM model for the prediction of below-normal and above-normal 

events of pentad mean precipitation amount at different lead times. Forecast probability is binned with width 

of 0.2. The size of each dot represents the fraction of forecasts that fall into a particular probability bin.. 

 

8.    Line 355, during the boreal summer monsoon season. 

Thanks for this comment. We have incorporated this suggestion in the revised manuscript. 

 

9.    Line 55-70, So far, there are many statistical models for subseasonal prediction (some of them were 

already used in operational subseasonal prediction). The authors may want to read or cite the following 

publications, and make comparisons with their model. 

Zhu Z., T. Li, P.-C. Hsu, J. He, 2015: A spatial-temporal projection model for extended-range forecast in the 

tropics. Clim. Dyn., 45(3), 1085-1098. doi: 10.1007/s00382-014-2353-8. 

Zhu Z., T. Li, 2018: Extended-range forecasting of Chinese summer surface air temperature and heat waves. 

Clim. Dyn., 50(5-6), 2007-2021. doi: 10.1007/s00382-017-3733-7. 

Zhu Z., T. Li, 2017: The statistical extended-range (10–30-day) forecast of summer rainfall anomalies over the 

entire China. Clim. Dyn., 48(1), 209-224. doi: 10.1007/s00382-016-3070-2. 

Zhu Z., T. Li, 2017: Empirical prediction of the onset dates of South China Sea summer monsoon. Clim. Dyn., 

48(5), 1633-1645. doi: 10.1007/s00382-016-3164-x. 

Zhu Z., T. Li, 2017: Statistical extended-range forecast of winter surface air temperature and extremely cold 

days over China. Q. J. R. Meteor. Soc., 704(143), 1528-1538. doi: 10.1002/qj.3023. 
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Zhu Z., S. Chen, K. Yuan, Y. Chen, S. Gao, Z. Hua, 2017: Empirical subseasonal predicting summer rainfall 

anomalies over the middle and lower reaches of Yangtze River basin based on the atmospheric 

intraseasonal oscillation. Atmos., 8(10), 185. doi:10.3390/atmos8100185. 

Zhu Z., T. Li, L. Bai, J. Gao, 2017: Extended-range forecast for the temporal distribution of clustering tropical 

cyclogenesis over the western North Pacific. Theor. Appl. Climatol., 130(3), 865-877. doi: 

10.1007/s00704-016-1925-4. 

Li W., P. Hsu, J. He, Z. Zhu, W. Zhang, 2016: Extended-range forecast of spring rainfall in southern China 

based on the Madden–Julian Oscillation. Meteorol. Atmos. Phys., 128(3), 331-345. doi: 

10.1007/s00703-015-0418-9. 

Thanks for this comment. We have read and cited the recent publications on sub-seasonal forecasts in the 

revised manuscript from L. 79 to L. 92 as follows: 

The spatial-temporal projection (STP) model, which extracts the coupled patterns of predictors and predictand, 

has been developed in recent years (Hsu et al., 2020; Zhu and Li, 2017a, b, c, 2018). Hsu et al. (2015) 

established a set of spatial-temporal projection models (STPMs) to predict sub-seasonal precipitation at a lead 

time of 10-30 days over southern China. Their results suggested that the forecast skill was still promising at a 

20-25-day lead time. Zhu and Li (2017a) predicted sub-seasonal precipitation by constructing STPMs over 

entire China, and independent forecasts of rainfall anomalies during the period of Olympic Games in 2008 and 

Shanghai World Expo in 2010 suggested that the STPMs were able to reproduce intraseasonal rainfall patterns 

at a 20-day lead time. However, we should note that the relationship between ISO signals and precipitation is 

highly uncertain and depend on the region and lead time. In previous studies, an optimal ensemble (OE) 

strategy was applied to generate probabilistic forecasts by picking up best predictors (Zhu and Li, 2017a; Zhu 

et al., 2015). Nevertheless, the number of best predictors was always limited. Further statistical assumptions 

were required to interpret limited ensembles as probabilistic forecasts. The uncertainty in relationship between 

preceding ISO signals of atmospheric field and precipitation has not been fully considered yet. 

 

Meanwhile, we develop the STP-BHM model by taking full advantages of both the STP model developed by 

Zhu and Li (2017a, b, c, 2018) and Bayesian statistical modelling. The results suggest that the STP-BHM 

model can provide skillful and reliable probabilistic forecasts at sub-seasonal time scale. 

 

10.    Line 75-80, “However, we should note that the relationships between ISO signals and precipitation are 

of high uncertainty for different regions at different lead times” 

 

Yes, that is why in Zhu and Li (2017), they used REOF to divided the mainland China into 10 subregions based 

on the coherent nature of the 10-90 variation in each subregion. They predicted 10-30day predictand at once 

because considering the whole process of intraseasonal variability with the time-varying and spatial varying 

information. The authors may want to read the paper via the following link: 

 

http://dqkxxb.cnjournals.org/dqkxxb/article/abstract/20200120 

Thanks for this comment. We have developed the STP-BHM model by taking full advantages of both the STP 

model developed by Zhu and Li (2017a, b, c, 2018) and Bayesian statistical modelling. 
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Hsu, P.-C., Li, T., You, L., Gao, J., and Ren, H.-L.: A spatial–temporal projection model for 10–30 day rainfall 

forecast in South China, Climate Dynamics, 44, 1227-1244, 10.1007/s00382-014-2215-4, 2015. 

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing 

Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323-4331, 

10.5194/hess-23-4323-2019, 2019. 

Lang, Y., Ye, A., Gong, W., Miao, C., Di, Z., Xu, J., Liu, Y., Luo, L., and Duan, Q.: Evaluating Skill of Seasonal 

Precipitation and Temperature Predictions of NCEP CFSv2 Forecasts over 17 Hydroclimatic Regions 

in China, Journal of Hydrometeorology, 15, 1546-1559, 10.1175/JHM-D-13-0208.1, 2014. 

Li, Y., Wu, Z., He, H., Wang, Q. J., Xu, H., and Lu, G.: Post-processing sub-seasonal precipitation forecasts 

at various spatiotemporal scales across China during boreal summer monsoon, Journal of Hydrology, 

598, 125742, https://doi.org/10.1016/j.jhydrol.2020.125742, 2021. 

Zhu, Z. and Li, T.: The statistical extended-range (10–30-day) forecast of summer rainfall anomalies over the 

entire China, Climate Dynamics, 48, 209-224, 10.1007/s00382-016-3070-2, 2017a. 

Zhu, Z. and Li, T.: Empirical prediction of the onset dates of South China Sea summer monsoon, Climate 

Dynamics, 48, 1633-1645, 10.1007/s00382-016-3164-x, 2017b. 

Zhu, Z. and Li, T.: Statistical extended-range forecast of winter surface air temperature and extremely cold 

days over China, Quarterly Journal of the Royal Meteorological Society, 143, 1528-1538, 

https://doi.org/10.1002/qj.3023, 2017c. 

Zhu, Z. and Li, T.: Extended-range forecasting of Chinese summer surface air temperature and heat waves, 

Climate Dynamics, 50, 2007-2021, 10.1007/s00382-017-3733-7, 2018. 

Zhu, Z., Li, T., Hsu, P.-c., and He, J.: A spatial–temporal projection model for extended-range forecast in the 

tropics, Climate Dynamics, 45, 1085-1098, 10.1007/s00382-014-2353-8, 2015. 
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Response to Comments on “Sub-seasonal precipitation forecasts using preceding atmospheric intraseasonal 

oscillation signals in a Bayesian perspective” (Referee #2) 

Anonymous Referee #2 reported on 11 May 2022. 

Our responses are in blue and revisions are in blue and italics, with the reviewer’s comments shown as normal 

text. 

 

General comments: 

This is a very relevant topic to propose statistical models for subseasonal forecasting based on lagged 

relationships. Not only can they be used as a benchmark to assess dynamical subseasonal forecasts (e.g S2S, 

SubX), but they might also prove more skillful than them. This seems to be the underlying claim of the authors 

for the statistical forecasts in the manuscript. 

Then, I consider this study might be worthy of publication. However, it suffers from a lack of details that cast a 

doubt on the real added value of the method. I therefore ask the authors to convince me of its benefits through 

major revisions, as I feel the main claims are insufficiently supported in the current version. 

Thanks for your comprehensive review and recognition of the study contribution. The constructive comments 

will help us improve our manuscript after revision. We provide detailed responses to your comments and our 

revised manuscript in the subsequent sections. 

 

Major comments: 

The scores that are used to claim the benefits of the method should be compared to the scores obtained with 

raw dynamical subseasonal forecasts (e.g ECMWF), and possibly with your own BJP-processed from Li et al 

(2020). All those scores should appear simultaneously in Figures 3 and 4. 

Thanks for this comment. We agree that it is of great importance to compare the skill scores of sub-seasonal 

forecasts of the statistical model we built in this study and the raw dynamical models. However, we also note 

that the configurations of the statistical model are not the same as the dynamical models. Consider, for 

example, predicting pentad mean precipitation during the period of 1st May and 5th May 1979. In this case, the 

pentad mean ISO signals during the period of 26th April and 30th April 1979 are used to predict the pentad 

mean precipitation at a lead time of 0-day. The pentad mean precipitation and corresponding ISO signals 

during the period of 1980-2016 from May to October are pooled together to make parameter reference for the 

same lead time. On the contrary, the S2S dynamical models are not always able to provide pentad mean 

precipitation forecasts for the same period of 1st-5th May 1979 as the hindcast initial time, hindcast period, and 

hindcast frequency are different (Table 1). The comparison may be unfair if the predictand of the statistical 

model and dynamical models are not the same.  

 

To overcome this problem, we would like to compare our results with the NCEP model. Although the NCEP 

model is not the top scoring model for sub-seasonal precipitation forecasts (De Andrade et al., 2019), the 

hindcast frequency of the NCEP model makes it able to generate pentad mean precipitation forecasts for the 

same period as the BHM model from 1999 to 2010 (Table S1).  
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Table S1. Configuration of S2S model hindcasts 

S2S 
model 

Time range 
(days) 

Spatial resolution 
Hindcast 
frequency

Hindcast 
period

Ensemble 
size 

Ocean 
coupling

ECMWF* 46 
Tco639/Tco319, 

L91 
2/week Past 20 years 11 

Yes 

NCEP 44 T126, L64 Daily 1999-2010 4 Yes
JMA 33 TL479/TL319, L100 3/month 1981-2010 5 No

KMA* 60 N216, L85 4/month 1991-2010 3 Yes
UKMO* 60 N216, L85 4/month 1993-2016 7 Yes
CNRM 61 T255, L91 2/month 1993-2014 15 Yes
ECCC* 32 0.45°X0.45°, L40 Weekly 1998-2017 4 No

ISAC 31 0.75°X0.56°, L54 
Every 5 

days
1981-2010 5 

No 

BOM 62 T47, L17 6/month 1981-2013 33 Yes
CMA 60 T106, L40 Daily 1994-2014 4 Yes

HMCR* 61 1.1°X1.4°, L28 Weekly 1985-2010 10 No
*Hindcasts are produced on the fly (model version is not fixed) 

 

In addition, we develop a STPM2-BHM statistical model as suggested by the Anonymous Referee #1. We will 

no longer define potential predictors by averaging ISO signals in the areas of significant correlations. Instead, 

the predictors are defined by extracting the coupled patterns between pentad precipitation anomalies and 

atmospheric intraseasonal oscillation signals, which is also known as STPM2 in Fig. 1 (Hsu et al., 2015). The 

BHM model is then built to address the parameter uncertainty in the transfer function shown in Fig. S1. 

 

Fig. S1. Major steps of STPM1 and STPM2 prediction model (Hsu et al., 2015). 

 

We have added the spatial-temporal projection part in the predictor definition section from L. 251 to L. 260 as 

follows: 

The spatial-temporal coupled co-variance patterns are then constructed for grid point where the correlation 

statistically significant at the 5% level. The predictor is then defined by summing the product of the co-variance 

patterns and ISO signals of atmospheric field at each preceding pentad, 

𝑐𝑜𝑣ሺ𝑋,, 𝑌ሻ ൌ
ଵ

்
∑ ሺ𝑦௧ െ 𝐸ሺ𝑦ሻሻሺ𝑥,,௧ െ 𝐸ሺ𝑥,ሻሻ்

௧ୀଵ                            (4) 

𝑋 ൌ ∑ 𝑐𝑜𝑣ሺ𝑋,, 𝑌ሻ ∗ 𝑋,
ே
ୀଵ                                       (5) 
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where 𝑋,  denotes the pentad mean 10-60-day signal of 𝑝௧  atmospheric field where the correlation 

statistically significant at the 5% level for grid 𝑖, 𝑝 ൌ 1,2, ⋯ ,6. 𝑌 denotes the pentad mean precipitation amount 

or pentad mean precipitation anomalies. 𝑇 is the total number of pentads, and 𝑁 is the total number of grid 

points where the correlation statistically significant at the 5% level. Thus, there is only one predictor 𝑋 for 

each atmospheric field and each preceding pentad. 

 

We also rewrite the statistical modelling section to be consistent with the predictor definition from L. 262 to L. 

324 as follows: 

In previous steps, we defined predictors by analyzing the relationship between ISO signals of atmospheric field 

and precipitation. The so-derived predictors can be used to predict pentad mean precipitation amount as well 

as pentad mean precipitation anomalies. Consider, for example, predicting pentad mean precipitation amount 

for the period between 1st May and 5th May, 1979. In this case, pentad mean ISO signals of atmospheric field 

on 26th~30th April, 21th~25th April, 16th~20th April, 11th~15th April, 6th~10th April, 1st~5th April 1979 are used as 

predictors to generate precipitation forecasts at different lead times. A leave-one-year-out cross-validation 

strategy is implemented for both data normalization, model building, parameter inference, and verification to 

avoid any bias in skill (Michaelsen, 1987). For instance, to produce sub-seasonal precipitation forecasts in 

1979, the predictors (preceding ISO signals) and predictand (pentad mean precipitation) during the period of 

1980-2016 are pooled together for statistical modelling. The forecasts for the year 1979 are then issued by 

models trained on 1980-2016, and the performance is evaluated against the observations. This cross-

validation strategy ensures that the data used for evaluation is never used for statistical modelling. 

 

Before establishing the Bayesian hierarchical model, the predictors 𝑿் ൌ ሾ𝑋ଵ 𝑋ଶ ⋯ 𝑋ሿ are normalized to 

𝑿
் ൌ ൣ𝑋,ଵ 𝑋,ଶ ⋯ 𝑋,൧ through the Yeo-Johnson transformation method as the input variables 

are allowed to be negative (Yeo and Johnson, 2000). The predictand 𝑌 is normalized to 𝑌 using the Yeo-

Johonson method for pentad mean precipitation anomalies. However, the pentad mean precipitation amount 

is highly skewed with numerous zero values. Here, we normalize the pentad mean precipitation amount 𝑌 to 

𝑌  using the log-sinh transformation method proposed by Wang et al. (2012). The normalization 

parameters are estimated using the SCE-UA (shuffled complex evolution method developed at The University 

of Arizona) method that maximize the log-likelihood function for both the Yeo-Johnson transformation method 

and log-sinh transformation method.  

 

There are many versions and variations of BHMs. In this study ,we establish the BHM model following Devineni 

et al. (2013) and Chen et al. (2014). The spatial correlation of precipitation over different regions is not 

considered here. A traditional no-pooling BHM is built for each hydroclimatic region separately. The normalized 

predictand 𝑌 is assumed to follow the normal distribution, 

𝑌~𝑁ሺ𝜇, 𝜎ଶሻ                                         (6) 

We then link the parameter 𝜇 with the normalized predictors using a linear model, 

𝜇 ൌ 𝛽  ∑ 𝛽𝑋,

ୀଵ                                      (7) 

where 𝛽 is the slope term corresponding to the normalized predictor 𝑋,, and 𝑃 is the total number of 

predictors used for prediction. 
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To complete the hierarchical formulation, we assume the unknown parameters, including 𝜎, 𝛽, ⋯, 𝛽, follow 

non-informative priors: 
ଵ

 ఙమ ~𝑈ሺ0, 100ሻ                                           (8) 

𝛽~𝑁ሺ0, 10ସሻ                                           (9) 

𝛽~𝑁ሺ0, 10ସሻ,         𝑝 ൌ 1, ⋯ , 𝑃                                  (10) 

This implies that the information used for posterior distribution inference is only provided by the data.  

 

Given  𝜽 ൌ ሼሺ𝜎, 𝛽 , 𝛽ሻ, 𝑝 ൌ 1, ⋯ , 𝑃ሽ denotes parameters in the Bayesian hierarchical model for a certain 

region and lead time, the full posterior of the parameters is given as: 

𝑝ሺ𝜽|𝑌, 𝑿
் ሻ ∝ 𝑝ሺ𝑌|𝜽, 𝑿

் ሻ𝑝ሺ𝜽ሻ                            (11) 

where 𝑝ሺ𝑌|𝜽, 𝑿
் ሻ is the likelihood, and 𝑝ሺ𝜽ሻ is the prior of parameters 𝜽. As the posterior distributions 

of parameters 𝜽 are not standard distributions, it is difficult to conduct analytical integration. In this study, we 

use the R package runjags (Denwood, 2016) to estimate the parameters of the BHM. The runjags offers an 

interface to facilitate calibrating BHMs employ a Gibbs sampling algorithm in Just Another Gibbs sampler 

(JAGS). The initial values of model parameters 𝜽 are first randomly sampled from prior distributions. The 

parameters 𝜽 are then updated based on the full conditional distributions. We use five independent Markov 

chains in each model run, with a total number of 10, 000 iterations for each chain. The convergence is ensured 

by the potential scale reduction factor 𝑅  (Brooks and Gelman, 1998). An approximate convergence is 

diagnosed when the 𝑅 is less than 1.1 for all parameters. 

 

Once the parameters are sampled, the Bayesian hierarchical model can be used to predict pentad mean 

precipitation amount or pentad mean precipitation anomalies using preceding ISO signals. Given new 

preceding predictors 𝑿∗் ൌ ሾ𝑋ଵ
∗ 𝑋ଶ

∗ ⋯ 𝑋
∗ሿ, the normalized predictors 𝑿

∗் ൌ ൣ𝑋,ଵ
∗  𝑋,ଶ

∗ ⋯ 𝑋,
∗ ൧ are 

found using the estimated transformation parameters during the training period. The posterior predictive 

distribution of normalized predictand is given as: 

 𝑌
∗ ~𝑁ሺ𝜇∗, 𝜎ଶሻ                                       (12) 

𝜇∗ ൌ 𝛽  ∑ 𝛽𝑋,
∗

ୀଵ                                   (13) 

Again, the Gibbs sampling algorithm is used to obtain samples of 𝑌
∗  by giving each of the 1000 sets of 

parameter values 𝜽. The samples of 𝑌
∗  are then back-transformed to produce ensemble precipitation 

forecasts of 𝑌∗. 

 

We added the comparison of the STP-BHM model and the NCEP model from L. 418 to L. 426 as follows: 

Figure 9 compares the CRPS skill scores of the STP-BHM model and the NCEP model from May to October 

during the period of 1999~2010. Although the NCEP model is not the top scoring model for sub-seasonal 

precipitation forecasts, the hindcast frequency of the NCEP model makes it able to generate pentad mean 

precipitation forecasts for the same period as the STP-BHM model from 1999 to 2010. It is not surprise that 

the NCEP model outperforms the STP-BHM model when the lead time is within 5 days. However, we should 

note that the STP-BHM model shows much higher probabilistic forecast skill compared to the NCEP model at 

longer lead times. Positive CRPS skill scores are observed for the STP-BHM model over most hydroclimatic 

regions, whereas the skill scores are mostly negative for the NCEP model. 
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Figure 9. The comparison of the CRPS skill scores of the STP-BHM model and the NCEP model during the 

period of 1999~2010 from May to October. 

 

The methodology should be illustrated with more figures besides Figure 2. For instance, you could show the 

results of the LASSO predictor selection for the Figure 2 example (Region 1) at a specific lead time. Then, you 

could also select a specific target week (e.g your May 1-May, 5, 1979 period) and simultaneously visualize the 

values of the different predictors and the predicted precipitation. More generally speaking, my recommendation 

is to open the “black box” and give more visual information showing what the statistical model is doing and 

why it works. 

Thanks for this comment. As suggested by the Anonymous Referee #1, we will no longer define potential 

predictors by averaging ISO signals in the areas of significant correlations. The LASSO and stepwise 

regression approaches will not be used to select potential predictors. A STP-BHM model is built to predict both 

pentad mean precipitation amount and pentad mean precipitation anomalies. 

 

To open the “black box” of the STP-BHM model, we also establish the STP-BHM model for U850, U200, OLRA, 

H850, H500, and H200, separately. The forecast skill of the STP-BHM model with different predictors are 

compared in Figure 7 from L. 394 to L. 400, and Figure 12 from L. 451 to L. 454 as follows: 

Figure 7 compares the CRPS skill scores of pentad mean precipitation forecasts with different predictors. In 

general, U850, U200, H850, and H500 show higher forecast skill compared to OLRA and H200 for almost all 

hydroclimatic regions and lead times. This suggests that the ISO signals of these atmospheric fields contribute 

more to the overall forecast skill. Compared to the STP-BHM model built with only one predictor, the forecast 

skill is further improved when all ISO signals of atmospheric fields are used. 
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Figure 7. The cross-validated CRPS skill scores for sub-seasonal forecasts of pentad mean precipitation 

amount with different predictors (U850, U200, OLRA, H850, H500, H200). ALL denotes that the ISO signals 

of all atmospheric fields are used as predictors. 

 

Figure 12 compares the CRPS skill scores of pentad mean precipitation anomalies with different predictors. 

Overall, the STP-BHM model with OLRA used as predictor shows higher forecast skill compared to other 

predictors for almost all hydroclimatic regions and lead times. This suggests that the OLRA contributes most 

to the overall forecast skill of pentad mean precipitation anomalies. 
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Figure 12. Same as Figure 7, but for pentad mean precipitation anomalies. 

 

A figure summarizing the different steps of the statistical prediction is necessary for the reader to have a 

complete vision of the workflow.  

Thanks for this comment. We have summarized the major steps of the STP-BHM model in Figure 2 in the 

revised manuscript as follows:  
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Figure 2. workflow of the spatial-temporal projection based Bayesian hierarchical model (STP-BHM). 
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Some spatial visualization of the scores is missing, e.g a map where the 17 regions are colored according 

to their score. This is important to support the claim that the method performs best in southern China. You 

could also give names to the regions and indicate them on Figures 3 and 5, this would help a lot. 

Thanks for this comment. We have presented the spatial maps of skill scores in the revised manuscript, and 

region names are also added in the heatmaps as follows: 

 

Figure 5. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean precipitation amount 

forecasts at different lead times during the period of 1979-2016 from May to October. 
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Figure 7. The cross-validated CRPS skill scores of the STP-BHM model for pentad mean precipitation amount 

forecasts with different predictors (U850, U200, OLRA, H850, H500, H200). ALL denotes that the ISO signals 

of all atmospheric fields are used as predictors. 

 

In order to compensate for the necessary additional details required in my comments 1 to 4, some parts of the 

manuscript could be shortened (e.g Introduction, Sections 4 and 5). 

Thanks for this comment. We have shortened the corresponding sections mentioned above in the revised 

manuscript. 

 

Section 2.2.4, l.316: “The reference forecasts are generated using the Bayesian hierarchical model with no 

predictors used for prediction.” l.318: “show no improvement over the cross-validated climatology” It is unclear 

to me what the reference in CPRSS is. Is it the cross-validated climatology or the forecasts generated with 

no predictor? Are they the same? If so, you should state it explicitly. 

Thanks for this comment. In this study, the reference forecasts are generated with no predictors. This is the 

same meaning as the cross-validated climatology, which the mean and standard deviation of predictand is 

only determined by the cross-validated precipitation data. 
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MINOR COMMENTS 

Figures 3 and 4: I think the graphical aspect of these figures could be improved (e.g vertical scale, colored 

bars, etc.). 

Thanks for this comment. We have replaced these figures by the spatial maps of skill scores in the revised 

manuscript as shown above. 

 

Figure 4: The curves on Figure 4 are illegible as there are too many time steps. Personally, I can’t see the red 

curve (model) and how it compares to the observations in blue. Actually, I’m not sure this figure is really 

necessary beyond the indications in the top left-hand corner (KGE, r, etc.), I suggest replacing by a table. 

Thanks for this comment. In the revised manuscript, we mainly focus on the probabilistic forecast skill of the 

STP-BHM model. Thus, the KGE is no longer used for verification. The probabilistic skill scores and attribute 

diagrams are shown in the revised manuscript instead of KGE. 

 

Figure 5: I am surprised that CRPSS does not decrease monotonically with lead time. Admittedly there can be 

some noisy variations at longer lead times, but I still find that some results are quite weird (e.g in Region 2, 

CRPSS at 20 days is better than at 0 day). Isn’t there an effect of the reference that is used in the CRPSS? 

Some explanations should be provided. 

Thanks for this comment. It is true that the forecast skill decreases as lead time increases for dynamical models. 

This is also can be observed in Figure 9 (the NCEP model) and our previous study (Li et al, 2020). 

 

Figure 9. The comparison of the CRPS skill scores of the STP-BHM model and the NCEP model from May to 

October during the period of 1999~2010. 
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Fig. S4. Boxplot diagrams of CPRS skill scores of ECMWF raw ensemble forecasts (top) and the BJP 

calibrated forecasts (bottom) at different lead times during the boreal summer monsoon. (Li et al., 2021) 

 

However, we should note that the STP-BHM model is a purely statistical model. The forecast skill of the STP-

BHM model is mostly determined by the relationship between precipitation and atmospheric ISO signals. The 

concurrent relationship between precipitation and atmospheric/oceanic signals may not be as strong as lagged 

signals. For example, Shukla et al. (2011) found that the Nino-3 index had strongest relationship with Indian 

Summer Monsoon Rainfall Index (ISMRI) with a lag of 5 sesasons (MAM). Thus, the forecast skill of ISMRI 

were found to be higher at a lag of 5 seasons compared to a lag of 4 seasons when using the Nino-3 index. 

This is also found by many other studies, which the relationship between precipitation and large scale 

circulation signals may be stronger at longer lags (Kirono et al., 2010; Piechota et al., 1998). Thus, it is not 

surprise that the skill scores of the STP-BHM model are higher at longer lead times, which can also be referred 

as longer time lags. 

 

Fig. S5. Correlation coefficient (r) between India Summer Monsoon Rainfall Index (ISMRI) and (a) Niño 1+ 2 

index, (b) Niño 3 index, (c) Niño 3.4 index and (d) Niño 4 index with Niño indices lagging by 1–8 season(s) 

(Shukla et al., 2011).  
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l.414-416: Please specify what are “the BJP calibrated sub-seasonal precipitation forecasts” from Li et al. 

(2020). I guess it corresponds to post-processed outputs of dynamical subseasonal forecasts with a GCM, but 

you should remind it and give the name of the model. More generally, your assertions concerning the 

comparison between BHM and your previous method from Li et al (2020) should be illustrated more extensively 

(see Major Comment #1). 

Thanks for this comment. We have compared the STP-BHM model with the NCEP model in the revised 

manuscript as we introduced previously. 

 

l.436-438: “Here, we analyzed the spatial patterns of correlations between lagged signals and filtered 

precipitation over Region 1 at the lead time of 0-day for each step of the leave-one-year out cross-validation”. 

I can’t see where the results you are referring to are, e.g I don’t know what “Here” stands for in this sentence. 

Thanks for this comment. Figure S33 compares the correlation coefficient between ISO signals of U850 and 

precipitation for the whole period of 1979~2016 and the cross-validated period of 1980~2016 at a lead of 0-

day. The results show small variability between the cross-validated correlation and the whole-period correlation. 

This figure has been added in the supplementary file. 

 

Figure S33. Correlation coefficient between ISO signals of U850 and precipitation for the whole period of 

1979~2016 and the cross-validated period of 1980~2016. 

 

l.396: “The decomposition of KGE values suggest that the intraseasonal variability is underestimated in these 

regions” I am not sure “underestimation” is the correct word in this context. From what I understand, the 

important fact is that intraseasonal variability is of limited importance in those regions because it does not 
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account for a large fraction of total variability, so the model cannot perform well in those regions. I suggest 

rephrasing. 

We agree with the referee that the intraseasonal variability is of limited importance in these regions. However, 

we mainly focus on the probabilistic forecast skill in the revised manuscript. The KGE is not used for verification 

any more. Thus, we have removed these sentences in the revised manuscript. 

 

l.381-382: “The results also suggest that the probabilistic forecasts are sharp at all lead times, especially for 

below-normal and above normal categories”. Judging by the reliability diagrams, I am not convinced by the 

sharpness of the forecasts. On the contrary, I think the authors should mention very limited sharpness. I guess 

this is intrinsic to a Bayesian approach relying on a non-informative prior. 

The authors agree with the reviewer that the Bayesian approaches may have difficulty in predicting extreme 

events when non-informative prior is used. This indicates that the Bayesian statistical model is of limited 

sharpness. The copula-based statistical approaches will be used in the future to see whether the sharpness 

of forecasts could be improved. 

 

LANGUAGE AND TYPOS 

l.9: “as predictors” → “as predictor” 

We have incorporated this suggestion in the revised manuscript at L. 9. 

 

l. 19: “owing to the underestimation of intraseasonal variability in this region”. Why underestimation? 

We agree with the referee that the intraseasonal variability is of limited importance in these regions. However, 

we mainly focus on the probabilistic forecast skill in the revised manuscript. Thus, we have removed these 

sentences in the revised version. 

 

l.22: “Other sources (…) would will be included” 

We have incorporated this suggestion in the revised manuscript from L. 26 to L. 28 as follows: 

Other sources of sub-seasonal predictability, such as soil moisture, snow cover, and stratosphere-troposphere 

interaction, will be included in the future to further improve sub-seasonal precipitation forecast skill. 

 

l. 22: “forecast skills” → “forecast skill”. 

I think that the word “skill” is never expected to be plural in this context. Same remark at l.34, l.74, l.116 (x2), 

l.395, l.425 

We have incorporated this suggestion in the revised manuscript. 

 

l.25: “mitigations” → “mitigation” 

We have incorporated this suggestion in the revised manuscript at L. 31. 

 

l.28: “lunched” → “launched”  

The word “lunched” has been corrected as “launched” at L. 34. 

 

l.30: “could not” → “cannot” 

The word “could not” has been corrected as “cannot” at L. 37. 
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l. 32: “before it could can be used” 

The word “could” has been corrected as “can” at L. 38. 

. 

l.41: “atmospheric-oceanic indices” → Do you mean “atmospheric or oceanic indices”? 

The word “atmospheric-oceanic indices” has been replaced by “atmospheric or oceanic indices” at L. 47. 

 

l.43: “dominant” → I suggest using another word, what about “more performant”? 

The word “dominant” has been replaced by “more performant” at L. 48. 

 

 l.45: “plenty of” 

The word “plenty” has been corrected as “plenty of” at L. 51. 

 

l.48-51: “a new cluster-based empirical method (…), which the sea surface temperature (…) were included as 

predictors.”. 

The sentence is unclear, I suggest rephrasing, e.g splitting the sentence in two: “a new cluster-based method 

(…) European and Mediterranean regions. This method uses sea surface temperature (…) as predictors”. 

We have incorporated this suggestion in the revised manuscript from L. 55 to L. 58 as follows: 

A new cluster-based empirical method was proposed to predict winter precipitation anomalies over the 

European and Mediterranean Regions (Totz et al., 2017). This method used the sea surface temperature, 

geopotential height, sea level pressure, snow cover extent, and sea ice concentration as predictors. 

 

l.56: “at such a time scale” Unnecessary, please remove. 

We have removed these words at L. 63. 

 

 l.69: “but in extra-tropical regions as well” 

We have incorporated this suggestion in the revised manuscript at L. 76. 

 

l.77-78: “the relationships between ISO signals and precipitation are of high uncertainty for different regions at 

different lead times”. I suggest rephrasing, e.g “the relationships between ISO signals and precipitation are 

highly uncertain and depend on the region and lead time.” 

We have incorporated this suggestion in the revised manuscript from L. 87 to L. 88 as follows: 

However, we should note that the relationship between ISO signals and precipitation is highly uncertain and 

depend on the region and lead time. 

 

l.79-81: “To our best knowledge, the uncertainties of relationships between preceding ISO signals and sub-

seasonal precipitation have not been fully considered in sub- seasonal precipitation forecasts in previous 

studies.” I suggest another formulation. 

We have incorporated this suggestion in the revised manuscript from L. 91 to L. 92 as follows: 

The uncertainty in relationship between preceding ISO signals of atmospheric field and precipitation has not 

been fully considered yet. 
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l.84: Remove the CSC acronym. You never use it in the rest of the article. 

We have removed these words at L. 95. 

 

l.87: “Bayes-theorem based statistical models” → “Bayesian statistical models” 

The word “Bayes-theorem based” has been replaced by “Bayesian” at L. 98. 

 

l. 91: Idem 

We have incorporated this suggestion in the revised manuscript at L. 102. 

 

l.104: “is frequently influenced by” → “is frequently subject to” 

The word “influenced by” has been replaced by “subject to” at L. 115. 

 

 l.111: “the model performance (…) are is evaluated” 

The word “are” has been corrected as “is” at L. 122. 

 

l.115-116: “the deterministic and probabilistic forecast skill is presented” 

This sentence is removed as we mainly focus on probabilistic forecast skill in the revised manuscript. 

 

 l.127: “is area-weighted averaged over 17 hydroclimatic regions” 

The word “averaging” has been corrected as “averaged” at L. 139. 

 

l.134: “to monitoring” → “to monitor” 

The word “monitoring” has been corrected as “monitor” at L. 146. 

 

l.139: “proved to be capable of reflecting the MJO structure as the zonal wind” Unclear → “proved to be as 

capable of reflecting the MJO structure as the zonal wind”? 

The word “as” has been added at L. 151. 

 

l.148: “calculating efficiency” → “computational efficiency”? 

The word “calculating” has been replaced by “computational” at L. 160. 

 

l. 194, l.196: “the Africa” → “Africa” 

The word “the Africa” has been corrected as “Africa” at L. 240. 

 

l. 234: “in (Nardi and Rinaldo, 2011; Mcneish, 2015)”. Typo, remove parentheses. 

These sentences are removed as the LASSO and stepwise regression approaches are no longer used.  

 

 l.301: “A full discussion of the KGE-statistics sees Gupta et al (2009)…” → “For a full description of KGE-

statistics, see Gupta et al (2009)...” 

These sentences are removed as the KGE is no longer used for verification. 
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