
Responses to Comments on “Sub-seasonal precipitation forecasts using preceding atmospheric 

intraseasonal oscillation signals in a Bayesian perspective” (Referee #1) 

Anonymous Referee #1 Received and published on 28 March 2022. 

Our responses are in blue and proposed manuscript revisions underlined. 

 

General comment 

The authors established a Bayesian hierarchical model (BHM) to predict the 10-60d precipitation for 

17 hydroclimatic regions over China during the boreal summer monsoon season (May to October) by 

using the previous atmospheric intraseasonal signals. Both deterministic and probabilistic evaluations 

showed that the BHM provides skillful subseasonal forecasts over southeastern and southwestern 

hydroclimatic regions at a lead time of 20-25 days while the skills are poor over northeastern China, 

owing to the underestimation of intraseasonal variability. 

The authors have conducted numerous calculations and employed many different statistical analysis 

methods. However, the explanation for their choice of the calculation and methods are deficient. 

Moreover, I cannot tell whether the BHM proposed in this paper show any superior skills than other 

statistical models or even dynamical S2S models. From this point of view, I incline to reject the 

manuscript, but I give an opportunity to the authors to improve the manuscript. 

The authors thank the referee’s valuable comments. As introduced in the introduction section, several 

statistical models have been developed to generate sub-seasonal precipitation forecasts. The Spatial-

Temporal Projection Model (STPM), which extracts the coupled patterns of preditors and predictand, 

has been widely used in recent years (Hsu et al., 2020; Zhu and Li, 2017a, b, c, 2018). The STPM1 is 

based on the singular value decomposition (SVD) analysis, while the STPM2 is constructed by 

analyzing the spatial-temporal coupled co-variance patterns between predictors and predictand (Fig. 

1). A more detailed description of STPM1 and STPM2 can be found in Hsu et al. (2015). 

 

Fig. 1. Major steps of STPM1 and STPM2 prediction model (Hsu et al., 2015). 



 

However, we should note that the uncertainty of sub-seasonal precipitation forecasts may be 

underestimated in STPM models. In previous studies, an optimal ensemble (OE) strategy was applied 

to pick up best predictors and generate probabilistic forecasts (Zhu and Li, 2017a; Zhu et al., 2015). 

Nevertheless, the ensemble number (number of best predictors) was always limited. Further statistical 

assumptions were required to inteprete limited ensembles as probabilistic forecasts. Compared to OE-

based probabilistic forecasts, the Bayes-theorem based statistical models are more flexible and more 

efficient for assessing multiple sources of uncertainties. The Bayes-theorem based models have been 

widely used for various aspects, and the predictive probability distributions could be generated through 

Markov chain Monte Carlo sampling algorithms. Thus, we will develop a STPM2-BHM probabilistic 

forecast model by taking full advantages of both STPM and Bayesian statistical modelling. We will no 

longer define potential predictors by averaging ISO signals in the areas of significant correlations. 

Instead, the predictors will be defined by extracting the coupled patterns between pentad precipitation 

anomalies and atmospheric intraseasonal oscillation signals, which is also known as STPM2 in Fig. 1. 

The BHM model is then built to address the parameter uncertainty in the transfer function shown 

in Fig. 1. 

 

the following changes in Sect. 2.2.2 and Sect. 2.2.3 will be made: 

In section 2.2.2, we defined potential predictors by averaging U850, U200, OLR, H850, H500, H200 

signals in the areas of significant correlations at different lead times. The number of potential predictors 

was then narrowed down using the Least Absolute Shrinkage and Selection Operator (LASSO) 

regression and stepwise regression approaches. 

In the revised manuscript, the LASSO and stepwive regression approaches will not be used to define 

potential predictors. Instead, we will follow the steps of STPM2 (Fig. 1) to define coupled pattern 

projection coefficients as predictors. In addition, the predictand Y will be the pentad mean precipitation 

anomalies as suggested by the referee. We first construct spatial-temporal coupled covariance 

patterns (COV) where the predictand Y (10-60-day component of precipitation) and predictors X (10-

60-day component of ISO signals) are significantly correlated, 

𝑐𝑜𝑣(𝑌, 𝑋) =
1

𝑇
∑ (𝑦𝑡 − 𝐸(𝑦))(𝑥𝑡 − 𝐸(𝑥))𝑇

𝑡=1                                   (1) 

where 𝑡 is the number of pentads during the training period, 𝑦𝑡 is the ISO of precipitation, and 𝑥𝑡 is the 

ISO of atmospheric fields. 

The coupled pattern projection coefficient 𝑋𝑝 , which can also be regarded as  the predictor, is then 

obtained by multiplying the covariance and predictors X, and summing the product for each grid point 

where a 95 % significant level is reached, 

𝑋𝑝 =  𝑐𝑜𝑣(𝑌, 𝑋) × 𝑋                                                        (2) 



Comapred to previous studies, we will build a bayesian hierarchical model to address the parameter 

uncertainty of the transfer function 𝑌𝑝 = 𝛼𝑋𝑝 + 𝛽 shown in Fig. 1. 

Here, we assume the normalized predictand 𝑌𝑝 follows the normal distribution, 

𝑌𝑝~𝑁(𝜇𝑝, 𝜎𝑝
2)                                                          (3) 

We then link the parameter 𝜇𝑝 with the normalized coupled pattern projection coefficient 𝑋𝑝 using a 

linear model, 

𝜇𝑝 = 𝛼𝑋𝑝 + 𝛽                                                        (4) 

 

To complete the hierarchical formulation, we assume the unknown parameters, including 𝜎𝑝, α, and 𝛽 

follow non-informative priors: 

1

𝜎𝑝
2 ~U(0, 100)                                                        (5) 

𝛼~𝑁(0, 104)                                                        (6) 

𝛽~𝑁(0, 104)                                                        (7) 

The posterior distributions of these parameters will be obtained using the Markov chain Monte Carlo 

algorithm as well. 

Fig. 2 presents the leave-one-year-out cross-validated sub-seasonal forecasts in 1981 as an example 

of the STPM2-BHM model. Here, the spatial-temporal coupled covariance patterns are derived from 

10-60-day component of precipitation and U850. The predictand is the pentad mean anomalies of 

precipitation over Region 1 (Inland Rivers in Xinjiang). The STPM2-BHM model shows high forecast 

skills at different lead times, and  prediction skills are mainly come from intraseasonal component of 

U850 filed.  



 

Fig. 2. Sub-seasonal forecasts of pentad mean precipitation anomalies over Region 1 (Inland Rivers 

in Xinjiang) during the boreal summer monsoon in 1981. The ensemble mean of STPM2-BHM 

forecasts are shown by the red line, observations by the black line, alongside 50% (shaded in blue) 

and 95% (shaded in powderblue) confidence intervals. CI = confidence interval. 

We would like to incorporate the above proposals in the revised manuscript. A more detailed analysis 

of the results will be given to ensure that the STPM2-BHM model is reliable and robust for generating 

probabilistic forecasts of pentad mean precipitation anomalies over China. 

 

 



Major comments: 

1. The intraseasonal variability and the intraseasonal oscillation are different terms. The authors focus 

on the prediction of intraseasonal precipitation (10-60d) over China during summer (May to October). 

Although the selected predictors are atmospheric intraseasonal signals, no specific BSISO or MJO 

pattern can be found in the previous correlation maps. The title may be more consistent with the 

content after removing “oscillation”. 

Thanks for this comment. We will incorporate this suggestion in the revised manuscript. 

 

2. The selected intraseasonal signals and the physical processes of their influencing on precipitation 

over China should be provided. 

Thanks for this comment. We will provide the intraseasonal signals and physical processes of their 

influencing on precipitation over China as supplementary file in the revised manuscript. 

 

3. For each region and each pentad from May to October, a BHM is built to forecast precipitation at 

different lead time. The detail information should be shown in caption of Fig.2, Fig.3, Fig.5. Are the 

results in these figures for a specific pentad or the average mean from May to October? If the latter is 

the case, will the skill for each pentad be similar throughout the whole summer? 

Thanks for this comment. The results shown in Fig. 2, Fig. 3, and Fig. 5 in the manusctipt are the 

overall forecast skills by pooling all forecasts and observations from 1979~2016 together. We also 

agree that the forecast skills should be different for each pentad as the impacts of physical processes 

on precipitation vary at different time. Fig. 3 gives an example of the correlation coefficients between 

the ensemble mean of STPM2-BHM model forecasts and obervations for each pentad during the 

boreal summer monsoon over Region 1. Overall, the correlations show great diversity at different 

pentads from May to October. A more comprehensive analysis would be given in the revised 

manuscript to address this comment.  

 



 

Fig. 3. Correlation coefficients between ensemble mean of STPM2-BHM model forecasts and the 

observations over Region 1 (Inland Rivers in Xinjiang). The predictors are obtained by analyzing the 

spatial-temporal coupled covariance patterns between ISO of precipitation and U850. 

 

4. Figure 1 shows the division of the hydroclimatic regions. However, this is not a scientific way to 

divide China with respect to rainfall variation. Does the precipitation in each region have the coherent 

intraseasonal variation? If not, the correlation map is meaningless because they are calculated based 

on the areal-mean precipitation. Moreover, do we really need 17 regions? 

The authors appreciate this suggestion. We agree that the intraseasonal variation of rainfall vary in 

different parts of China. Zhu and Li (2017a) used the rotated empirical orthogonal function (REOF) 

metod to divide the entire China into 10 sub regions as shown in Fig. 4. However, we would like to 

keep the division of 17 hydroclimatic regions in the revised manuscript for several reasons. We admit 

that the division proposed by Zhu and Li (2017a) could ensure that the precipitation in each region 

have coherent intraseasonal variation. However, this division may be difficult for other applications, 



especially for hydrological modelling purpose. In this study, the sub-seasonal precipitation forecasts 

for each hydroclimatic region could be potentially used as inputs of conceptual hydrologic models to 

generate sub-seasonal streamflow forecasts. Meanwhile, the division of 17 hydroclimatic regions is 

based on both watershed division standard and climate classifications. This will ensure that the climatic 

characteristics are nearly uniform in each region. A more detailed description of the division could be 

found in Lang et al. (2014). To resolve this comment in the revised manuscript, we will highlight the 

reason why we choose to divide China into 17 hydroclimatic regions in Sect. 2 Data and Methodology.   

 

Fig. 4. The division of China based on REOF of the 10–80-day summer rainfall (a) regions in west of 

China (b) regions in east of China (Zhu and Li, 2017a). 

 

Fig. 5. 17 hydroclimatic regions over China. 



1) No evidences are provided to justify the advantage of this prediction model. Does this model have 

better performance than the ECMWF S2S model? Or the spatial-temporal projection models (STPM)? 

The authors need to make some comparison. 

Thanks for this comment. As mentioned above, we will build a STPM2-BHM model by taking full 

advantages of both STPM and Bayesian statistical modelling. Compared to STPM2 model introduced 

in previous studies, the STPM2-BHM model could provide predictive density functions by addressing 

parameter uncertainties. Thus, we would like to focus on probabilistic forecast skills. We will provide 

a more detailed description of the STPM2-BHM model in Sect. 2. Meanwhile, our previous study used 

the Bayesian joint probability (BJP) approach to calibrate ECMWF S2S model forecasts at different 

spatiotemporal scales (Li et al., 2021). The results suggested that the probabilistic forecast skills were 

almost zero when the lead time was beyond 10 days. To resolve this comment, we will provide more 

discussion on the results of STPM2-BHM model and our previous work. 

 

2) From Figure 4, I can see the prediction skills mainly came from the annual cycle (which is quite 

stable), rather than the pentad variation (the intraseasonal component). How about the skills if only 

anomaly precipitation is verified? I think the skill is very limited. 

Thanks for this comment. We will revise the method section as mentioned above, and the pentad 

mean precipitation anomalies is defined as the predictand Y in the STPM2-BHM model. The results 

shown in Fig. 2 and Fig. 3 indicate that the STPM2-BHM model could provide skilful sub-seasonal 

precipitation forecasts. A more comprehensive evaluation will be given to ensure that the newly built 

STPM2-BHM model is skilful for forecasting sub-seasonal precipitation anomalies. 

 

Minor comments: 

1. Page 1 Line 9, ”..” is “.”. 

Thanks for this comment. We will incorporate this suggestion in the revised manuscript. 

 

2. Page 9 Line 208, the order of Fig. 2 is confusing for the reader to discern the evolution of 

intraseasonal atmospheric signals from Lead 25d to Lead 0d. The figure can be sliced to two figures 

with the first one showing the correlation between preceding U850, U200, OLR and 10-60d 

precipitation from Lead 25d to Lead 0d, and the second one showing the remaining H850, H500, and 

H200. 

Thanks for this comment. We will incorporate this suggestion in the revised manuscript (Fig. 6 and Fig. 

7). 



 

Fig. 6. Correlation between preceding ISO signals of U850, U200, OLRA and 10-60-day component 

of precipitation over Region 1 (Inland Rivers in Xinjiang) at different lead times. Correlation coefficients 

statistically significant at the 5% level are shaded. 



 

Fig. 7. Same as Fig. 6, but for H850, H500, and H200. 

3. Page 15 Line 355, Fig. 3. The skill of Kling-Gupta Efficiency (KGE) in region 2, region 9 and region 

12 increases with time, why? Could you please show r, β and γ before you show KGE? Because 

correlation coefficient and bias are the basic metric for forecast verification. 

Thanks for this comment. The KGE values increase with lead time over Region 2, Region 9, and 

Region 12 is mostly owing to the potential predictors we defined in Sect. 2.2.2. Averaging U850, U200, 

OLR, H850, H500, H200 signals in the areas of significant correlations may lose some useful signals. 

In the revised manuscript, we will define the predictors by multiplying the co-variance field and each 



predictor and sum the product for each grid point (at each lag) where a 95% significant level is reached 

as the STPM2. Meanwhile, the pentad mean precipitation anomalies will be treated as the predictand 

Y. The KGE may not be suitable for evaluating the forecast accuracy as the cross-validated 

observation mean of anomalies is nearly zero. We will provide correlation coefficient and bias of the 

ensemble mean of STP2-BHM model forecasts instead of the KGE in the revised manuscript. 

4. Page 15 Line 355, Fig. 3. The prediction skill (KGE) of region 1 is the best in 17 regions, but in Fig. 

4, the BHM model shows no skills for extreme events. Please explain the reason.  

Thanks for this comment. The low forecast skills of the BHM model for extreme events is mainly owing 

to the definition of potential predictors. Instead, we will built a STPM2-BHM model in the revised 

manuscript. The predictors are defined by the coupled pattern projection coefficient. Fig. 2 suggests 

that the newly built STPM2-BHM model is capable of predicting extreme events. To resolve this 

comment, ranked probabilistic forecast skills at different percentiles will also be given to evaluate the 

forecast skills of STPM2-BHM model for extreme events. 

 

5.Page 16 Line 365. What is the standard of efficient prediction in KGE and Continuous Ranked 

Probability Score (CRPS)? In the paper, the authors use “0.2” and “positive” as the standards, what is 

the reason? 

Thanks for this comment. Positive KGE values are always used as indicative 'good' simulations in 

hydrological simulations (Knoben et al., 2019). A CRPS skill score of 100% indicates that the ensemble 

forecasts are the same as the observations, whereas a skill score of 0% suggests that the ensemble 

forecasts show no improvement over the cross-validated climatology. A negative skill score means 

that the ensemble forecasts are inferior to the cross-validated climatology. In the revised manuscript, 

we will use the correlation coefficient and bias to evaluate deterministic forecast skills of the STPM2-

BHM model, the CRPS skill score will be used to provide an overall evaluation of probabilistic 

forecasts, and the RPS skill scores at different percentiles will be used to evaluate the probabilistic 

forecast skills of extreme events. 

 

6.Page 18 Line 385. The prediction skill over northeast China is relatively lower than that over 

southeastern and southwestern China. Although the number of samples will be induced, the results of 

southeastern and southwestern China can better demonstrate the skill of BHM. 

Thanks for this comment. We will incorporate this suggestion in the revised manuscript. 

 

7.Page 18 Line 385. There is no caption of a detail description of the size of dots.  

Thanks for this comment. The size of the dots indicates the fraction of forecasts in that probability bin. 

We will incorporate this suggestion in the revised manuscript. 



 

8.    Line 355, during the boreal summer monsoon season. 

Thanks for this comment. We will incorporate this suggestion in the revised manuscript. 

 

9.    Line 55-70, So far, there are many statistical models for subseasonal prediction (some of them 

were already used in operational subseasonal prediction). The authors may want to read or cite the 

following publications, and make comparisons with their model. 

 

Zhu Z., T. Li, P.-C. Hsu, J. He, 2015: A spatial-temporal projection model for extended-range forecast 

in the tropics. Clim. Dyn., 45(3), 1085-1098. doi: 10.1007/s00382-014-2353-8. 

 

Zhu Z., T. Li, 2018: Extended-range forecasting of Chinese summer surface air temperature and heat 

waves. Clim. Dyn., 50(5-6), 2007-2021. doi: 10.1007/s00382-017-3733-7. 

 

Zhu Z., T. Li, 2017: The statistical extended-range (10–30-day) forecast of summer rainfall anomalies 

over the entire China. Clim. Dyn., 48(1), 209-224. doi: 10.1007/s00382-016-3070-2. 

 

Zhu Z., T. Li, 2017: Empirical prediction of the onset dates of South China Sea summer monsoon. 

Clim. Dyn., 48(5), 1633-1645. doi: 10.1007/s00382-016-3164-x. 

 

Zhu Z., T. Li, 2017: Statistical extended-range forecast of winter surface air temperature and extremely 

cold days over China. Q. J. R. Meteor. Soc., 704(143), 1528-1538. doi: 10.1002/qj.3023. 

 

Zhu Z., S. Chen, K. Yuan, Y. Chen, S. Gao, Z. Hua, 2017: Empirical subseasonal predicting summer 

rainfall anomalies over the middle and lower reaches of Yangtze River basin based on the atmospheric 

intraseasonal oscillation. Atmos., 8(10), 185. doi:10.3390/atmos8100185. 

 

Zhu Z., T. Li, L. Bai, J. Gao, 2017: Extended-range forecast for the temporal distribution of clustering 

tropical cyclogenesis over the western North Pacific. Theor. Appl. Climatol., 130(3), 865-877. doi: 

10.1007/s00704-016-1925-4. 

 

Li W., P. Hsu, J. He, Z. Zhu, W. Zhang, 2016: Extended-range forecast of spring rainfall in southern 

China based on the Madden–Julian Oscillation. Meteorol. Atmos. Phys., 128(3), 331-345. doi: 

10.1007/s00703-015-0418-9. 

Thanks for this comment. We will revise the introduction section to have a more detailed description 

of recent progresses on subseasonal predictions. 



 

10.    Line 75-80, “However, we should note that the relationships between ISO signals and 

precipitation are of high uncertainty for different regions at different lead times” 

 

Yes, that is why in Zhu and Li (2017), they used REOF to divided the mainland China into 10 

subregions based on the coherent nature of the 10-90 variation in each subregion. They predicted 10-

30day predictand at once because considering the whole process of intraseasonal variability with the 

time-varying and spatial varying information. The authors may want to read the paper via the following 

link: 

 

http://dqkxxb.cnjournals.org/dqkxxb/article/abstract/20200120 

Thanks for this comment. We have read this article, and a STPM2-BHM model will be built to take 

advantages of both STPM and Bayesian modelling. 
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