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Abstract. FereeastsStreamflow forecasts have the potential to improve water resource decision-making, but havetheir
economic value has not been widely evaluated beeausesince current forecast value methods have critical limitations. The

ubiquitous measure for forecast value, the Relative Economic Value (REV) metric, is limited to binary decisions, the cost-loss

economic model, and risk neutral [decision-makers.— (users). [Expected Utility Theory can flexibly model more real-world /{r d [RL1]: 1.5 (and everywhere else user is mentioned) ]

decisions, but its application in forecasting has been limited and the findings are difficult to compare with those from REV.

Aln this study, a new metric for evaluating forecast value, Relative Utility Value (RUV), is developed using Expected Utility

Theory. RUV has the same interpretation as REV[1 which knables a systematic comparison of results, but RUV is more flexible /{ Ci d [RL2]: 2.35 (and other places) ]

and able-te-handle-a-wider range-ofbetter represents real-world decisions because alimore aspects of the decision-context are
user-defined. In addition, when specific assumptions are imposed it is shown that REV and RUV are equivalent—We

demenstrate-, hence REV can be considered a special case of the more general RUV. The key differences and similarities
between the-methodsREV and RUV are highlighted, with a set of experiments performed to explore the sensitivity of RUV to

different decision contexts, such as different decision types (binary, multi-categorical, and continuous-flow decisions), various

levels of user risk aversion, and varying the relative expense of mitigation. These experiments use an illustrative lcase study‘/[Commented [RL3]: 1.3 (and everywhere else sensitivity analysis
is mentioned)

asing-of probabilistic subseasonal streamflow forecasts (with lead-times up to 30 days) in a catchment in the southern Murray-

Darling Basin of Australia. Fhe-ensembleThe key outcomes of the experiments are (i) choice of decision type has an impact

on forecast value — hence it is critically important to match the decision-type with the real-world decision (ii) forecasts were

are typically more valuable than—areference—elimatology—for

. ous—flow)—_and o onformostd on-m Bevond_th
ateerteal—id-eo uous-tlo

s risk averse users, but the impact varies depending on the decision-context, and

iii) risk aversion impact is mediated by how large the potential damages should-use-thereference-elimatologyfor-the-are for

iven decision. All outcomes were found to critically depend on the relative expense of mitigation (i.e., the cost of action to

mitigate damages relative to the magnitude of damages). In particular, for users with relatively high expense of mitigation

using an unrealistic binary decision;-and-ferecastsforthe- to approximate a multi-categorical andor continuous-flow decision-
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information-is-used-for making deeisions;-and gives a misleading measure of forecast value, for forecasts longer than 1 week
lead-time. These findings highlight the importance of the flexibility enablesof RUV, which enable evaluation of forecast

assessmentvalue to be tailored to specific decisions/users and hence better capture real-world decision-makers—Hmaking. RUV

complements forecast verification and enables assessment of forecast systems through the lens of eustemeruser impact. _—{ Formatted: Font: Not Bold
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medekEffective water resource management is critically important to human welfare, thriving environmental ecosystems

agricultural productivity, power generation, town supply and economic growth (United Nations, 2011; UNESCO, 2012). The

management and equitable distribution of water to competing stakeholders is challenging due to long-term decreasing trends

in available surface water (Zhang et al., 2016), increasing high intensity storm events (Tabari, 2020), river basins overallocated

to irrigated agriculture (Grafton and Wheeler, 2018), and deteriorated river system dependant ecosystems (Cantonati et al.
2020). Environmental decision-making depends largely on the current and anticipated hydrometeorological conditions and is

frequently informed by streamflow forecasts. Many decisions, such as reservoir operations and early flood warnings, benefit

from forecasts at a subseasonal time horizon (2-8 week lead-times) because of long river travel times, operational constraints,

and logistical overheads (White et al., 2015; Monhart et al., 2019). Previous studies have used forecast verification techniques

to demonstrate that subseasonal streamflow forecasts are becoming more skilful at longer lead-times with reliable estimates of

uncertainty (Schmitt Quedi and Mainardi Fan, 2020; Mclnerney et al., 2020). However, it is not clear whether forecasts should

be used to inform water-sensitive decisions once economic and other factors are considered, thus posing the key question, “do

the forecasts provide economic value for decisions-makers?”. These factors are typically not considered when evaluating the

performance of forecasts, largely due to the limitations of available forecast value methods. This study addresses this gap by

developing a new forecast value method that is applicable for a wide range of water-sensitive decisions, such as storage release

management and environmental watering.

Forecast verification is the comparison of a set of forecasts spanning a historical period to the observed record using statistical

performance metrics. The hydrological forecasting community uses numerous statistical metrics to summarise the performance

of ensemble forecasts, including the Continuous Rank Probability Score (CRPS) for accuracy and metrics based on the

Probability Integral Transform for statistical reliability (e.g., Cloke and Pappenberger, 2009; Mclnerney et al., 2017;

Woldemeskel et al., 2018; Bennett et al., 2021). Forecast verification is necessary but insufficient for users to confidently adopt

3
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forecasts into their operational and strategic decision-making processes. For example, it does not consider the broader context

for which a decision is made, the economic trade-offs and different decision types. Forecast value measures the improvements

in an economic sense, that can be achieved by using one source of forecast information relative to another. It explicitly

100  considers the broader decision context, with economics being one of the most tractable aspects to analyse. When using forecast

verification as a proxy for forecast value we are implicitly assuming that better |forecast performance (according to our

verification metrics) implies more value. However, additional forecast performance is not necessarily a good predictor of /[r d [RL4]: 2.8

additional benefit to a user (Murphy. 1993: Roebber and Bosart. 1996: Marzban, 2012). [Exploring the relationship between

forecast performance and value over a range of use cases and lead-times is an active area of research, particularly for inflows

105 into hydropower reservoirs (Turner et al., 2017; Anghileri etal., 2019; Pefiuela et al., 2020; Cassagnole et al., 2021), and early-

warning decision making for extreme events (Bischiniotis et al., 2019; Lopez et al., 2020; Lala et al., 2021)] /[ Ci d [RL5]: 2.6

Streamflow forecasts can improve the outcomes of a range of decisions, including binary, multi-categorical, and continuous-

flow decision types. For example, whter level exceeding the height of a levee fis a binary decision, and emergency response ¢ d [RL6]: 1.26

decisions in relation to a minor, moderate, and major flood classification is a familiar multi-categorical decision. A mitigation

110  decision based on continuous-flow is the limiting case of a very large number of flow classes - for example, adjusting dam

releases to match storage inflow during flood operations. While decisions involving more flow classes are an essential feature

of many real-world decisions, a binary decision has traditionally been used as the prototypical model of decision making in

decision-theoretic literature (Katz and Murphy, 1997). The most frequently used forecast value method in hydrology and

meteorology is Relative Economic Value (REV), which is unable to handle a wide range of decision types. Substantial research

115  in the field of meteorology has explored the value of temperature, wind and rainfall forecasts for user decisions using REV
(e.g. Richardson, 2000; Wilks, 2001; Mylne, 2002; Palmer, 2002; Zhu et al., 2002; Foley and Loveday, 2020; Dorrington et

al., 2020). There is an ongoing interest in hydrology to quantify the value of forecasts for decision-making using REV (e.g.

Laio and Tamea, 2007; Roulin, 2007; Abaza et al., 2013; Thiboult et al., 2017; Verkade et al., 2017; Portele et al., 2021)

although there have not been applications with subseasonal streamflow forecasts. REV is convenient in its tractability but has

120  strong assumptions about the decision type, economic model, and user behaviour that neglect important aspects of decision-

making and have implications on the conclusions reached (Tversky and Kahneman, 1992; Katz and Murphy, 1997 Matte et
al., 2017; An-Vo et al., 2019).

REV is only suitable to assess forecast value for risk-neutral users making binary decisions using a cost-loss economic model

and event frequency as—a—reference baseline forecast—and risk-neutral—decision-makers—(Thompson,—1952:—Murphy;
125  1977(Thompson, 1952; Murphy, 1977). This limited setup is an excellent prototypical decision model, which is useful to

understand the salient features of forecast value, but may give misleading results when used to model real-world decisions.

For example, flood warnings are a practically important multi-categorical decision, typically classified into either minor,
moderate, or major flood impact levels, whereas REV only handles binary decisions. Likewise, adjusting the release of water
from a storage is best informed by continuous-flow forecasts and may require a more complex economic model than the cost-

130  loss economic model assumed by REV.
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REV is also unable to consider the impact of risk-averse deeisieﬂ—makers;—&preferene&fépfumf%efmeﬂsuserﬁ. A user is said

to be risk averse if they prefer an option with a more eertaintycertain outcome, even theughif it may on average lead to a less

economically beneficial outcome-—FEorexample- (Werner, 2008). For example, a water authority deciding to announce a large /{ Ci ted [RL7]: 1.6
water allocation event, or an irrigator placing an order— i i 2 tgh+i
135

t stop—a loeace hocanca thay
to—stop—a—retease—o t

concerned—aboutflood-damagedownstream—may, exhibit lew—aversion—to-risk and

tolerateaversion if they prefer a forecast outcome that is almost certain to occur rather than one that is uncertain forecasts-of

event-but potentially more beneficial.
140  The field of decision theory explores how agents make decisions with uncertain information and has produced a number of

innovations, such as Expected Utility Theory (Neumann—944:-Mas-Colel:—1+995)—(Neumann, 1944; Mas-Colell, 1995).

Expected Utility Theory is flexible enough to model different decision types, economic models, and risk aversion but there is
limited understanding of the relationship and differences between it and REV. It proposes that when faced with a choice a
rational person will select the option leading to an outcome that maximises their utility; an ordinal measure based on the
145 ranking of outcomes. Different people may rank outcomes differently because of their specific preferences, such as risk
aversion. While Expected Utility Theory is widely used in economics, public policy, and financial management, it has had a

very limited application in hydrology and associated fields. Matte-et-al-(2017)recently-used-itRecently, Matte et al. (2017)
applied Expected Utility Theory in a flood damage application to assess the impact of increasing intangible losses and risk

aversion on the value of raw probabilistic streamflow forecasts for a single multi-categorical decision type with 12 flow classes.

150 Akhm*gh—&h&feﬁﬂéaﬁemﬁe&he@s—geﬁe@—&h&&pﬁheaﬁeﬂ-ﬁhis study demonstrated some benefits of forecast value, but m/{ Commented [RL8]: 2.9

case study specific, limited to a single multi-categorical decision, and used metrics whiehthat are somewhat unfamiliar to the

verification community. The results were not presented on a traditional Value Diagram and therefore no comparison to REV

| could be made. ih&aa&hers—lw_e}are unaware of any literature whichthat attempts to align REV with forecast value from /{r d [RL9]: 2.10
Expected Utility Theory or present the results on a Value Diagram. There is no method available to the verification community

155 to flexibly evaluate the value of probabilistic forecasts for different decision types, economic models, or deeision-makersuser

characteristics (Cloke-and-Pappenberger; 2009;-Seares-et-al52048)(Cloke and Pappenberger, 2009; Soares et al., 2018).
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Probabilistic forecasts of continuous hydrometeorological variables lead to improved forecast [performance in many cases and /{ Ci d [RL10]: 1.7

are operationally delivered by all major forecast producers, but users are still learning the most effective way to use them

(Duan et al., 2019: Carr et al., 2021). A common approach for decision{making with a probabilistic forecast is to convert it to

a deterministic forecast usi‘ng a fixed critical probability threshold (Fundel et al., 2019; Wu et al., 2020). This approach is | Commented [RL11]: 1.8

known to lead to sub-optimal forecast value in some situations through studies using REV (Richardson, 2000; Wilks, 2001;

Zhu et al., 2002; Roulin, 2007). Matte et al. (2017) quantified forecast value with an alternative decision making approach

which uses the whole forecast distribution to decide on an ideal action at each forecast update. It is not clear that this alternative

approach leads to better decision outcomes and [we lare unaware of any literature comparing them. /{ C d [RL12]: 2.10

This study aims to:
1. Develop a methodology to systematically compare two forecast value techniques; REV and a method based on
Expected Utility Theory.
2. Demonstrate the key differences and similarities between the approaches for different decision types and levels of

risk aversion using subseasonal streamflow forecasts in the Murray-Darling Basin.

In Sect. 2-, the theoretical background of REV and an Expected Utility Theory approach for forecast value are introduced.
Sect.Seetion 3- proposes a new metric (Relative Utility Value) based on Expected Utility Theory and details its equivalence to
REV when a set of assumptions are imposed. Sect. Fhe-methedology—fer-a4 introduces an illustrative case study using
subseasonal forecasts-with-binary;-multi-categorieal, and eontinnous-flow-decisions-is-introdueced-in-a series of experiments to

explore the sensitivity of forecast value to different aspects of decision context.Seet-4— Results of the case study are presented

in Sect. 5- and discussed in Sect. 6-, including implications for forecast users and producers. Conclusions are drawn in Sect. 7
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22 Theoretical background ‘—[ Formatted: Bullets and Numbering

The background theory introduced here focuses on two methods to quantify the value of forecasts, namely REV and an
approach using Expected Utility Theory introduced by Matte et al. (26473(2017).
2.1 Relative economic value

190 REV is a frequently used and excellent method to quantify the value of forecasts for cost-loss binary decision problems

-(Richardson, 2000; Wilks, 2001; Zhu et al., 2002). Cost-loss is a well-

studied economic model where some of the loss due to a future event can be avoided by deciding to pay for an action which

will mitigate itthe loss (Thompson, 1952; Murphy, 1977; Katz and Murphy, 1997). Many real-world decisions, such as ,,,,//[ Field Code Changed

insurance, can be simplified and framed in this way as a binary categorical decision. The method assumes that any real-world

195 decision it is applied to can be framed in this way.

2.1.1 REV with deterministic forecasts

Whether a user is expected to benefit in the long run from the use of a forecast system (or an alternative) can be assessed using

a %&Fontingency table. Table 1 includes the hit rate # % , miss rate - m , false alarm rate -+ f, and correct rejection //{ Commented [RL13]: 1.9
_
= — = ””{ Field Code Changed

rate (quiets) .¢- ¢ from a long run historical simulation, along with the net expense from each eu{eemﬁcombination of action
—

o ) 0 0 0 U D

Field Code Changed
200 and occurrence, ’Where € is the cost of an action to mitigate the loss £~ L . However, only a portion £- L, of the total loss Field Code Changed
Y — Y —

. . . . . L : . . Field Code Changed

can be avoided with the remainder -L- L, being unavoidable, A derivation of Eq. (2) is provided in the Su lcman‘ . IRL14T S
— d : 1.10 (and everywhere else outcome is
Table 1: Contingency table for the cost-loss decision problem with expenses from each possible euteeme.combination of action and entioned)
occurrence. Here -€- C is the cost of the mitigating action, £ L is the unavoidable portion of loss = L from the event occurring, Field Code Changed
— P — \
and £~ L, is aveidable portion of loss from the action. \\\ { Field Code Changed
\ \ | Commented [RL15]: 1.10
\\ \
\\\Y Field Code Changed
. \ -

Event occurred Event did not occur \\Y Field Code Changed

{ Field Code Changed

. False alarm rate ()1 Field Code Changed

Hit rate (hy(h) P A 9
Action tak T
chion taken €+L-C+L, = _{ Field code Changed
A Wal —
) Pl ——{ Field Code Changed
Miss rate ¢m)(m ) Quiets/correct
Action not taken L=l rejection rate t4)(¢)

L=L,+L, 0.0 _{ Field Code Changed

205 K"’[ Field Code Changed

The expected long run expense £,E of each euteomecombination of action and occurrence depends on the rate that { Field Code CF d

euteomecombination occurred over some historical period, and these rates will be different depending on which forecast

7
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information is used. The REV metric is constructed by comparing the relative difference in the total net expenses for decisions

made using forecast, perfect, and climatological baseline information.

210 v — Ec]imale - Eﬁ)recasl REV = Echmaxe - Eforecasl (1) Field Code Changed
Eclim;nc - Epcrfcct climate Epcrfccl
T nen term-is-th 1 £th 41 tabl ] 1, o trohted byv-the rat £ Eaguation
here cachexpense termsthe < ol the continseney-table clements cach weishted by the rate of occurrenee: Ty S
min(0,a)—(h+f)a—m . ) R ) Commented [RL16]: 1.11
V= — — where —o0 < REV <1]and each expense term is the summation of the contingency -
min(0,a)-o0a S Field Code Changed
A
215 table elements each weighted by the rate of occurrence. Equation (1) is equivalent to the following standard analytical equation
for REV (Zhu et al., 2002) when the long run average expenses from Table 1 are considered.
min(o,a)—(h+ fla—-m Field Code Changed
Ry _ M (@0) (1) o
min(0,a)-oa
Whefe—{whereﬁ_ _is the frequency of the binary decision event and t‘the parameter & & is known as the cost-loss ratio. /{ Commented [RL17]: 1.12
c c “{ Field Code Changed
= a=— 0 Field Code Changed

~——{Field Code Changed

220 MMM%%M&M@M&%M{Equaﬁon k2) is typically applied over a range of & a values and this /{ Commented [RL18]: 1.10

set of REV results is plotted on a Value Diagram. This diagram provides a visualisation of how forecast value varies for \{ Field Code Changed

I U

deecision-makersusers with different expesurelevels of costs required to lessesmitigate a loss, and by extension expesure-to

mitigation of the underlying damages. We-can-consider-users-with-a-smallAn alternative interpretation of & , which we refer /[ Field Code Changed
youl

to as relative-expense of mitigation (see Table 2), is the relative expense (i.e., cost-less—+atio) a user experiences to have-a

225 smaler-take action and mitigate (i.e., avoid) their exposure to damages (i.c., loss). It is a ‘relative’ expense of mitigation

because the expense magnitude (i.e., cost) is relative to the magnitude of the damages (i.e., loss). This interpretation is used in

this study since it is more generalisable across different forecast value methods. Users with smaller cost-loss ratio have a

relatively lower expense of mitigation due to their enhanced-ability to leverage a smalllower amount of spending (small cost)
to avoid larger future damages (large loss). Conversely, users with a large cost-loss ratio weuld-have atargerexposureto

230 damages-relatively high expense of mitigation, as they require a higher amount of spending to avoid future damages. For the
same event the levelrelative expense of expesuremitigation will vary for different deeision-makersusers and decision types.

This relative-expense of mitigation interpretation of o should not be confused with the expected long run expense E used in /[ Field Code Changed
it —

the derivation Eq. (2). \( Field Code Changed




Manuscript submitted for review at Hydrology and Earth System Sciences

Additional value of forecasts over the reference
/ (Relative to perfect information)

235

1.0
Use reference to decide
Always act Never act

0.8 1
[
=3
g
E 0.6 7 Use forecast to decide
o
c
[=}
&
2 0.4
=
&
[7)
o

0.2 - )

Compared to reference climatology
00 X N NN I
T T T T
0.0 0.2 0.4 0.6 0.8 1.0
a
More exposure to damages ———»
Additional value of forecasts over the reference
/ baseline (scaled to perfect information)
1.0
Region 1:
Baseline preferred ———»

for deciding action

Relative Economic Value

Compared to reference baseline

|

Region 2:
| Forecast preferred
for deciding action

Region 3:
Baseline preferred
for deciding action

T T T
0.0 0.2 0.4 0.6
a

More expensive mitigation ——»

0.8

1.0




240

245

250

|255

260

265

Manuscript submitted for review at Hydrology and Earth System Sciences

Figure 1: Illustrative value diagram with key features annotated- with 3 key regions of & noted. Positive REV for users in region 2

//[ Field Code Changed

indicates the forecasts should be preferred to the baseline when making the decision under analysis. Negative value for users in
region 1 and 3 indicates the reference should be preferred.

_ e d [RL19]: 1.13 and 1.14

Figure 1 presents an illustrative Value Diagram as an aid to describe its interpretation#h%ﬂeﬂ—d%meﬂﬁieﬂa%—eest—les&ﬁa&&a—‘
Richardson, 2000). The non-dimensional cost-loss ratio & is shown on the x-axis and can be interpreted as a continuum of
il i

| //[ Commented [RL20]: 1.15

Formatted: Font: Italic

o U JU U

different decision-makers using the forecasts, with inereasing-exposure-to-the-d s-increasingly more expensive mitigation.
. . e . Field Code Ch d
A value of =1 =1 corresponds to maximum expesure:relative expense of mitigation; if losses are $100,000 then the { e ¢ Change
. — | Field Code Changed
amount to spend on a mitigating action is also $100,000. A value of e==6-+a =0.1 indicates that only $10,000 would be ///[ Field Code Changed
needed to mitigate the loss. The y-axis shows forecast value according to REV and has a similar interpretation to any skill- /{ Formatted: Font: Italic
score based metric. A value of REV-=1+REV =1 indicates that decisions made using forecast information successfully //[ Field Code C} d
mitigated the same level of losses (over the historical period) as decisions made using perfect information (streamflow
observations). A value of REV=6-REV = 0 indicates the decisions were only as good as those made using reference foreeast /[ Field Code Changed
information{elimatelogy)-baseline. A negative value indicates the decisions were worse than the reference. AFor example, a
value of REV—=0:7—for-exampl ,AREV =0.7 _at some value ol‘&Lindicates that en—average-the-decisions made using /[ Field Code Changed
forecasts would-hav fully-mitigatedled to a 70% merelosses-overthe historical period-thanimprovement in net expense V\[ Field Code Changed
relative to decisions made using the reference forecast:baseline, a similar interpretation to skill-scores (Wilks, 1995).
2.1.2  REV with probabilistic forecasts
Constructing a value diagram using Eq. (2) is only possible with eategeriealbinary forecasts, so an additional step is required
to convert probabilistic forecasts into categorical forecasts to quantify their value.
1. Introduce a critical probability threshold ;- p. to convert the probabilistic forecast into a deterministic forecast //{ Field Code Ct d
pailll
using the quantile function,
2. Construct a categorical forecast and contingency table from this deterministic forecast and apply Eq. (2) over a
range of e o as before,
3. Repeat step 1 and 2 for many probability thresholds over the range -0-<-p<1-0< p_<1 to form a set of possible //{ Field Code Changed
REV values for each value of e « .
4. Take the maximum value from this set for each value of e a to construct a single curve whiehthat envelopes the - /[ Field Code Ci d
many curves from each value of p;- p_, //{ Field Code Changed
il

5. This envelope is then considered to represent the value of the forecast system.
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Constructing an envelope to represent the forecast value of the system in step 4 can lead to a problematic interpretation. It

implicitly assumes that the user will always self-calibrate to select the best critical threshold p- P _for their decision before /{ Field Code Ct

the event has occurred. This is impractical and the method therefore leads to an over estimation of the expected forecast value.
This envelope could be-alternatively be interpreted as the maximum attainable forecast value. The impracticality of this method
270 is well understood (Zhu-et-al2002)(Zhu et al., 2002) but frequently ignored when applied in practice.
Step 1 of the approach models how deeiston-makersusers commonly make decisions using probabilistic forecasts. That is,
before the event has occurred (ex ante) a deeision-makeruser will choose a probability threshold that represents the degree of
certainty they require to act. If the forecast probability of the event occurring is larger than this threshold then they will act.
We refer to this as the threshold-approach.
275 it

280

Alternatively, one could set the critical probability threshold equal to e . This approach assumes that the user will self-calibrate /[ Field Code Changed
ol

based on an awareness of their specific . value (Richardson, 2000). When forecasts are perfectly reliable this approach is /[ Field Code CF d

equivalent to the maximum forecast value from step 4 (Murphy, 1977). Forecast systems are not perfectly reliable however.

285 even with contemporary post-processing methods (Li et al., 2016b; Woldemeskel et al., 2018; Mclnerney et al., 2020). The

realised value curve will therefore lie below the maximum value curve when applied to real-world forecasts. [To the best of

our knowledge. studies of real-world decisions using this alternative approach ( p, = & ) have not been reported in the /{ Field Code C} d

published literature. /{ Ci ted [RL21]: 2.11

2.2 Expected Utility Theory approach

|29() Matte et al. (2647)(2017) introduced a method to quantify forecast value based on expected utility maximisation with a state
dependent utility. The method is flexible enough to model binary, multi-categorical, and continuous-value decisions, along
| with risk averse deeision-makers.users. The method assumes that decisions of how much to spend on mitigating damages are
based on the forecast probability that the event will occur. We will refer to this approach to decision-making as the

optimisation-approach to contrast it with the threshold-approach.

295 For a general decision problem with multiple possible future states of world, the following equation specifies the von
Field Code Changed
| Neumann-Morgenstern expected utility E _for a single timestep fover MM states. - { Field Code Changed
Field Code Changed
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~ a " M Commented [RL22]: 1.16 (and all other equations with m as a
U(E’):Zf’f '“(E‘ }7“ (EI):ZPLM”(EI (m))‘ (4) /[subscript)
=] m=1
" : ”——{ Field Code Changed
wherep/™ p, ,, is the probability of state - m occurring in timestep +¢ and £ E, (m) is the outcome associated with that Field Code Changed
“ “ * ***{ Field Code Changed
state. The outcome is typically but not necessarily in monetary units. A utility functionz+(-)- z£(-) maps the outcome to a N
YP Y Y ry Y H ( ) P Field Code Changed
utility. This utility represents an ordinal value that the deecision-makeruser gains from that outcome occurring. The expected \{ Field Code Changed
. = . .- Lo . Field Code Changed
utillty«U—(—E,—)— can be considered a probability weighting of the transformed outcomes of all possible states of the world. 9
Risk aversion is represented by the concavity of z{-} 4(-), such that when a decision—makeruser is risk averse the utility /{ Field Code Ct d
plh
gained from an extra dollar is less than the utility lost when losing a dollar (Mas-Celel;+995).(Mas-Colell, 1995); see Figure
3b for }@xamples of ,u() used in our experiments with different levels of risk aversion. Therefore, on average the risk is only /{ Ci d [RL23]: 1.17

worth taking when the probability of gaining an extra dollar is more likely than losing a dollar; this is known as the probability
premium. Absolute risk aversion is suitable for the comparison of options whose outcomes are absolute changes in wealth,
and relative risk aversion where outcomes are percentage changes in wealth. The degree of aversion could be constant,
increasing, or decreasing with respect to wealth. A consumer or investor generally takes more risks as they became wealthier,

and their preferences can be reasonably approximated by decreasing absolute risk aversion.

Matte et al. {2047)}(2017) assumes that on average a public agency water manager is more likely to exhibit constant absolute /{ Formatted: Font: +Headings (Times New Roman)

risk aversion (CARA). For example, we assume that theirthe managers preference for precise forecasts (risk aversion) remains
fixed even if the possible losses from one decision are mueh-larger than another_decision. In this case a utility function

satisfying these properties can be defined by

_,% 4 u(E;A):—%exp(—A~E) ) /{FieldCodeChanged
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where the parameter 4 is the Arrow-Pratt coefficient of absolute risk aversion and E is the economic outcome (Mas-Colell /[ Field Code Changed

1995). Babcock et al. (1993) cautions against interpreting the risk aversion coefficient directly and notes the importance of \£ Field Code Changed

considering how perception of risk aversion depends on the possible loss. A more interpretable measure which allows

comparison between studies with different losses is the risk premium; the proportion of loss a user would pay to eliminate a

decision and replace it with a certain outcome (Pratt, 1964). The method introduced here can use any utility function, such as

constant relative risk aversion, which was used by Katz and Lazo (2011).

The economic model used in this study is a simplified version of that used by Matte et al. (2017) which determines the net

loutcome from a cost-loss decision. The Matte et al. (2017) method considers calibration to monetary units, damages informed

by flood studies, intangible damages, and distributed spending over multiple lead-times. Our method is less concerned with

the absolute monetary value of forecasts for a specific decision, and instead focuses on the relative value of one forecast over

an alternative. This leads to a metric which is more generally applicable and comparable across different users, decisions,

1.19 (and every other equation where

forecasts methods, and forecast locations, A cost-loss economic model is required to compare results with REV, and is used 1 c d [RL24]: 1.18
in this study; however the RUV method is flexible in that any economic model could be used.| /{ Ci d [RL25]: 2.12
For a state of the world -# m at a specific timestep + ¢ , with damages drfm—)T d,(m ( ) cost to mitigate the damages -€- C,, and Field Code Changed
fd 'dAd N : o b * = ‘[ Field Code Changed
tl t
amount of damages avoide %b, (m). the outcome is given by Field Code Changed
B e b m)—d{m)—C, E,(m)=b,(m)d, (m)- c, Field Code Changed
. Field Code Changed
The benefit function -b{m}-b, (m) specifies the damages avoided from taking action to mitigate them, Commented [RL26]:
notation improved)
b (m)=min(B-C.d{m)) b,(m)=min(B-C,.d,(m)) (7 Field Code Changed
A Fneld Code Changed
where the spending leverage parameter - ,B controls the extra damages avoided for each dollar spent. This is a similar concept Field Code Changed
\‘[ Field Code Changed

(albeit inverted) to the cost-loss ratio e in the REV metric. The damage function <} d, (m) relates the streamflow
i— N /{ Field Code Changed

mﬁgﬂi&ud%‘&ates of the world fo the economic damages and must be specified for the decision of interest. This economic model \( Field Code Changed

assumes that benefits increase linearly as more is spent on damage mitigation, followed by a loss if the spend amount is greater Commented [RL27]:

20

o 0 L U U

than the damages.

The optimal amount € C, to spend -at timestep + can be found by maximising the expected utility following substitution Field Code Changed
— —

””{ Field Code Changed

of Eq. (5)-(7) into Eq. (4),
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C] = argmax U(E,)
.

m

= argmax i—%exp[—A‘(min(ﬁ‘C,,d(m))—d(m)—C,H

G m=1
C, =argmax U, (E,)
3

®)

= argmax i—%exp[—A-(min(ﬂ-Cl,dl (m))-d, (m)-C, )]

'

This optimal spend amount for each timestep must be found ex ante, that is before the event has taken place, when the future

state of the world is unknown, but a forecast is available. The probabilistic forecast (for some lead-time) is used to determine

the forecast likelihood of each state occurring and calculate the ex ante expected utility -EL(—E,—)— U, (E,) in Eq. (8). The optimal

{ Field Code Changed

~_{Field Code Changed

~

amount to spend on mitigation is the amount which leads to the largest ex ante expected utility.
The utility can also be calculated ex post, after the event has taken place, and a singular state of the world is known (streamflow

observation). This leads to the following expression for the ex post utility after substitutions into Eq. (4)

vl Vel (8 gl g\ or)
P = E e a6
Y(E, )= u(min(p-C, .d, (7, ))-d,(7,)-C, ) ©)

/[ Field Code CF

where ¥(£7) Y(E,) is the ex post utility, €= C, is the spend amount that was found ex ante, - i, is the state of the world
R —

—

/{ Field Code Changed

associated with the observed flow at timestep +-¢ . The ex post utility quantifies the benefit a decision-makeruser would have
l

- "
’*{ Field Code Changed

\{ Field Code Changed

gained if they spent €~ C, on mitigating the damages which occurred as a result of the observed flow. It’s important to note
—

{ Field Code Changed

that since utility is an ordinal quantity that represents a deeision-maker’suser’s preference over the possible decision outcomes,
the utilities can be compared but the actual value is noninterpretable. The ex post utility is used in the RUV metric introduced
in Sect. 3-.

Three ex post metrics were used in Matte et al. (20473(2017) to quantify forecast value using spend amounts found ex ante.
They use economic variables (utility, avoided losses and amount spent) averaged over forecasts spanning an historical period.
None of these metrics are equivalent or directly comparable to REV and their results were not parameterised by an equivalent
of the cost-loss ratio. The mathematical form and interpretation of these 3 metrics are included in the Supplement.

Expected Utility Theory can be used to model more decisions with more realism than is possible with the strong assumptions
of REV. However, the economically relevant metrics and parameterisation used to quantify forecast value by Matte et al.

2047)(2017) pose a challenge when comparing the outcomes from the two methods.

~——{ Field Code C

o
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33 Relative Utility Value ‘—[ Formatted: Bullets and Numbering

This section introduces a new metric which allows direct comparison of the results quantified by the two alternative forecast
value approaches described in Sect. 2-. It aligns the two approaches and allows comparison using the Value Diagram, which
is familiar to the environmental modelling verification community and a compelling communication tool. RUV is inspired by

380 REV and skill scores, but with terms based on the ex post expected utility.

Field Code Ci d

e ELV(ED]-E[v(2/)]

E
V= £ RUV =

E/ ]
Elx(z)]-Elx(e)] " B[v(=)]-E[x(=)]

(10)

where M E [Y(E " )] is the expected value of the ex post expected utility from Eq. (9) over a set of observations and /{ Field Code C

tel
A

either forecast (-~ /'), reference elimatelogybaseline (+ ), or perfect information (p- p). A nice feature of RUV is that it //{ Field Code Changed
— A Y. <

_— . L . | Field Code Changed
uses the whole probabilistic forecast and does not first convert it to a deterministic forecast like REV. \% 9
Field Code Ci d

385 RUV has all the benefits and familiarity of REV but is a more flexible way to quantify forecast value. Any economic model
or form of risk aversion can be used to construct the expected utility terms required by RUV because it is built on the Expected

Utility Theory framework. In this paper we focus on the method with the economic model detailed by Eq. (6) and (7), and risk

.. . . . 1 1 L . . . . Field Code Changed
aversion in Eq. (5). IfRUV is parameterised using #=— f = — and visualised on a Value Diagram it can be interpreted in
a a

the same way as an REV curve. The flexibility of the utility framework allows the user to make explicit choices about suitable
390 approximations to model the decision problem. This can be accomplished by modifying the economic model, damage function
and risk aversion through Eq. (5), (6) and (7) when used to calculate RUV. These assumptions can then be evaluated and
extended with additional information if available. Unlike REV using Eq. (2), additional evaluation information is available for

each timestep such as the amount spent, damage avoided and economic utility. [This may benefit a user applying alternative

economic models and tuning damage functions to match real-world data, as they would require the amount spent and damages

395 incurred at individual time steps to determine the components are behaving as expected. Additionally, a user who has finite

funds to spend on mitigation and wants to determine when their budget will be exhausted would require investigation of spend

and damage amounts at individual time—stevs.‘ ,//'{ C d [RL28]: 2.13

3.1 Relationship between RUV and REV

Figure 2 contrasts the processes used by REV and RUV to quantify the value of probabilistic forecasts. Note that RUV uses
400 the same inputs as REV and leads to the same output, however RUV allows the economic model, damage function and risk
aversion to be explicitly specified. The internal process is very similar except RUV maximises utility rather than minimises

expense.
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Figure 2: Flowcharts showing the process followed to quantify the value of probabilistic forecasts using either RUV with an
optimisation approach to decision making, or REV using the threshold-approach with a specific critical probability threshold. The

16
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sub-processes in the pink boxes are repeated for forecast, perfect, and reference information before being used to calculate REV

and RUYV. In practice, REV is calculated using Eq. (2)-is-used-to-caleulate REV), which is based on a contingency table with an

assumption that it has converged to the long-run performance of the system.

Unlike REV, there is no analytical solution for RUV due to the optimisation step in Eq. (8) unless assumptions are placed on

the decision context. When the following 5 assumptions are applied to RUV it is equivalent to REV.
Binary damage function is used which is a positive value for the losses above the decision threshold, and 0

1.

DA e

otherwise,

Deeision-makersUsers are risk neutral as specified by a linear utility function,
Forecasts are deterministic with the probability of flow above the threshold always either 1 or 0,

The historical frequency of the binary event is used as the reference baseline,

All possible losses are avoided.

The mathematical justification for these assumptions and a proof of the equivalence is detailed in Appendix A- and the

Supplement. Note that when applying these assumptions, the core RUV method illustrated in Figure 2 remains the same but

the probabilistic forecast is first converted to a deterministic forecast. Table 2 summarises how decision concepts are

represented in each forecast value method and demonstrates the enhanced flexibility of the RUV metric.

Table 2: Comparison of REV and RUV Forecast value methods for defining d

user characteristics

and deeisi I

Relative Economic Value (REV)

Relative Utility Value (RUV) <+ Formatted Table

Level of damages

MitigationLevel of
spending (expense)
required
to mitigate damages

Exposurete
damagesRelative
expense of mitigation
Aversion to risk

Decision types

Forecast value baseline

Fixed loss (dimensionless)
Equivalent to step damage function

Fixed cost (dimensionless)
Equivalent to fixed spend amount

Cost-loss ratio
Always risk neutral
Binary

Historical event frequency

Damage function is flexible and can
be tailored to decision

Spend amount is optimised and varies
at each timestep

Spending-leverage parameter

Level of risk aversion and type of
utility function can vary

Binary, multi-categorical or
continuous-value

Any alternative forecast
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Probabilistic decision- Threshold-approach

Optimisation-approach or threshold-

making approach
Economic model Fixed cost-loss Economic model s ﬂe)qb l-e and can
be tailored to decision
Interpretation Value Diagram Value Diagram
4 Methodology
4 Alllustrative case study

‘—[ Formatted Table

An illustrative case study is used to determine—hewdemonstrate the application of RUV for quantifying the value of

prebabilistiesub-seasonal streamflow forecasts—ehange. A series of experiments is used to explore the sensitivity of forecast

value to some aspects of decision context, specifically the decision types, lusers with different ¢

FREETY

makersrelative expense of mitigation and different levels of risk aversion|, and decision-making approaches. A targeted

=typ

5

ted [RL29]: 2.15

(e

approach is adopted to contrast the RUV and REV methods and illustrate the impact of decision characteristics, rather than an

exhaustive evaluation of the value of the specific forecasts used.
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450 4.1 on-Biggara—(401012) onthe
Murray-Darling Basin; Australia- Biggara-is-upstream-Study region and catchment

0 =

Our case study explores the value of subseasonal streamflow forecasts at the water level station Biggara (401012) on the

Murray River in the southern Murray-Darling Basin, Australia.

Agencies operating in the southern Murray-Darling Basin of Australia, such as the Murray-Darling Basin Authority (MDBA)

455 and Goulburn-Murray Water (GMW), make releases from storages, which have impacts far downstream. |St0rage management /[ Ci d [RL30]: 2.16

decisions may benefit from subseasonal forecasts, with lead-times out to 30 days, and assist Enhanced Environmental Water

Delivery (Murray—Darling Basin Authority, 2017). Currently, when operational decisions are informed with probabilistic

forecasts the threshold-approach is used with a set of fixed critical probability thresholds, and a degree of risk aversion is

implicitly assumed (personal correspondence with MDBA). As far as the authors are aware, the relative value of streamflow

460 forecasts for these decisions and user characteristics has not been previously quantified.

The Biggara station has particular significance for water resource management in this region as it is located upstream of Hume /[ C d [RL31]: 1.22

Dam, a major reservoir used for environmental water releases, irrigated agriculture, and town supply. It is in a temperate

region, has a contributing area of 1,257 km?, a mean rainfall of 1,158 mm/year, and mean runoff of 361 mm/year.

434.2 Streamflow forecasts “[ Formatted: Bullets and Numbering
465

time-horizonsin-earherstuds Mel: t ol 2020} \A/ ted 30-dax hle £ TERETECY gt (100 b, )

time -horizons-in-carli (Melnerney et al., ) W nerated 30-day ensemble Torecast time series (100 members)

starting-on-the st ofcach-month-over-the period 199110 2012 Raw streamtow foreeasts were simulated-using the GR4
470

match—th \!

475  on-theseforecastsean-be-foundin-Melnerney-etal(2020)

Daily streamflow forecasts are generated using the following method which demonstrated good performance at subseasonal
time horizons in earlier studies (McInerney et al., 2020, 2022). We generated 30-day ensemble forecast time series (100

members) starting on the 1% of each month over the period 1991 to 2012. Raw streamflow forecasts were simulated using the

GRA4]J rainfall-runoff model (Perrin et al., 2003), forced by rainfall from the Australian Community Climate and Earth-System
480 Simulator Seasonal (Hudson et. al., 2017) that had been pre-processed using the Rainfall Post-Processing for Seasonal forecasts

19
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method (Schepen et al., 2018), and potential evapotranspiration from the Australian Water Availability Project (Jones et al. /{ C d [RL32]: 2.17
2009). Final streamflow forecasts were generated by post-processing fthe raw streamflow forecasts using the Multi-Temporal /{ C d [RL33]: 1.25
Hydrological Residual Error (MuTHRE) model (McInerney et al., 2020). Post-processing ensured that the statistical properties

of the streamflow forecasts closely match the streamflow o\bservationj. The MuTHRE model was chosen for post-proce&g_/{ Commented [RL34]: 1.24

485 because it provides “seamless” forecasts that are (statistically) reliable and sharp across multiple lead-times (0-30 days) and

aggregation time scales (daily to monthlv).‘ Further information on the forecasts used in this study can be found in Mclnerney /{ C d [RL35]: 2.18

et al. (2020), and further method improvements to enhance seamless performance in MclInerney et al. (2021).

4:44.3 Decision types “[ Formatted: Bullets and Numbering

490 ding the height of a levee for example. A multi-cat ical decision with more than ty

495

isi i i Decisions involving more than two flow classes are an essential feature of

many real-world decisions (see examples in Sect. 1). Three types of decisions are considered in the illustrative case study: (i) /{f‘ ted [RL36]: 2.19

500 binary decisions with flow above a single threshold, either the top 25% of top 10% of the observation record; (ii) multi-
categorical decisions with flow in 5 classes over a range of thresholds; and (iii) continuous-flow decisions using flow from
whole flow regime. These thresholds are indicative of decisions whiehthat depend on moderate to high flow at Biggara, such
as operational airspace management of the Hume Dam or minor inundation upstream of Yarrawonga Weir when coinciding

with a dam release.

505 4:54.4 Economic damages “[ Formatted: Bullets and Numbering

The relationship between damages and flow in Eq. (6) and (7) when applying the RUV metric is specified using a non-

dimensional logistic function,

5 s Field Code Ct d
(o) = ; T ol (o — )
“e) L+exp(—k(g—1)) (5:0k9) 1+exp(—k(q—¢)) o /

The logistic function can be parameterised to have very similar behaviour to the Gompertz curve used in flood damage studies

510 and used by Matte et al.
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observedhistoricalflowsee Fiegwre 3-and-(2017). with (q) representing the cumulative damages incurred from all flow up /{ Field Code Changed

to g (Lietal., 2016a). It was parameterised to reasonably characterise losses from high flow events; no damages when flow /{ Field Code Ct d
ey

is zero, increasing quickly from around the top 20% of flow, and approaching 1 at very high values above the top 1% of flow

(see Figure 3a). These assumptions were reproduced with the following parameter set; .6 =1, k =0.07 and ¢ equal to the /{ Field Code Changed

— .
. N . . Field Code Changed

value corresponding to the top 1% of observed historical flow.Seet=6-3-
Field Code Ci d
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Figure 3: Damage(a) Example damage function used in the illustrative case study based on a logistic curve with an inflection point
at the top 1% of observed flow:, and (b) corresponding CARA utility function with 4 levels of risk aversion (limited to

—3 < utility < 0 _and aligned at zero utility for visual clarity). /{ Field Code Changed
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4:64.5 _Risk aversion ‘—[ Formatted: Bullets and Numbering

It is difficult to precisely know a deeiston-maker’suser’s level of risk without a history of prior decisions. Moreover, it would

be incorrect to assume that ‘all deeision-maker’s-users share the same level of risk. Therefore, a range of risk aversions have //{ C d [RL37]: 127

been considered to illustrate its impact on forecast value. In this study we have used risk aversion coefficients

EEEEEn)

A4€{0,0.3,1,5} . which correspond to risk premiums of -G-={0%:1+5%:44%:86%} 0 ~ {0%,15%,43%,86%} for a CARA //{ Field Code Changed

”””{ Field Code Changed

utility function with maximum losses of =1 & =1 (Babeeeketal;1993)-These(Babcock etal.. 1993), see. [Figure 3b shows

——/J{ Field Code Changed

that the curvature of /.1() increases with increasing risk aversion, and this leads to an increasingly rapid decline in utility from //{ Field Code Changed
— —

damages. The 4 risk aversion coefficients represent deeision-makersusers who are neutral, shightlyminorly, moderately, and /{ [ d [RL38]: 1.17

) U )

highly risk averse- respectively. When risk premiums are considered, our range of risk aversion coefficients is similar to those
used by Tena and Gomez (2008)(2008) and Matte et al. (2047)-(2017). Finding appropriate values of risk aversion for a specific
deeision-makeruser is beyond the scope of this study, but would be highly beneficial in user-focused forecast value studies.

N //{ Formatted: Font: Bold
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4:74.6 __Experiments

‘—[ Formatted:

Bullets and Numbering

The value of the subseasonal forecasts are quantified using the RUV and REV metrics. Experiments are performed over the

dimensions of forecast lead-time, decision type, decision making approach, metric, and deeision-makeruser risk aversion.

Streamflow forecasts from multiple daily lead-times were grouped together to quantify forecast value over 7-day and 14-day

forecast horizoni Grouping lead-times together simplifies the introduction of RUV and comparison of its salient features with

d [RL39]: 2.4b

REV: however, for practical applications there may be benefits for evaluating forecast value at specific lead-times of interest. \_///{ C

A fixed climatology based on all observed values in the record is used for the reference baseline of RUV to align with that

used in REV. Table 3 summarises the specific attributes used for each figure, with the key dimension highlighted as red text.

[Table 3: Di i of forecast value problem used for each figure. Key di ion introduced in each figure is highlighted with red 7/,/{ C d [RL40]: 1.28 & 2.21
text.
Lead- Decision- Risk
Experiment purpose times Decision type Decision threshold ki Metric - “—— Formatted Table
aversion
(days) approach
Experiment 1: Equivalence
of REV and RUV, and D =
impact of fixed probability 17 Binary Top25% Threshold ey, 0 ~—{ Formatted: Font: Italic
thresholds. Moderate flow
example. (Figure 4)
Experiment  2:  Contrast
decision-making approaches. . Top 25% Jhreshold e ] 1 Formatted: Font: Italic
Moderate flow example. 15 Binaty Optimisation nEY v {
(Figure 5)
Experiment 3: Subseasonal 17 i) Top 10% N
forecast value for different Ly TFop20%, 15%; 10%; T ”””’{ Formatted: Font: Italic
L. . 8-14 Multi-categorical 0 Optimisation RUV 0
ilesitilon (i, B o 15-30 Continuous-flow S
examples. (Figure 6) i o All flow
ey ey
it fievy rem 5, (Figuré 1-7 Multi_-categorical Top 15%, 10%, 5%, 1%  Optimisation RUV 00315 /,,/{ Formatted: Font: Italic
7 Continuous-flow All flow
Experiment 5: Key driver of Thresholds from .
impact of risk aversion on 1-7 Binary sttt il o] Optimisation RUV 0,03, 1,5 ”””/{ Formatted: Font: Italic

v 9 032
forecast value. (Figure 8) bottom X 1o top 0.03%
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55 Results

5.1 Experiment 1: Equivalence of RUV and REV, and impact of fixed probability threshold

In experimentExperiment 1, forecast value has been quantified using REV and RUV with the assumptions detailed in Sect.
3.1: binary damage function, risk neutral deeision-makeruser, deterministic forecasts, event frequency for reference baseline,

and all losses avoided. As expected, Figure 4 demonstrates that the results are identical between the two methods.

25
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Figure 4: Forecast value quantified using (a) REV and (b) RUV with assumptions enforced, and the threshold approach for decision-
making. With a binary d of flow exceeding the top 25% of observations, subseasonal forecasts from the first week of lead-
times, and a risk neutral deeision-maker.user. Critical probability thresholds for the threefour curves are the value leading to
maximum forecast value, and the (D.l,_’(ﬁ1 and 0.9 forecast quantile, corresponding to acting when there is a high, medium, or low

chance of event occurring respectively.

¢

ted [RL41]: 1.29 & 2.22
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We now explore the detrimental impact on forecast value of using the threshold-approach to convert probabilistic forecasts to
deterministic forecasts. Any forecast value method using the threshold-approach needs to select a critical probability threshold

-p- p, to convert probabilistic forecasts to deterministic forecasts. Figure 4 includes three3 curves corresponding to decisions
pullll

__{Field Code Changed

made with different thresholds. The blue line shows the value obtained when the threshold - p, is chosen to maximise that

value at each - o (see Sect. 2.1.2). This is an upper limit that cannot be obtained in practical situations because it implies a
Pl

___{Field code Changed

- /[ Field Code Changed

deeision-makeruser has either perfect foresight or a perfectly reliable forecast, and P—=-+ p, = o will lead to maximum value

___{Field code Changed

) ) UJ U

if the forecast is perfectly reliable (—R—i&hﬂ*dﬁé\ﬁ,—l—%@)'mon, 2000). The redorange lines show how the choice of - p, //{ Field Code Changed
—

can have a dramatic impact on the value of forecasts for a decision, with the dotted line showing forecast value when -p,=0-1

o

o U )

améipr =0.1. the dashed line when —p,—:9:9»;p, =0.5, and the dash-dot l‘ﬁne whenApT =0.9. RUV is negative for some Commented [RL42]: 1.29
regions of & -a. which indicates that those deeision-makersusers should aseh&fer the Flimatological baseline rather than the \{ ::::: 2::: 2::::::
forecasts when making decisions. Field Code Changed
This result clearly shows that to extract the most value from forecast information a deeision-makerneedsto-considertheir Commented [RL43]: 2.3
Field Code Changed
different-deeision-makersuser needs to consider their relative expense ofmitigation‘ﬁ when ChOOSin}:&. For example, when //{ Field Code Changed
a user with & =0.8 uses p, = 0.9 they gain significant value from the forecasts (RUV ~ 0.6 ), but if they use p, = 0.1 their { Field Code Changed
— e — A :——/{ Field Code Changed
outcome using forecasts is worse than using the reference baseline (‘RUV <0), while for a different user withAa =0.1 the \\\‘[ Field Code Changed
opposite is truq. This critical dependence of value on p, _is an established finding for REV (Richardson, 2000; Murphy, 1977 Field Code Changed
A Field Code Changed
and is not specific to this example; here we illustrate that RUV reproduces it. Figure 4 additionally shows that the Value Field Code Changed
Diagram used with REV remains a compelling way to visualise how RUV forecast value varies for different users. Field Code Changed
This result, and the derivation in Appendix A- and the Supplement, demonstrate that RUV and REV are equivalent when Field Code Changed
appropriate assumptions are imposed. It demonstrates that REV can be considered a special case of the more general RUV ¢ d [RLA4]: 2.4c
metric.
5.2 Experiment 2: Contrasting the threshold-approach and optimisation-approach for decision making
Figure 5 adds two more forecast value curves, generated using RUV, to Figure 4. The black line shows value when the
optimisation-approach is used to make spending decisions with the subseasonal forecasts (detailed in Sect. 2.2), and the
ereypink line shows value when the threshold-approach is used with J’,—:eﬁ‘ p. =« . The result demonstrates that making //{ Field Code Changed
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590 decisions using either approach provides close to the maximum value possible for all decision-makersusers (different values
of &« ). This contrasts dramatically with the threshold-approach using specific fixed values for p—~red p__(orange lines) //{ Field Code Changed
— A =
~—{ Field Code Changed

which only provides maximum value for a very small range of deeision-makersusers.
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Figure 5: Forecast value quantified using four different approaches to decision-making: the optimisation-approach and the

595
threshold-approach with either perfect critical probability thresholds, specific critical thresholds, or the critical threshold set equal
__{Field code Changed

to the al-pha& value. A binary decision of flow exceeding the top 25% of observations was used, with subseasonal forecasts from

the first week of lead-times, and a risk neutral decision-makeruser. Specific critical thresholds are the 0.1, 0.5, and 0.9 forecast 1
quantile, corresponding to acting when there is a high or low chance of the event occurring respectively.

600 Investigations (not shown) indicated that the optimisation and -P—=-e- p, = a curves (black and greypink lines) are non- //{ Field Code Changed

smooth because of the limited number of events in the observation record, and the small difference between the grey-and-black
d [RL45]: 2.24

and pink lines is due to lsampling errors from to the relatively small ensemble sampling-error—size. It is notable that forecast /{ [

value from these two different decision-making approaches are essentially equivalent as illustrated by the closeness of the

black and greypink lines in Figure 5. Additional analysis (not shown) found this equivalence to be robust to the type of

decisions (binary, multi-categorical, or continuous-flow) and-changes-inforecastreliability—but not equivalent for risk averse

users.

605

5.3 Experiment 3: Comparing Forecast value for different types of decisions

Figure 6 presents results for binary; (blue-lines), multi-categorical (orange lines) and continuous-flow decisions_(green lines
with forecast lead times in separate panels. RUV was calculated for the daily subseasonal forecasts with lead-times pooled
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610  from the 1% week (blue lines(Figure 6a), 2" week (orange lines(Figure 6b) and 3" and 4™ weeks combined {greentines)(Figure
6¢). The deeiston-makeruser is assumed_to be risk neutral, and the optimisation-approach was used. Overall, the forecasts
provide excellent value for these three different decision types over all time-horizons (max 30 days), implying that any
deeiston-makeruser would likely benefit from using the forecast information over the elimatelogyreference baseline. Peak
RUV wasis over 0.8 in the first week for all decision types, and close to 0.7, 0.6, and 0.5 in subsequent weeks for binary, multi-

615 categorical, and continuous-flow decision types respectively. The-exeeption-is—for-decision-makers—with-high-expesure—to
damages-in-the 3™ and 4" weekswhere F : : abox i

categorical-decisions—Regardless of the decision type or lead-time, forecasts provide maximum value for users with & close _| Field Code Changed

to the probability of the most damaging flow class occurring. For example, for the binary decision the peak RUV value is

located at o = 0.1, which corresponds with the event frequency of decision threshold used (top 10% of flow). /[ Field Code Changed
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Figure 6: Forecast value for (a) binary decision of flow exceeding the top 10% of observations, (b) flow within 5 classes with
thresholds at the top 20%, 15%, 10% and 5% of observations, and (c) continuous-flow. Decisions are made using the optimisation-
approach for decision-making with a risk neutral deeisi keruser, and sub 1 forecasts for the 13, 2" and combined 3
625  and 4™ weeks of lead-times)

Alm

H-decision

there is important variation in RUV aeress-atead-timeand-deecision-type-for different decision types. These differences in
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RUV for different decision-types are more pronounced for larger values of o and at longer lead-times. For example, beyond
Pl

//[ Field Code Changed

the-secondfor users With‘a > 0.6 _(lead-time week decision-makers—with-e—>6-62) the RUV is below zero for the binary

__{Field Code Changed

decision type. but not the multi-categorical or continuous flow decision types. [This suggests the users should prefer the

reference elimatologybaseline for the binary decision and prefer forecasts for the multi-categorical and continuous-flow
decisions. Regardiess-oftheThis highlights the importance of calculating forecast value using the decision type which matches

the decision being assessei

{It is notable that for higher values of&the value of forecasts in weeks 3 and 4 is higher than week 2. While differences are

s ted [RL47]: 225

__{Field code Changed

minor, they interestingly appear robust over the multiple decision type-er-types in this case study. The reduced value of

forecasts could possibly be due to lead-time;—forecasts—provide-maximum-—vatue—for-decision-makers-with-a—elose-to-the

0.1 which corresponds with the event frequency of decision threshold used (top 10% of flow). Forecast dependent

a=

differences in forecast reliability and decreasing sharpness of the forecast ensemble at longer lead-times. Another notable

feature is that forecast value at small e~ a is enhanced for continuous-flow decisions relative to the other decision- types. This

___{Field Code Changed

seems to be because large damages from infrequent extreme events are more adequately mitigated in continuous-flow decisions

because a correspondingly large amount is spent when they are forecast correctly. \

g d [RL4S]: 131

54 Experiment 4: Impact of risk aversion

Experiment 4 contrasts forecast value for a risk neutral deeision-makeruser against 3three different levels of risk aversion for
binary, multi-categorical, and continuous-flow decisions. The results presented in Figure 7 for the RUV metric (first row) as
well the overspend (middle row) and utility-difference metrics (last row) used by Matte et al. 2647)(2017) which provide

insight into the spending decisions and utility respectively. LBy varying #, 4 in Eq. (5) risk aversion is found to have a

/[ Field Code Changed

meoderatesignificant impact on the value of forecasts for thehighly risk averse users making continuous-flow decisions, a

moderate impact for multi-categorical and continuous-flow decisions; (except for highly risk averse users). and a minor impact

for binary deeisien-typesdecisions (see Figure 7 first row), Increased risk aversion shifts the RUV curve toward users with

¢ d [RL49]: 227

higher e~ o , suggesting that risk averse deeision-makersusers with more expesure-to-damagesexpensive mitigation would
Pl

__{Field Code Changed

benefit more from using forecasts to make their decisions.
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Figure 7: RUYV, overspend and utility-difference for different levels of decision-makeruser risk aversion, for a binary decision of

flow exceeding the top 10% of observations (first column), flow within 5 classes with thresholds at the top 15%, 10%, 5%, and 1%
of observations (middle column), and continuous-flow (last column). Decisions made using the optimisation approach with

subseasonal forecasts from the 13t week of lead-times.

The overspend ((Figure 7. middle row) and utility-difference results ((Figure 7, last row) indicate that risk aversion has a minor
impact on the spending decisions and the resultant utility-, except for highly risk averse users making continuous-flow

decisions, The overspend panels show that regardless of risk aversion, on average a deeision-makeruser will spend more than //{ C

Commented [RL50]: 1.33

//f Formatted: Superscript

d [RL51]: 2.27
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necessary when their cost of mitigation is small relative to the potential avoided losses (small -6-)- ). Conversely, when -e

- /[ Field Code Changed

a is large they will underspend on average. When risk aversion is increased, decision-makersusers spend increasingly more.
_

__{Field code ct d

[The utility-difference panels (Figure 7. bottom row) show that decisions made using forecasts provide users less utility than

decisions made using perfect information, and this decrease in utility increases with risk aversion. As utility is an ordinal

measure it is only meaningful to interpret differences within each panel (g), (h), and (i), not between them. This highlights a

benefit of the overspend and RUV metrics which are comparable across decision type. \

(e

ted [RL52]: 134

5.5 Experiment 5: Mechanism behind the varying impact of risk aversion

It is notable that the impact of risk aversion in Figure 7 is different for each decision type; minor for the binary decisions,
moderate for multi-categorical and continuous-flow, and particularly enhanced for highly risk averse deeision-makers-users.

Experiment 5 investigates the mechanism behind this. Figure 8 presents the difference in RUV between risk averse and risk

neutral deeision-makersusers (gz—axis), for a binary decision at a single expesure-to-damagesvalue of ﬂ?@r}ﬁ j{a =0.2). /[ Formatted: Font: Italic

The binary decision threshold (x-axis) is varied from the 0-+—162 — 225 m%/s (bottom 25% to top 0.0403%) and decisions are

made using the optimisation approach with subseasonal forecasts from the 1% week of lead-times. This contrasts with the

binary decision in experiment 4 where the decision threshold is fixed at 2:432 m’/s (top 10%) and-e-_ ¢ is varied.
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Below a critical decision threshold of approximately 570 m*/s (top 2% flow) the difference in RUV between any level of risk

aversion and risk-neutrality is negligible. Above this value an increasing difference is clear, particularly in the highly risk

averse case, with risk averse deeision-makersusers gaining more value from the forecast information than risk neutral. This

finding was consistent for multi-categorical decisions of any number of flow classes, all lead-times, and all values of &« //[ Field Code Changed

except at extreme high and low values (not shown)4 The specific experimental values (binary decision, & = 0.2, 1% week lead-

__{Field Code Changed

time) were chosen as a representative example and the findings apply for other experimental values. It demonstrates that the

d [RL53]: 2.28

decision thresholds used, specifically in relation to the damage function, are the key drivers behind the impact of risk aversion
regardless of the decision type. The difference in impact of risk aversion across the different decision types in Figure 7 can
therefore be explained by the specific decision thresholds used in relation to this critical value; the binary decision threshold
of 2:432 m?/s used in experiment 4 was less than the critical value of 570 m*/s and only a minor impact from risk aversion was

found, whereas the top decision threshold for the multi-categorical decision was 6:891 m?/s, above this critical value, and a
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moderate impact was found, and an even larger impact was found for the continuous-flow decision which includes contribution

from the largest flows.
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Figure 8: difference in RUV between risk averse ( 4 > 0) and risk neutral ( A = 0) users (y-axis), for a binary decision at a single & /{ Field Code Changed

value (@ =0.2). The binary decision threshold (x-axis) is varied from 2 — 225 m%s and decisions are made using the optimisation Field Code Changed
approach with subseasonal forecasts from the 1% week of lead-times. Field Code Changed
Field Code Changed
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w&hm—wh*eh—deﬁs*eﬂs—a;%madﬂsmnsncal forecast verification metrics have previously been used to show that the

probabilistic streamflow forecasts used in this study are reliable and sharp, largely due to the post-processing method employed

(Mclnerney et al., 2021). Other post-processing methods have also demonstrated capability to improve the reliability and
725  sharpness of raw streamflow forecasts (Bogner et al., 2016; Li et al., 2016b; Woldemeskel et al., 2018; Lucatero et al., 2018).

However, the ability of these forecasts o improve decision outcomes has not been extensively established. Additionally, REV /{ Ci d [RL54]: 2.29

the most frequently used forecast value method, can only be applied to a limited number of real-world decisions. In this paper

we ldeveloped a new forecast value method, Relative Utility Value (RUV). which is more flexible than REV and can be applied

to more decisions. The flexibility of RUV is demonstrated with an illustrative case study using probabilistic W{Commenmd [RL55]: 2.30

730 streamflow forecasts to inform binary, multi-categorical, and continuous-flow decisions with risk averse users. The 5

experiments reported in Sect. 5 systematically explore the impact of different aspects of a decision on forecast value: the

forecast value method, the probabilistic decision-making approach, types of decisions, user risk aversion, and the mechanism

behind varied risk aversion impact. First, we find that under certain conditions RUV and REV are equivalent, and REV can be

considered a special case of the more general RUV method (see Figure 4, Appendix A, and the Supplement). Second, making

735  decisions with fixed critical probability thresholds fleads to maximum forecast value only for a very small set of users, and /{r d [RL56]: 1.35

using an optimisation-based approach makes better use of probabilistic forecast information (see Figure 5). Third, we showed \( C ted [RL57]: 2.31

that forecast value varies by both decision type and how expensive mitigation is for the user, highlighting the importance of

calculating forecast value with the decision type which matches the real-world decision (see Figure 6). Fourth, risk aversion

has a varied impact (minor to moderate) on forecast value (see Figure 7) and the degree of impact is sensitive to the decision

740  context being evaluated. And finally, the key mechanism driving this impact is decision thresholds used relative to the damage

function (see Figure 8).
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6.1 Benefits of RUV over alternatives

+ Forecast value complements forecast verification. Unlike forecast verification, forecast value considers the broader <——— Formatted: Normal, No bullets or numbering

context within which decisions are made. This allows forecast producers, such as the Australian Bureau of Meteorology, to

745 understand their eustomeruser impact by evaluating service enhancements against user decisions. BeterminingForecast

verification is typically a key deciding factor when determining which method or enhancement to operationalise-is-typieatly

. Quantifying the value of forecasts based on impact offers a

complementary line of evidence which places the forecast user at the centre of the conversation. Because RUV encourages a
dialog between the forecast producer and user to define the full decision context it may enhance communication and service

750 adoption. For forecast users, it provides a new capability: an evidence-based approach to decide which forecast information
and decision-making process will improve their outcomes. For example, the Biggaraillustrative case study in Sect. 5

indicates that subseasonal forecasts at Biggara offer better value than elimatelegyreference baseline in almost all cases, and

that an optimisation-approach is beneficial when deciding to take early action to mitigate damages from a high flow event a

few weeks ahead (see Figure 5 and Figure 6).

numbering is removed in section 6)

755 2 #bﬁléfﬂ‘ﬂ/ is more flexible than REV. 1t can model more decisions with sufficient realism than REV because it ///{ C d [RL58]: 1.36 (and other places paragraph

explicitly specifies decision type, risk aversion, economic model, and decision-making approach. Real-world decisions may
be binary, multi-categorical, or based on continuous-flow, and using a binary model (as in REV) in all cases will provide a
misleading measure of forecast value for non-binary decisions. Figure 6 shows that neglecting this would have important

implications for deeision-makersusers; forecasts beyond week 2 should be used for the multi-categorical and continuous-

760  flow but not for the binary decision (when =66+ & > 0.6 ). Similarly, neglecting the realism of other aspects of the - /[ Field Code Changed

decision may lead to other misleading conclusions. The flexibility of RUV allows the user to decide how much realism to

include in the forecast value assessment depending on the information available and tailor it to the decision context.

3 RUYV evaluates forecast value conditioned s-on_how expensive a user’s

mitigation is. Unlike single-valued metrics, common in traditional forecast verification, RUV is evaluated for wide range of

765  decision-makers-exposure-to-damagesusers’ experiences, as is shown in the value diagram (Figure 1). This offers valuable
insight that would otherwise be hidden. In particular, it is useful for forecast producers who can quickly compare one

forecast system to another forover a range of different-users with different expesures-to-damages.relative expenses of

mitigation (& ). However, this does make it comparatively more difficult to summarise and aggregate. To assist - /[ Field Code Changed

interpretation for a sin‘gle forecast-userdecision-maker, it is important they-narrewthe decision-maker narrows the range of e

770  whiech Q. that is relevant 'to their decision by considering how expensive their speeifie-expesure-tomitigation of damages is. //[ Commented [RL59]: 2.32

[ Field Code Changed
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6.2 Implications of case study resultsexperiments

+ Optimisation based decision-making is better than fixed critical probability thresholds when using probabilistic - —[ Formatted: Normal, No bullets or numbering

forecasts. Figure 5 demonstrates that a specific critical probability threshold will only be optimal for a specific expesure-te

damages{avalue of K2 and suboptimal for all other values. When a deeision-makeruser is choosing between using the = /[ Field Code CF d

forecast or the elimatological-reference baseline, they may choose incorrectly if their critical probability threshold is not
aligned with their expesure-to-damagesrelative expense of mitigation. This incorrect choice will be due to a deficiency in the

threshold-approach to decision-making rather than the forecast information. This RUV based finding is well supported by
the REV literature (Ri i (Richardson, 2000; Wilks, 2001; Zhu et
al., 2002; Roulin, 2007). A perfect critical probability threshold is typically used with REV (Figure 4), unfortunately this is
not possible to achieve in practice and the quantified value is unrealistically high. Matte et al. {2647)(2017) introduced an

optimisation-approach and we extended it here to further evaluate the impact on forecast value. This flexible approach makes

best use of the forecast information available and for risk neutral users is equivalent to the threshold-approach when the

>

threshold is set equal to the decision-makers-expeosure-to-damagesuser’s relative expense of mitigation, e« (Figure 5). - /[ Field Code Changed
sl

When forecasts are reliable this method yields value whiehthat is very close to the maximum possible, and forecast users

may consider adopting this alternative approach for daily operational decisions‘. AFor this approach to be adopted for

operational decision making, a Decision Support System would be required seto calculate the optimal amount to spend on

preventative mitigation-ean-be-caleulated each time a new forecast is issued. IThis implies a suitable economic model is ///{ C ted [RL60]: 2.33

available for the decision and can be used for this calculation.

2 Forecast information is more valuable for risk averse users making high-stakes decisions. Figure 7 (middle row

demonstrates that for a given forecast, a more risk averse deeision-makeruser spends more to mitigate a potential damaging
event than a less risk averse decision maker, all else being equal. This behaviour is consistent with their preference for risk
aversion because it leads to a more certain result, with the net outcome equal to the spend amount whether the event occurs

or not. There is a large difference in impact of risk aversion for the different decision types however and Figure 8 summaries

thésummarises the findings of an investigation into this. Decision thresholds corresponding to very high flows lead to a /{ Ci d [RL61]: 1.37

larger impact. This finding explains why risk aversion has a large impact for the continuous-flow decision, spanning the
whole regime, and a negligible impact for the binary decision with a single moderately high decision threshold. It suggests

that for a risk averse user making a high stakes decision, forecasts become increasingly more valuable as the potential

damages become larger. It may also explain apparently contradictory findings on the impact of risk aversion in the literature.
Matte et al. (26473(2017) assessed the impact of risk aversion on a multi-categorical decision (using overspend and utility
metrics) and found it had a moderate impact (similar to the multi-categorical decisions shown in Figure 7e and Figure 7h).
Their study used 12 uniformly spaced flow divisions over a high flow range and a damage function based on empirical flood
studies, whereas this study used 4 widely spaced thresholds over a similar high flow range. A recent study by Lala et al.

{206219(2021) found minor impacts from risk aversion for binary cost-loss decisions with extreme rainfall forecasts using the

41



Manuscript submitted for review at Hydrology and Earth System Sciences

same expected utility maximisation framework from Matte et al. (26473(2017) and found a similar impact to Figure 7a. An
805 alternative argument using reasoning from decision theory suggests that for a given risk premium the impact should be larger
when decision thresholds are closer together (Mas-Colet; 1995} (Mas-Colell, 1995). However, when investigated we found

no evidence to support this- for our case study experiments. Further research to better characterise the response for different

decision contexts would be useful because the impact is modulated by both the decision thresholds and the specific damage

function, consideration of the inherent sampling error introduced for extreme events would also be useful.

810 6.3 Limitations and future work

+ Exploring the impact of alternative damage functions, economic models, and-utility functions, and reference baselines+«—— Formatted: Normal, Space After: 0 pt, No bullets or
numbering

on forecast value. This manuseriptstudy focused on the impact of alternative decision types and risk aversion, and a
comparative study of RUV and REV. The foundation in Expected Utility Theory allows us to model more decisions more
815 realistically than REV, but it requires more information. When this information is unavailable or uncertain the user needsis
required to apphymake assumptions, but it is not always clear whatthehow to best strategyto-takeisdo this. One strategy is to
model all decisions as binary, cost-loss, and risk neutral and effectively convert RUV to REV. This study explores the
implications of relaxing some, but not all, of those assumptions but is limited to an analysis at a single ease-studyforecast
location. In particular, the damage function used was parameterised to simplify the introduction of RUV, facilitate comparison
820 with REV, and highlight important implications for future studies. Further work will consider the impact of alternative damage
functions and economic models tailored to other decision contexts. More descriptive economic models than cost-loss will be
essential to consider decisions which involve non-economic intangible externalities like social, cultural, and ecological factors

_(Jackson and Moggridge, 2019; Expésito et al.. 2020). [Future studies

which consider these impacts may be required address unresolved findings in our study, such as the dependence of forecast

825 wvalue on lead-time (see Section 5.3). \ /{ C d [RL62]: 1.31 (noted in 2.4b)
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[Tailoring the evaluation of forecast value to real-world decisions. For practical applications of RUV it is advisable to calibrate

the damage function, decision thresholds, economic model, decision-making approach, and reference baseline to the real-world

experience of the decision-makers. This calibration will ensure the resulting forecast value is tailored to the specific decision

context and will likely lead to more user trust in the results, and subsequently more appropriate use of forecast information. ‘/{ Commented [RL63]: 2.26

While the reference baseline (fixed average climatology) used in this study enabled a direct comparison of RUV with REV

we would recommend comparison against more relevant baseline forecasts for practical applications (e.g., information

currently used to inform the decision being assessed). ‘ /[ C d [RL64]: 2.4d

Expected Utility Theory approximates actual decision-making and contemporary frameworks may enhance the capability of

RUYV to model real-world decisions. There is general agreement, and a substantial body of evidence, that Expected Utility

Theory does not adequately describe individual choice (Kahneman and Tversky, 1979; Harless and Camerer, 1994). Many

alternative models have been proposed which address these violations, such as Cumulative Prospect Theory (Tversky and

Kahneman, 1992). Future work could consider whether quantifying forecast value using a foundation built on a better model /{ Ci ted [RL65]: 2.34 (and other places)

of decision-making changes the conclusions reached. |Additionally. the cost-loss economic model used in this study implies

that mitigation is preventative action to minimise forecast losses, with each forecast lead-time and forecast update treated

independently of all others. Alternative economic models and decision-making frameworks may be required to explore more

realistic forms of mitigation which consider temporal dependence (see Matte et al. (2017) for an approach). /{ C d [RL66]: 2.33

Exploring the relationship between forecast value and forecast skill. Roebber and Bosart (1996) found that statistical

performance metrics were poor at predicting the cost-loss value of meteorological forecasts for several real-world decisions.

The relationship was impacted by the user’s a value, and when in aggregate, the distribution of a over all users. Using a /{ Field Code Changed
A y —

real-time optimisation system to manage reservoir operations Pefiuela et al. (2020) quantified forecast value through \[F'eld Code C

improvement in pumping costs and resource availability relative to a baseline. They found a relationship between forecast

value and CRPS skill score mediated by user priorities and hydrological conditions. Although a relationship exists it is clearly

mediated by the characteristics of the decision and user and in many cases forecast skill is not a good proxy for forecast value

(Murphy and Ehrendorfer, 1987; Wilks and Hamill, 1995; Roebber and Bosart, 1996: Roulin, 2007; Pefiuela et al., 2020).
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Exploring this relationship is of interest because the decision and user characteristics are made explicit in RUV. Converting

RUV to a single-value metric by placing assumptions on the distribution of & _could assist and additionally allow its use as an /{ Field Code Ci d
otk

objective function for model calibration or as a summary statistic, Wilks (2001) considers this using REV. The forecast value

results of our illustrative case study [are likely to be sensitive to flow characteristics and forecast uncertainty of our selected

location. Future work will evaluate the value of streamflow forecast over different hydroclimatic conditions) AdditionaﬁllL/{r

forecast skill (and reliability) is impacted by a forecast model’s ability to reproduce seasonality and antecedent conditions.

Although these are modelled well by the system used in this study (Mclnerney et al., 2020), their impact on forecast value was

not considered in our sensitivity analysis. A future study assessing how RUV is impacted when models fail to reproduce

seasonality, antecedent conditions, and other features would be a useful contribution to the field. [The impact of seasonality

and antecedent conditions on forecast value has not been considered in our sensitivity a

how RUV is impacted by them would be a useful contribution. \

nalysis and a future study assessin

ted [RL67]: 1.23

d [RL68]: 1.32 (noted in 2.4¢)
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PrebabilistieForecast value methods aim to quantify the potential benefits that probabilistic forecasts have the-petential-te

benefitfor water-sensitive decisions, such as operational water resource management and emergency warning services;-but-te

However, the most eemmenty-used-existing method to evaluate forecast value, Relative Economic Value (REV), is only

suitable for specific decisions. REV is unsuitable for many real-world decisions and when applied may lead to misleading

conclusions on when to use forecasts. This manuscript introduces the RUV metric, which has the same interpretation as the

commonly used REV metric. but is more flexible and can be applied to a far wider range of deeisions-decision contexts. This

is because many aspects of the decision-making process can be incorporated into RUV by the user and adjusted to match real-
world decisions. These include the economic model, damage function, decision type, and-decision-makercharacteristies-and
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study using probabilistic subseasonal streamflow forecasts in a practically significant catchment in the Southern Murray-

Darling Basin of Australia was used to compare the REV and RUV metrics under a range of decision contexts. The key findings

from this case study were:

1. REV can be considered a special case of the more general RUV method.

2. Making decisions using an optimisation-based approach which uses the whole forecast distribution to determine the

amount spent on mitigation makes better use of probabilistic forecast information than using a threshold-based

approach with fixed critical probability thresholds.

3. Forecast value depends on the decision type and hence, it can be critically important to use a decision-type that

matches the real-world decision

4. Risk averse users gain more value from forecasts than risk neutral users, but the impact can vary from minor to

moderate depending on the decision context.
5. Impact of risk aversion on forecast value is mediated by how large the potential damages are for a given decision.

Findings 3-5 were generally sensitive to the user’s relative expense of mitigation. For example, the impact of the decision-type

was more pronounced for users with higher relative expenses of mitigation (& > 0.6). In this case, for lead-times longer than

/{ Field Code Changed

1 week, forecast value from RUV of a binary decision was significantly lower than for multi-categorical or continuous-flow

decisions. As REV is limited to binary decisions, a user making a multi-categorical or continuous-flow decision, could be

misled by the REV outcomes and consider not using the forecasts when they actually have significant value as demonstrated
by RUV. |

This manuscript focuses on the introduction of RUV and an exploration of its sensitivity to some aspects of decision context.

Therefore, several future research directions for RUV are discussed including (i) exploring sensitivity of forecast value to more

aspects of decision context, (ii) tailoring forecast value to real-world decisions, (iii) assessing alternative frameworks for

modelling decision-making, and (iv) exploring the relationship between forecast value and forecast skill

/[ C: d [RL70]: 2.3 & 2.4a & 2.25

/[ Formatted: Font: +Headings (Times New Roman)

RUV presents an opportunity to tailor forecasts and their assessment to the specific decisions, decision-making approach,
characteristics, preferences, and economics of the deeision-makeruser. It is hoped that this capability maywill encourage the
assessment of forecast systems through the lens of eustomeruser benefit and be seen as a complement to forecast verification.
This may lead to increased adoption of forecasts through deeper dialog and understanding, and ultimately to improved water

resource management decisions.
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Appendix-A-Appendix A Proof of equivalence of REV and RUV under specific assumptions <—[ Formatted: Bullets and Numbering

935  This section demonstrates the equivalence of the REV metric as detailed in Eq. (2) and the RUV metric introduced in Sect. 3
when 5 assumptions are applied to the decision context. A complete derivation is included in the Supplement.

In a cost-loss decision problem the two relevant states are "flow above" and "flow below" a decision threshold -@;=Q, .

m = above ifQ, >0, m = above ifQ, >0, (12) Field Code Changed
m = below ifQ, <Q, m = below ifQ, <Q,

Assumption 1: A step damage function with binary values of 0 and L is used to specify the losses above and below the decision

940  threshold for all timesteps,

fL when m = above L when m = above Field Code Changed
)= d(m;L) = (13)
10 when m = below 0 when m = below

To calculate the net outcome when action is taken to mitigate the loss; we substitute Eq. (7) and (13) into Eq. (6); which leads

to the following net outcomes for the two states.

B =0i0(B-CL) L =C, Ep=min(p-C.L)-L=C Field Code Changed
E, o =—C, since #-C, >0 E, o =—C, since #-C, >0
945  Assumption 2: Linear utility function is assumed which implies no aversion to risk,
Sy =F u(E)=E (15) ///{ Field Code Changed

Substituting Eq. (14) into Eq. (4), applying the linear utility function assumption, and simplifying for only two possible states

using p p, , the forecast probability of flow above the flow threshold; at time ¢, leads to. //{ Field Code Changed

A— —
f Field Code Changed

U(E) = p,-E™ +(1— p,)- EM*
=p, ‘[min(ﬁ"C“Lr)—L, _Cr:l*'(l_l’x)'[—c,]

UE)=p, E, e T A=D)E, 1o Field Code Changed
950 p L, b Pi) Ly pe, (16)
=p,[min(4-C,L)-L-C, ]+(1-p)[-C]
Assumption 3: Probability of flow above the threshold will always be either 1 or 0,
pefot) poefory (7 //{ Field Code Changed

WeUsing these assumptions and noting that the total loses at each timestep are fixed and consist of avoided and un-avoided

components L =L, = L + Lj we can now determine the single timestep ex ante utility for the four possible outcomes:-| The ///{ Field Code Changed
A ~
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955  four possible outcomes are composed of: event is forecast prebability-is+-er-0;to occur ( p, =1) or not occur ( p, =0), and an //{ Field Code Changed

, , ~—{ Field Code Changed
action has therefore been taken or not, leading to Table 4.\ ( 9

”**{ Commented [RL71]: 1.38

Table 4: Ex ante utility values for a time-step of Expected Utility Theory with REV assumptions

19——1—{— Event forecast -p=0-Event not

O 0 U (-

to occur forecast to occuﬂ /{ Ci d [RL72]: 1.38 (and table S2)
Action taken 3
C 20 o —€--C, //{ Field Code Changed
€6 —(c +1 —
! i N ( ] ) 77,,{ Field Code Changed
Action not taken L 6.0 \\\{ Field Code Changed
€= Q‘Cr =0 — — ***{ Field Code Changed
\{[ Field Code Changed
960 Applying Eq. (8) to Eq. (16) will lead to an optimal amount %”E, to spend on the mitigating action for each timestep. By Field Code Changed
— ——{ Field Code Changed
considering that the forecast probability ﬁs always either 1 or 0 due to assumption 3 and that all costs and losses are positive /,,,/{ C d [RL73]: 138
. . X X . . L — Field Code Changed
values we can derive that for any timestep the cost will be either Hwhen—p;(-)—erﬁwheﬁ—p;k C, =0 _when
= 3 oo C ted [RL74]: 1.38
p,=00rC = % when p, =1/ see the supplement for a full derivation. /% ommentedif ] %
- _—| Field Code Changed
N A A ~— (o
The ex post utility for each timestep, shown in Table 5, can be found by substituting these optimal costs back into the elements \% Field Code Changed %
Field Code Changed
965 of Table 4, and letting the probability be conditioned on the state of observed flow above the threshold. 9
Table 5: Ex post utility values for a time-step of Expected Utility Theory with REV assumptions
‘Event occurred Event did not occur‘ ,//'{ Ci ted [RL75]: 1.38 (and Table S3)
»=t P=0
A . k L} u
ction taken
I . s L L Field Code Changed
%F' €=5 ( L W 5 B /{ Field Code Changed
X it — Field Code Changed
N\ _— ang
Action not taken
‘ €=0C =0 _‘%Ai 03 /[ Field Code Changed
0 ‘
. { Field code Changed
~
“{ Field Code Changed
A contingency table is now used with Table 5 to determine each term of the RUV metric.
‘970 Assumption 4: The frequency of the binary decision event EE is used for the reference baseline. - { Field Code Changed
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This leads to the following expected ex post utility for reference baseline information

Field Code Ci d

Efr (B H=—mi 2;,*7 ",‘7}5[Y(E,’)]=—min{%,ELj‘}fEL‘,‘ (18)

Field Code Changed

tel

Expected ex post utility for perfect information is

(L, N (L,
sfrerf}o{sra)  E(@)]-o(Les] 0o

975 Expected ex post utility for forecast information is

L _. a L _. . Field Code Changed
= JAVI ﬁ ; : E[Y(E/ )]=_(h +f)E—oL, —mL  (20) /

where #- /1 is the hit rate, # m is the miss rate, and - f* is the false alarm rate from the contingency table. Field Code Changed

o o . - ) ~—{ Field Code Changed

Assumption 5: At each timestep the avoided losses are equal to the total possible losses. Field Code Ch "
el e Change

=1 forteF Li=L forteT (21) /[ Field Code Changed

(D D W

980  Substituting Eq. (18), (19), and (20) into Eq. (10), applying assumption 5, and noting the relationship #=L,B -1 _leads to
a a

RUV min(a,la)—(ih+j:)a—m _ RUV= min(a,la)—(7h+j:)a—m ) Field Code Changed
min(a,0)-oa min(a,0)-oa

A

which is identical to the definition of the REV metric in Eq. (2).

Code availability

The code used for this work will be released, along with a follow up publication, as a software library which can be used by

985 researchers and industry to quantify forecast value using RUV. Please contact the corresponding author to register interest in

beta testing access.

Data availability

A H dataset for-this-work—is-avat
A-companion TOr-tHS-WorK+ H

aRa-g

990 i itowi 5 i jeation-A_companion dataset for this work is available af:

https://doi.org/10.25909/19153055 (Laugesen et al., 2022). [This contains the input streamflow forecasts, output forecast value /{ C d [RL76]: 1.39

results, and high resolution figures.
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