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Abstract. ForecastsStreamflow forecasts have the potential to improve water resource decision-making, but havetheir 

economic value has not been widely evaluated becausesince current forecast value methods have critical limitations. The 10 

ubiquitous measure for forecast value, the Relative Economic Value (REV) metric, is limited to binary decisions, the cost-loss 

economic model, and risk neutral decision-makers.  (users). Expected Utility Theory can flexibly model more real-world 

decisions, but its application in forecasting has been limited and the findings are difficult to compare with those from REV. 

AIn this study, a new metric for evaluating forecast value, Relative Utility Value (RUV), is developed using Expected Utility 

Theory. RUV has the same interpretation as REV, which enables a systematic comparison of results, but RUV is more flexible 15 

and able to handle a wider range ofbetter represents real-world decisions because allmore aspects of the decision-context are 

user-defined. In addition, when specific assumptions are imposed it is shown that REV and RUV are equivalent. We 

demonstrate , hence REV can be considered a special case of the more general RUV. The key differences and similarities 

between the methodsREV and RUV are highlighted, with a set of experiments performed to explore the sensitivity of RUV to 

different decision contexts, such as different decision types (binary, multi-categorical, and continuous-flow decisions), various 20 

levels of user risk aversion, and varying the relative expense of mitigation. These experiments use an illustrative case study 

using of probabilistic subseasonal streamflow forecasts (with lead-times up to 30 days) in a catchment in the southern Murray-

Darling Basin of Australia. The ensembleThe key outcomes of the experiments are (i) choice of decision type has an impact 

on forecast value – hence it is critically important to match the decision-type with the real-world decision (ii) forecasts were 

are typically more valuable than a reference climatology for all lead-times (max 30 days), decision types (binary, multi-25 

categorical, and continuous-flow), and levels of risk aversion for most decision-makers. Beyond the second week however, 

decision-makers who were highly exposed to risk averse users, but the impact varies depending on the decision-context, and 

(iii) risk aversion impact is mediated by how large the potential damages should use the reference climatology for the are for 

a given decision. All outcomes were found to critically depend on the relative expense of mitigation (i.e., the cost of action to 

mitigate damages relative to the magnitude of damages). In particular, for users with relatively high expense of mitigation, 30 

using an unrealistic binary decision, and forecasts for the  to approximate a multi-categorical andor continuous-flow decision. 
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Risk aversion impact was governed by the relationship between the decision thresholds and the damage function, leading to a 

mixed impact across the different decision-types. The generality of RUV makes it applicable to any domain where forecast 

information is used for making decisions, and gives a misleading measure of forecast value, for forecasts longer than 1 week 

lead-time. These findings highlight the importance of the flexibility enablesof RUV, which enable evaluation of forecast 35 

assessmentvalue to be tailored to specific decisions/users and hence better capture real-world decision-makers. Itmaking. RUV 

complements forecast verification and enables assessment of forecast systems through the lens of customeruser impact.  

1 1 Introduction 

Effective water resource management is critically important to human welfare, thriving environmental ecosystems, agricultural 

productivity, power generation, town supply and economic growth (United Nations, 2011; UNESCO, 2012). These decisions 40 

depend primarily on the current and anticipated hydrometeorological conditions and are frequently informed by forecasts. In 

particular, many decisions, such as reservoir operations and early flood warnings, appear to benefit from forecasts at a 

subseasonal time horizon (2-8 week lead-times) because of long river travel times, operational constraints, and logistical 

overheads (White et al., 2015; Monhart et al., 2019; Schmitt Quedi and Mainardi Fan, 2020; McInerney et al., 2020). These 

studies use forecast verification techniques and demonstrate that subseasonal streamflow forecasts are becoming more skilful 45 

at longer lead-times with reliable estimates of uncertainty. However, it is not clear whether forecasts should be used to inform 

water-sensitive decisions once economic and other factors are considered, the key question is, do the forecasts provide value 

for the decisions-makers. These factors are typically not considered when evaluating the performance of forecasts using 

forecast verification. This study aims to address this gap by quantifying the value of subseasonal streamflow forecasts for 

water-sensitive decisions, such as storage release management and environmental watering. 50 

Forecast verification is the comparison of a set of forecasts spanning a historical period to the observed record using statistical 

performance metrics. The hydrological forecasting community uses numerous statistical metrics to summarise the performance 

of ensemble forecasts, including the Continuous Rank Probability Score (CRPS) for accuracy and metrics based on the 

Probability Integral Transform for statistical reliability for example (Cloke and Pappenberger, 2009; McInerney et al., 2017; 

Woldemeskel et al., 2018; Bennett et al., 2021). Forecast verification is essential but insufficient for decision-makers to 55 

confidently adopt forecasts into their operational and strategic decision-making processes. It does not consider the broader 

context a decision is made in, the economic trade-offs and different decision types for example. Forecast value measures how 

much better a decision is when made using one source of forecast information relative to another. It explicitly considers the 

broader decision context, economics being one of the most tractable aspects to analyse. When using forecast verification 

metrics as a proxy for forecast value we are implicitly assuming that better verification implies more value. However, 60 

additional skill is not necessarily a good predictor of additional benefit to a decision-maker (Murphy, 1993; Roebber and 

Bosart, 1996; Marzban, 2012).  
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In this paper we consider the value of streamflow forecasts to improve the outcome of binary, multi-categorical, and 

continuous-flow decisions and require a method to quantify this value. However, the most frequently used forecast value 

method in hydrology and meteorology is Relative Economic Value (REV) which is unable to handle a wide range of decision-65 

types. Substantial research in the field of meteorology has explored the value of temperature, wind and rainfall forecasts for 

user decisions using REV (e.g. Richardson, 2000; Wilks, 2001; Mylne, 2002; Palmer, 2002; Zhu et al., 2002; Foley and 

Loveday, 2020; Dorrington et al., 2020). There is an ongoing interest in hydrology to quantify the value of forecasts for 

decision-making using REV (e.g. Laio and Tamea, 2007; Roulin, 2007; Bergh and Roulin, 2010; Weijs et al., 2010; Verkade 

and Werner, 2011; Bogner et al., 2012; Abaza et al., 2013; Fundel et al., 2013; Abaza et al., 2014; Thiboult et al., 2017; 70 

Verkade et al., 2017; Portele et al., 2021) but no application for subseasonal streamflow forecasts. REV is convenient in its 

tractability but has strong assumptions about the decision type, economic model, and decision-maker behaviour which neglects 

important aspects of decision-making and which have implications on the conclusions reached (Tversky and Kahneman, 1992; 

Katz and Murphy, 1997; Matte et al., 2017).  

REV is only suitable to assess forecast value for a limited set of decisions; binary categorical, cost-loss economic 75 

model,Effective water resource management is critically important to human welfare, thriving environmental ecosystems, 

agricultural productivity, power generation, town supply and economic growth (United Nations, 2011; UNESCO, 2012). The 

management and equitable distribution of water to competing stakeholders is challenging due to long-term decreasing trends 

in available surface water (Zhang et al., 2016), increasing high intensity storm events (Tabari, 2020), river basins overallocated 

to irrigated agriculture (Grafton and Wheeler, 2018), and deteriorated river system dependant ecosystems (Cantonati et al., 80 

2020). Environmental decision-making depends largely on the current and anticipated hydrometeorological conditions and is 

frequently informed by streamflow forecasts. Many decisions, such as reservoir operations and early flood warnings, benefit 

from forecasts at a subseasonal time horizon (2-8 week lead-times) because of long river travel times, operational constraints, 

and logistical overheads (White et al., 2015; Monhart et al., 2019). Previous studies have used forecast verification techniques 

to demonstrate that subseasonal streamflow forecasts are becoming more skilful at longer lead-times with reliable estimates of 85 

uncertainty (Schmitt Quedi and Mainardi Fan, 2020; McInerney et al., 2020). However, it is not clear whether forecasts should 

be used to inform water-sensitive decisions once economic and other factors are considered, thus posing the key question, “do 

the forecasts provide economic value for decisions-makers?”. These factors are typically not considered when evaluating the 

performance of forecasts, largely due to the limitations of available forecast value methods. This study addresses this gap by 

developing a new forecast value method that is applicable for a wide range of water-sensitive decisions, such as storage release 90 

management and environmental watering. 

Forecast verification is the comparison of a set of forecasts spanning a historical period to the observed record using statistical 

performance metrics. The hydrological forecasting community uses numerous statistical metrics to summarise the performance 

of ensemble forecasts, including the Continuous Rank Probability Score (CRPS) for accuracy and metrics based on the 

Probability Integral Transform for statistical reliability (e.g., Cloke and Pappenberger, 2009; McInerney et al., 2017; 95 

Woldemeskel et al., 2018; Bennett et al., 2021). Forecast verification is necessary but insufficient for users to confidently adopt 
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forecasts into their operational and strategic decision-making processes. For example, it does not consider the broader context 

for which a decision is made, the economic trade-offs and different decision types. Forecast value measures the improvements, 

in an economic sense, that can be achieved by using one source of forecast information relative to another. It explicitly 

considers the broader decision context, with economics being one of the most tractable aspects to analyse. When using forecast 100 

verification as a proxy for forecast value we are implicitly assuming that better forecast performance (according to our 

verification metrics) implies more value. However, additional forecast performance is not necessarily a good predictor of 

additional benefit to a user (Murphy, 1993; Roebber and Bosart, 1996; Marzban, 2012). Exploring the relationship between 

forecast performance and value over a range of use cases and lead-times is an active area of research, particularly for inflows 

into hydropower reservoirs (Turner et al., 2017; Anghileri et al., 2019; Peñuela et al., 2020; Cassagnole et al., 2021), and early-105 

warning decision making for extreme events (Bischiniotis et al., 2019; Lopez et al., 2020; Lala et al., 2021). 

Streamflow forecasts can improve the outcomes of a range of decisions, including binary, multi-categorical, and continuous-

flow decision types. For example, water level exceeding the height of a levee is a binary decision, and emergency response 

decisions in relation to a minor, moderate, and major flood classification is a familiar multi-categorical decision. A mitigation 

decision based on continuous-flow is the limiting case of a very large number of flow classes - for example, adjusting dam 110 

releases to match storage inflow during flood operations. While decisions involving more flow classes are an essential feature 

of many real-world decisions, a binary decision has traditionally been used as the prototypical model of decision making in 

decision-theoretic literature (Katz and Murphy, 1997). The most frequently used forecast value method in hydrology and 

meteorology is Relative Economic Value (REV), which is unable to handle a wide range of decision types. Substantial research 

in the field of meteorology has explored the value of temperature, wind and rainfall forecasts for user decisions using REV 115 

(e.g. Richardson, 2000; Wilks, 2001; Mylne, 2002; Palmer, 2002; Zhu et al., 2002; Foley and Loveday, 2020; Dorrington et 

al., 2020). There is an ongoing interest in hydrology to quantify the value of forecasts for decision-making using REV (e.g., 

Laio and Tamea, 2007; Roulin, 2007; Abaza et al., 2013; Thiboult et al., 2017; Verkade et al., 2017; Portele et al., 2021), 

although there have not been applications with subseasonal streamflow forecasts. REV is convenient in its tractability but has 

strong assumptions about the decision type, economic model, and user behaviour that neglect important aspects of decision-120 

making and have implications on the conclusions reached (Tversky and Kahneman, 1992; Katz and Murphy, 1997; Matte et 

al., 2017; An-Vo et al., 2019).  

REV is only suitable to assess forecast value for risk-neutral users making binary decisions using a cost-loss economic model 

and event frequency as a reference baseline forecast, and risk-neutral decision-makers (Thompson, 1952; Murphy, 

1977).(Thompson, 1952; Murphy, 1977). This limited setup is an excellent prototypical decision model, which is useful to 125 

understand the salient features of forecast value, but may give misleading results when used to model real-world decisions. 

For example, flood warnings are a practically important multi-categorical decision, typically classified into either minor, 

moderate, or major flood impact levels, whereas REV only handles binary decisions. Likewise, adjusting the release of water 

from a storage is best informed by continuous-flow forecasts and may require a more complex economic model than the cost-

loss economic model assumed by REV.  130 
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REV is also unable to consider the impact of risk-averse decision-makers; a preference for future optionsusers. A user is said 

to be risk averse if they prefer an option with a more certaintycertain outcome, even thoughif it may on average lead to a less 

economically beneficial outcome. For example,  (Werner, 2008). For example, a water authority deciding to announce a large 

water allocation event, or an irrigator placing an order for water may prefer forecasts with a more certain outcome (high risk 

aversion), even if it means missing out on some additional economic benefit. Conversely, a storage operator deciding whether 135 

to stop a release because they are concerned about flood damage downstream may, exhibit low aversion to risk and 

tolerateaversion if they prefer a forecast outcome that is almost certain to occur rather than one that is uncertain forecasts of 

downstream tributary inflows because the economic loss would be significant if a release coincided with a high flow tributary 

event. but potentially more beneficial. 

The field of decision theory explores how agents make decisions with uncertain information and has produced a number of 140 

innovations, such as Expected Utility Theory (Neumann, 1944; Mas-Colell, 1995). (Neumann, 1944; Mas-Colell, 1995). 

Expected Utility Theory is flexible enough to model different decision types, economic models, and risk aversion but there is 

limited understanding of the relationship and differences between it and REV. It proposes that when faced with a choice a 

rational person will select the option leading to an outcome that maximises their utility; an ordinal measure based on the 

ranking of outcomes. Different people may rank outcomes differently because of their specific preferences, such as risk 145 

aversion. While Expected Utility Theory is widely used in economics, public policy, and financial management, it has had a 

very limited application in hydrology and associated fields. Matte et al. (2017) recently used itRecently, Matte et al. (2017) 

applied Expected Utility Theory in a flood damage application to assess the impact of increasing intangible losses and risk 

aversion on the value of raw probabilistic streamflow forecasts for a single multi-categorical decision type with 12 flow classes. 

Although the foundation method is general the application This study demonstrated some benefits of forecast value, but was 150 

case study specific, limited to a single multi-categorical decision, and used metrics whichthat are somewhat unfamiliar to the 

verification community. The results were not presented on a traditional Value Diagram and therefore no comparison to REV 

could be made. The authors We are unaware of any literature whichthat attempts to align REV with forecast value from 

Expected Utility Theory or present the results on a Value Diagram. There is no method available to the verification community 

to flexibly evaluate the value of probabilistic forecasts for different decision types, economic models, or decision-makersuser 155 

characteristics (Cloke and Pappenberger, 2009; Soares et al., 2018)(Cloke and Pappenberger, 2009; Soares et al., 2018). 

Probabilistic forecasts of continuous hydrometeorological variables lead to improved forecast verification in many cases and 

are operationally delivered by all major forecast producers but decision-makers are still learning the most effective way to use 

them (Duan et al., 2019; Carr et al., 2021). A common approach for decision-makers to use probabilistic forecasts is to first 

converted them to deterministic forecasts using a fixed critical probability threshold (Fundel et al., 2019; Wu et al., 2020). This 160 

approach is known to lead to sub-optimal forecast value in some situations through studies using REV (Richardson, 2000; 

Wilks, 2001; Zhu et al., 2002; Roulin, 2007). Matte et al. (2017) quantified forecast value with an alternative decision making 

approach which uses the whole forecast distribution to decide on an ideal action at each forecast update. It is not clear that this 

alternative approach leads to better decision outcomes and the authors are unaware of any literature comparing them. 
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Probabilistic forecasts of continuous hydrometeorological variables lead to improved forecast performance in many cases and 165 

are operationally delivered by all major forecast producers, but users are still learning the most effective way to use them 

(Duan et al., 2019; Carr et al., 2021). A common approach for decision-making with a probabilistic forecast is to convert it to 

a deterministic forecast using a fixed critical probability threshold (Fundel et al., 2019; Wu et al., 2020). This approach is 

known to lead to sub-optimal forecast value in some situations through studies using REV (Richardson, 2000; Wilks, 2001; 

Zhu et al., 2002; Roulin, 2007). Matte et al. (2017) quantified forecast value with an alternative decision making approach 170 

which uses the whole forecast distribution to decide on an ideal action at each forecast update. It is not clear that this alternative 

approach leads to better decision outcomes and we are unaware of any literature comparing them. 

This study aims to: 

1. Develop a methodology to systematically compare two forecast value techniques; REV and a method based on 

Expected Utility Theory. 175 

2. Demonstrate the key differences and similarities between the approaches for different decision types and levels of 

risk aversion using subseasonal streamflow forecasts in the Murray-Darling Basin. 

In Sect. 2 , the theoretical background of REV and an Expected Utility Theory approach for forecast value are introduced. 

Sect.Section 3  proposes a new metric (Relative Utility Value) based on Expected Utility Theory and details its equivalence to 

REV when a set of assumptions are imposed. Sect. The methodology for a4 introduces an illustrative case study using 180 

subseasonal forecasts with binary, multi-categorical, and continuous-flow decisions is introduced in a series of experiments to 

explore the sensitivity of forecast value to different aspects of decision context.Sect. 4 . Results of the case study are presented 

in Sect. 5  and discussed in Sect. 6 , including implications for forecast users and producers. Conclusions are drawn in Sect. 7 

.  

  185 
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2 2 Theoretical background 

The background theory introduced here focuses on two methods to quantify the value of forecasts, namely REV and an 

approach using Expected Utility Theory introduced by Matte et al. (2017)(2017).  

2.1 Relative economic value 

REV is a frequently used and excellent method to quantify the value of forecasts for cost-loss binary decision problems 190 

(Richardson, 2000; Wilks, 2001; Zhu et al., 2002).(Richardson, 2000; Wilks, 2001; Zhu et al., 2002). Cost-loss is a well-

studied economic model where some of the loss due to a future event can be avoided by deciding to pay for an action which 

will mitigate itthe loss (Thompson, 1952; Murphy, 1977; Katz and Murphy, 1997). Many real-world decisions, such as 

insurance, can be simplified and framed in this way as a binary categorical decision. The method assumes that any real-world 

decision it is applied to can be framed in this way. 195 

2.1.1 REV with deterministic forecasts 

Whether a user is expected to benefit in the long run from the use of a forecast system (or an alternative) can be assessed using 

a 4x4 2x2 contingency table. Table 1 includes the hit rate h h , miss rate m m , false alarm rate f f , and correct rejection 

rate (quiets) q q  from a long run historical simulation, along with the net expense from each outcome combination of action 

and occurrence, where C  is the cost of an action to mitigate the loss L . L . However, only a portion aL aL  of the total loss 200 

can be avoided with the remainder uL uL  being unavoidable. A derivation of Eq. (2) is provided in the Supplement. 

Table 1: Contingency table for the cost-loss decision problem with expenses from each possible outcome.combination of action and 
occurrence. Here C C  is the cost of the mitigating action, uL uL is the unavoidable portion of loss L L  from the event occurring, 

and aL aL  is avoidable portion of loss from the action. 

 Event occurred  Event did not occur 

Action taken 
Hit rate ( h )( ) 

uC L+ uC L+  

False alarm rate ( f )(
) 

C C  

Action not taken 

Miss rate ( m )( ) 

a uL L L= +

a uL L L= +  

Quiets/correct 
rejection rate ( q )( ) 

0 0  

 205 

The expected long run expense E E  of each outcomecombination of action and occurrence depends on the rate that 

outcomecombination occurred over some historical period, and these rates will be different depending on which forecast 

h
f

m
q
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information is used. The REV metric is constructed by comparing the relative difference in the total net expenses for decisions 

made using forecast, perfect, and climatological baseline information.  

 climate forecast

climate perfect

E E
V

E E
−

=
−

 climate forecast

climate perfect

REV
E E
E E

−
=

−
 (1) 210 

where each expense term is the summation of the contingency table elements each weighted by the rate of occurrence. Equation 

(1) is equivalent to the following standard analytical equation for REV (Zhu et al., 2002) when the long run average expenses 

from Table 1 are considered. 

 
( ) ( )

( )
min ,

min ,
o h f m

V
o o

α α
α α

− + −
=

−
where REV 1−∞ < ≤  and each expense term is the summation of the contingency 

table elements each weighted by the rate of occurrence. Equation (1) is equivalent to the following standard analytical equation 215 

for REV (Zhu et al., 2002) when the long run average expenses from Table 1 are considered. 

 
( ) ( )

( )
min ,

REV
min ,
o h f m

o o
α α

α α
− + −

=
−

 (2) 

Where where o  is the frequency of the binary decision event and the parameter α α  is known as the cost-loss ratio. 

 
a

C
L

α =  
a

C
L

α =  (3) 

The derivation of Eq. (2) is available in the Supplement. Equation (2) is typically applied over a range of α α values and this 220 

set of REV results is plotted on a Value Diagram. This diagram provides a visualisation of how forecast value varies for 

decision-makersusers with different exposurelevels of costs required to lossesmitigate a loss, and by extension exposure to 

mitigation of the underlying damages. We can consider users with a smallAn alternative interpretation of α , which we refer 

to as relative-expense of mitigation (see Table 2), is the relative expense (i.e., cost-loss ratio) a user experiences to have a 

smaller take action and mitigate (i.e., avoid) their exposure to damages (i.e., loss). It is a ‘relative’ expense of mitigation, 225 

because the expense magnitude (i.e., cost) is relative to the magnitude of the damages (i.e., loss). This interpretation is used in 

this study since it is more generalisable across different forecast value methods. Users with smaller cost-loss ratio have a 

relatively lower expense of mitigation due to their enhanced ability to leverage a smalllower amount of spending (small cost) 

to avoid larger future damages (large loss). Conversely, users with a large cost-loss ratio would have a larger exposure to 

damages.relatively high expense of mitigation, as they require a higher amount of spending to avoid future damages. For the 230 

same event the levelrelative expense of exposuremitigation will vary for different decision-makersusers and decision types. 

This relative-expense of mitigation interpretation of α  should not be confused with the expected long run expense E  used in 

the derivation Eq. (2). 
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Figure 1: Illustrative value diagram with key features annotated. with 3 key regions of α  noted. Positive REV for users in region 2 
indicates the forecasts should be preferred to the baseline when making the decision under analysis. Negative value for users in 
region 1 and 3 indicates the reference should be preferred.  

 240 

Figure 1 presents an illustrative Value Diagram as an aid to describe its interpretation. The non-dimensional cost-loss ratio α  

(Richardson, 2000). The non-dimensional cost-loss ratio α  is shown on the x-axis and can be interpreted as a continuum of 

different decision-makers using the forecasts, with increasing exposure to the damages.increasingly more expensive mitigation. 

A value of 1α = 1α =  corresponds to maximum exposure:relative expense of mitigation; if losses are $100,000 then the 

amount to spend on a mitigating action is also $100,000. A value of 0.1α = 0.1α =  indicates that only $10,000 would be 245 

needed to mitigate the loss. The y-axis shows forecast value according to REV and has a similar interpretation to any skill-

score based metric. A value of REV 1= REV 1= indicates that decisions made using forecast information successfully 

mitigated the same level of losses (over the historical period) as decisions made using perfect information (streamflow 

observations). A value of REV 0= REV 0=  indicates the decisions were only as good as those made using reference forecast 

information (climatology).baseline. A negative value indicates the decisions were worse than the reference. AFor example, a 250 

value of REV 0.7= , for example, REV 0.7=  at some value of α , indicates that on average the decisions made using 

forecasts would have successfully mitigatedled to a 70% more losses over the historical period thanimprovement in net expense 

relative to decisions made using the reference forecast.baseline, a similar interpretation to skill-scores (Wilks, 1995). 

2.1.2 REV with probabilistic forecasts 

Constructing a value diagram using Eq. (2) is only possible with categoricalbinary forecasts, so an additional step is required 255 

to convert probabilistic forecasts into categorical forecasts to quantify their value. 

1. Introduce a critical probability threshold tp pτ  to convert the probabilistic forecast into a deterministic forecast 

using the quantile function, 

2. Construct a categorical forecast and contingency table from this deterministic forecast and apply Eq. (2) over a 

range of α α  as before, 260 

3. Repeat step 1 and 2 for many probability thresholds over the range 0 1tp≤ ≤ 0 1pτ≤ ≤  to form a set of possible 

REV values for each value of α ,α , 

4. Take the maximum value from this set for each value of α α  to construct a single curve whichthat envelopes the 

many curves from each value of tp pτ , 

5. This envelope is then considered to represent the value of the forecast system. 265 
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Constructing an envelope to represent the forecast value of the system in step 4 can lead to a problematic interpretation. It 

implicitly assumes that the user will always self-calibrate to select the best critical threshold tp pτ  for their decision before 

the event has occurred. This is impractical and the method therefore leads to an over estimation of the expected forecast value. 

This envelope could be alternatively be interpreted as the maximum attainable forecast value. The impracticality of this method 

is well understood (Zhu et al., 2002)(Zhu et al., 2002) but frequently ignored when applied in practice.  270 

Step 1 of the approach models how decision-makersusers commonly make decisions using probabilistic forecasts. That is, 

before the event has occurred (ex ante) a decision-makeruser will choose a probability threshold that represents the degree of 

certainty they require to act. If the forecast probability of the event occurring is larger than this threshold then they will act. 

We refer to this as the threshold-approach. 

Alternatively, one could set the critical probability threshold equal to α  which assumes that decision-makers will self-calibrate 275 

based on an awareness of their specific exposure to damages (Richardson, 2000). When forecasts are perfectly reliable this 

approach is equivalent to the maximum forecast value from step 4 (Murphy, 1977). Forecast systems are not perfectly reliable 

however, even with contemporary post-processing methods (Li et al., 2016b; Woldemeskel et al., 2018; McInerney et al., 

2020). The realised value curve will therefore lie below the maximum value curve when applied to real-world forecasts. This 

alternative approach does not appear to be commonly used by the water resource community to make decisions, or the 280 

verification community to assess them. 

Alternatively, one could set the critical probability threshold equal to α . This approach assumes that the user will self-calibrate 

based on an awareness of their specific α  value (Richardson, 2000). When forecasts are perfectly reliable this approach is 

equivalent to the maximum forecast value from step 4 (Murphy, 1977). Forecast systems are not perfectly reliable however, 

even with contemporary post-processing methods (Li et al., 2016b; Woldemeskel et al., 2018; McInerney et al., 2020). The 285 

realised value curve will therefore lie below the maximum value curve when applied to real-world forecasts. To the best of 

our knowledge, studies of real-world decisions using this alternative approach ( pτ α= ) have not been reported in the 

published literature. 

2.2 Expected Utility Theory approach 

Matte et al. (2017)(2017) introduced a method to quantify forecast value based on expected utility maximisation with a state 290 

dependent utility. The method is flexible enough to model binary, multi-categorical, and continuous-value decisions, along 

with risk averse decision-makers.users. The method assumes that decisions of how much to spend on mitigating damages are 

based on the forecast probability that the event will occur. We will refer to this approach to decision-making as the 

optimisation-approach to contrast it with the threshold-approach.  

For a general decision problem with multiple possible future states of world, the following equation specifies the von 295 

Neumann-Morgenstern expected utility U  for a single timestep t  over M M  states. 
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 ( ) ( )
1

M
m m
t t

m
tU p EE µ

=

= ∑  ( ) ( )( ),
1

M

t t t m t
m

U E p E mµ
=

= ∑  (4) 

where m
tp ,t mp  is the probability of state m m occurring in timestep t t  and m

tE ( )tE m is the outcome associated with that 

state. The outcome is typically but not necessarily in monetary units. A utility function ( )µ ⋅ ( )µ ⋅  maps the outcome to a 

utility. This utility represents an ordinal value that the decision-makeruser gains from that outcome occurring. The expected 300 

utility ( )tU E  can be considered a probability weighting of the transformed outcomes of all possible states of the world.  

Risk aversion is represented by the concavity of ( )µ ⋅ ( )µ ⋅ , such that when a decision-makeruser is risk averse the utility 

gained from an extra dollar is less than the utility lost when losing a dollar (Mas-Colell, 1995).(Mas-Colell, 1995); see Figure 

3b for examples of ( )µ ⋅  used in our experiments with different levels of risk aversion. Therefore, on average the risk is only 

worth taking when the probability of gaining an extra dollar is more likely than losing a dollar; this is known as the probability 305 

premium. Absolute risk aversion is suitable for the comparison of options whose outcomes are absolute changes in wealth, 

and relative risk aversion where outcomes are percentage changes in wealth. The degree of aversion could be constant, 

increasing, or decreasing with respect to wealth. A consumer or investor generally takes more risks as they became wealthier, 

and their preferences can be reasonably approximated by decreasing absolute risk aversion. 

Matte et al. (2017)(2017) assumes that on average a public agency water manager is more likely to exhibit constant absolute 310 

risk aversion (CARA). For example, we assume that theirthe managers preference for precise forecasts (risk aversion) remains 

fixed even if the possible losses from one decision are much larger than another decision. In this case a utility function 

satisfying these properties can be defined by 

 ( ) ( )1 expE A E
A

µ = − − ⋅  ( ) ( )1; expE A A E
A

µ = − − ⋅  (5) 

where A  is the Arrow-Pratt coefficient of absolute risk aversion and E  is the economic outcome (Mas-Colell, 1995). Babcock 315 

et al. (1993) cautions against interpreting the risk aversion coefficient directly and notes the importance of considering how 

perception of risk aversion depends on the possible loss. A more interpretable measure which allows comparison between 

studies with different losses is the risk premium; the proportion of loss a decision-maker would pay to eliminate a decision and 

replace it with a certain outcome. The method introduced here can use any utility function, such as constant relative risk 

aversion which was used by Katz and Lazo (2011).  320 

The economic model used in this study is a simplified version of that used by Matte et al. (2017) which determines the net 

outcome from a cost-loss decision to allow systematic comparison with REV, however any economic model can be used. The 

model used by Matte et al. (2017) can consider intangible damages, distributing spending over multiple lead-times, and 

calibration to monetary units, and damages informed by flood studies. We are primarily interested in a relative measure of 
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forecast value which can be used more generally for different decision-makers and locations rather than the absolute monetary 325 

value of a specific decisions.  

where the parameter A  is the Arrow-Pratt coefficient of absolute risk aversion and E  is the economic outcome (Mas-Colell, 

1995). Babcock et al. (1993) cautions against interpreting the risk aversion coefficient directly and notes the importance of 

considering how perception of risk aversion depends on the possible loss. A more interpretable measure which allows 

comparison between studies with different losses is the risk premium; the proportion of loss a user would pay to eliminate a 330 

decision and replace it with a certain outcome (Pratt, 1964). The method introduced here can use any utility function, such as 

constant relative risk aversion, which was used by Katz and Lazo (2011).  

The economic model used in this study is a simplified version of that used by Matte et al. (2017) which determines the net 

outcome from a cost-loss decision. The Matte et al. (2017) method considers calibration to monetary units, damages informed 

by flood studies, intangible damages, and distributed spending over multiple lead-times. Our method is less concerned with 335 

the absolute monetary value of forecasts for a specific decision, and instead focuses on the relative value of one forecast over 

an alternative. This leads to a metric which is more generally applicable and comparable across different users, decisions, 

forecasts methods, and forecast locations. A cost-loss economic model is required to compare results with REV, and is used 

in this study; however the RUV method is flexible in that any economic model could be used. 

For a state of the world m m  at a specific timestep t t , with damages ( )d m , ( )td m , cost to mitigate the damages tC tC , and 340 

amount of damages avoided ( )tb m  , ( )tb m , the outcome is given by 

 ( ) ( ), tt m tb mE d m C= − −  ( ) ( ) ( ) tt t tE m b m d m C= − −  (6) 

The benefit function ( )b m ( )tb m  specifies the damages avoided from taking action to mitigate them, 

 ( ) ( )( )min ,t tb m C d mβ= ⋅  ( ) ( )( )min ,t t tb m C d mβ= ⋅  (7) 

where the spending leverage parameter β β  controls the extra damages avoided for each dollar spent. This is a similar concept 345 

(albeit inverted) to the cost-loss ratio α α  in the REV metric. The damage function ( )d m ( )td m  relates the streamflow 

magnitude states of the world to the economic damages and must be specified for the decision of interest. This economic model 

assumes that benefits increase linearly as more is spent on damage mitigation, followed by a loss if the spend amount is greater 

than the damages.  

The optimal amount tCπ
tC  to spend  at timestep t t  can be found by maximising the expected utility following substitution 350 

of Eq. (5)-(7) into Eq. (4), 
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=

 − − ⋅= ⋅ − − 

=

∑
 (8) 

This optimal spend amount for each timestep must be found ex ante, that is before the event has taken place, when the future 

state of the world is unknown, but a forecast is available. The probabilistic forecast (for some lead-time) is used to determine 355 

the forecast likelihood of each state occurring and calculate the ex ante expected utility ( )tU E ( )t tU E  in Eq. (8). The optimal 

amount to spend on mitigation is the amount which leads to the largest ex ante expected utility.  

The utility can also be calculated ex post, after the event has taken place, and a singular state of the world is known (streamflow 

observation). This leads to the following expression for the ex post utility after substitutions into Eq. (4)  

  360 

 ( ) ( )( ) ( )( )min , o o
t tt t td m dC mE Cπ πµ βϒ = ⋅ − −

 ( ) ( )( ) ( )( )min ,t t tt t t tdE mC m d Cµ βϒ = ⋅ − −  (9) 

where ( )tEϒ ( )tEϒ  is the ex post utility, tCπ
tC is the spend amount that was found ex ante, o

tm tm  is the state of the world 

associated with the observed flow at timestep t . t . The ex post utility quantifies the benefit a decision-makeruser would have 

gained if they spent tCπ
tC  on mitigating the damages which occurred as a result of the observed flow. It’s important to note 365 

that since utility is an ordinal quantity that represents a decision-maker’suser’s preference over the possible decision outcomes, 

the utilities can be compared but the actual value is noninterpretable. The ex post utility is used in the RUV metric introduced 

in Sect. 3 . 

Three ex post metrics were used in Matte et al. (2017)(2017) to quantify forecast value using spend amounts found ex ante. 

They use economic variables (utility, avoided losses and amount spent) averaged over forecasts spanning an historical period. 370 

None of these metrics are equivalent or directly comparable to REV and their results were not parameterised by an equivalent 

of the cost-loss ratio. The mathematical form and interpretation of these 3 metrics are included in the Supplement.  

Expected Utility Theory can be used to model more decisions with more realism than is possible with the strong assumptions 

of REV. However, the economically relevant metrics and parameterisation used to quantify forecast value by Matte et al. 

(2017)(2017) pose a challenge when comparing the outcomes from the two methods.  375 
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3 3 Relative Utility Value 

This section introduces a new metric which allows direct comparison of the results quantified by the two alternative forecast 

value approaches described in Sect. 2 . It aligns the two approaches and allows comparison using the Value Diagram, which 

is familiar to the environmental modelling verification community and a compelling communication tool. RUV is inspired by 

REV and skill scores, but with terms based on the ex post expected utility. 380 

 
( ) ( )
( ) ( )

RUV
r f
t tt T t T
r p
t tt T t T

E E

E E
∈ ∈

∈ ∈

   ϒ − ϒ   =
   ϒ − ϒ   

 

 
 

( ) ( )
( ) ( )

RUV
r f
t tt T t T
r p
t tt T t T

E E

E E
∈ ∈

∈ ∈

   ϒ − ϒ   =
   ϒ − ϒ   

 

 
 (10) 

where ( )tt T
E•

∈
 ϒ  ( )tt T

E•

∈
 ϒ   is the expected value of the ex post expected utility from Eq. (9) over a set of observations and 

either forecast ( f f ), reference climatologybaseline ( r r ), or perfect information ( p p ). A nice feature of RUV is that it 

uses the whole probabilistic forecast and does not first convert it to a deterministic forecast like REV.  

RUV has all the benefits and familiarity of REV but is a more flexible way to quantify forecast value. Any economic model 385 

or form of risk aversion can be used to construct the expected utility terms required by RUV because it is built on the Expected 

Utility Theory framework. In this paper we focus on the method with the economic model detailed by Eq. (6) and (7), and risk 

aversion in Eq. (5). If RUV is parameterised using 1β
α

=  
1β
α

=  and visualised on a Value Diagram it can be interpreted in 

the same way as an REV curve. The flexibility of the utility framework allows the user to make explicit choices about suitable 

approximations to model the decision problem. This can be accomplished by modifying the economic model, damage function 390 

and risk aversion through Eq. (5), (6) and (7) when used to calculate RUV. These assumptions can then be evaluated and 

extended with additional information if available. Unlike REV using Eq. (2), additional evaluation information is available for 

each timestep such as the amount spent, damage avoided and economic utility. This may benefit a user applying alternative 

economic models and tuning damage functions to match real-world data, as they would require the amount spent and damages 

incurred at individual time steps to determine the components are behaving as expected. Additionally, a user who has finite 395 

funds to spend on mitigation and wants to determine when their budget will be exhausted would require investigation of spend 

and damage amounts at individual time-steps. 

3.1 Relationship between RUV and REV 

Figure 2 contrasts the processes used by REV and RUV to quantify the value of probabilistic forecasts. Note that RUV uses 

the same inputs as REV and leads to the same output, however RUV allows the economic model, damage function and risk 400 

aversion to be explicitly specified. The internal process is very similar except RUV maximises utility rather than minimises 

expense.  
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 405 

Figure 2: Flowcharts showing the process followed to quantify the value of probabilistic forecasts using either RUV with an 
optimisation approach to decision making, or REV using the threshold-approach with a specific critical probability threshold. The 

Loop over historical cases

Loop over all alpha

Determinis�c 
forecasts

Decide to act or not

Calculate net expense

Calculate REV

Value Diagram

Cri�cal 
probability 
threshold

Find op�mal spend 
amount

Calculate u�lity

Calculate RUV

Loop over historical cases

Loop over all alpha

Probabilis�c 
forecasts

Economic model
Damage func�on

Risk aversion

Value Diagram

Rela�ve Economic Value Rela�ve U�lity Value
Complete for forecast, 
perfect and reference 

informa�on

Observa�ons

Decision 
thresholdsCost-loss

Binary damages
Risk neutral

Implicit assump�ons

Probabilis�c 
forecasts



Manuscript submitted for review at Hydrology and Earth System Sciences 

17 
 

sub-processes in the pink boxes are repeated for forecast, perfect, and reference information before being used to calculate REV 
and RUV. In practice, REV is calculated using Eq. (2) is used to calculate REV), which is based on a contingency table with an 
assumption that it has converged to the long-run performance of the system. 410 

 

Unlike REV, there is no analytical solution for RUV due to the optimisation step in Eq. (8) unless assumptions are placed on 

the decision context. When the following 5 assumptions are applied to RUV it is equivalent to REV.  

1. Binary damage function is used which is a positive value for the losses above the decision threshold, and 0 

otherwise, 415 

2. Decision-makersUsers are risk neutral as specified by a linear utility function, 

3. Forecasts are deterministic with the probability of flow above the threshold always either 1 or 0, 

4. The historical frequency of the binary event is used as the reference baseline, 

5. All possible losses are avoided. 

The mathematical justification for these assumptions and a proof of the equivalence is detailed in Appendix A  and the 420 

Supplement. Note that when applying these assumptions, the core RUV method illustrated in Figure 2 remains the same but 

the probabilistic forecast is first converted to a deterministic forecast. Table 2 summarises how decision concepts are 

represented in each forecast value method and demonstrates the enhanced flexibility of the RUV metric. 

 
Table 2: Comparison of REV and RUV Forecast value methods for defining decisions and decision-makeruser characteristics 425 

 Relative Economic Value (REV) Relative Utility Value (RUV) 

Level of damages Fixed loss (dimensionless) 
Equivalent to step damage function 

Damage function is flexible and can 
be tailored to decision 

MitigationLevel of 
spending (expense) 

required  
to mitigate damages 

Fixed cost (dimensionless) 
Equivalent to fixed spend amount 

Spend amount is optimised and varies 
at each timestep 

Exposure to 
damagesRelative 

expense of mitigation 
Cost-loss ratio Spending-leverage parameter 

Aversion to risk Always risk neutral Level of risk aversion and type of 
utility function can vary 

Decision types Binary Binary, multi-categorical or 
continuous-value 

Forecast value baseline Historical event frequency Any alternative forecast 
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Probabilistic decision-
making Threshold-approach Optimisation-approach or threshold-

approach 

Economic model Fixed cost-loss Economic model is flexible and can 
be tailored to decision 

Interpretation Value Diagram Value Diagram 

 

4 Methodology 

4 AIllustrative case study 

An illustrative case study is used to determine howdemonstrate the application of RUV for quantifying the value of 

probabilisticsub-seasonal streamflow forecasts change. A series of experiments is used to explore the sensitivity of forecast 430 

value to some aspects of decision context, specifically the decision types, users with different decision types, decision-

makersrelative expense of mitigation and different levels of risk aversion, and decision-making approaches. A targeted 

approach is adopted to contrast the RUV and REV methods and illustrate the impact of decision characteristics, rather than an 

exhaustive evaluation of the value of the specific forecasts used.  

4.1 Background 435 

Water resource management and the equitable distribution of water to competing stakeholders is challenging due to long-term 

decreasing trends in available surface water (Zhang et al., 2016), increasing high intensity storm events (Tabari, 2020), river 

basins overallocated to irrigated agriculture (Grafton and Wheeler, 2018), and deteriorated river system dependant ecosystems 

(Cantonati et al., 2020). Such challenges to decision-making may be assisted by subseasonal streamflow forecasts and 

quantifying forecast value would help adoption. For forecasts to be useful they need lead-times long enough to account for 440 

river travel-times and decision overheads. Subseasonal forecasts with lead-times out to 30 days would assist management of 

storages where a release leads to an impact far downstream. For example, agencies operating in the southern Murray-Darling 

Basin of Australia, such as the Murray-Darling Basin Authority (MDBA) and Goulburn-Murray Water (GMW), make such 

decisions and may benefit from streamflow forecasts for the Enhanced Environmental Water Delivery method (Murray–

Darling Basin Authority, 2017). When operational decisions are informed with probabilistic forecasts the threshold-approach 445 

is used with a set of fixed critical probability thresholds, and a degree of risk aversion is implicitly assumed (personal 

correspondence with MDBA). As far as the authors are aware, the relative value of streamflow forecasts for these decisions 

and decision-maker characteristics has not been previously quantified. 
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4.2 Location 

4.1 Results are presented for the water level station Biggara (401012) on the Murray River in the southern 450 
Murray-Darling Basin, Australia. Biggara is upstream Study region and catchment 

Our case study explores the value of subseasonal streamflow forecasts at the water level station Biggara (401012) on the 

Murray River in the southern Murray-Darling Basin, Australia.  

Agencies operating in the southern Murray-Darling Basin of Australia, such as the Murray-Darling Basin Authority (MDBA) 

and Goulburn-Murray Water (GMW), make releases from storages, which have impacts far downstream. Storage management 455 

decisions may benefit from subseasonal forecasts, with lead-times out to 30 days, and assist Enhanced Environmental Water 

Delivery (Murray–Darling Basin Authority, 2017). Currently, when operational decisions are informed with probabilistic 

forecasts the threshold-approach is used with a set of fixed critical probability thresholds, and a degree of risk aversion is 

implicitly assumed (personal correspondence with MDBA). As far as the authors are aware, the relative value of streamflow 

forecasts for these decisions and user characteristics has not been previously quantified. 460 

The Biggara station has particular significance for water resource management in this region as it is located upstream of Hume 

Dam, a major reservoir used for environmental water releases, irrigated agriculture, and town supply. It is in a temperate 

region, has a contributing area of 1,257 km2, a mean rainfall of 1,158 mm/year, and mean runoff of 361 mm/year.  

4.34.2 Streamflow forecasts 

Daily streamflow forecasts are generated using the following method, which demonstrated good performance at subseasonal 465 

time horizons in earlier studies (McInerney et al., 2020). We generated 30-day ensemble forecast time series (100 members) 

starting on the 1st of each month over the period 1991 to 2012. Raw streamflow forecasts were simulated using the GR4J 

rainfall-runoff model forced by rainfall from the Australian Community Climate and Earth-System Simulator Seasonal 

(ACCESS-S1) which had been post-processed using the Rainfall Post-Processing for Seasonal forecasts method (RPP-S) 

(Perrin et al., 2003; Hudson et. al., 2017; Schepen et al., 2018). Final streamflow forecasts were generated by post-processing 470 

the raw forecasts using the Multi-Temporal Hydrological Residual Error (MuTHRE) model (McInerney et al., 2020). Post-

processing ensured that the statistical properties of the forecasts closely match the observations for all lead-times and 

accumulations, leading to forecasts which are sharp, reliable, and unbiased. Forecasts with these characteristics can be 

described as seamless in the sense that they perform well at different time horizons and time resolutions. Further information 

on these forecasts can be found in McInerney et al. (2020). 475 

Daily streamflow forecasts are generated using the following method which demonstrated good performance at subseasonal 

time horizons in earlier studies (McInerney et al., 2020, 2022). We generated 30-day ensemble forecast time series (100 

members) starting on the 1st of each month over the period 1991 to 2012. Raw streamflow forecasts were simulated using the 

GR4J rainfall-runoff model (Perrin et al., 2003), forced by rainfall from the Australian Community Climate and Earth-System 

Simulator Seasonal (Hudson et. al., 2017) that had been pre-processed using the Rainfall Post-Processing for Seasonal forecasts 480 
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method (Schepen et al., 2018), and potential evapotranspiration from the Australian Water Availability Project (Jones et al., 

2009). Final streamflow forecasts were generated by post-processing the raw streamflow forecasts using the Multi-Temporal 

Hydrological Residual Error (MuTHRE) model (McInerney et al., 2020). Post-processing ensured that the statistical properties 

of the streamflow forecasts closely match the streamflow observations. The MuTHRE model was chosen for post-processing 

because it provides “seamless” forecasts that are (statistically) reliable and sharp across multiple lead-times (0-30 days) and 485 

aggregation time scales (daily to monthly). Further information on the forecasts used in this study can be found in McInerney 

et al. (2020), and further method improvements to enhance seamless performance in McInerney et al. (2021). 

4.44.3 Decision types 

A binary decision of flow exceeding a single threshold can be considered the simplest for a decision-maker to manage, flow 

exceeding the height of a levee for example.  A multi-categorical decision with more than two classes introduces additional 490 

complexity for the decision-maker to consider. An example of this is a minor, moderate, and major flood classification which 

correspond to increasing categories of impact. A mitigation decision based on continuous-flow is the limiting case of a very 

large number of flow classes. An example is adjusting dam releases to match storage inflow during flood operations. A binary 

decision has traditionally been used as the prototypical model of decision making in decision-theoretic literature and is a 

limiting assumption of REV (Katz and Murphy, 1997). Decisions involving more flow classes are more complex for decision-495 

makers to reason about as there are more possible outcomes to consider, but they are an essential feature of many real-world 

decisions and cannot be ignored. 

Three types of decisions have been included in theDecisions involving more than two flow classes are an essential feature of 

many real-world decisions (see examples in Sect. 1). Three types of decisions are considered in the illustrative case study: (i) 

binary decisions with flow above a single threshold, either the top 25% of top 10% of the observation record; (ii) multi-500 

categorical decisions with flow in 5 classes over a range of thresholds; and (iii) continuous-flow decisions using flow from 

whole flow regime. These thresholds are indicative of decisions whichthat depend on moderate to high flow at Biggara, such 

as operational airspace management of the Hume Dam or minor inundation upstream of Yarrawonga Weir when coinciding 

with a dam release.  

4.54.4 Economic damages 505 

The relationship between damages and flow in Eq. (6) and (7) when applying the RUV metric is specified using a non-

dimensional logistic function,  

 ( ) ( )1 exp ( )
d q

k q
δ

τ
=

+ − −
( ) ( )

; , ,
1 exp ( )

d q k
k q
δδ φ

φ
=

+ − −
 (11) 

The logistic function can be parameterised to have very similar behaviour to the Gompertz curve used in flood damage studies 

and used by Matte et al. (2017), with ( )d q  representing the cumulative damages incurred from all flow up to q  (Li et al., 510 
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2016a).  It was parameterised to reasonably characterise losses from high flow events; no damages when flow is zero, 

increasing quickly from around the top 20% of flow, and approaching 1 at very high values above the top 1% of flow. The 

following parameter set was found to be suitable; 1δ = , 1k =  and τ  equal to the value corresponding to the top 1% of 

observed historical flow, see Figure 3 and (2017), with ( )d q  representing the cumulative damages incurred from all flow up 

to q  (Li et al., 2016a).  It was parameterised to reasonably characterise losses from high flow events; no damages when flow 515 

is zero, increasing quickly from around the top 20% of flow, and approaching 1 at very high values above the top 1% of flow 

(see Figure 3a). These assumptions were reproduced with the following parameter set; . 1δ = , 0.07k =  and φ  equal to the 

value corresponding to the top 1% of observed historical flow.Sect. 6.3.   
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 520 
Figure 3: Damage(a) Example damage function used in the illustrative case study based on a logistic curve with an inflection point 
at the top 1% of observed flow., and (b) corresponding CARA utility function with 4 levels of risk aversion (limited to 

3 utility 0− ≤ ≤  and aligned at zero utility for visual clarity).  Field Code Changed
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4.64.5 Risk aversion 

It is difficult to precisely know a decision-maker’suser’s level of risk without a history of prior decisions. Moreover, it would 525 

be incorrect to assume that all decision-maker’s users share the same level of risk. Therefore, a range of risk aversions have 

been considered to illustrate its impact on forecast value. In this study we have used risk aversion coefficients { }0,0.3,1,5A∈

{ }0,0.3,1,5A∈ , which correspond to risk premiums of { }0%,15%,44%,86%θ ≈ { }0%,15%,43%,86%θ ≈  for a CARA 

utility function with maximum losses of 1δ = 1δ =  (Babcock et al., 1993). These (Babcock et al., 1993), see. Figure 3b shows 

that the curvature of ( )µ ⋅  increases with increasing risk aversion, and this leads to an increasingly rapid decline in utility from 530 

damages. The 4 risk aversion coefficients represent decision-makersusers who are neutral, slightlyminorly, moderately, and 

highly risk averse. respectively. When risk premiums are considered, our range of risk aversion coefficients is similar to those 

used by Tena and Gómez (2008)(2008) and Matte et al. (2017).(2017). Finding appropriate values of risk aversion for a specific 

decision-makeruser is beyond the scope of this study, but would be highly beneficial in user-focused forecast value studies.  

 535 
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4.74.6 Experiments 

The value of the subseasonal forecasts are quantified using the RUV and REV metrics. Experiments are performed over the 

dimensions of forecast lead-time, decision type, decision making approach, metric, and decision-makeruser risk aversion. 

Streamflow forecasts from multiple daily lead-times were grouped together to quantify forecast value over 7-day and 14-day 540 

forecast horizons. Grouping lead-times together simplifies the introduction of RUV and comparison of its salient features with 

REV; however, for practical applications there may be benefits for evaluating forecast value at specific lead-times of interest. 

A fixed climatology based on all observed values in the record is used for the reference baseline of RUV to align with that 

used in REV. Table 3 summarises the specific attributes used for each figure, with the key dimension highlighted as red text.  

 545 
Table 3: Dimensions of forecast value problem used for each figure. Key dimension introduced in each figure is highlighted with red 
text.  

Experiment purpose 
Lead-
times 
(days) 

Decision type Decision thresholds 
Decision-
making 

approach 
Metric Risk 

aversion 

Experiment 1: Equivalence 
of REV and RUV, and 
impact of fixed probability 
thresholds. Moderate flow 
example. (Figure 4) 

1-7 Binary Top 25% 
  Threshold REV 

RUV 0 

Experiment 2: Contrast 
decision-making approaches. 
Moderate flow example.  
(Figure 5) 

1-7 Binary Top 25% 
 

Threshold 
Optimisation RUV 0 

Experiment 3: Subseasonal 
forecast value for different 
decision types. High flow 
examples. (Figure 6) 

1-7 
8-14 

15-30 

Binary 
Multi-categorical 
Continuous-flow 

Top 10% 
Top 20%, 15%, 10%, 

5% 
All flow 

Optimisation RUV 0 

Experiment 4: Impact of risk 
aversion of on forecast value. 
High flow examples. (Figure 
7) 

1-7 
Binary 

Multi-categorical 
Continuous-flow 

Top 10% 
Top 15%, 10%, 5%, 1% 

All flow 
Optimisation RUV 0, 0.3, 1, 5 

Experiment 5: Key driver of 
impact of risk aversion on 
forecast value. (Figure 8) 

1-7 Binary All flowThresholds from 
bottom 5% to top 0.03% Optimisation RUV 0, 0.3, 1, 5 
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5 5 Results 

5.1 Experiment 1: Equivalence of RUV and REV, and impact of fixed probability threshold 550 

In experimentExperiment 1, forecast value has been quantified using REV and RUV with the assumptions detailed in Sect. 

3.1: binary damage function, risk neutral decision-makeruser, deterministic forecasts, event frequency for reference baseline, 

and all losses avoided. As expected, Figure 4 demonstrates that the results are identical between the two methods.  
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 555 
Figure 4: Forecast value quantified using (a) REV and (b) RUV with assumptions enforced, and the threshold approach for decision-
making. With a binary decision of flow exceeding the top 25% of observations, subseasonal forecasts from the first week of lead-
times, and a risk neutral decision-maker.user. Critical probability thresholds for the threefour curves are the value leading to 
maximum forecast value, and the 0.1, 0.5, and 0.9 forecast quantile, corresponding to acting when there is a high, medium, or low 
chance of event occurring respectively. 560 Commented [RL41]: 1.29 & 2.22 
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We now explore the detrimental impact on forecast value of using the threshold-approach to convert probabilistic forecasts to 

deterministic forecasts. Any forecast value method using the threshold-approach needs to select a critical probability threshold 

tp pτ  to convert probabilistic forecasts to deterministic forecasts. Figure 4 includes three3 curves corresponding to decisions 

made with different thresholds. The blue line shows the value obtained when the threshold tp pτ  is chosen to maximise that 

value at each α α  (see Sect. 2.1.2). This is an upper limit that cannot be obtained in practical situations because it implies a 565 

decision-makeruser has either perfect foresight or a perfectly reliable forecast, and tP α= pτ α=  will lead to maximum value 

if the forecast is perfectly reliable (Richardson, 2000)(Richardson, 2000). The redorange lines show how the choice of tp pτ  

can have a dramatic impact on the value of forecasts for a decision, with the dotted line showing forecast value when 0.1tp =  

and 0.1pτ = , the dashed line when 0.9tp = . 0.5pτ = , and the dash-dot line when 0.9pτ = .  RUV is negative for some 

regions of α α , which indicates that those decision-makersusers should useprefer the climatological baseline rather than the 570 

forecasts when making decisions.  

This result clearly shows that to extract the most value from forecast information a decision-maker needs to consider their 

exposure to damages α  when choosing tp . For example, when a decision-maker with 0.8α =  uses 0.9tp =  they gain 

significant value from the forecasts ( RUV 0.6≈ ), but if they use 0.1tp =  their outcome using forecasts is worse than using 

the reference climatology ( RUV 0< ), while for a different decision-maker with 0.1α = the opposite is true. It additionally 575 

shows that the Value Diagram used with REV remains a compelling way to visualise how RUV forecast value varies for 

different decision-makersuser needs to consider their relative expense of mitigation α  when choosing pτ . For example, when 

a user with 0.8α =  uses 0.9pτ =  they gain significant value from the forecasts ( RUV 0.6≈ ), but if they use 0.1pτ =  their 

outcome using forecasts is worse than using the reference baseline ( RUV 0< ), while for a different user with 0.1α =  the 

opposite is true. This critical dependence of value on pτ  is an established finding for REV (Richardson, 2000; Murphy, 1977) 580 

and is not specific to this example; here we illustrate that RUV reproduces it. Figure 4 additionally shows that the Value 

Diagram used with REV remains a compelling way to visualise how RUV forecast value varies for different users. 

This result, and the derivation in Appendix A  and the Supplement, demonstrate that RUV and REV are equivalent when 

appropriate assumptions are imposed. It demonstrates that REV can be considered a special case of the more general RUV 

metric.  585 

5.2 Experiment 2: Contrasting the threshold-approach and optimisation-approach for decision making  

Figure 5 adds two more forecast value curves, generated using RUV, to Figure 4. The black line shows value when the 

optimisation-approach is used to make spending decisions with the subseasonal forecasts (detailed in Sect. 2.2), and the 

greypink line shows value when the threshold-approach is used with tP α= pτ α= . The result demonstrates that making 
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decisions using either approach provides close to the maximum value possible for all decision-makersusers (different values 590 

of α α ). This contrasts dramatically with the threshold-approach using specific fixed values for tp  (red pτ  (orange lines) 

which only provides maximum value for a very small range of decision-makersusers.  
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Figure 5: Forecast value quantified using four different approaches to decision-making: the optimisation-approach and the 595 
threshold-approach with either perfect critical probability thresholds, specific critical thresholds, or the critical threshold set equal 
to the alphaα  value. A binary decision of flow exceeding the top 25% of observations was used, with subseasonal forecasts from 
the first week of lead-times, and a risk neutral decision-maker.user. Specific critical thresholds are the 0.1, 0.5, and 0.9 forecast 
quantile, corresponding to acting when there is a high or low chance of the event occurring respectively. 

Investigations (not shown) indicated that the optimisation and tP α= pτ α=  curves (black and greypink lines) are non-600 

smooth because of the limited number of events in the observation record, and the small difference between the grey and black 

and pink lines is due to sampling errors from to the relatively small ensemble sampling error. size. It is notable that forecast 

value from these two different decision-making approaches are essentially equivalent as illustrated by the closeness of the 

black and greypink lines in Figure 5. Additional analysis (not shown) found this equivalence to be robust to the type of 

decisions (binary, multi-categorical, or continuous-flow) and changes in forecast reliability. but not equivalent for risk averse 605 

users. 

5.3 Experiment 3: Comparing Forecast value for different types of decisions 

Figure 6 presents results for binary, (blue-lines), multi-categorical (orange lines) and continuous-flow decisions (green lines) 

with forecast lead times in separate panels. RUV was calculated for the daily subseasonal forecasts with lead-times pooled 
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from the 1st week (blue lines(Figure 6a), 2nd week (orange lines(Figure 6b) and 3rd and 4th weeks combined (green lines).(Figure 610 

6c). The decision-makeruser is assumed to be risk neutral, and the optimisation-approach was used. Overall, the forecasts 

provide excellent value for these three different decision types over all time-horizons (max 30 days), implying that any 

decision-makeruser would likely benefit from using the forecast information over the climatologyreference baseline. Peak 

RUV wasis over 0.8 in the first week for all decision types, and close to 0.7, 0.6, and 0.5 in subsequent weeks for binary, multi-

categorical, and continuous-flow decision types respectively. The exception is for decision-makers with high exposure to 615 

damages in the 3rd and 4th weeks, where RUV drops below zero above 0.6α =  for binary decisions and 0.9α =  for multi-

categorical decisions. Regardless of the decision type or lead-time, forecasts provide maximum value for users with α  close 

to the probability of the most damaging flow class occurring. For example, for the binary decision the peak RUV value is 

located at 0.1α = , which corresponds with the event frequency of decision threshold used (top 10% of flow). 
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 620 

 
Figure 6: Forecast value for (a) binary decision of flow exceeding the top 10% of observations, (b) flow within 5 classes with 
thresholds at the top 20%, 15%, 10% and 5% of observations, and (c) continuous-flow. Decisions are made using the optimisation-
approach for decision-making with a risk neutral decision-makeruser, and subseasonal forecasts for the 1st, 2nd and combined 3rd 
and 4th weeks of lead-times. 625 

Almost all decision-makers will experience positive value from incorporating the streamflow forecasts into their decisions 

across all lead-times and decision types. The only decision-makers who should avoid using the forecasts in all cases are those 

with very large exposure to damages, a common finding in studies using REV (Roulin, 2007). However,Figure 6 shows that 

there is important variation in RUV across α , lead-time, and decision type.for different decision types. These differences in 
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RUV for different decision-types are more pronounced for larger values of α and at longer lead-times. For example, beyond 630 

the secondfor users with 0.6α >  (lead-time week decision-makers with 0.6α > 2) the RUV is below zero for the binary 

decision type, but not the multi-categorical or continuous flow decision types. This suggests the users should prefer the 

reference climatologybaseline for the binary decision and prefer forecasts for the multi-categorical and continuous-flow 

decisions. Regardless of theThis highlights the importance of calculating forecast value using the decision type which matches 

the decision being assessed.  635 

It is notable that for higher values of α the value of forecasts in weeks 3 and 4 is higher than week 2. While differences are 

minor, they interestingly appear robust over the multiple decision type or types in this case study. The reduced value of 

forecasts could possibly be due to lead-time, forecasts provide maximum value for decision-makers with α  close to the 

probability of the most damaging flow class occurring. For example, for the binary decision the peak RUV value is located at 

0.1α =  which corresponds with the event frequency of decision threshold used (top 10% of flow). Forecast dependent 640 

differences in forecast reliability and decreasing sharpness of the forecast ensemble at longer lead-times. Another notable 

feature is that forecast value at small α α  is enhanced for continuous-flow decisions relative to the other decision- types. This 

seems to be because large damages from infrequent extreme events are more adequately mitigated in continuous-flow decisions 

because a correspondingly large amount is spent when they are forecast correctly.  

 645 

5.4 Experiment 4: Impact of risk aversion 

Experiment 4 contrasts forecast value for a risk neutral decision-makeruser against 3three different levels of risk aversion for 

binary, multi-categorical, and continuous-flow decisions. The results presented in Figure 7 for the RUV metric (first row) as 

well the overspend (middle row) and utility-difference metrics (last row) used by Matte et al. (2017)(2017) which provide 

insight into the spending decisions and utility respectively. By varying A A  in Eq. (5) risk aversion is found to have a 650 

moderatesignificant impact on the value of forecasts for thehighly risk averse users making continuous-flow decisions, a 

moderate impact for multi-categorical and continuous-flow decisions, (except for highly risk averse users), and a minor impact 

for binary decision typesdecisions (see Figure 7 first row). Increased risk aversion shifts the RUV curve toward users with 

higher α α , suggesting that risk averse decision-makersusers with more exposure to damagesexpensive mitigation would 

benefit more from using forecasts to make their decisions.  655 
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Figure 7: RUV, overspend and utility-difference for different levels of decision-makeruser risk aversion, for a binary decision of 
flow exceeding the top 10% of observations (first column), flow within 5 classes with thresholds at the top 15%, 10%, 5%, and 1% 
of observations (middle column), and continuous-flow (last column). Decisions made using the optimisation approach with 660 
subseasonal forecasts from the 1st week of lead-times. 

The overspend ((Figure 7, middle row) and utility-difference results ((Figure 7, last row) indicate that risk aversion has a minor 

impact on the spending decisions and the resultant utility., except for highly risk averse users making continuous-flow 

decisions. The overspend panels show that regardless of risk aversion, on average a decision-makeruser will spend more than 
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necessary when their cost of mitigation is small relative to the potential avoided losses (small α ).α ). Conversely, when α665 

α  is large they will underspend on average. When risk aversion is increased, decision-makersusers spend increasingly more.  

The utility-difference panels (Figure 7, bottom row) show that decisions made using forecasts provide users less utility than 

decisions made using perfect information, and this decrease in utility increases with risk aversion. As utility is an ordinal 

measure it is only meaningful to interpret differences within each panel (g), (h), and (i), not between them. This highlights a 

benefit of the overspend and RUV metrics which are comparable across decision type.  670 

5.5 Experiment 5: Mechanism behind the varying impact of risk aversion 

It is notable that the impact of risk aversion in Figure 7 is different for each decision type; minor for the binary decisions, 

moderate for multi-categorical and continuous-flow, and particularly enhanced for highly risk averse decision-makers.users. 

Experiment 5 investigates the mechanism behind this. Figure 8 presents the difference in RUV between risk averse and risk 

neutral decision-makersusers (y-axis), for a binary decision at a single exposure to damagesvalue of 0.2α = .α  ( 0.2α = ). 675 

The binary decision threshold (x-axis) is varied from the 0.1 – 162 – 225 m3/s (bottom 25% to top 0.0403%) and decisions are 

made using the optimisation approach with subseasonal forecasts from the 1st week of lead-times. This contrasts with the 

binary decision in experiment 4 where the decision threshold is fixed at 2.432 m3/s (top 10%) andα  α  is varied. 
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Figure 8: difference in RUV between risk averse ( 0A > ) and risk neutral ( 0A = ) decision-makers (y-axis), for a binary decision at 680 
a single exposure to damages of 0.2α = . The binary decision threshold (x-axis) is varied from 0.1 – 16 m3/s and decisions are made 
using the optimisation approach with subseasonal forecasts from the 1st week of lead-times. 

 

Below a critical decision threshold of approximately 570 m3/s (top 2% flow) the difference in RUV between any level of risk 

aversion and risk-neutrality is negligible. Above this value an increasing difference is clear, particularly in the highly risk 685 

averse case, with risk averse decision-makersusers gaining more value from the forecast information than risk neutral. This 

finding was consistent for multi-categorical decisions of any number of flow classes, all lead-times, and all values of α α  

except at extreme high and low values (not shown). The specific experimental values (binary decision, 0.2α = , 1st week lead-

time) were chosen as a representative example and the findings apply for other experimental values. It demonstrates that the 

decision thresholds used, specifically in relation to the damage function, are the key drivers behind the impact of risk aversion 690 

regardless of the decision type. The difference in impact of risk aversion across the different decision types in Figure 7 can 

therefore be explained by the specific decision thresholds used in relation to this critical value; the binary decision threshold 

of 2.432 m3/s used in experiment 4 was less than the critical value of 570 m3/s and only a minor impact from risk aversion was 

found, whereas the top decision threshold for the multi-categorical decision was 6.891 m3/s, above this critical value, and a 
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moderate impact was found, and an even larger impact was found for the continuous-flow decision which includes contribution 695 

from the largest flows.  

 

 

Figure 8: difference in RUV between risk averse ( 0A > ) and risk neutral ( 0A = ) users (y-axis), for a binary decision at a single α  
value ( 0.2α = ). The binary decision threshold (x-axis) is varied from 2 – 225 m3/s and decisions are made using the optimisation 700 
approach with subseasonal forecasts from the 1st week of lead-times. 

6 6 Discussion 

According to statistical forecast verification metrics, probabilistic streamflow forecasts have been shown to be skilful and 

statistically reliable (McInerney et al., 2021; Li et al., 2016b). However, their ability to improve decision outcomes has not 

been extensively established. Additionally, REV, the most frequently used forecast value method, can only be applied to a 705 

limited number of real-world decisions. In this paper we develop a new forecast value method, Relative Utility Value (RUV), 

which is more flexible than REV and can applied to more decision. The flexibility of RUV is demonstrated with a case study 

using probabilistic subseasonal streamflow forecasts to inform binary, multi-categorical, and continuous-flow decisions with 
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risk averse decision-makers. The 5 experiments reported in Sect. 5  systematically explore the impact of different aspects of a 

decision on forecast value: the forecast value method, the probabilistic decision-making approach, types of decisions, decision-710 

maker risk aversion, and the mechanism behind varied risk aversion impact. First, we find that under certain conditions RUV 

and REV are equivalent, and REV can be considered a special case of the more general RUV method (see Figure 4 and 

Appendix A ). Second, making decisions with fixed critical probability thresholds is leads to maximum forecast value only for 

a very small set of users, and using an optimisation-based approach makes better use of probabilistic forecast information (see 

Figure 5). Third, subseasonal forecasts offer more value than a climatological average for almost all lead-times and decision-715 

makers regardless of the decision-type (see Figure 6). And finally, risk aversion has a minor to moderate impact on forecast 

value (see Figure 7) but the degree of impact is sensitive to the decision context being evaluated. The key mechanism driving 

this impact is the decision thresholds used relative to the damage function (see Figure 8). This section interprets these results 

through the lens of forecast users and producers.  

6.1 Benefits of RUV over alternatives 720 

Forecast value complements forecast verification. Unlike forecast verification, forecast value considers the broader context 

within which decisions are made. Statistical forecast verification metrics have previously been used to show that the 

probabilistic streamflow forecasts used in this study are reliable and sharp, largely due to the post-processing method employed 

(McInerney et al., 2021). Other post-processing methods have also demonstrated capability to improve the reliability and 

sharpness of raw streamflow forecasts (Bogner et al., 2016; Li et al., 2016b; Woldemeskel et al., 2018; Lucatero et al., 2018). 725 

However, the ability of these forecasts to improve decision outcomes has not been extensively established. Additionally, REV, 

the most frequently used forecast value method, can only be applied to a limited number of real-world decisions. In this paper 

we developed a new forecast value method, Relative Utility Value (RUV), which is more flexible than REV and can be applied 

to more decisions. The flexibility of RUV is demonstrated with an illustrative case study using probabilistic subseasonal 

streamflow forecasts to inform binary, multi-categorical, and continuous-flow decisions with risk averse users. The 5 730 

experiments reported in Sect. 5 systematically explore the impact of different aspects of a decision on forecast value: the 

forecast value method, the probabilistic decision-making approach, types of decisions, user risk aversion, and the mechanism 

behind varied risk aversion impact. First, we find that under certain conditions RUV and REV are equivalent, and REV can be 

considered a special case of the more general RUV method (see Figure 4, Appendix A, and the Supplement). Second, making 

decisions with fixed critical probability thresholds leads to maximum forecast value only for a very small set of users, and 735 

using an optimisation-based approach makes better use of probabilistic forecast information (see Figure 5). Third, we showed 

that forecast value varies by both decision type and how expensive mitigation is for the user, highlighting the importance of 

calculating forecast value with the decision type which matches the real-world decision (see Figure 6). Fourth, risk aversion 

has a varied impact (minor to moderate) on forecast value (see Figure 7) and the degree of impact is sensitive to the decision 

context being evaluated. And finally, the key mechanism driving this impact is decision thresholds used relative to the damage 740 

function (see Figure 8).  
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6.1 Benefits of RUV over alternatives 

1. Forecast value complements forecast verification. Unlike forecast verification, forecast value considers the broader 

context within which decisions are made. This allows forecast producers, such as the Australian Bureau of Meteorology, to 

understand their customeruser impact by evaluating service enhancements against user decisions. DeterminingForecast 745 

verification is typically a key deciding factor when determining which method or enhancement to operationalise is typically 

made using forecast verification as a key deciding factor. Quantifying the value of forecasts based on impact offers a 

complementary line of evidence which places the forecast user at the centre of the conversation. Because RUV encourages a 

dialog between the forecast producer and user to define the full decision context it may enhance communication and service 

adoption. For forecast users, it provides a new capability: an evidence-based approach to decide which forecast information 750 

and decision-making process will improve their outcomes. For example, the Biggaraillustrative case study in Sect. 5  

indicates that subseasonal forecasts at Biggara offer better value than climatologyreference baseline in almost all cases, and 

that an optimisation-approach is beneficial when deciding to take early action to mitigate damages from a high flow event a 

few weeks ahead (see Figure 5 and Figure 6).  

2. RUVRUV is more flexible than REV. It can model more decisions with sufficient realism than REV because it 755 

explicitly specifies decision type, risk aversion, economic model, and decision-making approach. Real-world decisions may 

be binary, multi-categorical, or based on continuous-flow, and using a binary model (as in REV) in all cases will provide a 

misleading measure of forecast value for non-binary decisions. Figure 6 shows that neglecting this would have important 

implications for decision-makersusers; forecasts beyond week 2 should be used for the multi-categorical and continuous-

flow but not for the binary decision (when 0.6α > ). 0.6α > ). Similarly, neglecting the realism of other aspects of the 760 

decision may lead to other misleading conclusions. The flexibility of RUV allows the user to decide how much realism to 

include in the forecast value assessment depending on the information available and tailor it to the decision context. 

3. RUV evaluates forecast value conditioned upon decision-makers exposure to damages.on how expensive a user’s 

mitigation is. Unlike single-valued metrics, common in traditional forecast verification, RUV is evaluated for wide range of 

decision-makers’ exposure to damagesusers’ experiences, as is shown in the value diagram (Figure 1). This offers valuable 765 

insight that would otherwise be hidden. In particular, it is useful for forecast producers who can quickly compare one 

forecast system to another forover a range of different users with different exposures to damages.relative expenses of 

mitigation (α ). However, this does make it comparatively more difficult to summarise and aggregate. To assist 

interpretation for a single forecast userdecision-maker, it is important they narrowthe decision-maker narrows the range of α  

whichα  that is relevant to their decision by considering how expensive their specific exposure tomitigation of damages is.  770 

Formatted: Normal,  No bullets or numbering

Commented [RL58]: 1.36 (and other places paragraph 
numbering is removed in section 6) 

Field Code Changed

Field Code Changed

Field Code Changed

Commented [RL59]: 2.32 



Manuscript submitted for review at Hydrology and Earth System Sciences 

41 
 

6.2 Implications of case study resultsexperiments 

1. Optimisation based decision-making is better than fixed critical probability thresholds when using probabilistic 

forecasts. Figure 5 demonstrates that a specific critical probability threshold will only be optimal for a specific exposure to 

damages (α )value of α  and suboptimal for all other values. When a decision-makeruser is choosing between using the 

forecast or the climatological reference baseline, they may choose incorrectly if their critical probability threshold is not 775 

aligned with their exposure to damages.relative expense of mitigation. This incorrect choice will be due to a deficiency in the 

threshold-approach to decision-making rather than the forecast information. This RUV based finding is well supported by 

the REV literature (Richardson, 2000; Wilks, 2001; Zhu et al., 2002; Roulin, 2007)(Richardson, 2000; Wilks, 2001; Zhu et 

al., 2002; Roulin, 2007). A perfect critical probability threshold is typically used with REV (Figure 4), unfortunately this is 

not possible to achieve in practice and the quantified value is unrealistically high. Matte et al. (2017)(2017) introduced an 780 

optimisation-approach and we extended it here to further evaluate the impact on forecast value. This flexible approach makes 

best use of the forecast information available and for risk neutral users is equivalent to the threshold-approach when the 

threshold is set equal to the decision-makers’ exposure to damagesuser’s relative expense of mitigation, α α  (Figure 5). 

When forecasts are reliable this method yields value whichthat is very close to the maximum possible, and forecast users 

may consider adopting this alternative approach for daily operational decisions. AFor this approach to be adopted for 785 

operational decision making, a Decision Support System would be required soto calculate the optimal amount to spend on 

preventative mitigation can be calculated each time a new forecast is issued. This implies a suitable economic model is 

available for the decision and can be used for this calculation.  

2. Forecast information is more valuable for risk averse users making high-stakes decisions. Figure 7 (middle row) 

demonstrates that for a given forecast, a more risk averse decision-makeruser spends more to mitigate a potential damaging 790 

event than a less risk averse decision maker, all else being equal. This behaviour is consistent with their preference for risk 

aversion because it leads to a more certain result, with the net outcome equal to the spend amount whether the event occurs 

or not. There is a large difference in impact of risk aversion for the different decision types however and Figure 8 summaries 

thesummarises the findings of an investigation into this. Decision thresholds corresponding to very high flows lead to a 

larger impact. This finding explains why risk aversion has a large impact for the continuous-flow decision, spanning the 795 

whole regime, and a negligible impact for the binary decision with a single moderately high decision threshold. It suggests 

that for a risk averse user making a high stakes decision, forecasts become increasingly more valuable as the potential 

damages become larger. It may also explain apparently contradictory findings on the impact of risk aversion in the literature. 

Matte et al. (2017)(2017) assessed the impact of risk aversion on a multi-categorical decision (using overspend and utility 

metrics) and found it had a moderate impact (similar to the multi-categorical decisions shown in Figure 7e and Figure 7h). 800 

Their study used 12 uniformly spaced flow divisions over a high flow range and a damage function based on empirical flood 

studies, whereas this study used 4 widely spaced thresholds over a similar high flow range. A recent study by Lala et al. 

(2021)(2021) found minor impacts from risk aversion for binary cost-loss decisions with extreme rainfall forecasts using the 
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same expected utility maximisation framework from Matte et al. (2017)(2017) and found a similar impact to Figure 7a. An 

alternative argument using reasoning from decision theory suggests that for a given risk premium the impact should be larger 805 

when decision thresholds are closer together (Mas-Colell, 1995).(Mas-Colell, 1995). However, when investigated we found 

no evidence to support this. for our case study experiments. Further research to better characterise the response for different 

decision contexts would be useful because the impact is modulated by both the decision thresholds and the specific damage 

function, consideration of the inherent sampling error introduced for extreme events would also be useful.  

6.3 Limitations and future work 810 

Future work on the RUV metric will focus on the following aspects:  

1. Exploring the impact of alternative damage functions, economic models, and utility functions, and reference baselines 

on forecast value. This manuscriptstudy focused on the impact of alternative decision types and risk aversion, and a 

comparative study of RUV and REV. The foundation in Expected Utility Theory allows us to model more decisions more 

realistically than REV, but it requires more information. When this information is unavailable or uncertain the user needsis 815 

required to applymake assumptions, but it is not always clear what thehow to best strategy to take isdo this. One strategy is to 

model all decisions as binary, cost-loss, and risk neutral and effectively convert RUV to REV. This study explores the 

implications of relaxing some, but not all, of those assumptions but is limited to an analysis at a single case studyforecast 

location. In particular, the damage function used was parameterised to simplify the introduction of RUV, facilitate comparison 

with REV, and highlight important implications for future studies. Further work will consider the impact of alternative damage 820 

functions and economic models tailored to other decision contexts. More descriptive economic models than cost-loss will be 

essential to consider decisions which involve non-economic intangible externalities like social, cultural, and ecological factors 

(Jackson and Moggridge, 2019; Expósito et al., 2020). (Jackson and Moggridge, 2019; Expósito et al., 2020). Future studies 

which consider these impacts may be required address unresolved findings in our study, such as the dependence of forecast 

value on lead-time (see Section 5.3).  825 

2. Expected Utility Theory approximates decision-making and contemporary frameworks may enhance the capability 

of RUV to model real-world decisions. There is general agreement, and a substantial body of evidence, that 

Expected Utility Theory does not adequately describe individual choice (Kahneman and Tversky, 1979; Harless and 

Camerer, 1994). Many alternative models have been proposed which address these violations, such as Cumulative 

Prospect Theory (Tversky and Kahneman, 1992). Future work will consider whether quantifying forecast value 830 

using a foundation built on a better model of decision-making changes the conclusions reached. 

3. Exploring the relationship between forecast value and forecast skill. Roebber and Bosart (1996) found that 

statistical performance metrics were poor at predicting the cost-loss value of meteorological forecasts for several 

real-world decisions. The relationship was impacted by the decision-maker’s α  value, and when in aggregate, the 

distribution of α over all users. Using a real-time optimisation system to manage reservoir operations Peñuela et al. 835 

(2020) quantified forecast value through improvement in pumping costs and resource availability relative to a 
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baseline. They found a relationship between forecast value and CRPS skill score mediated by user priorities and 

hydrological conditions. Although a relationship exists it is clearly mediated by the characteristics of the decision 

and decision-maker and in many cases forecast skill is not a good proxy for forecast value (Murphy and 

Ehrendorfer, 1987; Wilks and Hamill, 1995; Roebber and Bosart, 1996; Roulin, 2007; Peñuela et al., 2020). 840 

Exploring this relationship is of interest because the decision and decision-maker characteristics are made explicit in 

RUV. Converting RUV to a single-value metric by placing assumptions on the distribution of α  could assist and 

additionally allow its use as an objective function for model calibration or as a summary statistic, Wilks (2001) 

considers this using REV.  

Tailoring the evaluation of forecast value to real-world decisions. For practical applications of RUV it is advisable to calibrate 845 

the damage function, decision thresholds, economic model, decision-making approach, and reference baseline to the real-world 

experience of the decision-makers. This calibration will ensure the resulting forecast value is tailored to the specific decision 

context and will likely lead to more user trust in the results, and subsequently more appropriate use of forecast information. 

While the reference baseline (fixed average climatology) used in this study enabled a direct comparison of RUV with REV, 

we would recommend comparison against more relevant baseline forecasts for practical applications (e.g., information 850 

currently used to inform the decision being assessed).  

Expected Utility Theory approximates actual decision-making and contemporary frameworks may enhance the capability of 

RUV to model real-world decisions. There is general agreement, and a substantial body of evidence, that Expected Utility 

Theory does not adequately describe individual choice (Kahneman and Tversky, 1979; Harless and Camerer, 1994). Many 

alternative models have been proposed which address these violations, such as Cumulative Prospect Theory (Tversky and 855 

Kahneman, 1992). Future work could consider whether quantifying forecast value using a foundation built on a better model 

of decision-making changes the conclusions reached. Additionally, the cost-loss economic model used in this study implies 

that mitigation is preventative action to minimise forecast losses, with each forecast lead-time and forecast update treated 

independently of all others. Alternative economic models and decision-making frameworks may be required to explore more 

realistic forms of mitigation which consider temporal dependence (see Matte et al. (2017) for an approach). 860 

Exploring the relationship between forecast value and forecast skill. Roebber and Bosart (1996) found that statistical 

performance metrics were poor at predicting the cost-loss value of meteorological forecasts for several real-world decisions. 

The relationship was impacted by the user’s α  value, and when in aggregate, the distribution of α over all users. Using a 

real-time optimisation system to manage reservoir operations Peñuela et al. (2020) quantified forecast value through 

improvement in pumping costs and resource availability relative to a baseline. They found a relationship between forecast 865 

value and CRPS skill score mediated by user priorities and hydrological conditions. Although a relationship exists it is clearly 

mediated by the characteristics of the decision and user and in many cases forecast skill is not a good proxy for forecast value 

(Murphy and Ehrendorfer, 1987; Wilks and Hamill, 1995; Roebber and Bosart, 1996; Roulin, 2007; Peñuela et al., 2020). 
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Exploring this relationship is of interest because the decision and user characteristics are made explicit in RUV. Converting 

RUV to a single-value metric by placing assumptions on the distribution of α  could assist and additionally allow its use as an 870 

objective function for model calibration or as a summary statistic, Wilks (2001) considers this using REV. The forecast value 

results of our illustrative case study are likely to be sensitive to flow characteristics and forecast uncertainty of our selected 

location. Future work will evaluate the value of streamflow forecast over different hydroclimatic conditions. Additionally, 

forecast skill (and reliability) is impacted by a forecast model’s ability to reproduce seasonality and antecedent conditions. 

Although these are modelled well by the system used in this study (McInerney et al., 2020), their impact on forecast value was 875 

not considered in our sensitivity analysis. A future study assessing how RUV is impacted when models fail to reproduce 

seasonality, antecedent conditions, and other features would be a useful contribution to the field. The impact of seasonality 

and antecedent conditions on forecast value has not been considered in our sensitivity analysis and a future study assessing 

how RUV is impacted by them would be a useful contribution.   

7 7 Conclusions 880 

ProbabilisticForecast value methods aim to quantify the potential benefits that probabilistic forecasts have the potential to 

benefitfor water-sensitive decisions, such as operational water resource management and emergency warning services, but to 

date their value for decision making has not been established. Forecast value methods attempt to quantify this potential.. 

However, the most commonly used existing method to evaluate forecast value, Relative Economic Value (REV), is only 

suitable for specific decisions. REV is unsuitable for many real-world decisions and when applied may lead to misleading 885 

conclusions on when to use forecasts. This manuscript introduces the RUV metric, which has the same interpretation as the 

commonly used REV metric, but is more flexible and can be applied to a far wider range of decisions.decision contexts. This 

is because many aspects of the decision-making process can be incorporated into RUV by the user and adjusted to match real-

world decisions. These include the economic model, damage function, decision type, and decision-maker characteristics and 

preferences, such as user risk aversion and exposure to damages. Importantly, we show that REV can be considered a special 890 

caserelative expense of the more general RUV, when applying specific restrictive assumptionsmitigation.  

A case study demonstrates that subseasonal streamflow forecasts should be preferred over a reference climatology forecast for 

all lead-times studied (max 30 days) and almost all decision-makers regardless of their risk aversion. This positive forecast 

value is robust to changes in decision-maker characteristics, decision types (binary, multi-categorical, and continuous-flow), 

and decision-making approaches. However, beyond the second week, RUV indicates that decision-makers who are highly 895 

exposed to damages should use the reference climatology rather than the forecasts for the binary decision. This is not the case 

for the multi-categorical and continuous-flow decision however, where forecasts should be preferred. In this study, risk 

aversion is found to have a larger impact for multi-categorical and continuous-flow decisions than for binary decisions. 

However, this difference in impact is found to be a result of the specific decision thresholds used relative to the damage 

function rather than the decision type itself. With probabilistic forecasts, decisions are commonly made by first applying a 900 
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fixed critical probability threshold. We find that this fixed threshold-approach to decision-making leads to sub-optimal use of 

the forecast information. Alternatively, an optimisation-approach which finds the ideal amount to spend on each decision leads 

to the best use of the forecasts. This difference suggests the importance of modelling the real-world decision-making approach 

when quantifying forecast value. RUV was used to model both decision-making approaches in this study.An illustrative case 

study using probabilistic subseasonal streamflow forecasts in a practically significant catchment in the Southern Murray-905 

Darling Basin of Australia was used to compare the REV and RUV metrics under a range of decision contexts. The key findings 

from this case study were:  

1. REV can be considered a special case of the more general RUV method.  

2. Making decisions using an optimisation-based approach which uses the whole forecast distribution to determine the 

amount spent on mitigation makes better use of probabilistic forecast information than using a threshold-based 910 

approach with fixed critical probability thresholds.  

3. Forecast value depends on the decision type and hence, it can be critically important to use a decision-type that 

matches the real-world decision 

4. Risk averse users gain more value from forecasts than risk neutral users, but the impact can vary from minor to 

moderate depending on the decision context.  915 

5. Impact of risk aversion on forecast value is mediated by how large the potential damages are for a given decision.  

Findings 3-5 were generally sensitive to the user’s relative expense of mitigation. For example, the impact of the decision-type 

was more pronounced for users with higher relative expenses of mitigation ( 0.6α > ). In this case, for lead-times longer than 

1 week, forecast value from RUV of a binary decision was significantly lower than for multi-categorical or continuous-flow 

decisions. As REV is limited to binary decisions, a user making a multi-categorical or continuous-flow decision, could be 920 

misled by the REV outcomes and consider not using the forecasts when they actually have significant value as demonstrated 

by RUV.   

This manuscript focuses on the introduction of RUV and an exploration of its sensitivity to some aspects of decision context. 

Therefore, several future research directions for RUV are discussed including (i) exploring sensitivity of forecast value to more 

aspects of decision context, (ii) tailoring forecast value to real-world decisions, (iii) assessing alternative frameworks for 925 

modelling decision-making, and (iv) exploring the relationship between forecast value and forecast skill.  

RUV presents an opportunity to tailor forecasts and their assessment to the specific decisions, decision-making approach, 

characteristics, preferences, and economics of the decision-maker.user. It is hoped that this capability maywill encourage the 

assessment of forecast systems through the lens of customeruser benefit and be seen as a complement to forecast verification. 

This may lead to increased adoption of forecasts through deeper dialog and understanding, and ultimately to improved water 930 

resource management decisions. 
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Appendix A Appendix A Proof of equivalence of REV and RUV under specific assumptions 

This section demonstrates the equivalence of the REV metric as detailed in Eq. (2) and the RUV metric introduced in Sect. 3  935 

when 5 assumptions are applied to the decision context. A complete derivation is included in the Supplement.  

In a cost-loss decision problem the two relevant states are "flow above" and "flow below" a decision threshold dQ . dQ . 

 
above if 
below if Q

t d

t d

m Q Q
m Q
= ≥
= <

 
above if 
below if Q

t d

t d

m Q Q
m Q
= ≥
= <

 (12) 

Assumption 1: A step damage function with binary values of 0 and L is used to specify the losses above and below the decision 

threshold for all timesteps, 940 

 
when above

( )
0 when below
L m

d m
m
=

=  =
 

when above
( ; )

0 when below
L m

d m L
m
=

=  =
 (13) 

To calculate the net outcome when action is taken to mitigate the loss, we substitute Eq. (7) and (13) into Eq. (6), which leads 

to the following net outcomes for the two states. 

 
( ),

,

min ,

since 0
t above t t t t

t below t t

E C L L C

E C C

β

β

= ⋅ − −

= − ⋅ >
 

( ),

,

min ,

since 0
t above t t

t below t t

E C L L C

E C C

β

β

= ⋅ − −

= − ⋅ >
 (14) 

Assumption 2: Linear utility function is assumed which implies no aversion to risk, 945 

 ( )E Eµ =  ( )E Eµ =  (15) 

Substituting Eq. (14) into Eq. (4), applying the linear utility function assumption, and simplifying for only two possible states 

using p tp , the forecast probability of flow above the flow threshold, at time t , leads to. 

 
( ) [ ]

( ) (1 )

min , (1 )

above below
t t t t t

t t t t t t t

U E p E p E

p C L L C p Cβ

= ⋅ + − ⋅

= ⋅ ⋅ − − + − ⋅ −  



 
( ) [ ]

, ,( ) (1 )

min , (1 )
t t t above t t below

t t t t t

U E p E p E

p C L L C p Cβ

= ⋅ + − ⋅

= ⋅ ⋅ − − + − ⋅ −  
 (16) 950 

Assumption 3: Probability of flow above the threshold will always be either 1 or 0, 

 { }0,1tp ∈  { }0,1tp ∈  (17) 

WeUsing these assumptions and noting that the total loses at each timestep are fixed and consist of avoided and un-avoided 

components a u
t t tL L L L= = +  we can now determine the single timestep ex ante utility for the four possible outcomes; . The 

Formatted: Bullets and Numbering

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



Manuscript submitted for review at Hydrology and Earth System Sciences 

47 
 

four possible outcomes are composed of; event is forecast probability is 1 or 0,to occur ( 1tp = ) or not occur ( 0tp = ), and an 955 

action has therefore been taken or not, leading to Table 4. 

 
Table 4: Ex ante utility values for a time-step of Expected Utility Theory with REV assumptions 

 
1p = Event forecast 

to occur 
0p = Event not 

forecast to occur 

Action taken 
0tC ≠ 0tC ≠  

( )u
t tC L− +

( )u
t tC L− +  

tC− tC−  

Action not taken 
0tC = 0tC =  tL− L−  0 0  

 

Applying Eq. (8) to Eq. (16) will lead to an optimal amount tCπ
tC  to spend on the mitigating action for each timestep. By 960 

considering that the forecast probability is always either 1 or 0 due to assumption 3 and that all costs and losses are positive 

values we can derive that for any timestep the cost will be either 0tCπ =  when 0p =  or t
t

L
Cπ

β
=  when 1p = . 0tC =  when 

0tp =  or t
LC
β

=  when 1tp = , see the supplement for a full derivation. 

The ex post utility for each timestep, shown in Table 5, can be found by substituting these optimal costs back into the elements 

of Table 4, and letting the probability be conditioned on the state of observed flow above the threshold. 965 

 
Table 5: Ex post utility values for a time-step of Expected Utility Theory with REV assumptions 

 
Event occurred 

1tp =   
Event did not occur 

0tp =  

Action taken 
t

t
L

C
β

= t
LC
β

=  

ut
t

L
L

β
 

− + 
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u
t

L L
β

 
− + 
 

 

tL
β

− L
β

−  

Action not taken 
0tC = 0tC =  tL− L−  0 0  

 

A contingency table is now used with Table 5 to determine each term of the RUV metric.  

Assumption 4: The frequency of the binary decision event o o  is used for the reference baseline.  970 
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This leads to the following expected ex post utility for reference baseline information 

 ( ) min ,r a ut
t t tt T

L
E oL oL

β∈

  ϒ = − −    
  ( ) min ,r a u

t t tt T

LE oL oL
β∈

  ϒ = − −    
  (18) 

Expected ex post utility for perfect information is 

 ( )p ut
t tt T

L
E o L

β∈

  ϒ = − +    
  ( )p u

t tt T

LE o L
β∈

  ϒ = − +    
  (19) 

Expected ex post utility for forecast information is 975 

 ( ) ( )f u at
t t tt T

L
E h f oL mL

β∈
 ϒ = − + − −  ( ) ( )f u a

t t tt T

LE h f oL mL
β∈

 ϒ = − + − −   (20) 

where h h  is the hit rate, m m  is the miss rate, and f f  is the false alarm rate from the contingency table.  

Assumption 5: At each timestep the avoided losses are equal to the total possible losses. 

 for a
t tL L t T= ∈  for a

tL L t T= ∈  (21) 

Substituting Eq. (18), (19), and (20) into Eq. (10), applying assumption 5, and noting the relationship 1β
α

=
1β
α

=   leads to 980 

 
( ) ( )

( )
min ,

min ,
o h f m

RUV
o o

α α
α α
− + −

=
−

 
( ) ( )

( )
min ,

RUV
min ,

o h f m
o o

α α
α α
− + −

=
−

 (22) 

which is identical to the definition of the REV metric in Eq. (2). 

Code availability 

The code used for this work will be released, along with a follow up publication, as a software library which can be used by 

researchers and industry to quantify forecast value using RUV. Please contact the corresponding author to register interest in 985 

beta testing access. 

Data availability  

A companion dataset for this work is available at: https://doi.org/XXX. This contains the input streamflow forecasts, output 

forecast value results, and generated figures. The software library used to generate the forecast value results is not included in 

this dataset because it will be released with a follow up publication.A companion dataset for this work is available at: 990 

https://doi.org/10.25909/19153055 (Laugesen et al., 2022). This contains the input streamflow forecasts, output forecast value 

results, and high resolution figures.  
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