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Abstract. Quantification of root-zone soil moisture (RZSM) is crucial for agricultural applications and soil sciences. 11 
RZSM impacts processes such as vegetation transpiration and water percolation. Surface soil moisture (SSM) can be 12 
assessed through active and passive microwave remote sensing methods, but no current sensor enables direct RZSM 13 
retrieval. Spatial maps of RZSM can be retrieved via proxy observations (vegetation stress, water storage change, and 14 
surface soil moisture) or via land surface model predictions. In this study, we investigated the combination of surface 15 
soil moisture information with process-based inferred features involving artificial neural networks (ANNs). We 16 
considered the infiltration process through the soil water index (SWI) computed with a recursive exponential filter and 17 
the evaporation process through the evaporative efficiency computed based on a MODIS remote sensing dataset and 18 
simplified analytical model, while vegetation growth was expressed through normalized difference vegetation index 19 
(NDVI) time series. Several ANN models with different sets of features were developed. Training was conducted 20 
considering in situ stations distributed several areas worldwide characterized by different soil and climate patterns of 21 
the International Soil Moisture Network (ISMN), and testing was applied to stations of the same data hosting facility. 22 
The results indicate that the integration of process-based features into ANN models increased the overall performance 23 
over the reference model level in which only SSM features were considered. In arid and semi-arid areas, for instance, 24 
performance enhancement was observed when the evaporative efficiency was integrated into the ANN models. To 25 
assess the robustness of the approach, the trained models were applied on observation sites in Tunisia, Italy and South-26 
India that are not part of ISMN. The results reveal that joint use of surface soil moisture, evaporative efficiency, NDVI 27 
and recursive exponential filter represented the best alternative for more accurate predictions in the case of Tunisia, 28 
where the mean correlation of the predicted RZSM based on SSM only sharply increased from 0.443 to 0.801 when 29 
process-based features were integrated into the ANN models in addition to SSM. However, process-based features have 30 
no to little added value in temperate to tropical conditions. 31 

Keywords: root-zone soil moisture, artificial neural networks, evaporative efficiency, exponential filter. 32 
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Soil moisture is a major land parameter integrated into several agricultural, hydrological and meteorological 34 
applications (Koster et al., 2004; Anguela et al.,2008) This essential climate variable (ECV) consists of two 35 
components, namely, surface soil moisture (SSM) (0–5 cm) and root-zone soil moisture (RZSM) (30 cm to 1 m). The 36 
importance of RZSM is mainly highlighted in agricultural applications through vegetation stress and water needs and in 37 
carbon and nitrogen cycles, as RZSM influences biogeochemical activities in soil (Martínez-Espinosa et al., 2021). 38 
SSM quantification is achieved through three main sources: in situ measurements, model estimates and remote sensing-39 
based products. Microwave remote sensing involving sensors such as the Soil Moisture and Ocean Salinity (SMOS) 40 
mission (Kerr et al., 2010), Soil Moisture Active Passive (SMAP) mission (Entekhabi et al.,2010) Advanced 41 
Microwave Scanning Radiometer (AMSR) (Owe et al., 2008) and Advanced Scatterometer (ASCAT) (Wagner et al., 42 
2013) has been employed to retrieve SSM at coarse resolutions.  Current satellite sensors can only provide surface soil 43 
moisture information because of the shallow penetration depth of spaceborne data (on the order of a few centimeters) 44 
(Wagner et al., 2007). Fine-spatial resolution synthetic aperture radar (SAR) data can also be applied in synergy with 45 
optical data to retrieve soil moisture (Zribi et al., 2011; Hajj et al.,2014; Dorigo et al., 2011), but again for surface soil 46 
moisture. The International Soil Moisture Network (ISMN) is an exhaustive data hosting facility focused on soil 47 
moisture data and associated ancillary information. The ISMN provides in situ soil moisture measurements collected 48 
from operational soil moisture networks worldwide (Dorigo et al., 2011). Various models can be adopted to estimate 49 
RZSM, such as land surface models (Surfex (Masson et al., 2013), ISBA (Noilhan et al., 1996), CLM (Oleson et al., 50 
2010), JULES (Best et al., 2011), etc.) or dedicated crop models such as Aquacrop (Raes et al., 2009) or SAFYE 51 
(Battude et al., 2017). While these models provide the advantage of physical process-based estimates, these estimates 52 
depend on the availability and accuracy of ancillary information. Model predictions are often enhanced by the 53 
implementation of data assimilation techniques, such as the land data assimilation system (LDAS) (Sabater et al., 2007; 54 
Entekhabi et al., 2020). 55 

Data-driven methods such as artificial neural networks (ANNs) have also been commonly applied in hydrology as 56 
detailed for instance by the ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2020) 57 
and in (Tanty el al., 2015). One of their advantages is that these models do not require an explicit model structure to 58 
accurately represent the involved hydrological processes but instead construct a relationship between the given inputs 59 
and the process of interest. Therefore, ANNs are regarded as dynamic input–output mapping models heavily relying on 60 
the provided training data relevant to target values (Pan et al., 2017). Moreover, ANNs only require a one-time 61 
calibration to provide soil moisture estimations once instrument data are loaded and thus generate relatively low 62 
computational costs (Kolassa et al., 2018). These advantages explain the approach to estimate RZSM based on surface 63 
information with ANNs in various methodologies (Pan et al., 2017; Grillakis et al., 2021; Souissi et al., 2020). In this 64 
paper, we do not address ANN applications as a model twin where the ANN model is trained on the target for 65 
mimicking purposes and subsequently generates predictions while requiring a short computation time or fewer input 66 
simplifications. Here, we are instead interested in the adoption of ANNs as independent models trained on in situ 67 
observations. Within this context, (Pan et al., 2017) successfully applied an ANN as a model for shallow 20-cm root 68 
zone soil moisture prediction with a global correlation coefficient of 0.7. (Grillakis et al., 2021) proposed employing an 69 
ANN as a means to calibrate and regionalize the time constant of a recursive exponential filter, which was thereafter 70 
applied at the regional scale. A combined implementation of Bayesian probabilistic approach and an ANN to infer 71 
RZSM at different depths from optical UAV acquisitions via local training was also applied (Hassan-Esfahani et al., 72 
2017). Multitemporal averaged features to predict RZSM based on only SSM and investigated the transferability of a 73 
trained ANN across different climatic conditions globally were proposed in (Souissi et al., 2020). Temporal information 74 
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can be considered in ANNs through recurrent neural networks (RNNs), long short-term memory (LSTM) architectures 75 
(Liu et al., 2021), 1D convolutional neural networks (CNNs), or multitemporal averaging. In (Souissi et al., 2020), 76 
median, maximum, and minimum correlation values of 0.77, 0.96, and 0.65 were respectively reported. The use of 77 
climatic variables such as precipitation and surface temperature and intrinsic surface properties such as soil texture and 78 
land cover has also been considered in ANNs (Liu et al., 2021). The choice of variables depends not only on the data 79 
availability but also on the objectives. Finally, ANN-based approaches pertain to the more general term of machine 80 
learning (ML) approaches, and within this framework, the random forest approach has been applied to root zone soil 81 
moisture prediction (Carranza et al., 2021). The aforementioned studies have investigated the application of multiple 82 
information sources to predict root zone soil moisture. The input features are commonly curated for quality, and 83 
correlation analysis is conducted to determine the useful inputs, while physical processes are not considered. In this 84 
paper, we introduce process-based features based on simplified analytical models representing the major processes 85 
contributing to root zone soil moisture dynamics. We investigate the impact of the application of different process-86 
based variables on the precision of RZSM predictions as well as the robustness of our approach. (1) We start from a 87 
previously developed MLP model (Souissi et al., 2020), and we extend the feature list to include process-based 88 
variables, namely, the soil water index given by a recursive exponential filter, remote sensing-based evaporative 89 
efficiency, and NDVI time series. (2) The robustness of the approach is assessed through additional tests involving 90 
stations not included in the ISMN database in Tunisia, Italy, and South-India. (3) Climatic analysis is conducted to infer 91 
the most indicative process-based features for each climate pattern. 92 
2 Materials and Methods 93 
The proposed methodology entails the construction of several ANN models with both direct (SSM, surface temperature, 94 
and NDVI) and intermediate sets of features (soil water index and evaporative efficiency) computed based on 95 
simplified analytical models. An overview of the processing configuration is shown in Figure 1. 96 
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 97 

 Figure 1. Overview of the processing configuration. 98 
This approach results in a combination of ANN models (Table 1).  Each model has one physical-process based or a 99 
geophysical feature in addition to the three SSM features. All the ANN model hyperparameters remain the same except 100 
the number of input features, as described at the end of this section. 101 

Table 1. ANN model configurations with the respective input variables (*: rolling averages of SSM over 10 days; **: rolling averages 102 
of SSM over 30 days; ***: rolling averages of SSM over 90 days). 103 

Model 

Features 

SSM_10d_RAV* SSM_30d_RAV** SSM_90d_RAV*** SST NDVI SWI EVAP 

ANN_SSM X X X     

ANN_SSM_TEMP X X X X    

ANN_SSM_NDVI X X X  X   

ANN_SSM_EXP-

FILT_T5 

X X X   X  

ANN_SSM_EVAP-

EFF_B60 

X X X    X 
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ANN_SSM_NDVI_E

VAP-EFF-B60_EXP-

FILT_T5 

X X X  X X X 

 104 

The model with the simplest starting point is ANN_SSM based on (Souissi et al., 2020). The most complex model 105 
includes the full set of inputs. Intercomparison of the model performance provides information on the added value of 106 
each input. All input features are scaled, and training is performed on each of these features based on scaled in situ 107 
RZSM data retrieved from the ISMN. The RZSM model predictions are validated against an independent set of 108 
observations. 109 

2.1 Datasets 110 

2.1.1 ISMN soil moisture data 111 

The first training and test operations were conducted on eight ISMN networks previously considered in (Souissi et al., 112 
2020). Figure 2 shows the distribution of the considered soil moisture networks with different soil textures and climatic 113 
parameters. The selected stations exhibit a root zone depth varying between 30 and 60 cm (Table 2). 114 

 115 

Figure 2. International Soil Moisture Network (ISMN) network distribution (adapted from the ISMN web data portal 116 
(https://www.geo.tuwien.ac.at/insitu/data_viewer/); scale: 1 cm=1000 km). 117 

Table 2. Overview of the considered ISMN and external networks. 118 

Network Country 
Number of Selected 

Stations 

Selected RZSM Depth 

(cm) 

SM 

Sensors 

AMMA-CATCH Benin, Niger 5 (3 in Benin and 2 in Niger) 40 CS616 

BIEBRZA-S-1 Poland 3 50 GS-3 

CTP-SMTMN China 54 40 EC-TM/5TM 
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HOBE Denmark 29 55 Decagon-5TE 

FR-Aqui France 5 30, 34, 50 ThetaProbe ML2X 

OZNET Australia 19 30 Hydra Probe-CS616 

SCAN USA 209 50 Hydraprobe-Sdi-12/Ana 

SMOSMANIA France 22 30 ThetaProbe ML2X 

 119 

2.1.2 External soil moisture data 120 

The external networks only considered to assess the transferability and robustness of the approach were employed for 121 
validation. The trained models are run for predictions only over these sites. They have been selected to cover semi-arid, 122 
moderate and tropical semi-arid climates. 123 

 Tunisian site: The Merguellil site is located in central Tunisia (9°54 E; 35°35 N). This site is characterized by a 124 
semiarid climate with highly variable rainfall patterns, very dry summer seasons, and wet winters. The 125 
Merguellil site represents an agricultural region where croplands, namely, olive groves and cereal fields, 126 
prevail (Zribi et al., 2021). At this study site, a network of continuous thetaprobe stations installed at bare soil 127 
locations provided moisture measurements at depths of 5 and 40 cm. All measurements were calibrated against 128 
gravimetric estimations. Data were obtained from the Système d’Information Environmental (SIE) web 129 
application catalog. 130 

 Italian site: The Landriano site is located in northern Italy. This station is located in a maize field, which was 131 
monitored in 2006 and from 2010 to 2011 (Masseroni et al., 2014). The soil texture is sandy loam, and the field 132 
is irrigated by the border method with an average irrigation amount of approximately 100 to 200 mm per 133 
application with one to two applications per season due to the presence of a shallow groundwater table. Soil 134 
moisture measurements were performed with time domain reflectometer (TDR) soil moisture sensors. Five 135 
TDR soil moisture sensors were installed along a profile at depths of 5, 20, 35, 50, and 70 cm. 136 

 Indian site: The Berambadi watershed is located in Gundalpet taluk, Chamarajanagara district, in the southern 137 
part of Karnataka state in India and covers an area of approximately 84 km². The aridity index (P/PET) is 0.7, 138 
with an average rainfall of 800 mm/year and a PET value of 1100 mm/year. The climate is classified as Aw, 139 
and the major soil types in the region vary between sandy loam, sandy clay loam and sandy clay. Hydrological 140 
variables have been intensively monitored since 2009 in the Berambadi watershed by the Environmental 141 
Research Observatory ORE BVET and AMBHAS Observatory. The soil moisture levels at the surface (5 cm) 142 
and root zone (50 cm) are monitored with a HydraProbe sensor at different agricultural sites across the 143 
watershed, and in the current study, 4 stations were chosen. The 3 major cropping seasons include kharif (June 144 
to September), during which the first crop is grown, which is usually rainfed during the rabi season (October to 145 
January), and summer (February to May), during which the second and third crops are grown, which are usually 146 
irrigated. The major crops grown in the region include turmeric, maize, sunflower, marigold and vegetables. 147 

2.1.3 Surface soil temperature 148 
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In addition to in situ soil moisture, the ISMN optionally includes meteorological and soil variables that are available 149 
over specific time periods. Values of the situ surface soil temperature among these variables can be employed as a 150 
useful indicator of the soil moisture data quality. The soil temperature was provided in Celsius, and the plausible values 151 
range from -60 to 60 °C. Regarding soil moisture data, surface soil temperature data were also provided with quality 152 
flags (Dorigo et al., 2011). However, the drawback is that this variable is not available in all networks, which is the 153 
case with the AMMA-CATCH network. 154 

2.1.4 Normalized difference vegetation index 155 

We considered the remote sensing-based normalized difference vegetation index (NDVI) to quantify vegetation 156 
dynamics. We extracted this index from the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 157 
Indices product (MOD13Q1 version 6). MODIS Vegetation Indices (MOD13Q1) version 6 data are generated at 16-158 
day intervals and a 250-m spatial resolution as a Level 3 product. This product provides two primary vegetation layers. 159 
The first vegetation layer is the NDVI, which is referred to as the continuity index of the existing National Oceanic and 160 
Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR)-derived NDVI. The 161 
algorithm chooses the best available pixel value from all the acquisitions over the 16-day period. The criteria 162 
considered are low cloud coverage, low view angle, and highest NDVI value (Didan, 2015). To obtain daily NDVI 163 
values, we conducted linear interpolation of the 16-day product. 164 

2.1.5 Potential evapotranspiration 165 

Similarly, we assessed the impact of considering a remote sensing-based evaporative efficiency on RZSM prediction. 166 
The computation details of this variable will be detailed later (cf. Section 3). We employed the remote sensing-based 167 
potential evapotranspiration (PET) to compute the evaporative efficiency. We extracted the PET from the MOD16A2 168 
Evapotranspiration/Latent Heat Flux version 6 product, which is an 8-day composite dataset produced at a 500-m pixel 169 
resolution. The algorithm used for MOD16 data product collection is based on the logic of the Penman–Monteith 170 
equation, which employs inputs of daily meteorological reanalysis data along with MODIS remote sensing data 171 
products such as vegetation property dynamics, albedo, and land cover. The MOD16A2 product provides layers for the 172 
composite evapotranspiration (ET), latent heat flux (LE), potential ET (PET) and potential LE (PLE). The pixel values 173 
for the PET layer include the sum of all eight days within the composite period (Running et al., 2017). To obtain daily 174 
PET values, we performed linear interpolation of the 8-day product. 175 

2.2 Methods 176 

2.2.1 Recursive exponential filter 177 

Two ANN models presented in Table 1 contained extra knowledge on infiltration process information based on the 178 
outputs of the recursive exponential filter (Stroud, 1999) as a feature. The recursive exponential filter was first 179 
introduced by (Wagner et al., 1999) to estimate the soil water index (SWI) from surface soil moisture. The equation for 180 
the recursive formulation can be written as follows: 181 

𝑆𝑊𝐼𝑚(𝑛) = 𝑆𝑊𝐼𝑚(𝑛−1) + 𝐾𝑛(𝑚𝑠(𝑡𝑛) − 𝑆𝑊𝐼𝑚(𝑛−1)) (1) 182 

where: 183 
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- SWIm(n) is the soil water index at time tn, 184 
- ms(tn) is the estimated surface soil moisture at time tn, 185 
- Kn is the gain at time tn, which occurs in [0,1] and is given by: 186 

𝐾𝑛 =
𝐾𝑛−1

𝐾𝑛−1+𝑒
−

(𝑡𝑛−𝑡𝑛−1)
𝑇

 (2) and 187 

- T is a time constant and is the only required tuning parameter to compute the recursive 188 
exponential filter. 189 

Regarding T values, we considered an empirical list ([1,3,5,7,10,13,15,20,40,60]), which was partly inspired by (Paulik 190 
et al., 2014) (T ∈ [1,5,10,15,20,40,60,100]). Given the list of T values, recursive exponential filter outputs were 191 
computed for all of the stations (346 stations) given each T value. Based on the correlation values between the in situ 192 
RZSM values and the recursive exponential filter-based RZSM pre-estimates, we established the optimal time variable 193 
T, hereafter referred to as Tbest, for each station. 194 

A large proportion of the stations attained an optimal time constant (Tbest) value equal to 60 days which suggests an 195 
abnormally long infiltration time. These stations belong to the SCAN network and exhibit an RZSM acquisition depth 196 
of 50 cm, in contrast other networks such as SMOSMANIA, for instance, where RZSM is retrieved at 30 cm. The high 197 
values correspond to correlation with seasonal dynamics rather than infiltration processes. This depth could explain the 198 
anomalously long infiltration time. This has been demonstrated in (Paulik et al., 2014), who demonstrated that the 199 
average T value with the highest correlation (Tbest) increased with increasing depth of the in situ observations. 200 

For comparison purposes, (Paulik et al., 2014) found that 23.98% of the stations achieved Tbest=5 days, while 21.58% of 201 
the stations achieved Tbest ≥ 60 days (60 or 100 days). 202 

(Albergel et al., 2008) considered an average Tbest value of 6 days for the SMOSMANIA network. This value 203 
represented the average Tbest value for all stations belonging to the SMOSMANIA network. In our case, the average 204 
Tbest value for all stations of the SMOSMANIA network reached 9 days. In this study, an average Tbest value could be 205 
established for each station or each network. However, this is not relevant to our work because we aimed to evaluate 206 
maps of remote sensing data, and thus, we did not compute Tbest at each location. We fixed the value of T to 5 days as a 207 
median infiltration time. 208 

2.2.2 Evaporative efficiency 209 

An ANN model with evaporative efficiency input was also developed. This variable, which is defined as the ratio of the 210 
actual to potential soil evaporation, was first introduced in (Noilhan, J. and Planton, 1989; Jacquemin et al., 1990; Lee 211 
et al., 1992) and thereafter readapted in (Merlin et al., 2011) to include the soil thickness and is expressed as follows: 212 
 213 

𝛽3 = [
1

2
−

1

2
cos(𝜋𝜃𝐿/𝜃𝑚𝑎𝑥)]𝑃          𝑓𝑜𝑟 𝜃𝐿 ≤ 𝜃𝑚𝑎𝑥 (3) 214 

𝛽3 = 1 𝑓𝑜𝑟 𝜃𝐿 > 𝜃𝑚𝑎𝑥 215 

where: - 𝜃𝐿 is the water content in the soil layer of thickness L. 216 

- P is a parameter computed as follows: 217 

𝑃 = (
1

2
+ 𝐴3

𝐿−𝐿1

𝐿1
)

𝐿𝐸𝑝

𝐵3
 (4) 218 
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- 𝜃𝑚𝑎𝑥 is the soil moisture at field capacity, as reported in (Noilhan, J. and Planton, 1989; Jacquemin et al., 219 
1990; Lee et al., 1992), or the soil moisture at saturation, as considered in (Merlin et al., 2011). In our case, 220 
this variable denotes the maximum soil moisture at each station. 221 

-𝐿𝐸𝑝 is the potential evaporation. In our case, we replaced this variable with the potential evapotranspiration 222 
(PET) extracted from the MODIS 500-m 8-day product (MOD16A2). P was then replaced by proxy P*. As the 223 
ANN model performed its own calibrations on the set of features, this adaptation of the P term did not impact 224 
the process. 225 
- L1 is the thinnest represented soil layer, and A3 (unitless) and B3 (W/m²) are the two best-fit parameters a 226 
priori depending on the soil texture and structure, respectively. As we were interested in the evaporative 227 
efficiency at the surface, L=L1=5 cm, P* is thus expressed as: 228 

𝑃∗ =  
𝑃𝐸𝑇

2𝐵3
 (5) 229 

2.2.3 Artificial neural network implementation 230 

The multilayer perceptron (MLP), which is a multilayer feed-forward ANN, is one of the most widely applied ANNs, 231 
mainly in the field of water resources (Abrahart and See, 2007) The multilayer perceptron contains one or more hidden 232 
layers between its input and output layers. Neurons are organized in layers such that the neurons of the same layer are 233 
not interconnected and that any connections are directed from lower to upper layers (Ramchoun et al., 2016). Each 234 
neuron returns an output based on the weighted sum of all inputs and according to a nonlinear function referred to as 235 
the transfer or activation function (Oyebode and Stretch, 2019). The input layer, consisting of SSM values and/or other 236 
process-based variables, is connected to the hidden layer(s), which comprises hidden neurons. The final ANN-derived 237 
estimates of the ANN are given by an activation function associated with the final layer denoted as the output layer, 238 
based on the sum of the weighted outputs of the hidden neurons. 239 

We started with the ANN model developed in (Souissi et al., 2020), whose architecture consists of one hidden layer of 240 
20 hidden neurons, a tangent sigmoid function as the activation function of the hidden layer, a quadratic cost function 241 
as the loss function and the stochastic gradient descent (SGD) technique as the optimization algorithm. This model was 242 
developed to estimate RZSM based on only in situ SSM information. SSM was not applied as a feature of hourly values 243 

but was employed in the form of three features, namely, SSM rolling averages over 10, 30 and 90 days. Two 244 

additional ANN models were developed to study, through each model, the impact of the application of the 245 

NDVI, which describes vegetation dynamics and the surface soil temperature as features. A model 246 

combining surface soil moisture, NDVI, evaporative efficiency and recursive exponential filter was further 247 

considered. These ANN models were trained on the 122 stations among the 346 stations of the ISMN based 248 

on (Souissi et al., 2020). Training of the above ANN models was conducted considering 70% of these 122 249 

stations. Thirty percent was reserved for validation, and testing was conducted at all stations. 250 

3 Results 251 

3.1 Intercomparison of the ANN models 252 
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The generated correlation histograms (Fig. 3) and performance metrics presented in Table 3 demonstrate that 253 
integration of the considered process-based features improved the prediction accuracy in certain cases compared to the 254 
reference. In terms of the NDVI, 55.56% of the stations attained better correlation values with ANN_SSM_NDVI than 255 
those obtained with ANN_SSM. Additionally, 44.44% of the stations achieved a correlation value higher than 0.7 with 256 
model ANN_SSM_NDVI, versus 38.41% of the total stations achieving a similar correlation value with model 257 
ANN_SSM. 258 

 259 

Figure 3. Correlation histograms of (a) ANN_SSM_NDVI, (b) ANN_SSM_TEMP, (c) ANN_SSM_ EXP-FILT_T5, (d) 260 
ANN_SSM_EVAP-EFF-B60, and (e) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5 compared to ANN_SSM. 261 

In regard to the ANN_SSM_TEMP model that integrates the soil surface temperature, 54.35% of the stations (except 262 
the stations of the AMMA-CATCH network, as no surface temperature data were available) exhibited higher 263 
correlation values than those obtained with the ANN_SSM model. Additionally, 40.24% of the stations achieved a 264 
correlation value higher than 0.7 with model ANN_SSM_TEMP versus 36.94% of the stations with model ANN_SSM. 265 

In addition, model ANN_SSM_EXP-FILT-T5 that integrates the simplified infiltration based features yielded slightly 266 
better correlations, and 62.62% of the total stations attained better correlations than those obtained with model 267 
ANN_SSM. A total of 45.37% of the stations achieved a correlation value higher than 0.7 with model 268 
ANN_SSM_EXP-FILT-T5, in contrast to 38.98% of the stations achieving a similar correlation value with model 269 
ANN_SSM. 270 

Regarding the evaporative efficiency, we considered different values of fitting parameter B3 (Eq. 4) such that B3 271 
remained within the [50,60] interval. This parameter can be fitted different variables, such as the wind speed or relative 272 
humidity. Comparisons based on the correlation values provided by the different models for each B3 value indicated 273 
that the performance was insensitive to the B3 value. Thus, we fixed the B3 value to 60 W m-². Comparison of models 274 
ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that 57.89% of the stations attained higher correlation values 275 
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with the latter model. A total of 41.12% of the stations exhibited a correlation value higher than 0.7 with model 276 
ANN_SSM_EVAP-B60 versus 38.48% of the stations with model ANN_SSM. 277 

Finally, we investigated the impact of the joint application of the NDVI, recursive exponential SWI (T= 5 days) and 278 
evaporative efficiency (B3=60 W m-²) in the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5 model. The surface 279 
soil temperature was not included, as its effect is included in the evaporation process. At 64.6% of the stations, the 280 
correlation value obtained with this model was higher than that obtained with the ANN_SSM model. In addition, 51.1% 281 
of the stations achieved a correlation value higher than 0.7 with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-282 
FILT_T5, in contrast to 39.42% of the stations with model ANN_SSM. 283 

Table 3. Proportion of the stations exhibiting performance enhancement using the ANN models with the process-based features 284 
model compared to model ANN_SSM. 285 

Model % of stations at which the correlation 

improves over the model ANN_SSM level 

% of stations at which RMSE improves over 

the model ANN_SSM level 

ANN_SSM_NDVI 55.56 48.25 

ANN_SSM_TEMP' 54.35 46.25 

ANN_SSM_EXP-FILT_T5 62.62 51.44 

ANN_SSM_EVAP-EFF-B60 57.89 48.68 

ANN_SSM_NDVI_EVAP-EFF-

B60_EXP-FILT_T5 

64.6 57.3 

 286 

3.2 Robustness of the approach 287 

To assess the robustness of our approach, which involves RZSM prediction using the various ANN models with 288 
different features, we predicted RZSM at 40 cm at sites not previously considered in previous parts of the study. The 289 
selected stations are located in: the Kairouan Plain, a semiarid region in central Tunisia, Landriano site located in the 290 
North of Italy, and the Berambadi watershed located in Gundalpet taluk, South-India. In the case of the Kairouan 291 
Tunisia, model ANN_SSM yielded moderate- to low-precision predictions, as highlighted by the performance metrics 292 
listed in Table 4. The time series indicated that the RZSM predictions followed the SSM seasonality, which was 293 
reflected by the false peaks generated in the RZSM predictions whenever a sharp increase or decrease occurred in the 294 
SSM values. This observation was already demonstrated by (Souissi et al., 2020). Actually, the Kairouan Plain is 295 
characterized by a semiarid environment where rainfall events infrequently occur and the level of evaporation is high. 296 
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297 
Figure 4. In situ SSM, in situ RZSM, and predicted RZSM series at the stations in the Kairouan Plain (Tunisia) with model 298 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5. 299 

However, the consideration of additional features, namely, the NDVI, evaporative efficiency and recursive exponential 300 
filter SWI, in the ANN models resulted in a good agreement between the in situ and predicted RZSM values (Fig. 4). 301 
The correlation values were improved by 60.04%, 169.5%, 112.02%, 80.23% and 53.7% at stations Barrouta-160, 302 
Hmidate_163, Barrage_162, Bouhajla_164 and P12, respectively, with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-303 
FILT_T5 model over ANN_SSM model values. Similarly, RMSE values were reduced (Table 4). 304 

At the South-Indian stations, the ANN_SSM model yielded a good agreement even without the integration of process-305 
based features. The NDVI added little to nonsignificant improvement at station Bheemanbidu. The same observation 306 
was made at the Italian site. The application of multiple features performed the best under arid conditions, e.g., in 307 
Tunisia. In the tropical and temperate climate regions, this was not the case. The presence of clouds in the MODIS 308 
NDVI and potential evapotranspiration products could explain this observation at sites of South-India and North-Italy. 309 
In South-India, for instance, the maximum variability in soil moisture occurred during the monsoon season, which is 310 
characterized by a large amount of clouds.  311 

Table 4. Performance metrics of models ANN_SSM, ANN_SSM_NDVI and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5 312 
at the sites in central Tunisia, northern Italy and South-India. 313 

Model ANN_SSM ANN_SSM_NDVI ANN_SSM_NDVI_EVAP-

EFF_B60_EXP-FILT_T5 

TUNISIA 
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Station Correlation RMSE Correlation RMSE Correlation RMSE 

Barrouta_160 0.463 0.021 0.395 0.023 0.714 0.016 

Hmidate_163 0.318 0.019 0.4 0.018 0.834 0.011 

Barrage_162 0.416 0.035 0.457 0.035 0.864 0.019 

Bouhajla_164 0.435 0.016 0.385 0.017 0.733 0.01 

 P12 0.581 0.047 0.578 0.048 0.861 0.029 

INDIA 

Station Correlation RMSE Correlation RMSE Correlation RMSE 

Madyanahundi 
 

0.813 

 

0.04 0.78 0.042 0.744 0.044 

Bheemanbidu 0.76 0.046 0.784 0.044 0.763 0.046 

Beechanalli2 0.825 0.038 0.787 0.04 0.743 

 

0.044 

Beechanalli1 0.713 0.024 0.713 0.024 0.633 0.025 

Italy 

 

Station Correlation RMSE Correlation RMSE Correlation RMSE 

Landriano 0.861 0.038 0.827 0.041 0.841 0.038 

 314 

4 Discussion 315 

Climate analysis of the results yielded by the different models indicated that among all models, the climate class with 316 
the highest mean correlation change rate (Fig. 5) was class BWk, which regroups desert areas where the link between 317 
SSM and RZSM is weak due to high evaporative rates. Class Dfa, which includes areas experiencing harsh and cold 318 
winters, also yielded a high mean correlation change rate (>100%). Similarly, at stations of this climate type, the link 319 
between the surface and root zone is poor. In regard to class Cfa, in which 88.6% of the total stations belongs to SCAN 320 
network, the high mean correlation change rate could be explained by the surface-subsurface decoupling phenomena 321 
detected within this network, as previously reported in (Souissi et al., 2020). The model with the largest number of 322 
stations with improved predictions over the ANN_SSM model predictions was ANN_SSM_NDVI_EVAP-EFF-323 
B60_EXP-FILT_T5. Actually, the coupled use of process-based features in the ANN models exerted a greater impact 324 
on the prediction accuracy than that exerted by the one-at-a-time application of these features. In model 325 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5, the three process-based features jointly employed seemed to 326 
counterbalance the weight of these three SSM features. In this model, the process-based features were equally 327 
represented versus the SSM information depicted by these three features. The redundancy of the considered SSM 328 
information could explain the limited impact of the one-at-a-time addition of process-based features the joint addition 329 
of the three process-based features. 330 
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In addition, (Karthikeyan and Mishra, 2021) demonstrated that at root depths beyond 20 cm, the importance of SSM 331 
was notably lower than that at the 20-cm depth, signifying decorrelation between surface and deeper SM values, which 332 
is in accordance with the findings in (Souissi et al., 2020), and it was further revealed that vegetation exhibits a higher 333 
importance than that of meteorological predictors LST and precipitation. (Kornelsen and Coulibaly, 2014)  indicated 334 
that evapotranspiration is the most important meteorological input for the prediction of soil moisture in the root zone 335 
with the MLP, which reflects the importance of the water vapor flux in soil moisture state determination. 336 

 337 

 338 

Figure 5. Climate classification of the stations performing better with models (a) ANN_SSM_NDVI (b) ANN_SSM_EXP-T5 (c) 339 
ANN_SSM_EVAP-60 (d) ANN_SSM_TEMP and (e) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5 compared to model 340 
ANN_SSM. 341 

∗ 𝑐𝑜𝑟𝑟_𝑐ℎ𝑎𝑛𝑔𝑒_𝑟𝑎𝑡𝑒 =  𝑚𝑒𝑎𝑛(
𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀_𝑋−𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀

𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀
∗ 100) (6)   342 

where X denotes a process-based variable (X ∈ [‘NDVI’, ‘EXP-FILT-T5’, ‘EVAP-B60’, ‘TEMP’] 343 

The map illustrated in Fig. 6, shows the best-performing ANN models based on the mean correlation change rate (Eq. 344 
6). We assumed that the results in a given area of a specific climate class could be extended to other areas of the same 345 
climate class even if we did not consider the data for these areas. The climate classes without at least one station were 346 
marked in black and labeled with ‘NO DATA’. 347 
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 348 

Figure 6. Best-performing ANN models per climate class based on the mean correlation change rate. 349 

In arid areas such as the eastern and western sides of the USA with high evaporation rates, ANN_SSM_EVAP-EFF-60 350 
was the best performing model. Similarly, in bare areas of Africa, the Middle East and Australia where the Bwh climate 351 
class prevailed (arid desert hot climate), the evaporative efficiency was the best informative variable. 352 

In the internal part of continental Europe and near the Mediterranean Basin, the NDVI was the most relevant indicator 353 
for RZSM estimation, where agricultural fields dominated. Similarly, the Great Plains region in the USA was deeply 354 
affected by the NDVI, as this region is a cultivated area. The same result could be obtained for regions belonging to 355 
climate class Bsh (arid steppe hot) and mainly covered by grassland and shrubland areas according to ESA CCI land 356 
cover maps. 357 

In Nordic areas characterized by the ET climate class, the soil temperature was the most important root zone soil 358 
moisture indicator mainly because of the freeze–thaw events encountered in these regions. In tropical savannah wet 359 
areas (class Aw), the ANN_SSM_TEMP model was the best-performing model. 360 

This classification definitely suffered limitations mainly provoked by the generalization of the climatic analysis results 361 
to areas not considered in this study. For instance, in regions of climate class Dfc (cold dry without a dry season, cold 362 
summer climate), we expect the temperature to serve as the most relevant indicator instead of the evaporative 363 
efficiency. 364 

5 Conclusion 365 

In this study, we developed several ANN models to estimate RZSM based either on solely in situ SSM information 366 
or on a group of process-based features, in addition to SSM, namely, the soil water index computed with a recursive 367 
exponential filter, evaporative efficiency, NDVI and surface soil temperature. Different regions across the globe with 368 
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distinct land cover and climate patterns were considered. The main conclusion of this study was that the consideration 369 
of more features in addition to SSM information could enhance the accuracy of RZSM predictions mainly in regions 370 
where the link between SSM and RZSM is weak. 371 

In arid areas with high evaporation rates, the most informative feature was the evaporative efficiency. In regions with 372 
agricultural fields, the NDVI was, for example, the most relevant indicator to predict RZSM. Overall, the best 373 
performing model included the surface soil moisture, NDVI, recursive exponential filter and evaporative efficiency as 374 
features. Approximately 61.68% of the tested stations experienced correlation enhancement due to the joint 375 
consideration of process-based features over RZSM model predictions based on only surface soil moisture information. 376 

The robustness of the approach was further assessed through additional tests considering external sites in central 377 
Tunisia, India and Italy. Similarly, the process-based features exerted a positive impact on the prediction accuracy when 378 
combined with surface soil moisture in the case of Tunisia. The mean correlation across the five Tunisian stations 379 
sharply increased from 0.44 when only SSM was considered to 0.8 when all process-based features were combined 380 
with SSM. In India and Italy, the correlations were already high with the reference model ANN_SSM, and the addition 381 
of process-based features, namely, NDVI, did not improve the performance potentially because of the cloudy conditions 382 
in India and noisy MODIS products. 383 

Future work will examine the ability of the developed model to estimate RZSM across larger areas based on remote 384 
sensing global soil moisture products. The use of remote sensing derived soil moisture products may yield lower 385 
correlations with the reference model ANN_SSM which potentially implies further improvement when process-based 386 
features are added. 387 
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APPENDIX 536 

Climate classes (Köppen classification): 537 

 Af: Tropical Rainforest 538 
 Am: Tropical Monsoon 539 
 As: Tropical Savanna Dry 540 
 Aw: Tropical Savanna Wet 541 
 BWk: Arid Desert Cold 542 
 BWh: Arid Desert Hot 543 
 BWn: Arid Desert with Frequent Fog 544 
 BSk: Arid Steppe Cold 545 
 BSh: Arid Steppe Hot 546 
 BSn: Arid Steppe with Frequent Fog 547 
 Csa: Temperate Dry Hot Summer 548 
 Csb: Temperate Dry Warm Summer 549 
 Csc: Temperate Dry Cold Summer 550 
 Cwa: Temperate Dry Winter, Hot Summer 551 
 Cwb: Temperate Dry Winter, Warm Summer 552 
 Cwc: Temperate Dry Winter, Cold Summer 553 
 Cfa: Temperate without a Dry Season, Hot Summer 554 
 Cfb: Temperate without a Dry Season, Warm Summer 555 
 Cfc: Temperate without a Dry Season, Cold Summer 556 
 Dsa: Cold Dry Summer, Hot Summer 557 
 Dsb: Cold Dry Summer, Warm Summer 558 
 Dsc: Cold Dry Summer, Cold Summer 559 
 Dsd: Cold Dry Summer, Very Cold Winter 560 
 Dwa: Cold Dry Winter, Hot Summer 561 
 Dwb: Cold Dry Winter, Warm Summer 562 
 Dwc: Cold Dry Winter, Cold Summer 563 
 Dwd: Cold Dry Winter, Very Cold Winter 564 
 Dfa: Cold Dry without a Dry Season, Hot Summer 565 
 Dfb: Cold Dry without a Dry Season, Warm Summer 566 
 Dfc: Cold Dry without a Dry Season, Cold Summer 567 
 Dfd: Cold Dry without a Dry Season, Very Cold Winter 568 
 ET: Polar Tundra 569 
 EF: Polar Eternal Winter 570 
 W: Water 571 
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