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Abstract. Quantification of root-zone soil moisture (RZSM) is crucial for agricultural applications and soil sciences. 11 

RZSM impacts processes such as vegetation transpiration and water percolation. Surface soil moisture (SSM) can be 12 

assessed through active and passive microwave remote sensing methods, but no current sensor enables direct RZSM 13 

retrieval. Spatial maps of RZSM can be retrieved via proxy observations (vegetation stress, water storage change, and 14 

surface soil moisture) or via land surface model predictions. In this study, we investigated the combination of surface 15 

soil moisture information with process-related inferred features involving artificial neural networks (ANNs). We 16 

considered the infiltration process through the soil water index (SWI) computed with a recursive exponential filter and 17 

the evaporation process through the evaporation efficiency computed based on a MODIS remote sensing dataset and 18 

simplified analytical model, while vegetation growth was not modeled and only inferred through normalized difference 19 

vegetation index (NDVI) time series. Several ANN models with different sets of features were developed. Training was 20 

conducted considering in situ stations distributed several areas worldwide characterized by different soil and climate 21 

patterns of the International Soil Moisture Network (ISMN), and testing was applied to stations of the same data 22 

hosting facility. The results indicate that the integration of process-related features into ANN models increased the 23 

overall performance over the reference model level in which only SSM features were considered. In arid and semi-arid 24 

areas, for instance, performance enhancement was observed when the evaporation efficiency was integrated into the 25 

ANN models. To assess the robustness of the approach, the trained models were applied on observation sites in Tunisia, 26 

Italy and South-India that are not part of ISMN. The results reveal that joint use of surface soil moisture, evaporation 27 

efficiency, NDVI and recursive exponential filter represented the best alternative for more accurate predictions in the 28 

case of Tunisia, where the mean correlation of the predicted RZSM based on SSM only sharply increased from 0.443 to 29 

0.801 when process-related features were integrated into the ANN models in addition to SSM. However, process-30 

related features have no to little added value in temperate to tropical conditions. 31 

Keywords: root-zone soil moisture, artificial neural networks, evaporation efficiency, exponential filter. 32 

1 Introduction 33 
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Soil moisture is a major land parameter integrated into several agricultural, hydrological and meteorological 34 

applications (Koster et al., 2004; Anguela et al.,2008) This essential climate variable (ECV) consists of two 35 

components, namely, surface soil moisture (SSM) (0–5 cm) and root-zone soil moisture (RZSM). RZSM corresponds 36 

to the soil moisture in the region in which the main vegetation rooting network is developing. Its definition varies 37 

depending on vegetation type and pedoclimatic conditions. The importance of RZSM is mainly highlighted in 38 

agricultural applications through vegetation stress and water needs and in carbon and nitrogen cycles, as RZSM 39 

influences biogeochemical activities in soil (Martínez-Espinosa et al., 2021). RZSM is nonlinearly related to SSM 40 

through different hydrological processes, such as diffusion processes. RZSM may be extracted by evaporation at the 41 

surface, through root extraction or by capillary rises (Calvet et Noilhan, 2000). SSM quantification is achieved through 42 

three main sources: in situ measurements, model estimates and remote sensing-based products. Microwave remote 43 

sensing technologies involving sensors such as the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010), Soil 44 

Moisture Active Passive (SMAP) (Entekhabi et al.,2010) Advanced Microwave Scanning Radiometer (AMSR) (Owe 45 

et al., 2008) and Advanced Scatterometer (ASCAT) (Wagner et al., 2013) have been employed to retrieve SSM at 46 

coarse resolutions.  Current satellite sensors can only provide surface soil moisture information because of the shallow 47 

penetration depth of spaceborne data (on the order of a few centimeters) (Wagner et al., 2007). Fine-spatial resolution 48 

synthetic aperture radar (SAR) data can also be applied in synergy with optical data to retrieve soil moisture (Zribi et 49 

al., 2011; Hajj et al.,2014; Dorigo et al., 2011), but again for surface soil moisture. The International Soil Moisture 50 

Network (ISMN) is an exhaustive data hosting facility focused on soil moisture data and associated ancillary 51 

information. The ISMN provides in situ soil moisture measurements collected from operational soil moisture networks 52 

worldwide (Dorigo et al., 2011). Various models can be adopted to estimate RZSM, such as land surface models 53 

(Surfex (Masson et al., 2013), ISBA (Noilhan et al., 1996), CLM (Oleson et al., 2010), JULES (Best et al., 2011), etc.) 54 

or dedicated crop models such as Aquacrop (Raes et al., 2009) or SAFYE (Battude et al., 2017). While these models 55 

provide the advantage of physical process-based estimates, these estimates depend on the availability and accuracy of 56 

ancillary information. Model predictions are often enhanced by the implementation of data assimilation techniques, 57 

such as the land data assimilation system (LDAS) (Sabater et al., 2007; Entekhabi et al., 2020). 58 

Data-driven methods such as artificial neural networks (ANNs) have also been commonly applied in hydrology as 59 

detailed for instance by the ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2020) 60 

and in (Tanty el al., 2015). One of their advantages is that these models do not require an explicit model structure to 61 

accurately represent the involved hydrological processes but instead construct a relationship between the given inputs 62 

and the process of interest. Therefore, ANNs are regarded as dynamic input–output mapping models heavily relying on 63 

the provided training data relevant to target values (Pan et al., 2017). Moreover, ANNs only require a one-time 64 

calibration to provide soil moisture estimations once instrument data are loaded and thus generate relatively low 65 

computational costs (Kolassa et al., 2018). These advantages explain the approach to estimate RZSM based on surface 66 

information with ANNs in various methodologies (Pan et al., 2017; Grillakis et al., 2021; Souissi et al., 2020). In this 67 

paper, we do not address ANN applications as a model twin where the ANN model is trained on the target for 68 

mimicking purposes and subsequently generates predictions while requiring a short computation time or fewer input 69 

simplifications. Here, we are instead interested in the adoption of ANNs as independent models trained on in situ 70 

observations. Within this context, Pan et al. (2017) successfully applied an ANN as a model for shallow 20-cm root 71 

zone soil moisture prediction with a global correlation coefficient of 0.7. Grillakis et al. (2021) proposed employing an 72 

ANN as a means to calibrate and regionalize the time constant of a recursive exponential filter, which was thereafter 73 

applied at the regional scale. A combined implementation of Bayesian probabilistic approach and an ANN to infer 74 
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RZSM at different depths from optical UAV acquisitions via local training was also applied (Hassan-Esfahani et al., 75 

2017). Multitemporal averaged features to predict RZSM based on only SSM and investigated the transferability of a 76 

trained ANN across different climatic conditions globally were proposed in (Souissi et al., 2020). Temporal information 77 

can be considered in ANNs through recurrent neural networks (RNNs), long short-term memory (LSTM) architectures 78 

(Liu et al., 2021), 1D convolutional neural networks (CNNs), or multitemporal averaging. In (Souissi et al., 2020), 79 

median, maximum, and minimum correlation values of 0.77, 0.96, and 0.65 were respectively reported across training, 80 

validation and test datasets. The use of climatic variables such as precipitation and surface temperature and intrinsic 81 

surface properties such as soil texture and land cover has also been considered in ANNs (Liu et al., 2021). The choice 82 

of variables depends not only on the data availability but also on the objectives. Finally, ANN-based approaches pertain 83 

to the more general term of machine learning approaches, and within this framework, the random forest approach has 84 

been applied to root zone soil moisture prediction (Carranza et al., 2021). The aforementioned studies have investigated 85 

the application of multiple information sources to predict root zone soil moisture. The input features are commonly 86 

curated for quality, and correlation analysis is conducted to determine the useful inputs, while physical processes are 87 

not considered. In this paper, we introduce process-related features based on simplified analytical models representing 88 

the major processes contributing to root zone soil moisture dynamics. In this work, RZSM refers to a point observation 89 

of water content in a depth ranging between 30 and 55cm.We investigate the impact of the application of different 90 

process-related variables on the precision of RZSM predictions as well as the robustness of our approach. (1) We start 91 

from a previously developed ANN model (Souissi et al., 2020), and we extend the feature list to include NDVI time 92 

series, surface soil temperature and process-related variables, namely, the soil water index given by a recursive 93 

exponential filter and remote sensing-based evaporation efficiency. (2) The robustness of the approach is assessed 94 

through additional tests involving stations not included in the ISMN database in Tunisia, Italy, and South-India. (3) 95 

Climatic analysis is conducted to infer the most indicative process-related features for each climate pattern. 96 

2 Materials and Methods 97 

The proposed methodology entails the construction of several ANN models with both direct (SSM, surface temperature, 98 

and NDVI) and intermediate sets of features (soil water index and evaporation efficiency) computed based on 99 

simplified analytical models. An overview of the processing configuration is shown in Figure 1. Standard scaling is 100 

applied to each dataset separately so that the different inputs fall into the same range of values, then the ANN outputs 101 

are descaled to make the comparison with actual values of RZSM possible. 102 
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 103 

Figure 1. Overview of the processing configuration showing the components of the model: the tested models are variations of this 104 

ANN with a different combination of inputs (see Table 1). The scaling and descaling are applied to each dataset separately. 105 

This approach results in a combination of ANN models (Table 1).  Each model has one or more process-related  106 

features in addition to three SSM features which correspond to backward rolling averages of in-situ SSM computed 107 

over 10,30 and 90 days. All the ANN model hyperparameters remain the same except the number of input features. 108 

Table 1. ANN model configurations with the respective input variables ; *: rolling averages of SSM over 10 days; **: rolling 109 

averages of SSM over 30 days; ***: rolling averages of SSM over 90 days; ****: number of parameters of the ANN model. 110 

Model 

Features 

SSM_10d_RAV* SSM_30d_RAV** SSM_90d_RAV*** SST NDVI SWI EVAP Nb****   

ANN_SSM X X X     101  

ANN_SSM_TEMP X X X X    121  

ANN_SSM_NDVI X X X  X   121  

ANN_SSM_EXP-

FILT-T5 

X X X   X  121  

ANN_SSM_EVAP- X X X    X 121  
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EFF-B60 

ANN_SSM_NDVI_E

VAP-EFF-B60_EXP-

FILT-T5 

X X X  X X X 161  

 111 

The model with the simplest starting point is ANN_SSM based on (Souissi et al., 2020). The most complex model 112 

includes the full set of inputs. Intercomparison of the model performance provides information on the added value of 113 

each input. All input features are scaled, and training is performed on each of these features based on scaled in situ 114 

RZSM data retrieved from the ISMN. The RZSM model predictions are validated against an independent set of 115 

observations. 116 

2.1 Datasets 117 

2.1.1 ISMN soil moisture data 118 

The first training and test operations were conducted on eight ISMN networks previously considered in (Souissi et al., 119 

2020). Figure 2 shows the distribution of the considered soil moisture networks with different soil textures and climatic 120 

parameters (cf. appendix B). For each station, the RZSM observation point is located between 30 and 55cm (Table 2). 121 

For each soil moisture hourly acquisition, ISMN provides quality flags. Quality flags can be marked as ‘C’ (exceeding 122 

plausible geophysical range),’ D’ (questionable/dubious), ‘M’ (missing), or ‘G’ (good) (Dorigo et al.,2011). Category 123 

‘D’ has subset flags namely ‘D01’ for which in situ soil temperature < 0°C, ‘D02’ that flags points at which in situ air 124 

temperature < 0°C as well as ‘D03’ that also flags areas where GLDAS soil temperature < 0°C. In our study, only soil 125 

moisture data which quality flag is marked ‘G’ were retained. 126 

 127 

Figure 2. International Soil Moisture Network (ISMN) network distribution (adapted from the ISMN web data portal 128 

(https://www.geo.tuwien.ac.at/insitu/data_viewer/); scale: 1 cm=1000 km). 129 

Table 2. Overview of the considered ISMN and external networks. 130 
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Network Country 
Number of Selected 

Stations 

Selected RZSM Depth 

(cm) 

SM 

Sensors 

AMMA-CATCH Benin, Niger 5 (3 in Benin and 2 in Niger) 40 CS616 

BIEBRZA-S-1 Poland 3 50 GS-3 

CTP-SMTMN China 54 40 EC-TM/5TM 

HOBE Denmark 29 55 Decagon-5TE 

FR-Aqui France 5 30, 34, 50 ThetaProbe ML2X 

OZNET Australia 19 30 Hydra Probe-CS616 

SCAN USA 209 50 Hydraprobe-Sdi-12/Ana 

SMOSMANIA France 22 30 ThetaProbe ML2X 

 131 

2.1.2 External soil moisture data 132 

The external networks only considered to assess the transferability and robustness of the approach were employed for 133 

validation. The trained models are run for predictions only over these sites. They have been selected to cover semi-arid, 134 

moderate and tropical semi-arid climates. 135 

 Tunisian site: The Merguellil site is located in central Tunisia (9°54 E; 35°35 N). This site is characterized by a 136 

semiarid climate with highly variable rainfall patterns (average equal to 300mm/year), very dry summer 137 

seasons, and wet winters. The Merguellil site represents an agricultural region where croplands, namely, olive 138 

groves and cereal fields, prevail (Zribi et al., 2021). At this study site, a network of continuous thetaprobe 139 

stations installed at bare soil locations provided moisture measurements at depths of 5 and 40 cm. All 140 

measurements were calibrated against gravimetric estimations. Data were obtained from the Système 141 

d’Information Environmental (SIE) web application catalog. 142 

 Italian site: The Landriano site is located in northern Italy (Pavia province, Lombardia region). This station is 143 

located in a maize field, which was monitored in 2006 and from 2010 to 2011 (Masseroni et al., 2014). The 144 

average rainfall in Pavia province is of 650–700 mm, the climate is classified as ‘Cfa’ (cf. appendix A) and the 145 

field is irrigated by the border method with an average irrigation amount of approximately 100 to 200 mm per 146 

application with one to two applications per season due to the presence of a shallow groundwater table. Soil 147 

moisture measurements were performed with time domain reflectometer (TDR) soil moisture sensors. Five 148 

TDR soil moisture sensors were installed along a profile at depths of 5, 20, 35, 50, and 70 cm. 149 

Indian site: The Berambadi watershed is located in Gundalpet taluk, Chamarajanagara district, in the southern 150 

part of Karnataka state in India and covers an area of approximately 84 km². The average rainfall  is equal to 151 

800 mm/year and the climate is classified as Aw (cf. appendix A). Hydrological variables have been intensively 152 

monitored since 2009 in the Berambadi watershed by the Environmental Research Observatory ORE BVET 153 

and AMBHAS Observatory. The soil moisture levels at the surface (5 cm) and root zone (50 cm) are monitored 154 
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with a HydraProbe sensor at different agricultural sites across the watershed, and in the current study, 4 stations 155 

were chosen.  156 

2.1.3 Surface soil temperature 157 

In addition to in situ soil moisture, the ISMN optionally includes meteorological and soil variables that are available 158 

over specific time periods. Values of the situ surface soil temperature among these variables can be employed as a 159 

useful indicator of the soil moisture data quality. The soil temperature was provided in Celsius, and the plausible values 160 

range from -60 to 60 °C. Regarding soil moisture data, surface soil temperature data were also provided with quality 161 

flags (Dorigo et al., 2011). However, the drawback is that this variable is not available in all networks, which is the 162 

case with the AMMA-CATCH network. 163 

2.1.4 Normalized difference vegetation index 164 

We considered the remote sensing-based normalized difference vegetation index (NDVI) to infer vegetation dynamics. 165 

We extracted this index from the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 166 

product (MOD13Q1 version 6). MODIS Vegetation Indices (MOD13Q1) version 6 data are generated at 16-day 167 

intervals and a 250-m spatial resolution as a Level 3 product. This product provides two primary vegetation layers. The 168 

first vegetation layer is the NDVI, which is referred to as the continuity index of the existing National Oceanic and 169 

Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR)-derived NDVI. The 170 

algorithm chooses the best available pixel value from all the acquisitions over the 16-day period. The criteria 171 

considered are low cloud coverage, low view angle, and highest NDVI value (Huete et al., 1999). To obtain daily 172 

NDVI values, we conducted linear interpolation of the 16-day product. 173 

2.1.5 Potential evapotranspiration 174 

Similarly, we assessed the impact of considering a remote sensing-based evaporation efficiency, which is initially 175 

defined as the ratio of actual to potential soil evaporation, on RZSM prediction. The computation details of this variable 176 

will be detailed later (cf. Section 2.2.2). We employed the remote sensing-based potential evapotranspiration (PET) to 177 

compute the evaporation efficiency. We extracted the PET from the MOD16A2 Evapotranspiration/Latent Heat Flux 178 

version 6 product, which is an 8-day composite dataset produced at a 500-m pixel resolution. The algorithm used for 179 

MOD16 data product collection is based on the logic of the Penman–Monteith equation, which employs inputs of daily 180 

meteorological reanalysis data along with MODIS remote sensing data products such as vegetation property dynamics, 181 

albedo, and land cover. The MOD16A2 product provides layers for the composite evapotranspiration (ET), latent heat 182 

flux (LE), potential ET (PET) and potential LE (PLE). The pixel values for the PET layer include the sum of all eight 183 

days within the composite period (Running et al., 2017). To obtain daily PET values, we performed a linear 184 

interpolation over the 8-day product and then we divided by eight the interpolated value. 185 

2.2 Methods 186 

2.2.1 Recursive exponential filter 187 

Two ANN models presented in Table 1 contained extra knowledge on infiltration process information based on the 188 

outputs of the recursive exponential filter (Stroud, 1999) as a feature. The recursive exponential filter was first 189 
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introduced by  Wagner et al. (1999) to estimate the soil water index (SWI) from surface soil moisture. SWI is computed 190 

as follows:  191 

 192 

𝑆𝑊𝐼𝑡𝑛
= 𝑆𝑊𝐼𝑡𝑛−1

+ 𝐾𝑛(𝑚𝑠(𝑡𝑛) − 𝑆𝑊𝐼𝑡𝑛−1
) (1) 193 

where: 194 

-  SWItn is the soil water index at time tn, 195 

- ms(tn) is the  scaledsurface soil moisture at time tn (scaled between maximum and minimum 196 

values), 197 

- Kn is the gain at time tn, which occurs in [0,1] and is given by: 198 

𝐾𝑛 =
𝐾𝑛−1

𝐾𝑛−1+𝑒
−

(𝑡𝑛−𝑡𝑛−1)
𝑇

 (2) and 199 

- T is a time constant and is the only required tuning parameter to compute the recursive 200 

exponential filter. 201 

- For the initialisation of the filter, gain K1 =1 and SWI(t1)
* =ms(t1)   202 

Regarding T values, we considered an empirical list ([1,3,5,7,10,13,15,20,40,60]), which was partly inspired by (Paulik 203 

et al., 2014) (T ∈ [1,5,10,15,20,40,60,100]). Given the list of T values, recursive exponential filter outputs were 204 

computed for all of the stations (346 stations) given each T value. Based on the correlation values between the in situ 205 

RZSM values and the recursive exponential filter-based RZSM pre-estimates, we established the optimal time variable 206 

T, hereafter referred to as Tbest, for each station. 207 

2.2.2 Evaporative efficiency 208 

An ANN model with evaporation efficiency input was also developed. This variable, which is defined as the ratio of the 209 

actual to potential soil evaporation, was first introduced in (Noilhan, J. and Planton, 1989; Jacquemin et al., 1990; Lee 210 

et al., 1992) and thereafter readapted in (Merlin et al., 2010) to include the soil thickness. In our work, we use a 211 

modified evaporation efficiency formulation, based on the third model developed in (Merlin et al., 2010), which can be 212 

expressed as follows (cf. appendix C): 213 

 214 

𝛽 = [
1

2
−

1

2
cos(𝜋𝜃/𝜃𝑚𝑎𝑥)]𝑃∗          (3) 215 

where:    - 𝛽 is evaporation efficiency  216 

- 𝜃 is the water content in the soil layer of thickness L. 217 

- 𝜃𝑚𝑎𝑥 is the maximum soil moisture at each station. 218 

- P* is a parameter computed as follows: 219 

𝑃∗ =  
𝑃𝐸𝑇

2𝐵
 (4) 220 

P*, a proxy of parameter P (cf. appendix C), represents an equilibrium state controlled by retention forces in 221 

the soil, which increase with the thickness L of considered soil and by evaporative demands at the soil surface. 222 

-PET is the potential evapotranspiration (PET) extracted from the MODIS 500-m 8-day product (MOD16A2).  223 
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The soil evaporation efficiency computed by model 3, developed in (Merlin et al., 2010), decreases when PET 224 

increases. Retention force and evaporative demand make the term P increase (replaced by P*), as if an increase of 225 

potential evaporation LEp (here replaced by PET) at the soil surface would make the retention force in the soil greater. 226 

Merlin et al. (2010) tested this approach at two sites in southwestern France using in situ measurements of actual 227 

evaporation, potential evaporation, and soil moisture at five different depths collected in summer.  Model 3 was able to 228 

represent the soil evaporation process with a similar accuracy as the classical resistance-based approach for various soil 229 

thicknesses up to 100 cm. Merlin et al. (2010) affirm the parameterization of P as function of LEp (here PET) indicates 230 

that 𝛽 cannot be considered as a function of soil moisture alone since it also depends on potential evaporation. 231 

Moreover, the effect of potential evaporation on 𝛽 appears to be equivalent to that of soil thickness on 𝛽. This 232 

equivalence is physically interpreted as an increase of retention forces in the soil in reaction to an increase in potential 233 

evaporation. 234 

2.2.3 Artificial neural network implementation 235 

The multilayer perceptron (MLP), which is a multilayer feed-forward ANN, is one of the most widely applied ANNs, 236 

mainly in the field of water resources (Abrahart and See, 2007) The multilayer perceptron contains one or more hidden 237 

layers between its input and output layers. Neurons are organized in layers such that the neurons of the same layer are 238 

not interconnected and that any connections are directed from lower to upper layers (Ramchoun et al., 2016). Each 239 

neuron returns an output based on the weighted sum of all inputs and according to a nonlinear function referred to as 240 

the transfer or activation function (Oyebode and Stretch, 2019). The input layer, consisting of SSM values and/or other 241 

processrelated variables, is connected to the hidden layer(s), which comprises hidden neurons. The final ANN-derived 242 

estimates of the ANN are given by an activation function associated with the final layer denoted as the output layer, 243 

based on the sum of the weighted outputs of the hidden neurons. 244 

3 We started with the ANN model developed in (Souissi et al., 2020), whose architecture consists of one hidden layer 245 

of 20 hidden neurons, a tangent sigmoid function as the activation function of the hidden layer, a quadratic cost 246 

function as the loss function and the stochastic gradient descent (SGD) technique as the optimization algorithm. 247 

This model was developed to estimate RZSM based on only in situ SSM information. SSM was not applied as a 248 

feature of hourly values but was employed in the form of three features, namely, SSM rolling averages over 10, 30 249 

and 90 days. Additional ANN models were developed to study, through each model, the impact of the application 250 

of the NDVI, SWI, evaporation efficiency and the surface soil temperature as features. A model combining surface 251 

soil moisture, NDVI, evaporation efficiency and recursive exponential filter was further considered. These ANN 252 

models were trained and validated on the 122 ISMN stations  considered of good quality after a data filtering step 253 

as detailed in (Souissi et al., 2020).Training of the above ANN models was conducted considering 70% of these 254 

122 stations. Thirty percent was reserved for validation, and testing was conducted at the rest of stations. So in 255 

summary, 122 stations were considered for the training/validation of the ANN models and 224 stations, if all input 256 

data are available, were used for testing. In a second step, tests were conducted on data external to the ISMN 257 

database namely on sites of Tunisia, Italy and India. The trained models over ISMN are used only in prediction 258 

mode over these sites. The data for SSM in addition to the other features are used as inputs and RZSM is predicted 259 

in outputs.Results 260 

3.1 Exponential filter characteristic time length 261 
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A large proportion of the stations attained an optimal time constant (Tbest) value equal to 60 days which suggests an 262 

abnormally long infiltration time. These stations belong to the SCAN network and exhibit an RZSM acquisition depth 263 

of 50 cm, in contrast other networks such as SMOSMANIA, for instance, where RZSM is retrieved at 30 cm. The high 264 

values correspond to correlation with seasonal dynamics rather than infiltration processes. This depth could explain the 265 

anomalously long infiltration time. This is consistent with (Paulik et al., 2014) in which the average T value with the 266 

highest correlation (Tbest) increased with increasing depth of the in situ observations. 267 

For comparison purposes, Paulik et al. (2014) found that 23.98% of the stations achieved Tbest=5 days, while 21.58% of 268 

the stations achieved Tbest ≥ 60 days (60 or 100 days). 269 

Albergel et al. (2008) considered an average Tbest value of 6 days for the SMOSMANIA network. This value 270 

represented the average Tbest value for all stations belonging to the SMOSMANIA network. In our case, the average 271 

Tbest value for all stations of the SMOSMANIA network reached 9 days. In this study, an average Tbest value could be 272 

established for each station or each network. However, this is not relevant to our work because we aim to evaluate maps 273 

of remote sensing data in next steps, and thus, we did not compute Tbest at each location. We fixed the value of T to 5 274 

days as a median infiltration time. 275 

3.2 Intercomparison of the ANN models 276 

The distribution histograms for training, validation and test stations (Fig. 3) show that the integration of the considered 277 

process-related features improved the prediction accuracy in certain cases compared to the reference. Time series of 278 

good and less good quality of fit were provided in appendix E for training, validation and test stations using reference 279 

model ANN_SSM and the most complex ANN model. 280 

 281 
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 282 

 283 

Figure 3. Correlation histograms of all tested ANN models compared to ANN_SSM (a) on training stations (b) on validation stations 284 

(c) on test stations (cf. appendix D for RMSE histograms) 285 

In terms of the NDVI, 65.82%, 45.71% and 55.22% stations attained better correlation values with ANN_SSM_NDVI 286 

than those obtained with ANN_SSM for the training, validation and test stations, respectively. RMSE decreased for 287 
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44.3%, 40.0% and 40.3% of the stations with ANN_SSM_NDVI compared to model ANN_SSM for training, 288 

validation and test stations, respectively (Table 3). 289 

In regard to the ANN_SSM_TEMP model that integrates the soil surface temperature, 49.4%, 55.56% and 59.35% of 290 

the training, validation and test stations exhibited higher correlation values than those obtained with the ANN_SSM 291 

model, respectively. RMSE decreased with ANN_SSM_TEMP compared to model ANN_SSM for 25.3%, 38.89% and 292 

42.99% of the training, validation and test stations, respectively.  293 

In addition, model ANN_SSM_EXP-FILT-T5 that integrates the simplified infiltration based features yielded slightly 294 

better correlations, and 64.56%, 60.61% and 63.68% 62.62% of the  training, validation and test stations attained better 295 

correlations than those obtained with model ANN_SSM, respectively. Besides, RMSE decreased for 36.71 %, 42.42 % 296 

and 50.25% of the training, validation and test stations with ANN_SSM_ EXP-FILT-T5 compared to model 297 

ANN_SSM, respectively. 298 

Regarding the evaporation efficiency, we considered different values of fitting parameter B (Eq. 4) such that B 299 

remained within the [50,60] interval. This parameter can be fitted using different variables, such as the wind speed or 300 

relative humidity. Comparisons based on the correlation values provided by the different models for each B value 301 

indicated that the performance was insensitive to the B value. Thus, we fixed the B value to 60 W m-². Comparison of 302 

models ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that 54.55%, 52.94% and 52.33% of the training, 303 

validation and test stations attained higher correlation values with the latter model, respectively. RMSE was reduced for 304 

28.57%, 41.18% and 48.19% of the training, validation and test stations with ANN_SSM_ EVAP-EFF-B60 compared 305 

to model ANN_SSM, respectively. 306 

Finally, we investigated the impact of the joint application of the NDVI, recursive exponential filter (T= 5 days) 307 

and  evaporation efficiency (B=60 W m-²) in the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model. The 308 

surface soil temperature was not included, as its effect is included in the evaporation process. At 84.06%, 61.29% and 309 

62.07% of the training, validation and test stations, the correlation value obtained with this model was higher than that 310 

obtained with the ANN_SSM model, respectively. In addition, RMSE was minimized for 62.32%, 54.84% and 54.02% 311 

of the training, validation and test stations with ANN_SSM_ NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to 312 

model ANN_SSM, respectively. 313 

Considering model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, only one training station had a decrease in 314 

correlation by more than 0.1 namely station ‘Lind#1’ (network ‘SCAN’) compared to reference model ANN_SSM. All 315 

inputs were not available at the same dates which implied a significant reduction in data points (cf. appendix F). The 316 

decrease in correlation and increase in RMSE didn’t exceed 0.1 and 0.01 m3/m3, respectively, for the rest of stations of 317 

lower performance metrics with the most complex ANN. 318 

Similarly for validation stations, only one station had a decrease in correlation above 0.1, namely station ‘PineNut’ 319 

(network ‘SCAN’), with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. This decrease can be also 320 

explained because of data shortage (cf. appendix F). The decrease in correlation and increase in RMSE didn’t exceed 321 

0.1 and 0.01 m3/m3, respectively, for the rest of stations of lower performance metrics with the most complex ANN. 322 

Regarding test stations , correlation decrease by more than 0.1 and RMSE increase by more than 0.01 m3/m3with model 323 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to model ANN_SSM was detected for only 2 stations.  324 
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Both stations, namely station ‘S-Coleambally' and ‘Widgiewa’ which belong to network ‘OZNET’, significantly lose in  325 

data volume when process-related variables are integrated in ANN and more precisely because of NDVI data 326 

availability (cf. appendix F). For the rest of test stations, correlation decreased and RMSE increased simultaneously by 327 

less than 0.1 and 0.01 m3/m3, respectively, whith model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. 328 

Table 3. Proportion of the stations which performance enhances using the ANN models enriched with process-related features 329 

compared to model ANN_SSM (*: % of stations at which the correlation improves over the model ANN_SSM level; **: % of stations 330 

at which RMSE improves over the model ANN_SSM level) 331 

Model Training stations Validation stations Test stations 

% of stations 

(corr ↑)* 

% of stations 

(RMSE ↓)** 

% of stations 

(corr ↑)* 

% of stations 

(RMSE ↓)** 

% of stations 

(corr ↑)* 

% of stations 

(RMSE ↓)** 

ANN_SSM_NDVI 65.82 44.3 45.71 40.0 55.22 40.3 

ANN_SSM_TEMP 49.4 25.3 55.56 38.89 59.35 42.99 

ANN_SSM_EXP-FILT-T5 64.56 36.71 60.61 42.42 63.68 50.25 

ANN_SSM_EVAP-EFF-B60 54.55 28.57 52.94 41.18 52.33 48.19 

ANN_SSM_NDVI_EVAP-

EFF-B60_EXP-FILT-T5 

84.06 62.32 61.29 54.84 62.07 54.02 

 332 

Table 4. Proportion of the stations which correlation decreases using the ANN models enriched with process-related features 333 

compared to model ANN_SSM (∆corr=corrANN_SSM – corrANN_SSM_X , X denotes a or a combination of process-related variables) 334 

Model Training stations Validation stations Test stations 

% of stations 

corr ↓ and 

0.05<∆corr<0.1* 

% of stations 

corr ↓ and 

∆corr>0.1* 

% of stations 

corr ↓ and 

0.05<∆corr<0.1* 

% of stations 

corr ↓ and 

∆corr>0.1* 

% of stations 

corr ↓ and 

0.05<∆corr<0.1

* 

% of 

stations 

corr ↓ and 

∆corr>0.1* 

ANN_SSM_NDVI 3.8 0 2.86 0 9.95 5.97 

ANN_SSM_TEMP 0 1.2 0 2.78 4.67 3.27 

ANN_SSM_EXP-FILT-T5 6.33 1.27 3.03 9.09 6.97 3.48 

ANN_SSM_EVAP-EFF-B60 10.39 1.3 0 2.94 6.74 5.7 

ANN_SSM_NDVI_EVAP-

EFF-B60_EXP-FILT-T5 

4.35 1.45 6.45 3.23 9.2 6.9 

 335 
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Always in terms of the general performance of model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, about 336 

75% of the stations have an RMSE less than 0.05 m3/m3 and around half of the stations have an RMSE less than 0.04 337 

m3/m3. This accuracy is consistent, for instance, with the target value in SMAP (Entekhabi et al., 2010) and SMOS 338 

(Kerr et al., 2010) missions which is equal to 0.04 m3/m3 and also to the average sensor accuracy adopted by Dorigo et 339 

al. (2013) which is equal to 0.05 m3/m3. Overall, the most complex model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-340 

FILT-T5 can successfully characterize the soil moisture dynamics in the root zone since half of the stations have a 341 

correlation value greater than 0.7. Pan et al. (2017) developed different ANN models to estimate RZSM at depth of 342 

20cm and 50cm over the continental United States using surface information.  They found that half of the stations have 343 

RMSE less than 0.06 m3/m3 and more than 70% of stations have correlation above 0.7 when predicting RZSM at 20cm. 344 

However, the developed ANN was less effective in RZSM prediction at 50cm which is also in accordance with 345 

(Kornelsen and Coulibaly, 2014).  In our study, the densest soil moisture network is ‘SCAN’, located in the USA. Soil 346 

moisture was predicted at a depth of 50cm over this network. Around half of the stations have a correlation value of 347 

above 0.6 and RMSE less than 0.04 m3/m3 after the integration of process-related inputs. Pan et al., (2017) suggests that 348 

the use of only time-dependent variables may not be sufficient for the ANN models to accurately predict RZSM and 349 

suggests adding soil texture data.  350 

 351 

3.3 Robustness of the approach 352 

To further assess the robustness of our approach, which involves RZSM prediction using the different ANN models 353 

with different features, we predicted RZSM at 40 cm at sites not previously considered in previous parts of the study. 354 

The selected stations are located in: the Kairouan Plain, a semiarid region in central Tunisia, Landriano site located in 355 

the North of Italy, and the Berambadi watershed located in Gundalpet taluk, South-India. In the case of the Kairouan 356 

Tunisia, model ANN_SSM yielded moderate- to low-precision predictions, as highlighted by the performance metrics 357 

listed in Table 5. The time series (cf. appendix G) show that the RZSM predictions followed the SSM seasonality, 358 

which was reflected by the false peaks generated in the RZSM predictions whenever a sharp increase or decrease 359 

occurred in the SSM values. This observation was also found in (Souissi et al., 2020). Actually, the Kairouan Plain is 360 

characterized by a semiarid environment where rainfall events infrequently occur and the level of evaporation is high. 361 

The reference model ANN_SSM shows its limitations to accurately predict RZSM in areas with no alternate wet and 362 

dry cycles. 363 

However, the consideration of additional features, namely, the NDVI, evaporation efficiency and SWI in the ANN 364 

models resulted in a good agreement between the in situ and predicted RZSM values (Fig. 4). The correlation values 365 

were improved by 60.04%, 169.5%, 112.02%, 80.23% and 53.7% at stations Barrouta-160, Hmidate_163, 366 

Barrage_162, Bouhajla_164 and P12, respectively, with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model 367 

over ANN_SSM model values. Similarly, RMSE values were reduced (Table 5). As shown in figure 4, the most 368 

complex ANN model is able to capture the variations of RZSM. This finding highlights the added value of our hybrid 369 

approach based on an association of a machine learning method with process-related variables. Instead of injecting 370 

uncertain information in physical models, such as soil properties, we used a nonparametric method related to physical 371 

processes without using forcing data that may be subject to errors and potentially lead to inaccurate tracking of the 372 

long-term evolution of soil moisture. 373 
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374 
Figure 4. In situ SSM, in situ RZSM, and predicted RZSM series at the stations in the Kairouan Plain (Tunisia) with model 375 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 (cf. appendix G for larger figure format). 376 

A second comparison can be conducted between the quality of fit of these independent datasets and training datasets. 377 

Actually, the climate class of the Tunisian stations is ‘Bsh’ (cf. appendix A). At the training stage, no station falls into 378 

the climate class ‘Bsh’ (cf. appendix A). However, some training stations fall under a similar climate class which is 379 

‘Bsk’ (cf. appendix B). Table 5 presents correlation and RMSE values for these training stations and Tunisian sites with 380 

both models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. For all training stations, 381 

performance metrics are slightly enhanced with the most complex ANN model compared to reference model 382 

ANN_SSM, except for stations GrouseCreek, Harmsway and Lind#1 which performance decreases. Overall, the range 383 

of correlation values is similar for training and external validation stations with model ANN_SSM_NDVI_EVAP-EFF-384 

B60_EXP-FILT-T5 and RMSE is well reduced for Tunisian stations compared to training stations. Given the results on 385 

unseen datasets, namely on Tunisia, the performance of the most complex ANN model is good as it is able to generalize 386 

the patterns present in the training dataset. 387 

Table 5. Performance metrics of models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at training stations of 388 

climate “Bsk” and Tunisian stations of climate “Bsh”. 389 

Model ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 Training stations (climate class ‘Bsh’) 

Station Correlation RMSE Correlation RMSE 
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Banandra 

(OZNET) 

0.701 0.05 0.764 0.046 

DRY-LAKE 

(OZNET) 

0.674 0.031 0.692 0.03 

CPER (SCAN) 0.691 0.032 0.695 0.032 

EPHRAIM  

(SCAN) 

0.758 0.051 0.791 0.046 

GrouseGreek 

(SCAN) 

0.818 0.033 0.802 0.035 

HarmsWay 

(SCAN) 

0.705 0.034 0.622 0.038 

Lind#1  

(SCAN) 

0.605 0.055 0.483 0.022 

 External test stations (Tunisia) 

Station Correlation RMSE Correlation RMSE 

Barrouta_160 0.463 0.021 0.714 0.016 

Hmidate_163 0.318 0.019 0.834 0.011 

Barrage_162 0.416 0.035 0.864 0.019 

Bouhajla_164 0.435 0.016 0.733 0.01 

 P12 0.581 0.047 0.861 0.029 

 390 

At the South-Indian stations, the ANN_SSM model yielded a good agreement even without the integration of process-391 

related features (Table 6). The NDVI added little to nonsignificant improvement at station Bheemanbidu. The same 392 

observation was made at the Italian site. The application of multiple features performed the best under arid conditions, 393 

e.g., in Tunisia. In the tropical and temperate climate regions, this was not the case. The presence of clouds in the 394 

MODIS NDVI and potential evapotranspiration products could explain this observation at sites of South-India and 395 

North-Italy. In South-India, for instance, the maximum variability in soil moisture occurred during the monsoon season, 396 

which is characterized by a large amount of clouds. Moreover, the coarse resolution of MODIS NDVI product makes it 397 

sometimes not adapted to the considered site. (Chen et al., 2016) investigated the impact of sample impurity and 398 

landscape heterogeneity on crop classification using coarse spatial resolution MODIS imagery. They showed that the 399 

sample impurity such as mixed crop types in a specific sample, compositional landscape heterogeneity that is the 400 

richness and evenness of land cover types in a landscape, and configurational heterogeneity that is the complexity of 401 

spatial structure of land cover types in a specific landscape are sources of uncertainty affecting crop area mapping when 402 

using coarse spatial resolution imagery. High resolution NDVI from sensors like Sentinel-2 could have been used in 403 

this exercise to mitigate the spatial resolution issue, however, MODIS data were privileged in order to provide NDVI 404 

and PET from the same sensor. 405 
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Table 6. Performance metrics of models ANN_SSM, ANN_SSM_NDVI and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at 406 

the sites in South-India and Northern Italy. 407 

Model ANN_SSM ANN_SSM_NDVI ANN_SSM_NDVI_EVAP-

EFF_B60_EXP-FILT-T5 

INDIA 

Station Correlation RMSE Correlation RMSE Correlation RMSE 

Madyanahundi 
 

0.813 

 

0.04 0.78 0.042 0.744 0.044 

Bheemanbidu 0.76 0.046 0.784 0.044 0.763 0.046 

Beechanalli2 0.825 0.038 0.787 0.04 0.743 

 

0.044 

Beechanalli1 0.713 0.024 0.713 0.024 0.633 0.025 

Italy 

 

Station Correlation RMSE Correlation RMSE Correlation RMSE 

Landriano 0.861 0.038 0.827 0.041 0.841 0.038 

 408 

4 Discussion 409 

Climate analysis of the results yielded by the different models indicated that among all models, the climate class with 410 

the highest mean correlation change rate (Fig. 5) was class BWk (cf. appendix A), which regroups desert areas where 411 

the link between SSM and RZSM is weak due to high evaporative rates. Class Dfa (cf. appendix A), which includes 412 

areas experiencing harsh and cold winters, also yielded a high mean correlation change rate (>100%). Similarly, at 413 

stations of this climate type, the link between the surface and root zone is poor. In regard to class Cfa (cf. appendix A), 414 

in which more than 80% of the total stations belongs to SCAN network, the high mean correlation change rate could be 415 

explained by the surface-subsurface decoupling phenomena detected within this network, as previously reported in 416 

(Souissi et al., 2020). The model with the largest number of stations with improved predictions over the ANN_SSM 417 

model predictions was ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. Actually, the coupled use of process-418 

related features in the ANN models exerted a greater impact on the prediction accuracy than that exerted by the one-at-419 

a-time application of these features. In model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, the three process-420 

based features jointly employed seemed to counterbalance the weight of these three SSM features. In this model, the 421 

process-related features were equally represented versus the SSM information depicted by these three features. The 422 

redundancy of the considered SSM information could explain the limited impact of the one-at-a-time addition of 423 

process-related features the joint addition of the three process-related features. 424 

In addition, Karthikeyan and Mishra (2021) demonstrated that at root depths beyond 20 cm, the importance of SSM 425 

was notably lower than that at the 20-cm depth, signifying decorrelation between surface and deeper SM values, which 426 

is in accordance with the findings in (Souissi et al., 2020), and it was further revealed that vegetation exhibits a higher 427 
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importance than that of meteorological predictors LST and precipitation. Kornelsen and Coulibaly (2014)   indicated 428 

that evapotranspiration is the most important meteorological input for the prediction of soil moisture in the root zone 429 

with the MLP, which reflects the importance of the water vapor flux in soil moisture state determination. 430 

 431 

 432 

Figure 5. Climate classification of the stations performing better with models (a) ANN_SSM_NDVI (b) ANN_SSM_EXP-T5 (c) 433 

ANN_SSM_EVAP-60 (d) ANN_SSM_TEMP and (e) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to model 434 

ANN_SSM (Dark green corresponds to stations which correlation improved with complexified models, light green corresponds to 435 

total stations, rate in blue correspond to mean correlation change rate per climate class). 436 

∗ 𝑐𝑜𝑟𝑟_𝑐ℎ𝑎𝑛𝑔𝑒_𝑟𝑎𝑡𝑒 =  𝑚𝑒𝑎𝑛(
𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀_𝑋−𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀

𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀
∗ 100) (5)   437 

where X denotes a process-related variable (X ∈ [‘NDVI’, ‘EXP-FILT-T5’, ‘EVAP-EFF-B60’, ‘TEMP’] 438 

The world map illustrated in Fig. 6, shows the best-performing ANN models based on the mean correlation change rate 439 

(Eq. 5). We assumed that the results in a given area of a specific climate class could be extended to other areas of the 440 

same climate class even if we did not consider the data for these areas. The climate classes without at least one station 441 

were marked in black and labeled with ‘NO DATA’. 442 
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 443 

Figure 6.  World map of best-performing ANN models per climate class based on the mean correlation change rate; colors 444 

correspond to climate classes (cf. appendix A), hatches correspond to the most contributive input to the predictions namely: EVAP 445 

(evaporation efficiency), EXP (exponential filter SWI), NDVI , TEMP (surface soil temperature). 446 

In arid areas such as the eastern and western sides of the USA with high evaporation rates, ANN_SSM_EVAP-EFF-60 447 

was the best performing model. Similarly, in bare areas of Africa, the Middle East and Australia where the Bwh climate 448 

class prevailed (arid desert hot climate; cf. appendix A), the evaporation efficiency was the best informative variable. 449 

In the internal part of continental Europe and near the Mediterranean Basin, the NDVI was the most relevant indicator 450 

for RZSM estimation, where agricultural fields dominated. Similarly, the Great Plains region in the USA was deeply 451 

affected by the NDVI, as this region is a cultivated area. The same result could be obtained for regions belonging to 452 

climate class Bsh (arid steppe hot; cf. appendix A) and mainly covered by grassland and shrubland areas according to 453 

ESA CCI land cover maps. 454 

In Nordic areas characterized by the ET climate class, the soil temperature was the most important root zone soil 455 

moisture indicator mainly because of the freeze–thaw events encountered in these regions. In tropical savannah wet 456 

areas (class Aw; cf. appendix A), the ANN_SSM_TEMP model was the best-performing model. 457 

This classification definitely suffered limitations mainly provoked by the generalization of the climatic analysis results 458 

to areas not considered in this study. For instance, in regions of climate class Dfc (cold dry without a dry season, cold 459 

summer climate; cf. appendix A), we expect the temperature to serve as the most relevant indicator instead of the 460 

evaporation efficiency. 461 

5 Conclusion 462 

In this study, we developed several ANN models to estimate RZSM based either on solely in situ SSM information 463 

or on a group of process-related features, in addition to SSM, namely, the soil water index computed with a recursive 464 



20 
 

exponential filter, evaporation efficiency, NDVI and surface soil temperature. Different regions across the globe with 465 

distinct land cover and climate patterns were considered. The main conclusion of this study was that the consideration 466 

of more features in addition to SSM information could enhance the accuracy of RZSM predictions mainly in regions 467 

where the link between SSM and RZSM is weak. 468 

In arid areas with high evaporation rates, the most informative feature was the evaporation efficiency. In regions with 469 

agricultural fields, the NDVI was, for example, the most relevant indicator to predict RZSM. Overall, the best 470 

performing model included the surface soil moisture, NDVI, SWI and evaporation efficiency as features. The 471 

robustness of the approach was further assessed through additional tests considering external sites in central Tunisia, 472 

India and Italy. Similarly, the process-related features exerted a positive impact on the prediction accuracy when 473 

combined with surface soil moisture in the case of Tunisia. The mean correlation across the five Tunisian stations 474 

sharply increased from 0.44 when only SSM was considered to 0.8 when all process-related features were combined 475 

with SSM. In India and Italy, the correlations were already high with the reference model ANN_SSM. The change in 476 

correlation after the addition of process-related features, namely NDVI, is about -0.04 which is nonsignificant, and is 477 

potentially because of the cloudy conditions in India and noisy MODIS products. Also the crop heterogeneity and 478 

sample impurity makes MODIS NDVI products not adapted to all sites. 479 

As a research perspective, datasets can be separated in clusters corresponding to major climate classes and/or soil types. 480 

More analysis can be conducted in this direction to eventually make connections between the different inputs and 481 

climate/soil configurations. 482 

Future work will examine the ability of the developed model to estimate RZSM across larger areas based on remote 483 

sensing global soil moisture products. The use of remote sensing derived soil moisture products may yield lower 484 

correlations with the reference model ANN_SSM which potentially implies further improvement when process-related 485 

features are added. 486 
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APPENDIX A 663 

Climate classes (Köppen classification): 664 

 Af: Tropical Rainforest 665 

 Am: Tropical Monsoon 666 

 As: Tropical Savanna Dry 667 

 Aw: Tropical Savanna Wet 668 

 BWk: Arid Desert Cold 669 

 BWh: Arid Desert Hot 670 

 BWn: Arid Desert with Frequent Fog 671 

 BSk: Arid Steppe Cold 672 

 BSh: Arid Steppe Hot 673 

 BSn: Arid Steppe with Frequent Fog 674 

 Csa: Temperate Dry Hot Summer 675 

 Csb: Temperate Dry Warm Summer 676 

 Csc: Temperate Dry Cold Summer 677 

 Cwa: Temperate Dry Winter, Hot Summer 678 

 Cwb: Temperate Dry Winter, Warm Summer 679 

 Cwc: Temperate Dry Winter, Cold Summer 680 

 Cfa: Temperate without a Dry Season, Hot Summer 681 

 Cfb: Temperate without a Dry Season, Warm Summer 682 

 Cfc: Temperate without a Dry Season, Cold Summer 683 

 Dsa: Cold Dry Summer, Hot Summer 684 

 Dsb: Cold Dry Summer, Warm Summer 685 

 Dsc: Cold Dry Summer, Cold Summer 686 

 Dsd: Cold Dry Summer, Very Cold Winter 687 

 Dwa: Cold Dry Winter, Hot Summer 688 

 Dwb: Cold Dry Winter, Warm Summer 689 

 Dwc: Cold Dry Winter, Cold Summer 690 

 Dwd: Cold Dry Winter, Very Cold Winter 691 

 Dfa: Cold Dry without a Dry Season, Hot Summer 692 

 Dfb: Cold Dry without a Dry Season, Warm Summer 693 

 Dfc: Cold Dry without a Dry Season, Cold Summer 694 

 Dfd: Cold Dry without a Dry Season, Very Cold Winter 695 

 ET: Polar Tundra 696 

 EF: Polar Eternal Winter 697 

 W: Water 698 

 699 
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 700 

APPENDIX B 701 

(a) 702 

(b) 703 

(c) 704 

Figure B1. Climate and soil texture for (a) training stations (b) validation stations (c) test stations. 705 

 706 

 707 

 708 
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 709 

APPENDIX C 710 

Evaporation efficiency (section 2.2.2): 711 

 The standard equations to compute evaporation efficiency (𝛽3) in (Merlin et al., 2010) are as follows: 712 

 713 

𝛽3 = [
1

2
−

1

2
cos(𝜋𝜃𝐿/𝜃𝑚𝑎𝑥)]𝑃          𝑓𝑜𝑟 𝜃𝐿 ≤ 𝜃𝑚𝑎𝑥 (C3) 714 

𝛽3 = 1 𝑓𝑜𝑟 𝜃𝐿 > 𝜃𝑚𝑎𝑥 715 

where: - 𝜃𝐿 is the water content in the soil layer of thickness L. 716 

- P is a parameter computed as follows: 717 

𝑃 = (
1

2
+ 𝐴3

𝐿−𝐿1

𝐿1
)

𝐿𝐸𝑝

𝐵3
 (C4) 718 

- 𝜃𝑚𝑎𝑥 is the soil moisture at saturation.  719 

-𝐿𝐸𝑝 is the potential evaporation.  720 

- L1 is the thinnest represented soil layer, and A3 (unitless) and B3 (W/m²) are the two best-fit parameters a 721 

priori depending on the soil texture and structure, respectively.  722 
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APPENDIX D 738 
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 741 

Figure D1. RMSE histograms of all tested ANN models compared to ANN_SSM (a) on training stations (b) on validation stations 742 

(c) on test stations. 743 
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APPENDIX E 758 

Training stations: 759 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E1. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Beloufoungou Mid’ (AMMA-CATCH) with 
model ANN_SSM 

 
Figure E2. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Beloufoungou Mid’ (AMMA-CATCH) with 

model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 760 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E3. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘HarmsWay’ (SCAN) with model ANN_SSM 

 
Figure E4. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘HarmsWay’ (SCAN) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 761 

Validation stations 762 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E5. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Cabrieres D’Avignon’ (SMOSMANIA) with 
model ANN_SSM 

 
Figure E6. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Cabrieres D’Avignon’ (SMOSMANIA) with 
model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 



32 
 

 763 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E7. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Nephi’ (SCAN) with model ANN_SSM 

 
Figure E8. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Nephi’ (SCAN) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 764 

ISMN test stations 765 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E9. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Wankama’ (AMMA-CATCH) with model 
ANN_SSM 

 
Figure E10. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Wankama’ (AMMA-CATCH) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 766 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E11. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘2.04’ (HOBE) with model ANN_SSM 

 
Figure E12. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘2.04’ (HOBE) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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APPENDIX F 768 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure F1. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Lind#1’ with model ANN_SSM 

 
Figure F2. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Lind#1’ with model ANN_SSM_NDVI_EVAP-
EFF-B60_EXP-FILT-T5 

 769 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure F3. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘PineNut’ with model ANN_SSM 

 
Figure F4. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘PineNut’ with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

  770 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure F5. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘S-Coleambally’ with model ANN_SSM 

 
Figure F6. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘S-Coleambally’ with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure F7. In situ SSM, in situ RZSM, and predicted RZSM series 
at station ‘Widgiewa’ with model ANN_SSM 

 
Figure F8. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Widgiewa’ with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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APPENDIX G 790 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure G1. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Barrage-162’ (Tunisia) with model ANN_SSM 

 
Figure G2. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Barrage-162’ (Tunisia) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure G3. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Barrouta_160’ (Tunisia) with model 
ANN_SSM 

 
Figure G4. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Barrouta_160’ (Tunisia) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure G5. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Bouhajla_164’ (Tunisia) with model 
ANN_SSM 

 
Figure G6. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Bouhajla_164’ (Tunisia) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure G7. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘Hmidate_163’ (Tunisia) with model ANN_SSM 
 

 
Figure G8. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Hmidate_163’ (Tunisia) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure G9. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘P12’ (Tunisia) with model ANN_SSM 
 

 
Figure G10. In situ SSM, in situ RZSM, and predicted RZSM 
series at station ‘P12’ (Tunisia) with model 
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
 

 795 

 796 


	References

