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Abstract. Quantification of root-zone soil moisture (RZSM) is crucial for agricultural applications and soil sciences. 11 

RZSM impacts processes such as vegetation transpiration and water percolation. Surface soil moisture (SSM) can be 12 

assessed through active and passive microwave remote sensing methods, but no current sensor enables direct RZSM 13 

retrieval. Spatial maps of RZSM can be retrieved via proxy observations (vegetation stress, water storage change, and 14 

surface soil moisture) or via land surface model predictions. In this study, we investigated the combination of surface 15 

soil moisture information with process-based related inferred features involving artificial neural networks (ANNs). We 16 

considered the infiltration process through the soil water index (SWI) computed with a recursive exponential filter and 17 

the evaporation process through the evaporative evaporation efficiency computed based on a MODIS remote sensing 18 

dataset and simplified analytical model, while vegetation growth was not modeled and only inferred expressed through 19 

normalized difference vegetation index (NDVI) time series. Several ANN models with different sets of features were 20 

developed. Training was conducted considering in situ stations distributed several areas worldwide characterized by 21 

different soil and climate patterns of the International Soil Moisture Network (ISMN), and testing was applied to 22 

stations of the same data hosting facility. The results indicate that the integration of process-based related features into 23 

ANN models increased the overall performance over the reference model level in which only SSM features were 24 

considered. In arid and semi-arid areas, for instance, performance enhancement was observed when the evaporative 25 

evaporation efficiency was integrated into the ANN models. To assess the robustness of the approach, the trained 26 

models were applied on observation sites in Tunisia, Italy and South-India that are not part of ISMN. The results reveal 27 

that joint use of surface soil moisture, evaporative evaporation efficiency, NDVI and recursive exponential filter 28 

represented the best alternative for more accurate predictions in the case of Tunisia, where the mean correlation of the 29 

predicted RZSM based on SSM only sharply increased from 0.443 to 0.801 when process-based related features were 30 

integrated into the ANN models in addition to SSM. However, process-based related features have no to little added 31 

value in temperate to tropical conditions. 32 

Keywords: root-zone soil moisture, artificial neural networks, evaporative evaporation efficiency, exponential filter. 33 
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Soil moisture is a major land parameter integrated into several agricultural, hydrological and meteorological 35 

applications (Koster et al., 2004; Anguela et al.,2008) This essential climate variable (ECV) consists of two 36 

components, namely, surface soil moisture (SSM) (0–5 cm) and root-zone soil moisture (RZSM) (30 cm to 1 m). 37 

RZSM corresponds to the soil moisture in the region in which the main vegetation rooting network is developing. Its 38 

definition varies depending on vegetation type and pedoclimatic conditions. The importance of RZSM is mainly 39 

highlighted in agricultural applications through vegetation stress and water needs and in carbon and nitrogen cycles, as 40 

RZSM influences biogeochemical activities in soil (Martínez-Espinosa et al., 2021). RZSM is nonlinearly related to 41 

SSM through different hydrological processes, such as diffusion processes. RZSM may be extracted by evaporation at 42 

the surface, through root extraction or by capillary rises (Calvet et Noilhan, 2000). SSM quantification is achieved 43 

through three main sources: in situ measurements, model estimates and remote sensing-based products. Microwave 44 

remote sensing technologies involving sensors such as the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et 45 

al., 2010), Soil Moisture Active Passive (SMAP) mission (Entekhabi et al.,2010) Advanced Microwave Scanning 46 

Radiometer (AMSR) (Owe et al., 2008) and Advanced Scatterometer (ASCAT) (Wagner et al., 2013) haves been 47 

employed to retrieve SSM at coarse resolutions.  Current satellite sensors can only provide surface soil moisture 48 

information because of the shallow penetration depth of spaceborne data (on the order of a few centimeters) (Wagner et 49 

al., 2007). Fine-spatial resolution synthetic aperture radar (SAR) data can also be applied in synergy with optical data 50 

to retrieve soil moisture (Zribi et al., 2011; Hajj et al.,2014; Dorigo et al., 2011), but again for surface soil moisture. 51 

The International Soil Moisture Network (ISMN) is an exhaustive data hosting facility focused on soil moisture data 52 

and associated ancillary information. The ISMN provides in situ soil moisture measurements collected from operational 53 

soil moisture networks worldwide (Dorigo et al., 2011). Various models can be adopted to estimate RZSM, such as 54 

land surface models (Surfex (Masson et al., 2013), ISBA (Noilhan et al., 1996), CLM (Oleson et al., 2010), JULES 55 

(Best et al., 2011), etc.) or dedicated crop models such as Aquacrop (Raes et al., 2009) or SAFYE (Battude et al., 56 

2017). While these models provide the advantage of physical process-based estimates, these estimates depend on the 57 

availability and accuracy of ancillary information. Model predictions are often enhanced by the implementation of data 58 

assimilation techniques, such as the land data assimilation system (LDAS) (Sabater et al., 2007; Entekhabi et al., 2020). 59 

Data-driven methods such as artificial neural networks (ANNs) have also been commonly applied in hydrology as 60 

detailed for instance by the ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2020) 61 

and in (Tanty el al., 2015). One of their advantages is that these models do not require an explicit model structure to 62 

accurately represent the involved hydrological processes but instead construct a relationship between the given inputs 63 

and the process of interest. Therefore, ANNs are regarded as dynamic input–output mapping models heavily relying on 64 

the provided training data relevant to target values (Pan et al., 2017). Moreover, ANNs only require a one-time 65 

calibration to provide soil moisture estimations once instrument data are loaded and thus generate relatively low 66 

computational costs (Kolassa et al., 2018). These advantages explain the approach to estimate RZSM based on surface 67 

information with ANNs in various methodologies (Pan et al., 2017; Grillakis et al., 2021; Souissi et al., 2020). In this 68 

paper, we do not address ANN applications as a model twin where the ANN model is trained on the target for 69 

mimicking purposes and subsequently generates predictions while requiring a short computation time or fewer input 70 

simplifications. Here, we are instead interested in the adoption of ANNs as independent models trained on in situ 71 

observations. Within this context, Pan et al. (2017) (Pan et al., 2017) successfully applied an ANN as a model for 72 

shallow 20-cm root zone soil moisture prediction with a global correlation coefficient of 0.7. Grillakis et al. (2021) 73 

(Grillakis et al., 2021) proposed employing an ANN as a means to calibrate and regionalize the time constant of a 74 

recursive exponential filter, which was thereafter applied at the regional scale. A combined implementation of Bayesian 75 
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probabilistic approach and an ANN to infer RZSM at different depths from optical UAV acquisitions via local training 76 

was also applied (Hassan-Esfahani et al., 2017). Multitemporal averaged features to predict RZSM based on only SSM 77 

and investigated the transferability of a trained ANN across different climatic conditions globally were proposed in 78 

(Souissi et al., 2020). Temporal information can be considered in ANNs through recurrent neural networks (RNNs), 79 

long short-term memory (LSTM) architectures (Liu et al., 2021), 1D convolutional neural networks (CNNs), or 80 

multitemporal averaging. In (Souissi et al., 2020), median, maximum, and minimum correlation values of 0.77, 0.96, 81 

and 0.65 were respectively reported across training, validation and test datasets. The use of climatic variables such as 82 

precipitation and surface temperature and intrinsic surface properties such as soil texture and land cover has also been 83 

considered in ANNs (Liu et al., 2021). The choice of variables depends not only on the data availability but also on the 84 

objectives. Finally, ANN-based approaches pertain to the more general term of machine learning (ML) approaches, and 85 

within this framework, the random forest approach has been applied to root zone soil moisture prediction (Carranza et 86 

al., 2021). The aforementioned studies have investigated the application of multiple information sources to predict root 87 

zone soil moisture. The input features are commonly curated for quality, and correlation analysis is conducted to 88 

determine the useful inputs, while physical processes are not considered. In this paper, we introduce process-based 89 

related features based on simplified analytical models representing the major processes contributing to root zone soil 90 

moisture dynamics. In this work, RZSM refers to a point observation of water content in a depth ranging between 30 91 

and 55cm.We investigate the impact of the application of different process-based related variables on the precision of 92 

RZSM predictions as well as the robustness of our approach. (1) We start from a previously developed MLP ANN 93 

model (Souissi et al., 2020), and we extend the feature list to include NDVI time series, surface soil temperature and 94 

process-based related variables, namely, the soil water index given by a recursive exponential filter,  and remote 95 

sensing-based evaporative evaporation efficiency, and NDVI time series. (2) The robustness of the approach is assessed 96 

through additional tests involving stations not included in the ISMN database in Tunisia, Italy, and South-India. (3) 97 

Climatic analysis is conducted to infer the most indicative process-based related features for each climate pattern. 98 

2 Materials and Methods 99 

The proposed methodology entails the construction of several ANN models with both direct (SSM, surface temperature, 100 

and NDVI) and intermediate sets of features (soil water index and evaporative evaporation efficiency) computed based 101 

on simplified analytical models. An overview of the processing configuration is shown in Figure 1. Standard scaling is 102 

applied to each dataset separately so that the different inputs fall into the same range of values, then the ANN outputs 103 

are descaled to make the comparison with actual values of RZSM possible. 104 
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 105 

Figure 1. Overview of the processing configuration. showing the components of the model: the tested models are variations of this 106 

ANN with a different combination of inputs (see Table 1). The scaling and descaling are applied to each dataset separately. 107 

This approach results in a combination of ANN models (Table 1).  Each model has one or more process-related 108 

physical-process based or a geophysical  features in addition to the three SSM features which correspond to backward 109 

rolling averages of in-situ SSM computed over 10,30 and 90 days. All the ANN model hyperparameters remain the 110 

same except the number of input features., as described at the end of this section. 111 

Table 1. ANN model configurations with the respective input variables ; (*: rolling averages of SSM over 10 days; **: rolling 112 

averages of SSM over 30 days; ***: rolling averages of SSM over 90 days; ****: number of parameters of the ANN model.). 113 

Model 

Features 

SSM_10d_RAV* SSM_30d_RAV** SSM_90d_RAV*** SST NDVI SWI EVAP Nb****   

ANN_SSM X X X     101  

ANN_SSM_TEMP X X X X    121  

ANN_SSM_NDVI X X X  X   121  

ANN_SSM_EXP-

FILT_-T5 

X X X   X  121  
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ANN_SSM_EVAP-

EFF_-B60 

X X X    X 121  

ANN_SSM_NDVI_E

VAP-EFF-B60_EXP-

FILT_-T5 

X X X  X X X 161  

 114 

The model with the simplest starting point is ANN_SSM based on (Souissi et al., 2020). The most complex model 115 

includes the full set of inputs. Intercomparison of the model performance provides information on the added value of 116 

each input. All input features are scaled, and training is performed on each of these features based on scaled in situ 117 

RZSM data retrieved from the ISMN. The RZSM model predictions are validated against an independent set of 118 

observations. 119 

2.1 Datasets 120 

2.1.1 ISMN soil moisture data 121 

The first training and test operations were conducted on eight ISMN networks previously considered in (Souissi et al., 122 

2020). Figure 2 shows the distribution of the considered soil moisture networks with different soil textures and climatic 123 

parameters. The selected stations exhibit a root zone depth varying between 30 and 60 cm (Table 2). (cf. appendix B). 124 

For each station, the RZSM observation point is located between 30 and 55cm (Table 2). For each soil moisture hourly 125 

acquisition, ISMN provides quality flags. Quality flags can be marked as ‘C’ (exceeding plausible geophysical range),’ 126 

D’ (questionable/dubious), ‘M’ (missing), or ‘G’ (good) (Dorigo et al.,2011). Category ‘D’ has subset flags namely 127 

‘D01’ for which in situ soil temperature < 0°C, ‘D02’ that flags points at which in situ air temperature < 0°C as well as 128 

‘D03’ that also flags areas where GLDAS soil temperature < 0°C. In our study, only soil moisture data which quality 129 

flag is marked ‘G’ were retained. 130 

 131 
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Figure 2. International Soil Moisture Network (ISMN) network distribution (adapted from the ISMN web data portal 132 

(https://www.geo.tuwien.ac.at/insitu/data_viewer/); scale: 1 cm=1000 km). 133 

Table 2. Overview of the considered ISMN and external networks. 134 

Network Country 
Number of Selected 

Stations 

Selected RZSM Depth 

(cm) 

SM 

Sensors 

AMMA-CATCH Benin, Niger 5 (3 in Benin and 2 in Niger) 40 CS616 

BIEBRZA-S-1 Poland 3 50 GS-3 

CTP-SMTMN China 54 40 EC-TM/5TM 

HOBE Denmark 29 55 Decagon-5TE 

FR-Aqui France 5 30, 34, 50 ThetaProbe ML2X 

OZNET Australia 19 30 Hydra Probe-CS616 

SCAN USA 209 50 Hydraprobe-Sdi-12/Ana 

SMOSMANIA France 22 30 ThetaProbe ML2X 

 135 

2.1.2 External soil moisture data 136 

The external networks only considered to assess the transferability and robustness of the approach were employed for 137 

validation. The trained models are run for predictions only over these sites. They have been selected to cover semi-arid, 138 

moderate and tropical semi-arid climates. 139 

 Tunisian site: The Merguellil site is located in central Tunisia (9°54 E; 35°35 N). This site is characterized by a 140 

semiarid climate with highly variable rainfall patterns (average equal to 300mm/year), very dry summer 141 

seasons, and wet winters. The Merguellil site represents an agricultural region where croplands, namely, olive 142 

groves and cereal fields, prevail (Zribi et al., 2021). At this study site, a network of continuous thetaprobe 143 

stations installed at bare soil locations provided moisture measurements at depths of 5 and 40 cm. All 144 

measurements were calibrated against gravimetric estimations. Data were obtained from the Système 145 

d’Information Environmental (SIE) web application catalog. 146 

 Italian site: The Landriano site is located in northern Italy (Pavia province, Lombardia region). This station is 147 

located in a maize field, which was monitored in 2006 and from 2010 to 2011 (Masseroni et al., 2014). The soil 148 

texture is sandy loam, The average rainfall in Pavia province is of 650–700 mm, the climate is classified as 149 

‘Cfa’ (cf. appendix A) and the field is irrigated by the border method with an average irrigation amount of 150 

approximately 100 to 200 mm per application with one to two applications per season due to the presence of a 151 

shallow groundwater table. Soil moisture measurements were performed with time domain reflectometer 152 

(TDR) soil moisture sensors. Five TDR soil moisture sensors were installed along a profile at depths of 5, 20, 153 

35, 50, and 70 cm. 154 
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 Indian site: The Berambadi watershed is located in Gundalpet taluk, Chamarajanagara district, in the southern 155 

part of Karnataka state in India and covers an area of approximately 84 km². The aridity index (P/PET) is 0.7, 156 

with an average rainfall of is equal to  800 mm/year and a PET value of 1100 mm/year. The and the climate is 157 

classified as Aw (cf. appendix A)., and the major soil types in the region vary between sandy loam, sandy clay 158 

loam and sandy clay. Hydrological variables have been intensively monitored since 2009 in the Berambadi 159 

watershed by the Environmental Research Observatory ORE BVET and AMBHAS Observatory. The soil 160 

moisture levels at the surface (5 cm) and root zone (50 cm) are monitored with a HydraProbe sensor at different 161 

agricultural sites across the watershed, and in the current study, 4 stations were chosen. The 3 major cropping 162 

seasons include kharif (June to September), during which the first crop is grown, which is usually rainfed 163 

during the rabi season (October to January), and summer (February to May), during which the second and third 164 

crops are grown, which are usually irrigated. The major crops grown in the region include turmeric, maize, 165 

sunflower, marigold and vegetables. 166 

 167 

2.1.3 Surface soil temperature 168 

In addition to in situ soil moisture, the ISMN optionally includes meteorological and soil variables that are available 169 

over specific time periods. Values of the situ surface soil temperature among these variables can be employed as a 170 

useful indicator of the soil moisture data quality. The soil temperature was provided in Celsius, and the plausible values 171 

range from -60 to 60 °C. Regarding soil moisture data, surface soil temperature data were also provided with quality 172 

flags (Dorigo et al., 2011). However, the drawback is that this variable is not available in all networks, which is the 173 

case with the AMMA-CATCH network. 174 

2.1.4 Normalized difference vegetation index 175 

We considered the remote sensing-based normalized difference vegetation index (NDVI) to quantify infer vegetation 176 

dynamics. We extracted this index from the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 177 

Indices product (MOD13Q1 version 6). MODIS Vegetation Indices (MOD13Q1) version 6 data are generated at 16-178 

day intervals and a 250-m spatial resolution as a Level 3 product. This product provides two primary vegetation layers. 179 

The first vegetation layer is the NDVI, which is referred to as the continuity index of the existing National Oceanic and 180 

Atmospheric Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR)-derived NDVI. The 181 

algorithm chooses the best available pixel value from all the acquisitions over the 16-day period. The criteria 182 

considered are low cloud coverage, low view angle, and highest NDVI value (Huete et al., 1999Didan, 2015). To 183 

obtain daily NDVI values, we conducted linear interpolation of the 16-day product. 184 

2.1.5 Potential evapotranspiration 185 

Similarly, we assessed the impact of considering a remote sensing-based evaporative evaporation efficiency, which is 186 

initially defined as the ratio of actual to potential soil evaporation, on RZSM prediction. The computation details of this 187 

variable will be detailed later (cf. Section 32.2.2). We employed the remote sensing-based potential evapotranspiration 188 

(PET) to compute the evaporative evaporation efficiency. We extracted the PET from the MOD16A2 189 

Evapotranspiration/Latent Heat Flux version 6 product, which is an 8-day composite dataset produced at a 500-m pixel 190 

resolution. The algorithm used for MOD16 data product collection is based on the logic of the Penman–Monteith 191 

equation, which employs inputs of daily meteorological reanalysis data along with MODIS remote sensing data 192 
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products such as vegetation property dynamics, albedo, and land cover. The MOD16A2 product provides layers for the 193 

composite evapotranspiration (ET), latent heat flux (LE), potential ET (PET) and potential LE (PLE). The pixel values 194 

for the PET layer include the sum of all eight days within the composite period (Running et al., 2017). To obtain daily 195 

PET values, we performed a linear interpolation of over the 8-day product and then we divided by eight the interpolated 196 

value. 197 

2.2 Methods 198 

2.2.1 Recursive exponential filter 199 

Two ANN models presented in Table 1 contained extra knowledge on infiltration process information based on the 200 

outputs of the recursive exponential filter (Stroud, 1999) as a feature. The recursive exponential filter was first 201 

introduced by (Wagner et al., 1999) Wagner et al. (1999)  to estimate the soil water index (SWI) from surface soil 202 

moisture. The equation for the recursive formulation can be written as follows SWI is computed as follows:  203 

𝑆𝑊𝐼𝑚(𝑛) = 𝑆𝑊𝐼𝑚(𝑛−1) + 𝐾𝑛(𝑚𝑠(𝑡𝑛) − 𝑆𝑊𝐼𝑚(𝑛−1)) (1) 204 

𝑆𝑊𝐼𝑡𝑛
= 𝑆𝑊𝐼𝑡𝑛−1

+ 𝐾𝑛(𝑚𝑠(𝑡𝑛) − 𝑆𝑊𝐼𝑡𝑛−1
) (1) 205 

where: 206 

- SWIm(n)  SWItn is the soil water index at time tn, 207 

- ms(tn) is the estimated scaled surface soil moisture at time tn (scaled between maximum and 208 

minimum values), 209 

- Kn is the gain at time tn, which occurs in [0,1] and is given by: 210 

𝐾𝑛 =
𝐾𝑛−1

𝐾𝑛−1+𝑒
−

(𝑡𝑛−𝑡𝑛−1)
𝑇

 (2) and 211 

- T is a time constant and is the only required tuning parameter to compute the recursive 212 

exponential filter. 213 

- For the initialisation of the filter, gain K1 =1 and SWI(t1)
* =ms(t1)   214 

Regarding T values, we considered an empirical list ([1,3,5,7,10,13,15,20,40,60]), which was partly inspired by (Paulik 215 

et al., 2014) (T ∈ [1,5,10,15,20,40,60,100]). Given the list of T values, recursive exponential filter outputs were 216 

computed for all of the stations (346 stations) given each T value. Based on the correlation values between the in situ 217 

RZSM values and the recursive exponential filter-based RZSM pre-estimates, we established the optimal time variable 218 

T, hereafter referred to as Tbest, for each station. 219 

A large proportion of the stations attained an optimal time constant (Tbest) value equal to 60 days which suggests an 220 

abnormally long infiltration time. These stations belong to the SCAN network and exhibit an RZSM acquisition depth 221 

of 50 cm, in contrast other networks such as SMOSMANIA, for instance, where RZSM is retrieved at 30 cm. The high 222 

values correspond to correlation with seasonal dynamics rather than infiltration processes. This depth could explain the 223 

anomalously long infiltration time. This has been demonstrated in (Paulik et al., 2014), who demonstrated that the 224 

average T value with the highest correlation (Tbest) increased with increasing depth of the in situ observations. 225 

For comparison purposes, (Paulik et al., 2014) found that 23.98% of the stations achieved Tbest=5 days, while 21.58% of 226 

the stations achieved Tbest ≥ 60 days (60 or 100 days). 227 
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(Albergel et al., 2008) considered an average Tbest value of 6 days for the SMOSMANIA network. This value 228 

represented the average Tbest value for all stations belonging to the SMOSMANIA network. In our case, the average 229 

Tbest value for all stations of the SMOSMANIA network reached 9 days. In this study, an average Tbest value could be 230 

established for each station or each network. However, this is not relevant to our work because we aimed to evaluate 231 

maps of remote sensing data, and thus, we did not compute Tbest at each location. We fixed the value of T to 5 days as a 232 

median infiltration time. 233 

2.2.2 Evaporative efficiency 234 

An ANN model with evaporative evaporation efficiency input was also developed. This variable, which is defined as 235 

the ratio of the actual to potential soil evaporation, was first introduced in (Noilhan, J. and Planton, 1989; Jacquemin et 236 

al., 1990; Lee et al., 1992) and thereafter readapted in (Merlin et al., 20112010) to include the soil thickness. and is 237 

expressed as follows: In our work, we use a modified evaporation efficiency formulation, based on the third model 238 

developed in (Merlin et al., 2010), which can be expressed as follows (cf. appendix C): 239 

 240 

𝛽3 = [
1

2
−

1

2
cos(𝜋𝜃𝐿/𝜃𝑚𝑎𝑥)]𝑃           𝑓𝑜𝑟 𝜃𝐿 ≤ 𝜃𝑚𝑎𝑥 (3) 241 

𝛽3 = 1 𝑓𝑜𝑟 𝜃𝐿 > 𝜃𝑚𝑎𝑥 242 

𝛽 = [
1

2
−

1

2
cos(𝜋𝜃/𝜃𝑚𝑎𝑥)]𝑃∗          (3) 243 

where:    - 𝛽 is evaporation efficiency  244 

- 𝜃𝐿 𝜃 is the water content in the soil layer of thickness L. 245 

- 𝜃𝑚𝑎𝑥 is the maximum soil moisture at each station. 246 

- P* is a parameter computed as follows: 247 

𝑃 = (
1

2
+ 𝐴3

𝐿−𝐿1

𝐿1
)

𝐿𝐸𝑝

𝐵3
 (4) 248 

𝑃∗ =  
𝑃𝐸𝑇

2𝐵
 (4) 249 

- 𝜃𝑚𝑎𝑥 is the soil moisture at field capacity, as reported in (Noilhan, J. and Planton, 1989; Jacquemin et al., 250 

1990; Lee et al., 1992), or the soil moisture at saturation, as considered in (Merlin et al., 2011). In our case, 251 

this variable denotes the maximum soil moisture at each station. 252 

-𝐿𝐸𝑝 is the potential evaporation. In our case, we replaced this variable with the potential evapotranspiration 253 

(PET) extracted from the MODIS 500-m 8-day product (MOD16A2). P was then replaced by proxy P*. As the 254 

ANN model performed its own calibrations on the set of features, this adaptation of the P term did not impact 255 

the process. 256 

- L1 is the thinnest represented soil layer, and A3 (unitless) and B3 (W/m²) are the two best-fit parameters a 257 

priori depending on the soil texture and structure, respectively. As we were interested in the evaporative 258 

efficiency at the surface, L=L1=5 cm, P* is thus expressed as: 259 

𝑃∗ =  
𝑃𝐸𝑇

2𝐵3
 (5) 260 
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P*, a proxy of parameter P (cf. appendix C), represents an equilibrium state controlled by retention forces in 261 

the soil, which increase with the thickness L of considered soil and by evaporative demands at the soil surface. 262 

-PET is the potential evapotranspiration (PET) extracted from the MODIS 500-m 8-day product (MOD16A2).  263 

The soil evaporation efficiency computed by model 3, developed in (Merlin et al., 2010), decreases when PET 264 

increases. Retention force and evaporative demand make the term P increase (replaced by P*), as if an increase of 265 

potential evaporation LEp (here replaced by PET) at the soil surface would make the retention force in the soil greater. 266 

Merlin et al. (2010) tested this approach at two sites in southwestern France using in situ measurements of actual 267 

evaporation, potential evaporation, and soil moisture at five different depths collected in summer.  Model 3 was able to 268 

represent the soil evaporation process with a similar accuracy as the classical resistance-based approach for various soil 269 

thicknesses up to 100 cm. Merlin et al. (2010) affirm the parameterization of P as function of LEp (here PET) indicates 270 

that 𝛽 cannot be considered as a function of soil moisture alone since it also depends on potential evaporation. 271 

Moreover, the effect of potential evaporation on 𝛽 appears to be equivalent to that of soil thickness on 𝛽. This 272 

equivalence is physically interpreted as an increase of retention forces in the soil in reaction to an increase in potential 273 

evaporation. 274 

2.2.3 Artificial neural network implementation 275 

The multilayer perceptron (MLP), which is a multilayer feed-forward ANN, is one of the most widely applied ANNs, 276 

mainly in the field of water resources (Abrahart and See, 2007) The multilayer perceptron contains one or more hidden 277 

layers between its input and output layers. Neurons are organized in layers such that the neurons of the same layer are 278 

not interconnected and that any connections are directed from lower to upper layers (Ramchoun et al., 2016). Each 279 

neuron returns an output based on the weighted sum of all inputs and according to a nonlinear function referred to as 280 

the transfer or activation function (Oyebode and Stretch, 2019). The input layer, consisting of SSM values and/or other 281 

process-basedrelated variables, is connected to the hidden layer(s), which comprises hidden neurons. The final ANN-282 

derived estimates of the ANN are given by an activation function associated with the final layer denoted as the output 283 

layer, based on the sum of the weighted outputs of the hidden neurons. 284 

We started with the ANN model developed in (Souissi et al., 2020), whose architecture consists of one hidden layer of 285 

20 hidden neurons, a tangent sigmoid function as the activation function of the hidden layer, a quadratic cost function 286 

as the loss function and the stochastic gradient descent (SGD) technique as the optimization algorithm. This model was 287 

developed to estimate RZSM based on only in situ SSM information. SSM was not applied as a feature of hourly values 288 

but was employed in the form of three features, namely, SSM rolling averages over 10, 30 and 90 days. Two additional 289 

Additional ANN models were developed to study, through each model, the impact of the application of the NDVI, 290 

which describes vegetation dynamics and the surface soil temperature as features SWI, evaporation efficiency and the 291 

surface soil temperature as features. A model combining surface soil moisture, NDVI, evaporative evaporation 292 

efficiency and recursive exponential filter was further considered. These ANN models were trained and validated on the 293 

122 ISMN stations among the 346 stations of the ISMN based on (Souissi et al., 2020). considered of good quality after 294 

a data filtering step as detailed in (Souissi et al., 2020). Training of the above ANN models was conducted considering 295 

70% of these 122 stations. Thirty percent was reserved for validation, and testing was conducted at all the rest of 296 

stations. So in summary, 122 stations were considered for the training/validation of the ANN models and 224 stations, 297 

if all input data are available, were used for testing. In a second step, tests were conducted on data external to the ISMN 298 
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database namely on sites of Tunisia, Italy and India. The trained models over ISMN are used only in prediction mode 299 

over these sites. The data for SSM in addition to the other features are used as inputs and RZSM is predicted in outputs. 300 

3 Results 301 

3.1 Exponential filter characteristic time length 302 

A large proportion of the stations attained an optimal time constant (Tbest) value equal to 60 days which suggests an 303 

abnormally long infiltration time. These stations belong to the SCAN network and exhibit an RZSM acquisition depth 304 

of 50 cm, in contrast other networks such as SMOSMANIA, for instance, where RZSM is retrieved at 30 cm. The high 305 

values correspond to correlation with seasonal dynamics rather than infiltration processes. This depth could explain the 306 

anomalously long infiltration time. This is consistent with (Paulik et al., 2014) in which the average T value with the 307 

highest correlation (Tbest) increased with increasing depth of the in situ observations. 308 

For comparison purposes, Paulik et al. (2014) found that 23.98% of the stations achieved Tbest=5 days, while 21.58% of 309 

the stations achieved Tbest ≥ 60 days (60 or 100 days). 310 

Albergel et al. (2008) considered an average Tbest value of 6 days for the SMOSMANIA network. This value 311 

represented the average Tbest value for all stations belonging to the SMOSMANIA network. In our case, the average 312 

Tbest value for all stations of the SMOSMANIA network reached 9 days. In this study, an average Tbest value could be 313 

established for each station or each network. However, this is not relevant to our work because we aim to evaluate maps 314 

of remote sensing data in next steps, and thus, we did not compute Tbest at each location. We fixed the value of T to 5 315 

days as a median infiltration time. 316 

3.1 2 Intercomparison of the ANN models 317 

The generated correlation histograms distribution histograms for training, validation and test stations (Fig. 3) and 318 

performance metrics presented in Table 3 demonstrateshow that the integration of the considered process-based related 319 

features improved the prediction accuracy in certain cases compared to the reference. Time series of good and less good 320 

quality of fit were provided in appendix E for training, validation and test stations using reference model ANN_SSM 321 

and the most complex ANN model. 322 

In terms of the NDVI, 55.56% of the stations attained better correlation values with ANN_SSM_NDVI than those 323 

obtained with ANN_SSM. Additionally, 44.44% of the stations achieved a correlation value higher than 0.7 with model 324 

ANN_SSM_NDVI, versus 38.41% of the total stations achieving a similar correlation value with model ANN_SSM. 325 
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 328 

Figure 3. Correlation histograms of (a) ANN_SSM_NDVI, (b) ANN_SSM_TEMP, (c) ANN_SSM_ EXP-FILT_T5, (d) 329 

ANN_SSM_EVAP-EFF-B60, and (e) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5 compared to ANN_SSM. 330 

Figure 3. Correlation histograms of all tested ANN models compared to ANN_SSM (a) on training stations (b) on validation stations 331 

(c) on test stations (cf. appendix D for RMSE histograms) 332 

In terms of the NDVI, 65.82%, 45.71% and 55.22% stations attained better correlation values with ANN_SSM_NDVI 333 

than those obtained with ANN_SSM for the training, validation and test stations, respectively. RMSE decreased for 334 

44.3%, 40.0% and 40.3% of the stations with ANN_SSM_NDVI compared to model ANN_SSM for training, 335 

validation and test stations, respectively (Table 3). 336 

In regard to the ANN_SSM_TEMP model that integrates the soil surface temperature, 49.4%, 55.56% and 59.35% of 337 

the training, validation and test stations exhibited higher correlation values than those obtained with the ANN_SSM 338 

model, respectively. RMSE decreased with ANN_SSM_TEMP compared to model ANN_SSM for 25.3%, 38.89% and 339 

42.99% of the training, validation and test stations, respectively.  340 

In addition, model ANN_SSM_EXP-FILT-T5 that integrates the simplified infiltration based features yielded slightly 341 

better correlations, and 64.56%, 60.61% and 63.68% 62.62% of the  training, validation and test stations attained better 342 

correlations than those obtained with model ANN_SSM, respectively. Besides, RMSE decreased for 36.71 %, 42.42 % 343 

and 50.25% of the training, validation and test stations with ANN_SSM_ EXP-FILT-T5 compared to model 344 

ANN_SSM, respectively. 345 

Regarding the evaporation efficiency, we considered different values of fitting parameter B (Eq. 4) such that B 346 

remained within the [50,60] interval. This parameter can be fitted using different variables, such as the wind speed or 347 

relative humidity. Comparisons based on the correlation values provided by the different models for each B value 348 
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indicated that the performance was insensitive to the B value. Thus, we fixed the B value to 60 W m-². Comparison of 349 

models ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that 54.55%, 52.94% and 52.33% of the training, 350 

validation and test stations attained higher correlation values with the latter model, respectively. RMSE was reduced for 351 

28.57%, 41.18% and 48.19% of the training, validation and test stations with ANN_SSM_ EVAP-EFF-B60 compared 352 

to model ANN_SSM, respectively. 353 

Finally, we investigated the impact of the joint application of the NDVI, recursive exponential filter (T= 5 days) 354 

and  evaporation efficiency (B=60 W m-²) in the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model. The 355 

surface soil temperature was not included, as its effect is included in the evaporation process. At 84.06%, 61.29% and 356 

62.07% of the training, validation and test stations, the correlation value obtained with this model was higher than that 357 

obtained with the ANN_SSM model, respectively. In addition, RMSE was minimized for 62.32%, 54.84% and 54.02% 358 

of the training, validation and test stations with ANN_SSM_ NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to 359 

model ANN_SSM, respectively. 360 

Considering model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, only one training station had a decrease in 361 

correlation by more than 0.1 namely station ‘Lind#1’ (network ‘SCAN’) compared to reference model ANN_SSM. All 362 

inputs were not available at the same dates which implied a significant reduction in data points (cf. appendix F). The 363 

decrease in correlation and increase in RMSE didn’t exceed 0.1 and 0.01 m3/m3, respectively, for the rest of stations of 364 

lower performance metrics with the most complex ANN. 365 

Similarly for validation stations, only one station had a decrease in correlation above 0.1, namely station ‘PineNut’ 366 

(network ‘SCAN’), with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. This decrease can be also 367 

explained because of data shortage (cf. appendix F). The decrease in correlation and increase in RMSE didn’t exceed 368 

0.1 and 0.01 m3/m3, respectively, for the rest of stations of lower performance metrics with the most complex ANN. 369 

Regarding test stations , correlation decrease by more than 0.1 and RMSE increase by more than 0.01 m3/m3with model 370 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to model ANN_SSM was detected for only 2 stations.  371 

Both stations, namely station ‘S-Coleambally' and ‘Widgiewa’ which belong to network ‘OZNET’, significantly lose in  372 

data volume when process-related variables are integrated in ANN and more precisely because of NDVI data 373 

availability (cf. appendix F). For the rest of test stations, correlation decreased and RMSE increased simultaneously by 374 

less than 0.1 and 0.01 m3/m3, respectively, whith model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. 375 

Table 3. Proportion of the stations which performance enhances using the ANN models enriched with process-related features 376 

compared to model ANN_SSM (*: % of stations at which the correlation improves over the model ANN_SSM level; **: % of stations 377 

at which RMSE improves over the model ANN_SSM level) 378 

Model Training stations Validation stations Test stations 

% of stations 

(corr ↑)* 

% of stations 

(RMSE ↓)** 

% of stations 

(corr ↑)* 

% of stations 

(RMSE ↓)** 

% of stations 

(corr ↑)* 

% of stations 

(RMSE ↓)** 

ANN_SSM_NDVI 65.82 44.3 45.71 40.0 55.22 40.3 

ANN_SSM_TEMP 49.4 25.3 55.56 38.89 59.35 42.99 
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ANN_SSM_EXP-FILT-T5 64.56 36.71 60.61 42.42 63.68 50.25 

ANN_SSM_EVAP-EFF-B60 54.55 28.57 52.94 41.18 52.33 48.19 

ANN_SSM_NDVI_EVAP-

EFF-B60_EXP-FILT-T5 

84.06 62.32 61.29 54.84 62.07 54.02 

 379 

Table 4. Proportion of the stations which correlation decreases using the ANN models enriched with process-related features 380 

compared to model ANN_SSM (∆corr=corrANN_SSM – corrANN_SSM_X , X denotes a or a combination of process-related variables) 381 

Model Training stations Validation stations Test stations 

% of stations 

corr ↓ and 

0.05<∆corr<0.1* 

% of stations 

corr ↓ and 

∆corr>0.1* 

% of stations 

corr ↓ and 

0.05<∆corr<0.1* 

% of stations 

corr ↓ and 

∆corr>0.1* 

% of stations 

corr ↓ and 

0.05<∆corr<0.1

* 

% of 

stations 

corr ↓ and 

∆corr>0.1* 

ANN_SSM_NDVI 3.8 0 2.86 0 9.95 5.97 

ANN_SSM_TEMP 0 1.2 0 2.78 4.67 3.27 

ANN_SSM_EXP-FILT-T5 6.33 1.27 3.03 9.09 6.97 3.48 

ANN_SSM_EVAP-EFF-B60 10.39 1.3 0 2.94 6.74 5.7 

ANN_SSM_NDVI_EVAP-

EFF-B60_EXP-FILT-T5 

4.35 1.45 6.45 3.23 9.2 6.9 

 382 

Always in terms of the general performance of model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, about 383 

75% of the stations have an RMSE less than 0.05 m3/m3 and around half of the stations have an RMSE less than 0.04 384 

m3/m3. This accuracy is consistent, for instance, with the target value in SMAP (Entekhabi et al., 2010) and SMOS 385 

(Kerr et al., 2010) missions which is equal to 0.04 m3/m3 and also to the average sensor accuracy adopted by Dorigo et 386 

al. (2013) which is equal to 0.05 m3/m3. Overall, the most complex model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-387 

FILT-T5 can successfully characterize the soil moisture dynamics in the root zone since half of the stations have a 388 

correlation value greater than 0.7. Pan et al. (2017) developed different ANN models to estimate RZSM at depth of 389 

20cm and 50cm over the continental United States using surface information.  They found that half of the stations have 390 

RMSE less than 0.06 m3/m3 and more than 70% of stations have correlation above 0.7 when predicting RZSM at 20cm. 391 

However, the developed ANN was less effective in RZSM prediction at 50cm which is also in accordance with 392 

(Kornelsen and Coulibaly, 2014).  In our study, the densest soil moisture network is ‘SCAN’, located in the USA. Soil 393 

moisture was predicted at a depth of 50cm over this network. Around half of the stations have a correlation value of 394 

above 0.6 and RMSE less than 0.04 m3/m3 after the integration of process-related inputs. Pan et al., (2017) suggests that 395 

the use of only time-dependent variables may not be sufficient for the ANN models to accurately predict RZSM and 396 

suggests adding soil texture data.  397 
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In regard to the ANN_SSM_TEMP model that integrates the soil surface temperature, 54.35% of the stations (except 398 

the stations of the AMMA-CATCH network, as no surface temperature data were available) exhibited higher 399 

correlation values than those obtained with the ANN_SSM model. Additionally, 40.24% of the stations achieved a 400 

correlation value higher than 0.7 with model ANN_SSM_TEMP versus 36.94% of the stations with model ANN_SSM. 401 

In addition, model ANN_SSM_EXP-FILT-T5 that integrates the simplified infiltration based features yielded slightly 402 

better correlations, and 62.62% of the total stations attained better correlations than those obtained with model 403 

ANN_SSM. A total of 45.37% of the stations achieved a correlation value higher than 0.7 with model 404 

ANN_SSM_EXP-FILT-T5, in contrast to 38.98% of the stations achieving a similar correlation value with model 405 

ANN_SSM. 406 

Regarding the evaporative efficiency, we considered different values of fitting parameter B3 (Eq. 4) such that B3 407 

remained within the [50,60] interval. This parameter can be fitted different variables, such as the wind speed or relative 408 

humidity. Comparisons based on the correlation values provided by the different models for each B3 value indicated 409 

that the performance was insensitive to the B3 value. Thus, we fixed the B3 value to 60 W m-². Comparison of models 410 

ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that 57.89% of the stations attained higher correlation values 411 

with the latter model. A total of 41.12% of the stations exhibited a correlation value higher than 0.7 with model 412 

ANN_SSM_EVAP-B60 versus 38.48% of the stations with model ANN_SSM. 413 

Finally, we investigated the impact of the joint application of the NDVI, recursive exponential SWI (T= 5 days) and 414 

evaporative efficiency (B3=60 W m-²) in the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_T5 model. The surface 415 

soil temperature was not included, as its effect is included in the evaporation process. At 64.6% of the stations, the 416 

correlation value obtained with this model was higher than that obtained with the ANN_SSM model. In addition, 51.1% 417 

of the stations achieved a correlation value higher than 0.7 with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-418 

FILT_T5, in contrast to 39.42% of the stations with model ANN_SSM. 419 

Table 3. Proportion of the stations exhibiting performance enhancement using the ANN models with the process-based features 420 

model compared to model ANN_SSM. 421 

Model % of stations at which the correlation 

improves over the model ANN_SSM level 

% of stations at which RMSE improves over 

the model ANN_SSM level 

ANN_SSM_NDVI 55.56 48.25 

ANN_SSM_TEMP' 54.35 46.25 

ANN_SSM_EXP-FILT_T5 62.62 51.44 

ANN_SSM_EVAP-EFF-B60 57.89 48.68 

ANN_SSM_NDVI_EVAP-EFF-

B60_EXP-FILT_T5 

64.6 57.3 

 422 

3.2 3 Robustness of the approach 423 
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To further assess the robustness of our approach, which involves RZSM prediction using the various different ANN 424 

models with different features, we predicted RZSM at 40 cm at sites not previously considered in previous parts of the 425 

study. The selected stations are located in: the Kairouan Plain, a semiarid region in central Tunisia, Landriano site 426 

located in the North of Italy, and the Berambadi watershed located in Gundalpet taluk, South-India. In the case of the 427 

Kairouan Tunisia, model ANN_SSM yielded moderate- to low-precision predictions, as highlighted by the performance 428 

metrics listed in Table 45. The time series (cf. appendix G) indicated show that the RZSM predictions followed the 429 

SSM seasonality, which was reflected by the false peaks generated in the RZSM predictions whenever a sharp increase 430 

or decrease occurred in the SSM values. This observation was already demonstrated by also found in (Souissi et al., 431 

2020). Actually, the Kairouan Plain is characterized by a semiarid environment where rainfall events infrequently occur 432 

and the level of evaporation is high. The reference model ANN_SSM shows its limitations to accurately predict RZSM 433 

in areas with no alternate wet and dry cycles. 434 

However, the consideration of additional features, namely, the NDVI, evaporation efficiency and SWI in the ANN 435 

models resulted in a good agreement between the in situ and predicted RZSM values (Fig. 4). The correlation values 436 

were improved by 60.04%, 169.5%, 112.02%, 80.23% and 53.7% at stations Barrouta-160, Hmidate_163, 437 

Barrage_162, Bouhajla_164 and P12, respectively, with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model 438 

over ANN_SSM model values. Similarly, RMSE values were reduced (Table 5). As shown in figure 4, the most 439 

complex ANN model is able to capture the variations of RZSM. This finding highlights the added value of our hybrid 440 

approach based on an association of a machine learning method with process-related variables. Instead of injecting 441 

uncertain information in physical models, such as soil properties, we used a nonparametric method related to physical 442 

processes without using forcing data that may be subject to errors and potentially lead to inaccurate tracking of the 443 

long-term evolution of soil moisture. 444 
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445 
Figure 4. In situ SSM, in situ RZSM, and predicted RZSM series at the stations in the Kairouan Plain (Tunisia) with model 446 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_-T5 (cf. appendix G for larger figure format). 447 

However, the consideration of additional features, namely, the NDVI, evaporative efficiency and recursive exponential 448 

filter SWI, in the ANN models resulted in a good agreement between the in situ and predicted RZSM values (Fig. 4). 449 

The correlation values were improved by 60.04%, 169.5%, 112.02%, 80.23% and 53.7% at stations Barrouta-160, 450 

Hmidate_163, Barrage_162, Bouhajla_164 and P12, respectively, with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-451 

FILT_T5 model over ANN_SSM model values. Similarly, RMSE values were reduced (Table 4). 452 

A second comparison can be conducted between the quality of fit of these independent datasets and training datasets. 453 

Actually, the climate class of the Tunisian stations is ‘Bsh’ (cf. appendix A). At the training stage, no station falls into 454 

the climate class ‘Bsh’ (cf. appendix A). However, some training stations fall under a similar climate class which is 455 

‘Bsk’ (cf. appendix B). Table 5 presents correlation and RMSE values for these training stations and Tunisian sites with 456 

both models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. For all training stations, 457 

performance metrics are slightly enhanced with the most complex ANN model compared to reference model 458 

ANN_SSM, except for stations GrouseCreek, Harmsway and Lind#1 which performance decreases. Overall, the range 459 

of correlation values is similar for training and external validation stations with model ANN_SSM_NDVI_EVAP-EFF-460 

B60_EXP-FILT-T5 and RMSE is well reduced for Tunisian stations compared to training stations. Given the results on 461 

unseen datasets, namely on Tunisia, the performance of the most complex ANN model is good as it is able to generalize 462 

the patterns present in the training dataset. 463 

Table 5. Performance metrics of models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at training stations of 464 

climate “Bsk” and Tunisian stations of climate “Bsh”. 465 
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Model ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 Training stations (climate class ‘Bsh’) 

Station Correlation RMSE Correlation RMSE 

Banandra 

(OZNET) 

0.701 0.05 0.764 0.046 

DRY-LAKE 

(OZNET) 

0.674 0.031 0.692 0.03 

CPER (SCAN) 0.691 0.032 0.695 0.032 

EPHRAIM  

(SCAN) 

0.758 0.051 0.791 0.046 

GrouseGreek 

(SCAN) 

0.818 0.033 0.802 0.035 

HarmsWay 

(SCAN) 

0.705 0.034 0.622 0.038 

Lind#1  

(SCAN) 

0.605 0.055 0.483 0.022 

 External test stations (Tunisia) 

Station Correlation RMSE Correlation RMSE 

Barrouta_160 0.463 0.021 0.714 0.016 

Hmidate_163 0.318 0.019 0.834 0.011 

Barrage_162 0.416 0.035 0.864 0.019 

Bouhajla_164 0.435 0.016 0.733 0.01 

 P12 0.581 0.047 0.861 0.029 

 466 

At the South-Indian stations, the ANN_SSM model yielded a good agreement even without the integration of process-467 

based related features (Table 6). The NDVI added little to nonsignificant improvement at station Bheemanbidu. The 468 

same observation was made at the Italian site. The application of multiple features performed the best under arid 469 

conditions, e.g., in Tunisia. In the tropical and temperate climate regions, this was not the case. The presence of clouds 470 

in the MODIS NDVI and potential evapotranspiration products could explain this observation at sites of South-India 471 

and North-Italy. In South-India, for instance, the maximum variability in soil moisture occurred during the monsoon 472 

season, which is characterized by a large amount of clouds. Moreover, the coarse resolution of MODIS NDVI product 473 

makes it sometimes not adapted to the considered site. (Chen et al., 2016) investigated the impact of sample impurity 474 

and landscape heterogeneity on crop classification using coarse spatial resolution MODIS imagery. They showed that 475 

the sample impurity such as mixed crop types in a specific sample, compositional landscape heterogeneity that is the 476 

richness and evenness of land cover types in a landscape, and configurational heterogeneity that is the complexity of 477 

spatial structure of land cover types in a specific landscape are sources of uncertainty affecting crop area mapping when 478 
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using coarse spatial resolution imagery. High resolution NDVI from sensors like Sentinel-2 could have been used in 479 

this exercise to mitigate the spatial resolution issue, however, MODIS data were privileged in order to provide NDVI 480 

and PET from the same sensor. 481 

Table 46. Performance metrics of models ANN_SSM, ANN_SSM_NDVI and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_-T5 482 

at the sites in central Tunisia, South-India and northern Northern Italy and South-India. 483 

Model ANN_SSM ANN_SSM_NDVI ANN_SSM_NDVI_EVAP-

EFF_B60_EXP-FILT_-T5 

INDIA 

Station Correlation RMSE Correlation RMSE Correlation RMSE 

Madyanahundi 
 

0.813 

 

0.04 0.78 0.042 0.744 0.044 

Bheemanbidu 0.76 0.046 0.784 0.044 0.763 0.046 

Beechanalli2 0.825 0.038 0.787 0.04 0.743 

 

0.044 

Beechanalli1 0.713 0.024 0.713 0.024 0.633 0.025 

Italy 

 

Station Correlation RMSE Correlation RMSE Correlation RMSE 

Landriano 0.861 0.038 0.827 0.041 0.841 0.038 

 484 

34 Discussion 485 

Climate analysis of the results yielded by the different models indicated that among all models, the climate class with 486 

the highest mean correlation change rate (Fig. 5) was class BWk (cf. appendix A), which regroups desert areas where 487 

the link between SSM and RZSM is weak due to high evaporative rates. Class Dfa (cf. appendix A), which includes 488 

areas experiencing harsh and cold winters, also yielded a high mean correlation change rate (>100%). Similarly, at 489 

stations of this climate type, the link between the surface and root zone is poor. In regard to class Cfa (cf. appendix A), 490 

in which 88.6%more than 80% of the total stations belongs to SCAN network, the high mean correlation change rate 491 

could be explained by the surface-subsurface decoupling phenomena detected within this network, as previously 492 

reported in (Souissi et al., 2020). The model with the largest number of stations with improved predictions over the 493 

ANN_SSM model predictions was ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_-T5. Actually, the coupled use of 494 

process-based related features in the ANN models exerted a greater impact on the prediction accuracy than that exerted 495 

by the one-at-a-time application of these features. In model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_-T5, the 496 

three process-based features jointly employed seemed to counterbalance the weight of these three SSM features. In this 497 

model, the process-based related features were equally represented versus the SSM information depicted by these three 498 

features. The redundancy of the considered SSM information could explain the limited impact of the one-at-a-time 499 

addition of process-based related features the joint addition of the three process-based related features. 500 
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In addition, (Karthikeyan and Mishra, 2021) Karthikeyan and Mishra (2021) demonstrated that at root depths beyond 501 

20 cm, the importance of SSM was notably lower than that at the 20-cm depth, signifying decorrelation between surface 502 

and deeper SM values, which is in accordance with the findings in (Souissi et al., 2020), and it was further revealed that 503 

vegetation exhibits a higher importance than that of meteorological predictors LST and precipitation. (Kornelsen and 504 

Coulibaly, 2014) Kornelsen and Coulibaly (2014)   indicated that evapotranspiration is the most important 505 

meteorological input for the prediction of soil moisture in the root zone with the MLP, which reflects the importance of 506 

the water vapor flux in soil moisture state determination. 507 

 508 

 509 

Figure 5. Climate classification of the stations performing better with models (a) ANN_SSM_NDVI (b) ANN_SSM_EXP-T5 (c) 510 

ANN_SSM_EVAP-60 (d) ANN_SSM_TEMP and (e) ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT_-T5 compared to model 511 

ANN_SSM (Dark green corresponds to stations which correlation improved with complexified models, light green corresponds to 512 

total stations, rate in blue correspond to mean correlation change rate per climate class).. 513 

∗ 𝑐𝑜𝑟𝑟_𝑐ℎ𝑎𝑛𝑔𝑒_𝑟𝑎𝑡𝑒 =  𝑚𝑒𝑎𝑛(
𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀_𝑋−𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀

𝑐𝑜𝑟𝑟𝐴𝑁𝑁_𝑆𝑆𝑀
∗ 100) (65)   514 

where X denotes a process-based related variable (X ∈ [‘NDVI’, ‘EXP-FILT-T5’, ‘EVAP-EFF-B60’, ‘TEMP’] 515 

The world map illustrated in Fig. 6, shows the best-performing ANN models based on the mean correlation change rate 516 

(Eq. 65). We assumed that the results in a given area of a specific climate class could be extended to other areas of the 517 
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same climate class even if we did not consider the data for these areas. The climate classes without at least one station 518 

were marked in black and labeled with ‘NO DATA’. 519 

 520 

Figure 6. Best World map of best-performing ANN models per climate class based on the mean correlation change rate; colors 521 

correspond to climate classes (cf. appendix A), hatches correspond to the most contributive input to the predictions namely: EVAP 522 

(evaporation efficiency), EXP (exponential filter SWI), NDVI , TEMP (surface soil temperature). 523 

In arid areas such as the eastern and western sides of the USA with high evaporation rates, ANN_SSM_EVAP-EFF-60 524 

was the best performing model. Similarly, in bare areas of Africa, the Middle East and Australia where the Bwh climate 525 

class prevailed (arid desert hot climate; cf. appendix A), the evaporative evaporation efficiency was the best informative 526 

variable. 527 

In the internal part of continental Europe and near the Mediterranean Basin, the NDVI was the most relevant indicator 528 

for RZSM estimation, where agricultural fields dominated. Similarly, the Great Plains region in the USA was deeply 529 

affected by the NDVI, as this region is a cultivated area. The same result could be obtained for regions belonging to 530 

climate class Bsh (arid steppe hot; cf. appendix A) and mainly covered by grassland and shrubland areas according to 531 

ESA CCI land cover maps. 532 

In Nordic areas characterized by the ET climate class, the soil temperature was the most important root zone soil 533 

moisture indicator mainly because of the freeze–thaw events encountered in these regions. In tropical savannah wet 534 

areas (class Aw; cf. appendix A), the ANN_SSM_TEMP model was the best-performing model. 535 

This classification definitely suffered limitations mainly provoked by the generalization of the climatic analysis results 536 

to areas not considered in this study. For instance, in regions of climate class Dfc (cold dry without a dry season, cold 537 

summer climate; cf. appendix A), we expect the temperature to serve as the most relevant indicator instead of the 538 

evaporative evaporation efficiency. 539 



23 

 

45 Conclusion 540 

In this study, we developed several ANN models to estimate RZSM based either on solely in situ SSM information 541 

or on a group of process-based related features, in addition to SSM, namely, the soil water index computed with a 542 

recursive exponential filter, evaporative evaporation efficiency, NDVI and surface soil temperature. Different regions 543 

across the globe with distinct land cover and climate patterns were considered. The main conclusion of this study was 544 

that the consideration of more features in addition to SSM information could enhance the accuracy of RZSM 545 

predictions mainly in regions where the link between SSM and RZSM is weak. 546 

In arid areas with high evaporation rates, the most informative feature was the evaporative evaporation efficiency. In 547 

regions with agricultural fields, the NDVI was, for example, the most relevant indicator to predict RZSM. Overall, the 548 

best performing model included the surface soil moisture, NDVI, recursive exponential filterSWI and evaporative 549 

evaporation efficiency as features. Approximately 61.68% of the tested stations experienced correlation enhancement 550 

due to the joint consideration of process-based features over RZSM model predictions based on only surface soil 551 

moisture information. 552 

The robustness of the approach was further assessed through additional tests considering external sites in central 553 

Tunisia, India and Italy. Similarly, the process-based related features exerted a positive impact on the prediction 554 

accuracy when combined with surface soil moisture in the case of Tunisia. The mean correlation across the five 555 

Tunisian stations sharply increased from 0.44 when only SSM was considered to 0.8 when all process-based related 556 

features were combined with SSM. In India and Italy, the correlations were already high with the reference model 557 

ANN_SSM, and the addition of process-based features, namely, NDVI, did not improve the performance potentially 558 

because of the cloudy conditions in India and noisy MODIS products.. The change in correlation after the addition of 559 

process-related features, namely NDVI, is about -0.04 which is nonsignificant, and is potentially because of the cloudy 560 

conditions in India and noisy MODIS products. Also the crop heterogeneity and sample impurity makes MODIS NDVI 561 

products not adapted to all sites. 562 

As a research perspective, datasets can be separated in clusters corresponding to major climate classes and/or soil types. 563 

More analysis can be conducted in this direction to eventually make connections between the different inputs and 564 

climate/soil configurations. 565 

Future work will examine the ability of the developed model to estimate RZSM across larger areas based on remote 566 

sensing global soil moisture products. The use of remote sensing derived soil moisture products may yield lower 567 

correlations with the reference model ANN_SSM which potentially implies further improvement when process-based 568 

related features are added. 569 
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 740 

APPENDIX A 741 

Climate classes (Köppen classification): 742 

 Af: Tropical Rainforest 743 

 Am: Tropical Monsoon 744 

 As: Tropical Savanna Dry 745 

 Aw: Tropical Savanna Wet 746 

 BWk: Arid Desert Cold 747 

 BWh: Arid Desert Hot 748 

 BWn: Arid Desert with Frequent Fog 749 

 BSk: Arid Steppe Cold 750 

 BSh: Arid Steppe Hot 751 

 BSn: Arid Steppe with Frequent Fog 752 

 Csa: Temperate Dry Hot Summer 753 

 Csb: Temperate Dry Warm Summer 754 

 Csc: Temperate Dry Cold Summer 755 

 Cwa: Temperate Dry Winter, Hot Summer 756 

 Cwb: Temperate Dry Winter, Warm Summer 757 

 Cwc: Temperate Dry Winter, Cold Summer 758 

 Cfa: Temperate without a Dry Season, Hot Summer 759 

 Cfb: Temperate without a Dry Season, Warm Summer 760 

 Cfc: Temperate without a Dry Season, Cold Summer 761 

 Dsa: Cold Dry Summer, Hot Summer 762 

 Dsb: Cold Dry Summer, Warm Summer 763 

 Dsc: Cold Dry Summer, Cold Summer 764 

 Dsd: Cold Dry Summer, Very Cold Winter 765 

 Dwa: Cold Dry Winter, Hot Summer 766 

 Dwb: Cold Dry Winter, Warm Summer 767 

 Dwc: Cold Dry Winter, Cold Summer 768 

 Dwd: Cold Dry Winter, Very Cold Winter 769 

 Dfa: Cold Dry without a Dry Season, Hot Summer 770 

 Dfb: Cold Dry without a Dry Season, Warm Summer 771 

 Dfc: Cold Dry without a Dry Season, Cold Summer 772 

 Dfd: Cold Dry without a Dry Season, Very Cold Winter 773 

 ET: Polar Tundra 774 

 EF: Polar Eternal Winter 775 

 W: Water 776 
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 778 

APPENDIX B 779 

(a) 780 

(b) 781 

(c) 782 

Figure B1. Climate and soil texture for (a) training stations (b) validation stations (c) test stations. 783 

 784 

 785 
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 786 

APPENDIX C 787 

Evaporation efficiency (section 2.2.2): 788 

 The standard equations to compute evaporation efficiency (𝛽3) in (Merlin et al., 2010) are as follows: 789 

 790 

𝛽3 = [
1

2
−

1

2
cos(𝜋𝜃𝐿/𝜃𝑚𝑎𝑥)]𝑃           𝑓𝑜𝑟 𝜃𝐿 ≤ 𝜃𝑚𝑎𝑥 (C3) 791 

𝛽3 = 1 𝑓𝑜𝑟 𝜃𝐿 > 𝜃𝑚𝑎𝑥 792 

where: - 𝜃𝐿 is the water content in the soil layer of thickness L. 793 

- P is a parameter computed as follows: 794 

𝑃 = (
1

2
+ 𝐴3

𝐿−𝐿1

𝐿1
)

𝐿𝐸𝑝

𝐵3
 (C4) 795 

- 𝜃𝑚𝑎𝑥 is the soil moisture at saturation.  796 

-𝐿𝐸𝑝 is the potential evaporation.  797 

- L1 is the thinnest represented soil layer, and A3 (unitless) and B3 (W/m²) are the two best-fit parameters a 798 

priori depending on the soil texture and structure, respectively.  799 

 800 
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 818 

Figure D1. RMSE histograms of all tested ANN models compared to ANN_SSM (a) on training stations (b) on validation stations 819 

(c) on test stations. 820 
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APPENDIX E 835 

Training stations: 836 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 
Figure E1. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Beloufoungou Mid’ (AMMA-CATCH) with 

model ANN_SSM 

 
Figure E2. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Beloufoungou Mid’ (AMMA-CATCH) with 

model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure E3. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘HarmsWay’ (SCAN) with model ANN_SSM 

 
Figure E4. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘HarmsWay’ (SCAN) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure E5. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Cabrieres D’Avignon’ (SMOSMANIA) with 

model ANN_SSM 

 
Figure E6. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Cabrieres D’Avignon’ (SMOSMANIA) with 

model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure E7. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Nephi’ (SCAN) with model ANN_SSM 

 
Figure E8. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Nephi’ (SCAN) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure E9. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Wankama’ (AMMA-CATCH) with model 

ANN_SSM 

 
Figure E10. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Wankama’ (AMMA-CATCH) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure E11. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘2.04’ (HOBE) with model ANN_SSM 

 
Figure E12. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘2.04’ (HOBE) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure F1. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Lind#1’ with model ANN_SSM 

 
Figure F2. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Lind#1’ with model ANN_SSM_NDVI_EVAP-

EFF-B60_EXP-FILT-T5 
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Figure F3. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘PineNut’ with model ANN_SSM 

 
Figure F4. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘PineNut’ with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure F5. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘S-Coleambally’ with model ANN_SSM 

 
Figure F6. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘S-Coleambally’ with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure F7. In situ SSM, in situ RZSM, and predicted RZSM series 

at station ‘Widgiewa’ with model ANN_SSM 

 
Figure F8. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Widgiewa’ with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure G1. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Barrage-162’ (Tunisia) with model ANN_SSM 

 
Figure G2. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Barrage-162’ (Tunisia) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 868 

ANN_SSM ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 

 

Figure G3. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Barrouta_160’ (Tunisia) with model ANN_SSM 

 

Figure G4. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Barrouta_160’ (Tunisia) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure G5. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Bouhajla_164’ (Tunisia) with model 

ANN_SSM 

 
Figure G6. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Bouhajla_164’ (Tunisia) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure G7. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Hmidate_163’ (Tunisia) with model ANN_SSM 
 

 
Figure G8. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘Hmidate_163’ (Tunisia) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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Figure G9. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘P12’ (Tunisia) with model ANN_SSM 
 

 
Figure G10. In situ SSM, in situ RZSM, and predicted RZSM 

series at station ‘P12’ (Tunisia) with model 

ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 
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