Response to comments of Referee #2
Please find in Black the reviewer’'s comments and in blue our answers.

Comment: “This paper discusses the relationship between surface moisture and
moisture at depth in the soil layer occupied by roots. This is an important issue for
analyzing the time series of surface moisture observed by satellite by providing much
more relevant information to characterize the functioning of ecosystems. Indeed,
deep moisture has a very important impact on water fluxes by controlling both
transpiration and deep drainage. The proposed approach is to use neural networks
trained on a large dataset as offered by the ISMN. The main innovation is to
introduce variables into the network training that can account for factors impacting
the relationship between surface moisture and humidity in the RZSM. | find that the
introduction does not insist enough on the processes that govern this relationship.
Indeed, it is strongly linked to 1) root uptake, which depends on the canopy and the
root profile in interaction with the climate and 2) capillary rise, which means that,
depending on the properties of the soil, the water that evaporates from the surface
layer is more or less compensated. This very important process, especially for lightly
covered soils, is never mentioned. This knowledge of physical processes could have
been put forward to justify the process based variables.”

Reply: We would like to thank the reviewer for his constructive comments that
helped us enhance the quality of the paper.

We agree with the reviewer that the aforementioned processes govern the
relationship between SSM and RZSM. In the revised paper, the introduction has
been updated to describe in summary the relation governing SSM and RZSM as
follows :«RZSM is nonlinearly related to SSM through different hydrological processes, such
as diffusion processes. The root-zone soil moisture may be extracted by evaporation at the
surface, through root extraction or by capillary rises (Calvet et Noilhan, 2000).»

Comment: “l remain a little dubious about the choice of process based variables.”

Reply: We changed the term «process-based» to «process-related» in order to
avoid any confusion.

Comment: “NDVI: for me there is no doubt that this variable must be taken into
account. On the other hand, the use of ndvi modis variable does not seem to me to
be adapted to the sites used. Indeed, many measuring stations are placed on sites
where the vegetation is not representative of the nearby environment. SMOSMANIA
is placed on a meteorological station with a non-irrigated fallow land placed in the
middle of an agricultural zone (probably dominant at the scale of the modis pixel).
The stations of the plain of Kairouan are on bare soil (probably to simplify the
management of sensors) while the plain is an agricultural area. So | think there may
be a big difference between the modis ndvi and the ndvi on the representative area



of the measurement. This is illustrated in table 4 where the model including the ndvi
led to degraded results in comparison to ANN-SSM.”

Reply: We agree with the reviewer that it is important to consider NDVI and also that
the use of MODIS NDVI has a scale mismatch with point observations. Actually,
higher resolution optical remote sensing products at high revisit are available (i.e.
Sentinel-2 NDVI), but we privileged the MODIS dataset in order to combine the NDVI
and the potential evapotranspiration from the same plateforme. In the revised paper,
we have added a paragraph to discuss this point as follows:

« The presence of clouds in the MODIS NDVI and potential evapotranspiration products
could explain this observation at sites of South-India and North-Italy. In South-India, for
instance, the maximum variability in soil moisture occurred during the monsoon season,
which is characterized by a large amount of clouds. Moreover, the coarse resolution of
MODIS NDVI product makes it sometimes not adapted to the considered site. (Chen et al.,
2016) investigated the impact of sample impurity and landscape heterogeneity on crop
classification using coarse spatial resolution MODIS imagery. They showed that the sample
impurity such as mixed crop types in a specific sample, compositional landscape
heterogeneity that is the richness and evenness of land cover types in a landscape, and
configurational heterogeneity that is the complexity of spatial structure of land cover types in
a specific landscape are sources of uncertainty affecting crop area mapping when using
coarse spatial resolution imagery. High resolution NDVI from sensors like Sentinel-2 could
have been used in this exercise to mitigate the spatial resolution issue, however, MODIS
data were privileged in order to provide NDVI and PET from the same sensor.»

A sentence has also been added to the conclusion as follows: «In India and Italy, the
correlations were already high with the reference model ANN_SSM. The change in
correlation after the addition of process-related features, namely NDVI, is about -0.04 which
is nonsignificant, and is potentially because of the cloudy conditions in India and noisy
MODIS products. Also the crop heterogeneity and sample impurity makes MODIS NDVI
products not adapted to all sites.»

Comment: “The evaporative fraction as calculated is directly related to the surface
moisture. There is therefore no introduction of information except via LEP which acts
as a second order factor on the evaporative fraction.”

Reply: We agree. Even though the evaporation efficiency formulation is related to
surface soil moisture, it is still a new source of information for the neural network via
the PET normalization. As mentioned by the reviewer, it acts as a second order
factor in the analytical model.

The text related to this section was updated as follows based on the all the reviewers
comments:

«-P*, a proxy of parameter P (cf. appendix C), represents an equilibrium state controlled by
retention forces in the soil, which increase with the thickness L of considered soil and by
evaporative demands at the soil surface.



-PET is the potential evapotranspiration (PET) extracted from the MODIS 500-m 8-day
product (MOD16A2).

The soil evaporative efficiency predicted by model 3 by (Merlin et al., 2010) decreases when
PET increases. Retention force and evaporative demand make the term P increase
(replaced by P*), as if an increase of LEp (here PET) at the soil surface would make the
retention force in the soil greater. Merlin et al. (2010) tested this approach at two sites in
southwestern France using in situ measurements of actual evaporation, potential
evaporation, and soil moisture at five different depths collected in summer. Model 3 was able
to represent the soil evaporation process with a similar accuracy as the classical
resistance-based approach for various soil thicknesses up to 100 cm. Merlin et al. (2010)
affirm the parameterization of P as a function of LEp (here PET) indicates that 3 cannot be
considered as a function of soil moisture alone since it also depends on potential
evaporation. Moreover, the effect of potential evaporation on 3 appears to be equivalent to
that of soil thickness on p. This equivalence is physically interpreted as an increase of
retention forces in the soil in reaction to an increase in potential evaporation.»

Comment: “The recursive exponential filter completes the filtering by averaging over
10 30 and 90 days. It would have been interesting to compare them in order to
identify to what extent these filters are complementary.”

Reply: In order to clarify, we didn't apply the recursive exponential filter on the 10, 30
and 90-day averages.We have separated inputs for the 10, 30 , 90 day rolling
averages and the recursive exponential filter outputs. This being said, in (Souissi et
al, 2020) we investigated the impact of temporal parametrization of SSM inputs,
namely the use of hourly, daily or rolling averages over 10, 30 and 90 days. In this
paper, we were focused on the study of the impact of the exponential filter which has
been identified as a simplified analytical solution for RZSM prediction.

Comment: “The surface temperature could have been an indicator of the
evaporative intensity. However, below the vegetation cover, the interpretation is far
from obvious and requires knowledge of the air temperature in the canopy. Here it is
not clear at what depth it is measured (probably at the depth of the first sensor). In
this case the only interest seems to me to be to be able to flag the periods of
freezing to eliminate the data which do not have a physical meaning. | would make
this cleaning before training the neural networks.”

Reply: We thank the reviewer for this point. We have made the following clarification
in the ISMN soil moisture dataset description: «For each selected station, the root zone
soil moisture observation point is located between 30 and 55cm (Table 2). For each soil
moisture hourly acquisition, ISMN provides quality flags. Quality flags can be marked as ‘C’
(exceeding plausible geophysical range),’ D’ (questionable/dubious), ‘M’ (missing), or ‘G’
(good) (Dorigo et al.,2011). Category ‘D’ has subset flags namely ‘D01’ for which in situ soil
temperature < 0°C, ‘D02’ that flags points at which in situ air temperature < 0°C as well as
‘D03’ that also flags areas where GLDAS soil temperature < 0°C. In our study, only soil
moisture data with a ‘G’ labeled quality flag ‘G’ were retained.»



Comment: “A more thorough discussion of the process based variables would be
necessary, showing in particular on examples how they allow a better understanding
of the relationship between surface and depth.”

Reply: We agree with the reviewer. More results and discussions have been added
to the manuscript. Time series have also been added in appendix E to compare the
quality of fits of the least and the most complex models. As also inquired by reviewer
1, we have enriched the results section. In the revised paper, section (3.2
Intercomparison of the ANN models) has been modified such that there is a
separation of training, validation and test datasets. Also, a comparison between the
independent dataset quality of predictions (Tunisia) and training quality of fit over
ISMN has been conducted. Section 3.2 now reads:

«The distribution histograms for training, validation and test stations (Fig. 3) show that the
integration of the considered process-related features improved the prediction accuracy in
certain cases compared to the reference. Time series of good and less good quality of fit
were provided in appendix E for training, validation and test stations using reference model
ANN_SSM and the most complex ANN model.
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Figure 3. Correlation histograms of all tested ANN models compared to ANN_SSM (a) on
training stations (b) on validation stations (c) on test stations (cf. appendix D for RMSE
histograms)

In terms of the NDVI, 65.82%, 45.71% and 55.22% stations attained better correlation
values with ANN_SSM_NDVI than those obtained with ANN_SSM for the training, validation



and test stations, respectively. RMSE decreased for 44.3%, 40.0% and 40.3% of the stations
with ANN_SSM_NDVI compared to model ANN_SSM for training, validation and test
stations, respectively (Table 3).

In regard to the ANN_SSM_TEMP model that integrates the soil surface temperature,
49.4%, 55.56% and 59.35% of the training, validation and test stations exhibited higher
correlation values than those obtained with the ANN_SSM model, respectively.

RMSE decreased with ANN_SSM_TEMP compared to model ANN_SSM for 25.3%, 38.89%
and 42.99% of the training, validation and test stations, respectively.

In addition, model ANN_SSM_EXP-FILT-T5 that integrates the simplified infiltration based
features yielded slightly better correlations, and 64.56%, 60.61% and 63.68% 62.62% of the
training, validation and test stations attained better correlations than those obtained with
model ANN_SSM, respectively.

Besides, RMSE decreased for 36.71 %, 42.42 % and 50.25% of the training, validation and
test stations with ANN_SSM_ EXP-FILT-T5 compared to model ANN_SSM, respectively.

Regarding the evaporation efficiency, we considered different values of fitting parameter B
(Eq. 4) such that B remained within the [50,60] interval. This parameter can be fitted using
different variables, such as the wind speed or relative humidity. Comparisons based on the
correlation values provided by the different models for each B value indicated that the
performance was insensitive to the B value. Thus, we fixed the B value to 60 W m-2
Comparison of models ANN_SSM and ANN_SSM_EVAP-EFF-B60 revealed that 54.55%,
52.94% and 52.33% of the training, validation and test stations attained higher correlation
values with the latter model, respectively. RMSE was reduced for 28.57%, 41.18% and
48.19% of the training, validation and test stations with ANN_SSM_ EVAP-EFF-B60
compared to model ANN_SSM, respectively.

Finally, we investigated the impact of the joint application of the NDVI, recursive exponential
filter (T= 5 days) and evaporation efficiency (B=60 W m-3) in the
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model. The surface soil temperature was
not included, as its effect is included in the evaporation process. At 84.06%, 61.29% and
62.07% of the training, validation and test stations, the correlation value obtained with this
model was higher than that obtained with the ANN_SSM model, respectively. In addition,
RMSE was minimized for 62.32%, 54.84% and 54.02% of the training, validation and test
stations with ANN_SSM_ NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to model
ANN_SSM, respectively.»

Section (3.3 Robustness of the approach) now reads:

«However, the consideration of additional features, namely, the NDVI, evaporation efficiency
and SWI in the ANN models resulted in a good agreement between the in situ and predicted
RZSM values (Fig. 4). The correlation values were improved by 60.04%, 169.5%, 112.02%,
80.23% and 53.7% at stations Barrouta-160, Hmidate_163, Barrage 162, Bouhajla_164 and
P12, respectively, with the ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 model over
ANN_SSM model values. Similarly, RMSE values were reduced (Table 5). As shown in
figure 4, the most complex ANN model is able to capture the variations of RZSM. This
finding highlights the added value of our hybrid approach based on an association of a
machine learning method with process-related variables. Instead of injecting uncertain
information in physical models, such as soil properties, we used a nonparametric method



related to physical processes without using forcing data that may be subject to errors and
potentially lead to inaccurate tracking of the long-term evolution of soil moisture.
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Figure 4. In situ SSM, in situ RZSM, and predicted RZSM series at the stations in the
Kairouan Plain (Tunisia) with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 (cf.
appendix G for larger figure format).

A second comparison can be conducted between the quality of fit of these independent
datasets and training datasets. Actually, the climate class of the Tunisian stations is ‘Bsh’ (cf.
appendix A). At the training stage, no station falls into the climate class ‘Bsh’ (cf. appendix
A). However, some training stations fall under a similar climate class which is ‘Bsk’ (cf.
appendix B). Table 5 presents correlation and RMSE values for these training stations and
Tunisian sites with both models ANN_SSM and
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. For all training stations, performance
metrics are slightly enhanced with the most complex ANN model compared to reference
model ANN_SSM, except for stations GrouseCreek, Harmsway and Lind#1 which
performance decreases. Overall, the range of correlation values is similar for training and
external validation stations with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 and
RMSE is well reduced for Tunisian stations compared to training stations. Given the results
on unseen datasets, namely on Tunisia, the performance of the most complex ANN model is
good as it is able to generalize the patterns present in the training dataset.

Table 5. Performance metrics of models ANN_SSM and
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 at training stations of climate “Bsk” and
Tunisian stations of climate “Bsh”.

Model ANN SSM ANN SSM NDVI EVAP-EFF-B60 EXP-FILT-TS




Training stations (climate class ‘Bsh’)

Station Correlation RMSE Correlation RMSE
Banandra 0.701 0.05 0.764 0.046
(OZNET)
DRY-LAKE 0.674 0.031 0.692 0.03
(OZNET)
CPER (SCAN) 0.691 0.032 0.695 0.032
EPHRAIM 0.758 0.051 0.791 0.046
(SCAN)
GrouseGreek 0.818 0.033 0.802 0.035
(SCAN)
HarmsWay 0.705 0.034 0.622 0.038
(SCAN)
Lind#l] 0.605 0.055 0.483 0.022
(SCAN)

External test stations (Tunisia)

Station Correlation RMSE Correlation RMSE
Barrouta_160 0.463 0.021 0.714 0.016
Hmidate 163 0.318 0.019 0.834 0.011
Barrage 162 0.416 0.035 0.864 0.019
Bouhajla_164 0.435 0.016 0.733 0.01

P2 0.581 0.047 0.861 0.029

Comment: “l would now focus on the results. Are the results presented in table 3
qualitatively good? For example, for the RMSE, the introduction of co-variables has a
positive impact in only 57% of cases at best. This also means that in 43% of the
cases the results are worse. | think that a more rigorous statistical analysis would be
necessary to decide whether or not the gain is significant.”

Reply: In the revised paper, the text has been modified to separate between training,
validation and test stations as suggested by reviewer 1. New rates were provided
accordingly. Indeed, not all stations undergo an improvement when process-related



variables are added. As we have clarified in the revised text, a small percentage of
stations undergo a decrease in correlation of more than 0.1 and an increase in
RMSE of more than 0.01. Section 3.2 Intercomparison of ANN models now reads:

«Considering model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, only one training
station had a decrease in correlation by more than 0.1 namely station ‘Lind#1’ (network
‘SCAN’) compared to reference model ANN_SSM. All inputs were not available at the same
dates which implied a significant reduction in data points (cf. appendix F). The decrease in
correlation and increase in RMSE didn’t exceed 0.1 and 0.01 m3/m3 for the rest of stations
of lower performance metrics with the most complex ANN, respectively.

Similarly for validation stations, only one station had a decrease in correlation above 0.1,
namely station ‘PineNut’ (network ‘SCAN’), with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5. This decrease can be also explained
because of data shortage (cf. appendix F). The decrease in correlation and increase in
RMSE didn’t exceed 0.1 and 0.01 m3/m3 for the rest of stations of lower performance
metrics with the most complex ANN, respectively.

Regarding test stations , correlation decrease by more than 0.1 and RMSE increase by more
than 0.01 m3/m3 with model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 compared to
model ANN_SSM was detected for only 2 stations. Both stations, namely station
‘S-Coleambally' and ‘Widgiewa’ which belong to network ‘OZNET’, significantly lose in data
volume when process-related variables are integrated in ANN and more precisely because
of NDVI data availability (cf. appendix F). For the rest of test stations, correlation decreased
and RMSE increased simultaneously by less than 0.1 and 0.01 m3/m3 with model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, respectively.

Table 3. Proportion of the stations which performance enhances using the ANN models
enriched with process-related features compared to model ANN_SSM (*: % of stations at
which the correlation improves over the model ANN_SSM level; **: % of stations at which
RMSE improves over the model ANN_SSM level)

Model Training stations Validation stations Test stations
% of % of % of % of % of % of
stations stations stations stations stations stations
(corr 1)’ (RMSE |)” (corr 1)’ (RMSE |)” (corr 1) (RMSE |)”
ANN_SSM_NDVI 65.82 44.3 45.71 40.0 55.22 40.3
ANN_SSM_TEMP 49.4 25.3 55.56 38.89 59.35 42.99
ANN_SSM_EXP-FILT-T5 64.56 36.71 60.61 42.42 63.68 50.25
ANN_SSM_EVAP-EFF-B60 54.55 28.57 52.94 41.18 52.33 48.19
ANN_SSM_NDVI_EVAP-E 84.06 62.32 61.29 54.84 62.07 54.02
FF-B60_EXP-FILT-T5




Table 4. Proportion of the stations which correlation decreases using the ANN models
enriched with process-related features compared to model ANN_SSM (*A ;o =COIMann ssm—
COITann ssm x, X denotes a or a combination of process-related variables)

Model Training stations Validation stations Test stations
% of % of % of % of % of % of
stations stations stations stations stations stations
corr | and corr | corr | and corr | corr | and corr |
0.05<A "< and 0.05<A "< and 0.05<A,,,*< and
0.1 Agorr™>0. 0.1 Agorr™>0. 0.1 Agor>0.
1 1 1
ANN_SSM_NDVI 3.8 0 2.86 0 9.95 5.97
ANN_SSM_TEM 0 1.2 0 2.78 4.67 3.27
P
ANN_SSM_EXP- 6.33 1.27 3.03 9.09 6.97 3.48
FILT-T5
ANN_SSM_EVAP 10.39 1.3 0 2.94 6.74 5.7
-EFF-B60
ANN_SSM_NDVI 4.35 1.45 6.45 3.23 9.2 6.9
_EVAP-EFF-B60
_EXP-FILT-T5

Comment: “Looking at Figure 4, | am impressed with the quality of the results.
Using complex process models and measuring all the soil properties, | have never
been able to simulate the water dynamics in different layers with such realism. | am
impressed that a neural network trained with data from all over the world is able to
reproduce with such fidelity the moisture levels between layers and the temporal
variations in deep layers. No spurious variations are observed while the surface
signal is particularly impacted by many rain events. If we can highlight the
association of variables that allows such quality results, we have a major result for
the understanding of water dynamics. This point must absolutely be highlighted.”

Reply: As the reviewer mentioned, the ANN model was trained on a wide set of
areas across the world having different climates and soil textures as described in
(Souissi et al., 2020). This coverage across variable conditions contributes to making
the model more generalizable. We didn’'t make a direct comparison of the outputs of
the machine learning approach we used here to the predictions of complex
physically-based models for water flow in variably saturated soils using for example
the Richards-equations. We agree that it may be difficult to calibrate the pedotransfer
functions for variably saturated flow in the soil and for the energy budget. This is
mainly because of the sheer heterogeneity and unconsidered phenomena like
hysteresis in the soil. This is also the main motivation of this paper.



In the revised paper, a paragraph has been added as follows: «As shown in figure 4,
the most complex ANN model is able to capture the variations of RZSM. This finding
supports the added value of our hybrid approach based on an association of a machine
learning method with process-related variables. Instead of injecting uncertain information,
such as soil propetrties, in physical models, we used a nonparametric method that is related
to physical processes without using forcing data going that may be subject to errors and
potentially lead to inaccurate tracking of the long-term evolution of soil moisture.»

Even though the results we obtain are of good quality over a given set of stations,
this is not the case in all conditions. Time series of good and less good quality of fit
have been added in appendix E for training, validation and test stations separately
using models ANN_SSM and ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5
Appendix E now reads:

« Training stations:

Station ‘Beloufoungou Mid’ (network 'AMMA-CATCH’)
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Validation stations

Station ‘Cabrieres D’Avignon’ (network ‘SMOSMANIA’)
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ISMN test stations

Station ‘Wankama’ (network ‘AMMA-CATCH’)
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We have enhanced the discussion of the results obtained in this study with respect
to outputs from previous studies by adding the following paragraph:

«Always in terms of the general performance of model
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, about 756% of the stations have an RMSE
less than 0.05 m*/m? and around half of the stations have an RMSE less than 0.04 m*/m?®,
This accuracy is consistent, for instance, with the target value in SMAP (Entekhabi et al.,
2010) and SMOS (Kerr et al., 2010) missions which is equal to 0.04 m*/m?® and also to the
average sensor accuracy adopted by Dorigo et al. (2013) which is equal to 0.05 m*/m>.
Overall, the most complex model ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 can
successfully characterize the soil moisture dynamics in the root zone since half of the
stations have a correlation value greater than 0.7. Pan et al. (2017) developed different ANN
models to estimate RZSM at depth of 20cm and 50cm over the continental United States
using surface information. They found that half of the stations have RMSE less than 0.06
m*m? and more than 70% of stations have correlation above 0.7 when predicting RZSM at
20cm. However, the developed ANN was less effective in RZSM prediction at 50cm which is
also in accordance with (Kornelsen and Coulibaly, 2014). In our study, the densest soil
moisture network is ‘SCAN’, located in the USA. Soil moisture was predicted at a depth of
50cm over this network. Around half of the stations have a correlation value of above 0.6
and RMSE less than 0.04 m’/m?® after the integration of process-related inputs. Pan et al.,




(2017) suggests that the use of only time-dependent variables may not be sufficient for the
ANN models to accurately predict RZSM and suggests adding soil texture data.»

Also, the training experiments were designed to detect the impact of each process

on the prediction quality. The association of variables is highlighted in figure (cf.
figure 6).

Figure 4 shows the prediction results in Tunisia which sites fall into climate class
‘Bsh’. Stations of similar climates, namely climate class ‘Bsk’ , were used in the

training process. Table 5 was added in section 3.3 Robustness of the approach
(please see Table 5 and updated section 3.3 above).

Also, time series over the Tunisian sites, with models ANN_SSM and
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5, were added in a bigger format in
appendix G as follows:«
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Station P12 (Tunisia)
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Comment: “Finally, on the form, the article does not seem to me well written. Not

being an English speaker, | find the English not very good and the text not always
clear. An subtancial editing work is for me essential.”

Reply: The submitted manuscript was reviewed by the AJE English editing service
(the invoice is attached). The current submitted one has been greatly enhanced and
modified and was thoroughly reviewed.

Comment: “In conclusion, | find the submitted draft article has not reached a stage
of maturity allowing a publication. Some of the results are potentially extremely
important and | therefore invite further analysis.”

Reply: We thank the reviewer for taking the time to review our manuscript. We
appreciate the suggestions for additional results and further analysis which helped
us clarify some points and overall improve the quality of the paper. We believe that
the aforementioned modifications will enrich the paper and we hope that all the
reviewer’s concerns have been addressed. More results and discussions were
added to the revised paper. The appendices were also developed to include for
instance more time series of good and less good quality of fit for training, validation
and test stations separately using models ANN_SSM and
ANN_SSM_NDVI_EVAP-EFF-B60_EXP-FILT-T5 (cf. appendix E).
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