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Abstract 

Sap flow encodes information about how plants regulate opening and closing of stomata in response to varying soil water 

supply and atmospheric water demand. This study leverages this valuable information with data-model integration and deep 15 

learning to estimate canopy conductance in a hybrid catchment-scale model for more accurate hydrological simulations. Using 

data from three consecutive growing seasons, we first highlight that integrating canopy conductance inferred from sap flow 

data in a hydrological model leads to more realistic soil moisture estimates than using the conventional Jarvis-Stewart equation, 

particularly during drought conditions. The applicability of this first approach is, however, limited to the period where sap 

flow data are available. To overcome this limitation, we subsequently train a recurrent neural network to predict catchment-20 

averaged sap velocities based on standard hourly meteorological data. These simulated velocities are then used to estimate 

canopy conductance, allowing simulations for periods without sap flow data. We show that the hybrid model, which uses the 

canopy conductance from the machine learning approach, matches soil moisture and transpiration equally well as model runs 

using observed sap flow data and has good potential for extrapolation beyond the study site. We conclude that such hybrid 

approaches open promising avenues for parametrizations of complex water-plant dynamics by improving our ability to 25 

incorporate novel or untypical data sets into hydrological models. 

1 Introduction 

Globally, about 26 to 40 % of the precipitation that falls on the continents is transpired by vegetation, making it one of the 

dominant fluxes of the terrestrial water cycle (Dingman, 2015). Seasonal variations in plant water use can thus significantly 

affect the water balance of catchments, modify its runoff generation, and change its dynamic water storage (Brown et al., 2005; 30 
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Hrachowitz et al., 2021; Seibert et al., 2017). Understanding the role of ecosystems in catchment hydrology is crucial, 

particularly when investigating the impacts of climate change (e.g. Duethmann et al., 2020). Estimating transpiration at the 

catchment scale is, however, challenging as plant water uptake is difficult to measure, parameterize and scale up from the 

individual plant to the ecosystem level (e.g. Mencuccini et al., 2019). As a consequence, the predictive performance of 

hydrological models, which represent water balance and vegetation dynamics in a physically consisted manner, can be limited 35 

due to the a-priori chosen vegetation process parameterizations and parameter values (e.g. Bennett and Nijssen, 2021; Gharari 

et al., 2021; Mendoza et al., 2015). Improving these uncertain parameterizations requires methods that can combine process-

based hydrological models with new information about how plant transpiration varies with environmental conditions. 

 

Flux towers provide the state-of-the-art evapotranspiration data to train and validate hydrological models. One caveat in using 40 

these measurements is that they represent an effective flux integrating evaporation from the canopy interception store and the 

soil with plant transpiration. An accurate partitioning of this integral flux into its components is, however, of key importance 

for improving transpiration modelling under changing conditions (Stoy et al., 2019), including effects of land use changes such 

as deforestation (e.g. Hrachowitz et al., 2021) and forest regeneration (e.g. Neill et al., 2021). This is a key reason why sap 

flow is used as independent measurement technique to characterize transpiration dynamics in forest (e.g. Granier and Loustau, 45 

1994) and agriculture ecosystems (e.g. Dugas et al., 1994). While originally established in the plant physiology community, 

sap flow data have also proven useful in hydrological research. For instance, Renner et al. (2016) showed that stand 

composition of forests can counteract differences in sap flow on south and north facing slopes leading to similar transpiration 

rates on both expositions. Hoek van Dijke et al. (2019) found that the Normalized Difference Vegetation Index (NDVI) 

successfully captured sap flow dynamics during the green-up phase, although it failed under dry conditions. Hassler et al. 50 

(2018) highlighted that spatial differences of atmospheric demands and soil moisture only explain a small fraction of observed 

spatial variation of sap flow, while site specific factors, like geology and aspect, were more important. These finding imply 

that accounting for relations between vegetation characteristics, hydro-meteorological drivers and catchment properties can 

improve transpiration estimates and exemplifies the potential of using sap flow data to advance hydrological simulations. The 

value of sap flow information is emphasised by the growing availability of global open-source sap flow databases (Poyatos et 55 

al., 2016) that provides opportunities to develop generalized relations to better inform hydrological models at places where no 

sap flow data is available. 

 

Plants adapt transpiration depending on atmospheric water demand and supply. One important regulation mechanism is the 

opening and closing of the pores on their leaves, called stomata, to regulate their CO2 and water vapour exchange with the 60 

atmosphere. This process crucially governs the transpiration of plants, which is also reflected by the wide range of stomatal 

conductance models that are available in hydrological models (e.g. Damour et al., 2010). One issue is that these stomatal 

conductance models typically rely on several site specific parameters and each approach has its own limitations, rendering the 

choice of the “right” process parameterization challenging. In this context it is interesting to note that sap flow can, besides 
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being used to estimate transpiration directly, also be used to infer canopy conductance or stomatal conductance scaled by leaf 65 

area index (LAI). This is done by inverting a simplified formulation of either Fick’s Law or the Penman-Monteith equation 

(e.g. Ewers and Oren, 2000; Köstner et al., 1992; Phillips and Oren, 1998). 

 

While the complex interactions between soil water supply, vegetation behaviour and meteorology are challenging to 

parameterize in bottom-up empirical or physically based stomatal conductance models, machine learning methods have 70 

recently proven to be a particularly useful alternative to reproduce ecohydrological behaviour and estimate transpiration (e.g. 

Fan et al., 2021; Zheng et al., 2021). However, despite their recent success, machine learning approaches also have 

shortcomings as they do not ensure mass and energy conservation and lack physical constraints. The latter renders extrapolation 

and simulation under changing boundary conditions challenging. Hybrid models that combine physical knowledge of process 

equations with the flexibility of data driven predictions are therefore a promising tool to estimate fluxes and state variable in 75 

the earth system (e.g. Reichstein et al., 2019). 

 

In this study, we propose and test a hybrid machine learning approach to integrate sap flow data into process-based hydrological 

model, and explore opportunities for improving soil moisture and transpiration estimates at the catchment scale. Specifically, 

we leverage an extensive sap flow dataset, spanning a drought period, in a sub catchment of the well-monitored and well-80 

studied Attert experimental observatory (Pfister et al., 2002). We first integrate canopy conductance inferred from sap flow 

data into a process based hydrological model and compare its performance to the benchmark model that uses an empirical 

stomatal conductance equation. We then train a recurrent neural network based on standard hourly meteorological data, to 

predict sap flow beyond the temporal extent of the training period. These simulated velocities are then used to estimate canopy 

conductance, allowing us to replace the empirical stomatal conductance equation in the hydrological model on forward 85 

simulations beyond the monitoring periods. Our results support the value of such hybrid model approaches by comparing the 

different model variants against each other and against hydrological data such as soil moisture and discharge. Importantly, we 

highlight the value of sap flow measurement campaigns for improving simulation at the catchment scale. 

2 Materials and methods 

2.1 Study area  90 

The Weierbach is a 0.44 km2 large experimental headwater catchment, nested in the Colpach catchment and located in 

Luxembourg (Fig. 1; Hissler et al., 2021). The catchment is characterized by coarse-grained and highly permeable soils and a 

slate bedrock (Ardennes massif). The climate is temperate semi-marine, mean annual rainfall is 950 mm and mean monthly 

temperatures range between 0°C in January and 17°C in July. Precipitation is evenly distributed across the seasons while the 

runoff generation has a distinct seasonal pattern with around 80% of the annual discharge is released between October and 95 
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March (Loritz et al., 2021). The Weierbach catchment is entirely forested and dominated (>70%) by deciduous beech trees 

(Fagus sylvatica) and oak trees (Quercus spec). A detailed description of the Weierbach catchment and a comprehensive open 

access hydrological data set can be found in Hissler et al. (2021). The Colpach is the parenting catchment of the Weierbach, 

located in the same hydro-pedological area and characterized by a similar runoff generation and formation (Loritz et al. 2019), 

but it comprises a larger variety of land cover types (65 % forest, 35 % agriculture). 100 

 

 

Figure 1 (a) Map of the Colpach and Weierbach catchment (location northern Luxembourg) indicating the gauges,  soil moisture 

and sap flow sensors (b) picture of a typical forested hillslope within the Colpach catchment with installed sap flow sensors, and (c) 

the Colpach River around 4km north of the gauging station. 105 

2.1.1 Hydro-meteorological data 

This study requires hourly meteorological data to force the water balance simulations and to calculate canopy conductance. 

For all these purposes, we use data records from April 2014 to October 2016. We obtain air temperature (°C), relative humidity 
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(%) and rainfall data (mm hr-1) from the Holtz meteorological station available in the open-access dataset from Hissler et al. 

(2021). We obtain wind speed (m s-1) and global radiation (W m2) measurements from a meteorological station around 500 m 110 

south-east of the catchment available from the Catchment as Organized Systems (CaOS) project observation network (Zehe et 

al., 2014). Additionally, we use discharge data and averaged soil moisture from Hissler et al. (2021) at 10 and 60 cm depth 

(based on six individual sensors in each depth) to quantify the performance of hydrological model simulations. Soil moisture 

was additionally corrected for a stone content of 10 and 30 % in 10 and 60 cm based on several soil profiles in the research 

area (Jackisch, 2015). 115 

2.1.2 Sap velocity measurements 

We use hourly sap velocities (cm h-1), the rate of water flow through a tree, from three growing seasons (April – October; 2014 

– 2016) of an extensive measurement campaign in the Colpach catchment (detailed description in Hassler et al., 2018). We 

use a subset of the original data set of Hassler et al. (2018) comprising 32 trees, including 17 beech trees (Fagus sylvatica), 

11 oaks (Quercus spec.), 2 hornbeams (Carpinus betulus) and 2 common alders (Alnus glutinosa) with individual tree 120 

diameters at breast height ranging from 8 to 80 cm (average 32 cm). Sample distribution ranges from north to south facing 

slopes and up- and downslope sectors, specifically selected to capture the typical hydro-pedological characteristics of the 

Colpach and the Weierbach. The campaign equipped each tree before leaf out of the growing season with sap flow sensors, 

manufactured by East 30 (Washington, USA). The sensors have three measurement depths, at 5, 18 and 30 mm in the xylem 

and measure sap velocity with the heat ratio method (Campbell et al., 1991, Burgess et al. 2001; Hassler et al 2018). We 125 

estimate tree-specific sap velocities by calculating the median from the measurements at the three different xylem depths. We 

use the median to account for the skewed distribution of sap velocities inside the sap wood, as sap velocities typically decrease 

closer to the heartwood (e.g. Gebauer et al. 2008, Jackisch et al. 2020). 

2.1.3 Catchment-level sap flow based transpiration 

This study focuses on catchment-level transpiration to circumvent the challenge and uncertainty of characterizing transpiration 130 

from individual tree sap flow (e.g. Gebauer et al., 2008; Zhang et al., 2015) and to remain scale consistent with simulated 

transpiration of the hydrological model. We employ an integral approach, assuming that the tree sample is representative for 

the age spectrum in the catchment and that trees dominate transpiration in this forested catchment compared to understory and 

herbaceous vegetation. We average the 32 tree-specific sap velocities to obtain a time series representing an average tree in 

the study area. We then obtain average hourly catchment-level sap flow based transpiration per unit ground area (Tsap, m s-1) 135 

by multiplying the catchment-averaged sap velocity by the catchment-averaged tree density of 42 m2 ha-1 (Hassler et al 2018). 

This calculation assumes that water storage in the tree relative to the transpiration flux is negligible. Therefore, the observed 

daytime water flux through the tree is equal to the transpiration flux through the leaves into the atmosphere, with negligible 
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time lags between dynamics of sap flow (converted to ����) and environmental variables (Tyree and Ewers, 1991). We use 

Tsap data to derive observation-based canopy conductance estimates and to evaluate model simulations. 140 

2.2 Hydrological model CATFLOW 

We model the water balance of the Weierbach with CATFLOW (Maurer, 1997; Zehe et al., 2001), a process-based 

hydrological model. CATFLOW discretizes hillslopes along a 2-dimensional cross-section using curvilinear orthogonal 

coordinates and a storage weighting function to represent the varying hillslope width. The model simulates soil water dynamics 

based on the Darcy-Richards equation and represents surface runoff by a diffusion wave approximation of the Saint-Venant 145 

equation. CATFLOW estimates three components of the evapotranspiration flux per unit ground area, namely 1) direct 

evaporation of canopy interception, 2) transpiration from canopy leaves and 3) soil water evaporation, separately with a surface 

energy balance approach using the Penman-Monteith equation. For each component, soil, canopy (section 2.2.2) and canopy 

interception conductances are each parameterized differently with a set of empirical equations. Additional CATFLOW model 

descriptions can be found in Loritz et al. (2021) and in Loritz et al. (2017). 150 

2.2.1 CATFLOW implementation of three canopy conductance variations 

We implement three approaches to estimate canopy conductance in the Penman-Monteith equation for transpiration in 

CATFLOW. The benchmark model implements canopy conductance calculated by the empirical Jarvis–Stewart equation, 

which is the built-in stomatal conductance equation of CATFLOW (gcJarvis; section 2.2.2) scaled by the LAI. The second 

model variant is a model-data integration, which implements canopy conductance based on hourly observed sap flow data for 155 

all three growing seasons from 2014 to 2016 (gcsap; section 2.2.3). The third model variant is a hybrid model, which 

implements canopy conductance based on sap flow predictions from a deep learning network (gcDL; section 2.2.4). 

2.2.2 Benchmark model: Canopy conductance from the reference empirical canopy conductance 

equation (gcJarvis) 

The Jarvis–Stewart model (Jarvis, 1976; Stewart, 1988) is a widely applied empirical equation for stomatal conductance as a 160 

function of plant available radiation (W m-2), vapour pressure deficit (Pa), temperature (°C), matric water potential of the soil 

(m), and is implemented in CATFLOW. The canopy conductance per unit ground area (gcJarvis) is calculated from the leaf-

level stomatal conductance scaled by leaf area index (LAI, m2 leaf m-2 ground). Parameters of the Jarvis–Stewart model are 

prescribed according to a lookup table and are based on mean parameter values (e.g. rooting depth, plant albedo, interception 

capacity, etc.) for beech trees taken from Breuer et al. (2003). LAI measurements are taken from satellites observations and 165 

change daily. We used the Visible Infrared Imaging Radiometer Suite (VIIRS) LAI product at an 8-day and 500 meter 

resolution (product name VNP15A2H). We extracted data for the entire simulation period for each pixel in the basin area of 

the Colpach catchment (70 pixels). We filtered the data to only process high quality cloudless images and created an averaged 
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interpolated daily time series for the whole Colpach catchment area. The model variant that uses gcJarvis to estimate 

transpiration serves as benchmark model in this study. 170 

2.2.3 Model-data integration: Canopy conductance from sap velocity measurements (gcsap) 

We use a big-leaf approach, in line with most catchment-scale transpiration models, to infer conductance to water vapour per 

unit ground area (gcsap; m s-1) from sap velocity and meteorological data (wind speed, air temperature, and relative humidity). 

We assume a well-mixed, convective boundary layer during daytime, with high wind speed, small leaves, and similar leaf and 

air temperature. Given these common simplifying assumptions (e.g. Ewers and Oren, 2000; Köstner et al., 1992), we neglect 175 

leaf boundary layer conductance and approximate the difference in water vapour concentration driving the vapour diffusion 

through the saturated air space in the leaves to the atmosphere by the air vapour pressure deficit (es – ea; Pa). Hence, we can 

invert Fick’s Law following Monteith and Unsworth (2013) to calculate total water vapour conductance gtsap (m s-1) as: 

 

����	 =
��

���������
����  

(1) 

 

where � is the psychometric constant (Pa K-1); � is the latent heat of vaporization of water (MJ kg-1) ; �� is the specific heat 180 

of air (J kg-1 K-1 ); � is air density (kg m-3) ; �, �, ��, � are all a function of air temperature; and ���� (m s-1) is the average 

catchment transpiration rate derived from sap velocities (catchment averaged sap flow velocity multiplied by the basal area of 

the stand; 0.0042 m2 m-2; Hassler et al., 2018).  

 

The total conductance gtsap represents the series of both gcsap and the aerodynamic conductance (ga, m s-1). The latter is 185 

estimated from wind speed and canopy height following the FAO reference approach (Allen et al. 1998). Finally, we obtain 

the time series of canopy conductance gcsap inferred from sap velocities as: 
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This big leaf approach assumes that all canopy leaves in the catchment respond to the same environmental conditions and 

behave in the same way. This is reasonable, because hydro-meteorological data explained only a small fraction of spatial 190 

variability in sap flow velocities in the study site (Hassler et al., 2018). 

 

We implement canopy conductance inferred from observed and simulated sap velocities (gcsap, gcDL explained in section 

2.2.4) in CATFLOW only during the time steps for which the assumptions of Eq (1) are met (Köstner et al., 1992; Phillips 

and Oren, 1998): dry canopy (canopy interception storage < 0 mm); daytime (between 6:00 and 22:00); well-mixed atmosphere 195 



8 

 

(
�

��
 is at least 5 s m-1 larger than 

�

� 
); air vapour pressure deficit > 100 Pa. When these conditions are not met, the transpiration 

flux and stomatal conductance are generally low (typically in the morning or evening) and we fill in the gaps with canopy 

conductance estimates from the built-in Jarvis–Stewart model. We need to fill the gaps because CATFLOW requires a 

continues gc time series larger than zero to solve the Penman-Monteith equation. We smooth canopy conductance time series 

inferred from observed and predicted sap velocities using a rolling mean with a three hour window that uses the three previous 200 

time steps to allow forward simulations. This pre-processing step is required because Eq. 1 is very sensitive to small changes 

of sap flow in the morning and evening hours when the vapour pressure deficit is typically low. As the variance of the sap flow 

measurements is highest during these periods (morning and evening) the gcsap estimate can be noisy and uncertain. 

2.2.4 Hybrid model: Canopy conductance from deep learning based sap flow predictions (gcDL) 

We train a recurrent neural network to estimate hourly sap flow using the 2014 and 2016 data for training and the growing 205 

season of 2015 for testing. We choose the 2015 growing season as the test period because it has been identified as a drought 

year, during which transpiration was impacted by plant water stress (Hoek van Dijke et al., 2019). We chose to predict sap 

flow and afterwards calculate the canopy conductance and not canopy conductances directly as the performance differences 

between the two approaches are minor. However, adding the intermediate step of estimating sap flow highlights that sap flow 

(an independent observation) can be predicted by a recurrent neural network and opens the option to 1) calculate transpiration 210 

directly in case catchment averaged plant specific parameters are available or 2) to validate the machine learning model in case 

additional sap flow sensors become available (Appendix A1). The deep learning network is driven by the same hourly 

meteorological inputs as the catchment models (temperature, relative humidity, global radiation, rainfall and wind speed). 

 

The hyperparameters and the model architecture of the deep learning model was found within multiple trial-and-error runs. 215 

Initially, we trained different model realizations (e.g. hidden size, learning rate, sequence length, batch size and dropout) and 

different network types (e.g. artificial neural networks (ANN), long short-term networks (LSTM), gated recurrent networks 

(GRU)) on the growing season 2014 and tested these different realizations in the growing season 2016. The best model, 

measured by the root mean square error (rmse), was used afterwards, without any changes, to estimate the sap flow in the 

growing season 2015, using the 2014 and 2016 growing season as training. Both RNNs (GRUs and LSTMs) outperformed 220 

different ANNs realizations but showed on average similar performances. We chose GRUs as they need less computational 

time and have slightly less weights, biases and no cell state.  

 

The identified network consists of four layers with 128 hidden states and uses a sequence length of 96 hours (lag time of 96 

hours preceding the prediction time step). The first two layers of the network use GRU units; they are followed by a third 225 

linear layer with a relu activation function; finally the output is a linear layer without an activation function. We add 40 % 

dropout between the layers to avoid overfitting to the training data (regularization). We use the mean-square error as loss 



9 

 

function, train the model in 15 epochs with a batch size of 360 and report the rmse in the results. We use an ADAM optimizer 

with a fixed learning rate schedule. The initial learning rate is set at 1e-3 and decreases after 5 epochs by a factor of 0.5. 

Additionally, after the 12 epoch we use a stochastic weight averaging (SWU) approach with a learning rate of 0.0001 to 230 

improve the ability of the network to generalize in comparison to using exclusively an ADAM optimizer for the last two 

epochs. We use the simulated sap flow velocities to estimate gcDL using the same method and under the same environmental 

condition as applied to estimate gcsap (Eq. 1-2). Fig. 2 shows a flow chart of the different modelling steps when the hybrid 

model approach is applied in combination with the RNN. 

 235 

Figure 2 Flow chart of the hybrid model that combines a recurrent neural network (RNN) and a process-based hydrological model 

to estimate transpiration. 

2.2.5 CATFLOW parameterization 

We use the well-tested, representative hillslope model from Loritz et al. (2017, 2021) to simulate the water balance of the 

Weierbach using CATFLOW. The representative hillslope model was setup based on field data for the bedrock topography, 240 

soil properties and surface topography. The model was fine-tuned by exclusively adjusting the spatially explicit macropore 

network (approach described in detail in Wienhöfer and Zehe, 2014) with the goal of matching the seasonal water balance and 

the hydrograph of the parenting Colpach catchment during the hydrological year October 2013 to October 2014. Loritz et al. 

(2017) showed that the representative hillslope model predicts the hydrograph of the Weierbach with a Nash-Sutcliff efficiency 

(NSE) of ≈ 0.7 and a Kling Gupta efficiency of ≈ 0.8 for the hydrological year 2012/13 (test period) and the hydrological year 245 

2013/14 (training period) individually. 

 

The simulation period in this study starts on the 1st of April 2014 and runs until 31th October 2016. This is preceded by a model 

spin-up starting in October 2013 with initial states of 70% volumetric water content. We are using the exact same 
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parameterization as explained in detail in our previous studies (Loritz et al., 2017, 2021) and do no re-calibration of any model 250 

parameters besides changes described above to estimate the canopy conductance. 

3 Results 

3.1 Sap flow data-model integration provides realistic canopy conductance and water balance 

estimates for a temperate beech forest  

The daily averaged canopy conductance (m s-1) inferred from the sap flow measurements (gcsap) and those estimated by the 255 

a-priori parameterized CATFLOW built-in stomatal conductance equation (gcJarvis) correlate well (spearman rank correlation 

between gcJarvis and gcsap is 0.85, the Pearson correlation is 0.75), although gcJarvis estimates are on average lower and show 

less temporal fluctuations than gcsap (Fig. 1a). The latter is underpinned by a low Kling-Gupta efficiency coefficient (Gupta 

et al., 2009) of 0.15 and a rmse of 0.01 m s-1. The gcsap estimates are within a reasonable range for a beech-dominated 

temperate forests and comparable to literature values using a similar approach (inverse Penman-Monteith equation) based on 260 

six beech trees in the Czech Republic (Su et al. 2019). Differences between gcJarvis and gcsap are also reflected, although 

weaker, in the monthly transpiration estimates (Fig. 1b). The CATFLOW model variant using gcsap (model-data integration) 

estimates about 130 mm more transpiration compared to the benchmark model variant using gcJarvis for all three hydrological 

years, with the largest monthly difference of 21 mm month-1 in May 2015 (31 mm of total rainfall in May 2015). 

 265 

Implementing gcsap instead of gcJarvis in CATFLOW has only a weak effect on simulated runoff with a slight decline of the 

NSE from 0.75 to 0.7 over the three-year period. This decrease in predictive performance likely occurs because the macropore 

network was tuned to optimize the streamflow of the Weierbach with gcJarvis and not gcsap. This entails that a better 

performance could likely be achieved by tuning the macropore network once more with gcsap. However, we do not to perform 

further CATFLOW calibrations because our goal is to demonstrate the value of sap flow data in improving transpiration and 270 

soil moisture estimates and do not aim to obtain the highest performance in streamflow simulation (Appendix A2). 
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Figure 3. a) daily averaged canopy conductance estimates for gcsap (green) and gcJarvis (orange); b) monthly transpiration sums 

estimated using gcsap (green) and gcJarvis (orange); observed (blue) and simulated soil moisture ± standard deviation of the 

corresponding simulation and observations (gcsap: green; gcJarvis: orange) at 10 (c) and 60 cm depth (d). Highlighted in yellow is a 275 
dry period from July to August 2015. 

3.2 Ecohydrological simulations differ most during drought periods 

Noticeable ecohydrological relevant model improvements using gcsap occur during drought periods. For instance, 61 days of 

the three year record had close to no runoff (> 0.001 mm h-1) observed in the Weierbach creek. This period is only slightly 

overestimated by CATFLOW using gcsap (63 days), while it is substantially underestimated using the benchmark model with 280 

gcJarvis (46 days). Both model variants (gcJarvis and gcsap) correlate well with the observed soil moisture in 10 and 60 cm 

with Spearman rank coefficients of around 0.9. However, simulations using gcsap result in overall lower soil moisture values 

with the largest difference in October 2015 (Fig. 1a and b). Using gcsap instead of gcJarvis reduces the rmse in the 2015 

growing season from 0.033 to 0.01 (0.046 to 0.034) m3 m-3 at 10 (and 60) cm depth. Furthermore, using gcsap instead of 

gcJarvis leads to an average of about 2 mm less catchment storage after each of the three growing seasons. These storage 285 

differences are almost completely recharged in winter, typically until January, due to the wet autumns in the region. However, 
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after the three growing seasons, the bedrock water storage (characterized by very low hydraulic conductivities and low 

porosities) is on average 2 to 4 % lower when using gcsap compared to gcJarvis after three years of simulations. 

3.3 Recurrent neural networks accurately extrapolates sap flow data to different time periods and 

locations 290 

Fig. 3a displays hourly simulated sap flow (cm h-1) estimated by the deep learning model against observed sap flow (cm h-1) 

at daytime (6:00 and 22:00) of the growing season 2015 (test period). Simulated sap flow differs from observed sap flow by 

an rmse of 0.8 cm h-1 during the training period (growing seasons 2014 and 2016) and 1.1 cm h-1 during testing period. If 2014 

and 2015 are used as training period and 2016 as test period the rmse during the test period drops to 0.9 cm h-1 and if 2015 and 

2016 are used as training and 2014 as test the rmse drops to 0.84 cm h-1. The spearman rank correlation between the observed 295 

and simulated sap flow in the test period is 0.91, indicating the ability of the deep learning model to capture the general 

dynamics of sap flow using hourly meteorological data as predictors. Sap flow during the dry spell in July and August 2015 is 

on average overestimated by the deep learning model. However, when adding randomly picked 15 continuous days of the dry 

period to the training sample (and removing those from the test sample) this bias and the rmse are significantly reduced to 0.85 

cm h-1. Furthermore, we also tested the ability of the deep learning network to predict sap flow in a nearby catchment with a 300 

different geological and pedological setting but similar forest landcover. This first test suggests that the deep learning network 

can predict sap flow also in this test catchment even with lower errors as in the training catchment. This good out of sample 

performance points to the algorithm’s ability to also extrapolate to higher unseen sap flows without further training (Appendix 

A1) while the test with the 15 randomly picked continuous days hints towards an inability of the ML approach to extrapolate 

to unseen dry conditions. 305 

3.4 The hybrid model provides accurate canopy conductance and water balance estimates 

The canopy conductance inferred from the observed sap flow (gcsap) and based on the simulated sap flow (gcDL) are compared 

in Fig. 4b. The two estimates differ by a rmse of 0.01 m s-1 in the test period and have a Spearman rank correlation of 0.9. The 

relation between the conductance estimates based on observed, gcsap, and simulated sap flow, gcDL; is characterized by more 

and stronger outliers (residual larger than 0.025 m s-1, Fig. 4b). Note that more than 75 % of these outliers occur in the morning 310 

(6:00 to 10:00) or evening time (16:00 to 22:00). During these times, the Fick’s law approximation is very sensitive to little 

changes in sap velocities but transpiration is typically very low during these periods. This is further underpinned by the 

comparison of monthly transpiration sums displayed in Fig. 4c. The differences in using gcsap or gcDL are less than 3 mm 

month-1 during the majority of the growing season 2015 and increase only in July and August to 7 and 9 mm month-1. In this 

period, sap flow and to a smaller extent the corresponding gc values are systematically overestimated by the recurrent neural 315 

network (Fig. 4a). As stated above, adding 15 dry days to the training data can reduce these biases and decrease the transpiration 

differences in July and August below 4 mm month-1. However, even without changing the training data of the recurrent neural 

network, the effect on simulated soil moisture dynamics is minor (Fig. 4d). This is because the gcDL based model slightly 
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underestimates transpiration in May and June, which is then compensated in July and August and the simulated soil moisture 

from gcDL and gcsap differ only by a rmse of 0.003 m3 m-3 in 20 and 0.002 m3 m-3 in 40 cm from 1st May 2015 to 31thOctober 320 

2015. 

3.5 The hybrid model improves the diurnal cycle of canopy conductance compared to the 

benchmark model 

Fig. 5 shows three diurnal cycles of gcJarvis, gcsap and gcDL in June, July and August. gcsap is about twice as high in June 

compared to August and shows a stronger decline in conductance during midday in July and August. While such patterns are 325 

typical for humid forests under dry conditions (Su et al., 2019), they are not or only weakly captured by the Jarvis-Stewart 

model (gcJarvis), which suggests a relatively constant conductance during day time. As already indicated by the high 

correlation between gcDL and gcsap, the former also captures the dynamics of the diurnal cycles well. However, the gcDL 

model under- or overestimates several peaks, particular during the morning and evening hours. This is in line with Fig. 4b and 

explains the larger spread of the gc estimates in contrast to sap flow predictions. The absolute cumulated difference of the 330 

transpiration estimates using either gcDL or gcsap in the chosen three-day period is with 0.01, 0.014 and 0.07 mm day-1 low 

and highlights that errors in gc estimates in the morning and evening are less important for transpiration estimates. 
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Figure 4. a) hourly observed catchment-averaged sap flow and simulated sap flow in the growing season 2015; b) hourly canopy 335 
conductances based on the hourly observed sap flow (gcsap) and simulated sap flow (gcDL); orange points in a and b are simulations 

or observations within the dry period of July and August 2015; c) monthly transpiration sums estimated by gcsap (green) and gcDL 

(purple); d) observed (blue) and simulated soil moisture (gcsap: green; gcDL: purple) in 20 cm. Highlighted in yellow is a dry period 

from July to August in the growing season 2015. 
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 340 

Figure 5. Hourly canopy conductances of gcsap (green), gcJarvis (orange) and gcDL (purple) for three selected days in June, July and 

August in the growing season 2015.  

4 Discussion 

4.1 Integrating sap flow data in a catchment-scale hydrological model  

The comparison between both stomatal conductance models revealed that the a-priori parameterized Jarvis-Stewart model 345 

(Jarvis, 1976; Stewart, 1988), in combination with the satellites based VIIRIS LAI values, clearly underestimated the canopy 

conductance, particularly during the spring and early summer. This bias could potentially be corrected by tuning the parameters 

of the Jarvis–Stewart equation. However, beyond revealing absolute errors in the seasonal cycle, the sap flow based stomatal 

conductance model also demonstrates that the Jarvis–Stewart model is not able to reproduce diurnal hydraulic feedbacks along 

the soil-plant-atmosphere continuum reflected in the dips in canopy conductance during the mid-day water stress period. 350 

Mechanistic understanding of these stress responses in plant water flow is still limited and representing them using existing 

eco-physiological models is challenging, especially beyond the individual tree (e.g. Grossiord et al., 2020; Kannenberg et al., 

2022; Novick et al., 2019). On the other hand theses dynamics are embedded in the sap flow data and were adequately 

reproduced by the recurrent neural network for the purpose of hydrological modelling. The latter entails that the hybrid model 

approach presented in this study may be more accessible to catchment hydrologist versus getting to deep in the plant 355 

ecophysiological modelling with its promises and dangers. Therefore, learning this information from sap flow data with a 

recurrent neural network provides an avenue for catchment models to reproduce plant hydraulic behaviour without explicitly 

parameterizing the soil-plant-atmosphere continuum at the catchment scale, which is complex and uncertain (Mencuccini et 

al., 2019). 
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Our results go beyond the established approach of estimating canopy conductance from sap flow data by directly integrating 360 

the data in a catchment-scale hydrological model and improving water balance simulations. Additionally, we can demonstrate 

the value of sap flow data in identifying suitable catchment-specific model parameterizations (Gupta et al., 1999) and show 

how the stomatal conductance model can be replaced by a data model integration. Using the sap flow to calculate canopy 

conductance instead of transpiration has thereby the advantage of omitting species-dependent errors in estimating the sap wood 

area and sap velocity distributions within the xylem. Faulty estimates of these parameters can lead to an overestimation of 365 

daily water use of up to 78 % for oak trees and -42 % in case of oriental arborvitae trees as shown by Zhang et al. (2015). 

Nevertheless, the results of the recurrent neural network underpins the possibility to predict sap flow with a machine learning 

approach. This approach could then be extended to estimate transpiration based on catchment averaged species dependent 

parameters, which could, for instance, be estimated by LiDAR measurements (Fassnacht et al., 2016). 

4.2 Predicting canopy conductance using sap flow and a recurrent neural network  370 

Recent studies have shown the large potential of decision tree based machine learning algorithms for ecohydrological 

applications with a focus on predicting sap flow (Ellsäßer et al., 2020) or stomata conductances (Saunders et al., 2021) using 

meteorological data. In this study, we showed that recurrent neural networks are also suitable tools to predict sap flow by 

exclusively using meteorological variables as input. Only during the dry period in the growing season 2015 where the dormant 

trees most likely experienced water stress (Hoek van Dijke et al., 2019) did the deep learning network systematically 375 

overestimate sap flow. The latter was the reason to choose 2015 as test period and not 2016, which would have kept the 

chronological order and led to overall lower errors without bias. Initial tests reveal that adding randomly picked 15 continuous 

days during the drought period to the model training can reduce the residuals as well as the bias significantly, although soil 

moisture data were still not included as input. This indicates the potential of the recurrent neural network to mimic sap flow 

also under water stress and solely based on meteorological input. The latter entails that the information about the drought 380 

period is already within the meteorological input and different aggregations and combinations of the input variables, for 

instance, by estimating drought indices like the standardized precipitation index (SPI) could potentially further improve the 

prediction of sap flow under limited water availability. This study highlights thereby the potential of the introduced deep 

learning approach, but a more systematic investigation is required. Specifically, a next step could be to explore the potential 

of implementing the recurrent neural network such that the internal hydrological model states (especially soil water status) 385 

affect the sap flow predictions and the corresponding conductances. A similar hybrid modelling approach has, lately shown 

large potential to represent turbulent heat fluxes in hydrological models (Bennett and Nijssen, 2021). 

4.3 Generalizing canopy conductance models based on sap flow data 

This study is based on an unique data set with several sap flow sensors installed in different trees and locations as well as over 

several growing seasons (Hassler et al., 2018). Such data sets are labour intensive and rare although sap flow monitoring has 390 
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become more common. While our proof of concept is limited to well-monitored experimental catchments, initial tests show 

that the recurrent neural network is capable of reproducing sap flow in a neighbouring catchment, characterised by a similar 

forest structure but different hydro-pedological setting, even with lower residuals (Appendix A1). Approaches like transfer 

leaning, a concept to pre-train layers in a deep learning network on a large data set and only fine tune a subset of these layers 

in the destination area, might be used to predict sap flow also in a catchment with very little sap flow data available. 395 

Additionally, global and open data sets like SAPFLUXNET (Poyatos et al., 2016) in combination with catchment or forest 

properties offer opportunities to generalize our proposed approach .While machine learning predictions cannot directly 

advance understanding of the soil-plant-atmosphere continuum, we nevertheless show that they can be an improvement 

compared to reference empirical models that, if ill parameterized (Damour et al., 2010), are known to poorly capture non-

linear responses of plant water stress at the seasonal and diurnal time scales. Using machine learning sap flow predictions in 400 

combination with the inversed Fick’s law offers hence the possibility to replace stomatal conductance models entirely in 

hydrological models. 

5 Conclusion 

The main findings from our study leveraging sap flow data and machine learning in a catchment-scale model are as follows: 

1. Hourly, catchment averaged sap flow can be used to estimate canopy conductance and inform a process based 405 

hydrological catchment model to improve soil moisture and transpiration estimates. 

2. Seasonal and diurnal model improvements were notable during drought periods when the reference empirical 

model underestimated plant water stress and point to the valuable ecohydrological information encoded in sap 

flow data. 

3. Recurrent neural networks are suitable tools to predict sap flow by exclusively using meteorological variables as 410 

input and offer promising avenues for developing generalized canopy conductance models for forward 

simulations beyond the monitoring time period and catchment location. 

 

This study highlights the potential of sap flow data for improving hydrological simulations at the catchment scale by either 

constraining or informing hydrological models. We argue that sap flow sensors measure crucial information about one of the 415 

major fluxes of the hydrological cycle and should become the norm in experimental hydrology as soil moisture sensors, 

piezometer or gauging station are already today. 
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Code and data availability. Codes to estimate canopy conductance from sap flow and the RNN are publicly available at 

zenodo.org (10.5281/zenodo.6821189). The meteorological data and the soil moisture data is also publicly available at 420 

zenodo.org (https://doi.org/10.5281/zenodo. 4537700). The sap flow data is available from Theresa Blume and Markus Weiler 

on request. 
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Appendix 

A1 Sap flow predictions in Huewelerbach 

The Huewelerbach is a 2.7 km2 large headwater catchment located in Luxembourg within the experimental Attert basin (Pfister 440 

et al., 2002). The prevailing geology is sandstones above an impermeable layer of clay stones. The climate is temperate semi-

oceanic, mean annual rainfall is 845 mm (Pfister et al., 2017) and mean monthly temperatures range between 0°C in January 

and 17°C in July. The catchment is entirely forested and dominated by deciduous beech trees. Meteorological data to run the 

recurrent neural network in this Appendix consisted of hourly global radiation (W m2), temperature (°C), wind speed (m s-1) 

and relative humidity (%). Temperature and relative humidity are measured at a meteorological station located 3 km south of 445 

the catchment from a station operated by the “Administration des Services Techniques de l'Agriculture” (ASTA). Wind speed 

and global radiation are measured at a meteorological station in close proximity of the catchment that belonged to the CAOS 

Project observation network. 

 

We use sap flow velocities from one growing seasons (April – October 2015) measured within or in close proximity to the 450 

Huewelerbach catchment. Tree species consist of 27 beech trees (Fagus sylvatica) 7 Oaks (Quercus spec.), and 2 hornbeams 

(Carpinus betulus) with individual tree diameter at breast height ranging from 22 to 91 cm (average 53 cm ). Sap flow was 

measured and aggregated similarly as described in the method section. 

 

Fig. A2 shows the simulated and observed hourly sap flow in the Weierbach and Huewelerbach for the growing season 2015. 455 

Sap flow was predicted using the same recurrent neural network trained exclusively in the Weierbach (growing season 2014 

and 2016). There was no further change to that network. The recurrent neural network was capable of predicting sap flow in 

the Huewelerbach in better agreement with the observations than in the training catchment. One main reason for this 

performance increase is that although in close proximity to the Weierbach the dormant trees in the Huewelerbach did not 

experience water stress in 2015 most likely due to a large and accessible groundwater store (Hoek van Dijke et al., 2019). 460 

Other factors including, as higher quality meteorological data or (potentially) sap flow data might also play a role but were not 

further investigated. Interestingly, the recurrent neural network is capable to simulate overall higher sap flow in the 

Huewelerbach although such values have not been observed in the Weierbach. This supports the ability of the recurrent neural 

network to extrapolate in different sites. 



20 

 

 465 

Figure A1 a) hourly observed catchment-averaged sap flow and simulated sap flow in the growing season 2015 in the Weierbach 

catchment; b) hourly observed catchment-averaged sap flow and simulated sap flow in the growing season 2015 in the Huewelerbach 

catchment; orange points in a and b are simulations or observations within the dry period of July and August 2015. 

 

A2 Comparison of the observed and simulated discharge 470 

Fig. A2 displays the observed discharge of the Weierbach catchment, the simulated discharge of the benchmark model 

(gcJarvis) and the model-data integration that uses gcsap to estimate the transpiration. The performance of the gcsap based 

model is reduce from a NSE of 0.75 to 0.7. The main difference between the two models are in the period after the growing 

season when the model that uses gcsap simulates too little discharge. Runoff generation in CATFLOW particular when the soil 

is dry is significantly influenced by the spatial explicit macropore network and by the extend of the riparian zone. The decrease 475 

in predictive performance can hence likely be explained by the fact that the macropore network was tuned to optimize the 

streamflow of the Weierbach with gcJarvis and not gcsap. 
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Figure A2 observed discharge of the Weierbach catchment, simulated discharge of the benchmark model (gcJarvis) and simulated 

discharge of the model data integration that using gcsap to estimate transpiration. 480 
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