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Abstract. While El Niño–Southern Oscillation (ENSO) teleconnection has long been used in statistical hydroclimatic 

forecasting, global climate models (GCMs) provide increasingly available dynamical precipitation forecasts for hydrological 

modelling and water resources management. It is not yet known to what extent dynamical GCM forecasts provide new 

information compared to statistical teleconnection. This paper develops a novel Set Operations of Coefficients of 

Determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO 15 

teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information 

for GCM forecasts and Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts 

(Niño3.4 index) from Niño3.4 index (GCM forecasts). A case study is devised for the Climate Forecast System version 2 

(CFSv2) seasonal forecasts of global precipitation in December-January-February. The results show that the overlapping 

information for GCM forecasts and Niño3.4 index is significant for 34.94% of global land grid cells, the differing information 20 

in GCM forecasts from Niño3.4 index is significant for 31.18% of grid cells and the differing information in Niño3.4 index 

from GCM forecasts is significant for 11.37% of grid cells. These results confirm the effectiveness of GCMs in capturing the 

ENSO-related variability of global precipitation and illustrate where there is room for improvements of GCM forecasts. Overall, 

the bootstrapping-based significance tests of the three types of information facilitate in total eight patterns to disentangle the 

close but divergent association of GCM forecast correlation skill with ENSO teleconnection. 25 

1 Introduction 

Seasonal hydroclimatic forecasts are important for agricultural scheduling, water management and drought mitigation 

(Sheffield et al., 2014; Anghileri et al., 2016; Peng et al., 2018; He et al., 2019; Zhao et al., 2019). Performing hydroclimatic 

forecasting into the future, the uncertainty generally arises from catchment initial conditions and future climate forcings (Wood 

and Lettenmaier, 2006; Yuan et al., 2014; Huang et al., 2020). In a short lead time up to about one month, initial conditions 30 

tend to outweigh climate forcings; at longer lead times, climate forcings become a more important contributor (Li et al., 2009; 
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Yossef et al., 2013). Therefore, besides remote sensing-based estimations of initial conditions of snow cover, soil moisture 

and groundwater storage (Mei et al., 2020; Xu et al., 2020b; Sheffield et al., 2014), efforts have been devoted to developing 

sub-seasonal to seasonal hydroclimatic forecasts of temperature and precipitation (Schepen et al., 2020; Strazzo et al., 2019; 

Bennett et al., 2016; Cash et al., 2019; Li et al., 2017). While temperature forecasts have been improved substantially in the 35 

past decades, the generation of skilful precipitation forecasts remains a challenging task (Becker et al., 2022). 

Climate indices, in particular El Niño–Southern Oscillation (ENSO) (Mason and Goddard, 2001), have been conventionally 

used in hydroclimatic forecasting (Hamlet and Lettenmaier, 1999; Hidalgo and Dracup, 2003; Peel et al., 2004). 

Teleconnections with climate indices generally reflect slowly varying and recurrent components, such as sea surface 

temperature (SST), of atmospheric circulations that link climate anomalies over large distances in both the tropics and 40 

extratropics (Webster and Yang, 1992; Mason and Goddard, 2001; Lim et al., 2021). As one of the most remarkable 

teleconnections, ENSO affects the global climate through eastward propagating Kelvin waves, westward propagating Rossby 

waves and Walker circulations that span the tropical Pacific, Indian and Atlantic Oceans (Yang et al., 2018; Webster and Yang, 

1992). For regions exhibiting teleconnection patterns, various forecasting models have been developed, including historical 

resampling methods (Hamlet and Lettenmaier, 1999; Wood and Lettenmaier, 2006; Lim et al., 2021), statistical (Bayesian) 45 

methods (Hidalgo and Dracup, 2003; Strazzo et al., 2019; Emerton et al., 2017) and machine learning methods (Xu et al., 

2020a; Li et al., 2021). 

Major climate centers develop global climate models (GCMs) to generate operational forecasts of global climate (Bauer et al., 

2015; Saha et al., 2014; Khan et al., 2017; Johnson et al., 2019a; Kirtman et al., 2014). For example, the United States National 

Centers for Environmental Prediction (NCEP) runs the Climate Forecast System version 2 (CFSv2) (Saha et al., 2014) and the 50 

European Centre for Medium-Range Weather Forecasts operates the fifth-generation seasonal forecast system (SEAS5) 

(Johnson et al., 2019b). In contrast to teleconnections that are generally “statistical”, GCM forecasts are “dynamical” in that 

GCMs assimilate observational information to reduce initial state uncertainty and couple atmosphere, land, ocean and sea ice 

modules to formulate complex interactions among different components of the earth system (Bauer et al., 2015; Corti et al., 

2015; Becker et al., 2022). Previous studies found that GCM forecasts tend to be skilful in regions subject to prominent ENSO 55 

teleconnection and also highlighted that GCM forecasts can be skilful in some extratropical regions where there is limited 

ENSO teleconnection (Johnson et al., 2019b; Kirtman et al., 2014; Delworth et al., 2020). 

Conventional ENSO-based statistical forecasts and emerging GCM dynamical forecasts generally represent two different 

sources of information (Wood and Lettenmaier, 2006; Bauer et al., 2015; Emerton et al., 2017; Delworth et al., 2020; He et 

al., 2021). While both of them are valuable and they can further be combined to generate improved forecasts (Madadgar et al., 60 

2016; Wanders et al., 2017; Strazzo et al., 2019), it is not yet known to what extent their information overlaps or differs. Small 

overlap and large difference highlight that GCM forecasts do offer new information comparing to ENSO teleconnection, while 

large overlap and small difference imply that GCM forecasts might not provide additional information. Zhao et al. (2021) 

investigated the overlapping information to attribute GCM forecast correlation skill to ENSO teleconnection. In this paper, we 

build a Set Operations of Coefficients of Determination (SOCD) method upon Zhao et al. (2021) to furthermore account for 65 
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the differing information. As will be demonstrated through the methods and results, besides the overlapping information, there 

exist two types of differing information, i.e., the differing information in GCM forecasts from ENSO and the differing 

information in ENSO from GCM forecasts. The three types of information facilitate eight patterns to disentangle the close but 

divergent association of GCM correlation skill with ENSO teleconnection. 

 70 

2 Data description 

GCM precipitation forecasts are generally five-dimensional data (Kirtman et al., 2014; Saha et al., 2014; Delworth et al., 2020; 

Zhao et al., 2021; Becker et al., 2022). Taking the NCEP-CFSv2 forecasts as an example, the five dimensions are: 1) forecast 

start time s, which represents the time at which forecasts are generated, is marked by the number of months since January 1960; 

2) lead time l, which represents the months ahead the start time, ranges from 0 to 9; 3) ensemble member n, which is meant to 75 

explicitly account for forecast uncertainty, ranges from 1 to 24, i.e., 24 ensemble members in total; 4) latitude y; and 5) 

longitude x. GCM forecasts are therefore formulated as: 

, , , ,s l n y xF f =   , (1)  

where f represents individual forecast value under the five dimensions and all the forecast values form a dataset F. 

The observed precipitation corresponding to the forecasts has three dimensions: 

, , ( )t y xO o t s l = = +  , (2)  

in which o represents individual observation value and O the dataset of observations. The three dimensions are target time t, 80 

latitude y and longitude x. It is important to note that target time t is mathematically the sum of start time s and lead time l in 

aligning observations with forecasts. 

Niño3.4 index that indicates the SST of the East Central Tropical Pacific (5ºN–5ºS, 170º–120ºW) is one of the most popular 

indicators of the status of ENSO (Hamlet and Lettenmaier, 1999; Emerton et al., 2017; Lin et al., 2020): 

Niño3.4=[niño3.4t], (3)  

in which there is only one dimension, i.e., time t, for Niño3.4. 85 

F, O and Niño3.4 shown in Eqs. (1) to (3) lay the basis for the analysis of overlapping and differing information in this paper. 

In the North American Multi-Model Ensemble (NMME) experiment (Kirtman et al., 2014), CFSv2 retrospective forecasts that 

range from 1982 to 2010 have been temporally aggregated to monthly and spatially regridded to a 1.0º×1.0º resolution. In the 

meantime, the daily Unified Rain-gauge Database (Chen et al., 2008) of the Climate Prediction Center (CPC-URD) 

precipitation observations over land have also been aggregated and regridded by the NMME. In the analysis, both CFSv2 90 

forecasts and CPC-URD observations are obtained from the International Research Institute of the Columbia University 

(https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). Monthly Niño3.4 is obtained from the CPC 

(https://www.cpc.ncep.noaa.gov/data/indices/). 

https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
https://www.cpc.ncep.noaa.gov/data/indices/


4 

 

3 Methods 95 

3.1 Consideration of seasonality 

Precipitation worldwide exhibits seasonality, e.g., wet and dry seasons of monsoonal precipitation (Webster and Yang, 1992; 

Zhao et al., 2017; Liu et al., 2022). As a result, the predictive performance of GCM forecasts varies across different seasons 

(Kirtman et al., 2014; Bauer et al., 2015; Strazzo et al., 2019) and ENSO teleconnection also exhibits seasonal variabilities 

(Mason and Goddard, 2001; Peel et al., 2004; Emerton et al., 2017). By fixing the target season, lead time l would be 100 

determined by start time s. Taking December-January-February (DJF) for an example, forecasts generated at the start of 

December are at 0-month lead time, forecasts at the start of November are at 1-month lead time, and so on. 

Considering seasonality, the start time s in Eq. (1) is re-formulated by month m and year k, e.g., December 1982, December 

1983, …, and December 2010. By fixing the target season and specifying the start month, GCM forecasts are then extracted 

from F: 105 

, ,Dec DJF y x kF f→
 =   . (4)  

The five dimensions of F (Eq. 1) are handled as follows: 1) start time s and lead time l are replaced by Dec→DJF and then 

represented by k, i.e., aggregating monthly forecasts into seasonal and pooling forecasts across different years; 2) ensemble 

member n is eliminated by taking the mean value ( f ), i.e., the ensemble mean, of all ensemble members (Saha et al., 2014; 

Yuan et al., 2016; Khan et al., 2017); and 3) latitude y and longitude x are pre-specified for the extraction of forecasts. 

The observations corresponding to the forecasts (Eq. 4) are extracted from O: 110 

, ,DJF y x kO o =   . (5)  

In Eq. (5) is observed precipitation in the target season (DJF) across multiple years at the selected grid cell (y, x). Similar to 

forecasts, monthly observations are aggregated into seasonal. 

Furthermore, the Niño3.4 index in the same season as observed precipitation is obtained: 

Niño3.4DJF=[niño3.4k]. (6)  

In Eq. (6) is the concurrent Niño3.4 of the target season (DJF) across multiple years. 

 115 

3.2 Quantification of information in forecasts and Niño3.4 

The coefficient of determination (R2) is effective in quantifying the proportion of the variance of dependent variable explained 

by a regression model that is built upon some independent variable(s) (Pham, 2006). In this paper, the dependent variable is 

observed seasonal precipitation (Eq. 5). The candidate independent variables are GCM precipitation forecasts (Eq. 4) and 
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Niño3.4 index (Eq. 6). Three classic simple linear regression models are set up to account for the information of observations 120 

in forecast ensemble mean and Niño3.4 index. 

The first model regresses observed seasonal precipitation o  against ensemble mean f  of GCM precipitation forecasts: 
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in which 1  and 1  are respectively the intercept and slope parameters. The unexplained variance indicated by the sum of 

squared residuals, i.e., 2

1,kk
 , is compared to the variance of observed precipitation 2( )kk

oo − . In this way, the proportion 

of variance explained by ensemble mean is quantified. 125 

The second model regresses observed seasonal precipitation o  against niño3.4: 
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in which 2 , 2  and 2,k  are respectively the intercept parameter, slope parameter and residual of regression. This regression 

quantifies the proportion of variance of observed precipitation explained by Niño3.4. 

The third model regresses observed seasonal precipitation o  against both ensemble mean f  and niño3.4: 

3 3 1 3 2 3,

2

3,2

2
(

3.4

3. ) 14~
( )

k k k

kk

kk

ko

R o
o

f nino

f nino
o

   



= + + +

  = −
−




， ，

, (9)  

in which 3 , 3,1 , 3,2  and 2,k  are respectively the intercept parameter, slope parameter of ensemble mean, slope parameter 130 

of Niño3.4 and residual of regression. The proportion of the variance of observed precipitation explained by the union of 

ensemble mean and Niño3.4 is therefore measured by this bi-variate regression. 

 

3.3 Quantification of overlapping and differing information 

As shown by Venn diagrams in Figure 1, the information of observed precipitation contained in forecast ensemble mean, 135 

Niño3.4 index and their union are respectively quantified by 
2 ( ~ )R o f , 

2 3( ~ ).4ninoR o  and 
2 3( ~ ).4f niR noo  . 
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Figure 1: Venn diagram representation of the set operations of union, intersection and difference to quantify the overlapping 

information and the two types of differing information. The different terms of information are measured by the classic coefficient 140 
of determination 

 

Following the classic set theory, the SOCD method performs the set operations of intersection and difference to quantify the 

overlapping and differing information: 

1) The proportion of variance explained by ensemble mean but not by Niño3.4 index is derived by the difference operation: 145 

2 2 23( ~ ) 4( ~ ) ( ~ )3.4 .4 3.f nino f nR o R ino ninoo R o=  − . (10)  

In Eq. (10), 
2 3( ~ ).4f ni oR no  measures the differing information of GCM forecasts on observed precipitation from Niño3.4 

index. 

2) The intersection operation derives the proportion of variance of seasonal precipitation explained by both ensemble mean 

and Niño3.4 index: 
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In Eq. (11), 
2 3( ~ ).4f niR noo   represents the overlapping information. 150 

3) The proportion of variance explained by Niño3.4 index but not by ensemble mean is derived by the difference operation: 

2 2 2( ~ ) ( ~ ) ( ~ )3.4 3.4R nino f f ninoo R o R o f=  − . (12)  

In Eq. (12), 
2 3( ~ ).4ninoR o f  represents the differing information of Niño3.4 index from GCM forecasts. 

 

3.4 Eight patterns for overlapping and differing information 

The significance of overlapping and differing information is tested by bootstrapping (Efron and Tibshirani, 1986). The null 155 

hypothesis is that the three variables under investigation, i.e., o , f  and 3.4nino , were fully independent from one another. 

Under the null hypothesis, the samples in Eqs. (4), (5) and (6) are randomly selected with replacement to calculate the 

overlapping and differing information; one thousand such recalculations formulate the respective reference distributions for 

these R2 values. Comparing the R2 values for the original samples respectively to their reference distributions, the p-values are 

obtained to tell how extreme the R2 values for the original samples are. In this way, the significance is tested (Efron and 160 

Tibshirani, 1986; Pham, 2006). As the null hypothesis is full independence, the R2 values, which indicate the amount of 

information of the dependent variable contained in independent variable(s), are expected to be rather small. From this 

perspective, the larger the R2 values for the original samples are, the more extreme they are and the less likely the null 

hypothesis holds. Therefore, the one-tailed test is implemented for the significance of the R2 values (Pham, 2006). Specifically, 

under the significance level of 0.10, the SOCD method pays attention to whether the R2 value falls into the top 10% of the 165 

corresponding bootstrapping-derived reference distribution. 

The one type of overlapping information and the two types of differing information each have two cases of significance, i.e., 

significant or non-significant. Therefore, in Table 1, a three-digit number is devised to represent the results of significance test. 

The first digit indicates the significance of 
2 3( ~ ).4f ni oR no , the second digit the significance of 

2 3( ~ ).4f niR noo   and 

the third digit the significance of 
2 3( ~ ).4ninoR o f . As is shown in Table 1, there are in total 8 (2*2*2) patterns, with 1 170 

representing the significant case and 0 indicating the non-significant case. The meanings of the eight patterns are illustrated in 

the last column of Table 1. 
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Table 1: Three-digit representations of the eight patterns of overlapping and differing information 

2

3

( ~

).4f ni o

R
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o
 

2

3

( ~

).4f ni

R
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o


 

2

3

( ~

).4nino

R o

f
 Meaning 

0 0 0 
Neither overlapping information nor differing information is 

significant 

0 0 1 
Only the differing information in Niño3.4 index from GCM 

forecasts is significant 

0 1 0 Only the overlapping information is significant 

0 1 1 
Both overlapping information and differing information in 

Niño3.4 index from GCM forecasts are significant 

1 0 0 Only the differing information in GCM forecasts from Niño3.4 

index is significant 

1 0 1 Both differing information in GCM forecasts from Niño3.4 

index and differing information in Niño3.4 index from GCM 

forecasts are significant, but the overlapping information is not 

significant 

1 1 0 Both differing information in GCM forecasts from Niño3.4 

index and overlapping information are significant 

1 1 1 Differing information in GCM forecasts from Niño3.4 index, 

overlapping information and differing information in Niño3.4 

index from GCM forecasts are all significant 
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4 Results 

4.1 Spatial plots of correlation skill and ENSO teleconnection 

GCM forecast correlation skill and ENSO teleconnection for DJF are shown in the left-hand side of Figure 2. The correlation 

skill is mathematically the Pearson’s correlation coefficient between GCM forecast ensemble mean and observed precipitation. 

In the upper left part of Figure 2, it is observed that the correlation skill is higher than 0.3 in a substantial number of grid cells 180 

around the world. This result indicates that ensemble mean is generally indicative of observed precipitation, i.e., high values 

of ensemble mean coincide with high values of observed precipitation and vice versa (Saha et al., 2014; Yuan et al., 2014; 

Cash et al., 2019). In the lower left part is ENSO teleconnection that mathematically represents the Pearson’s correlation 

coefficient between Niño3.4 index and observed precipitation. Both positive and negative ENSO teleconnections are observed. 
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For example, the teleconnection tends to be positive in southern North America, south-eastern South America, southern China 185 

and Eastern Africa, implying above-average precipitation in El Niño years but below-average precipitation in La Niña years; 

and it turns out to be negative in the northern part of South America, southern Africa as well as Southeast Asia, i.e., there can 

be below-average precipitation in El Niño years and above-average precipitation in La Niña years (Mason and Goddard, 2001; 

Emerton et al., 2017; Yang et al., 2018). 

The SOCD method facilitates in total eight patterns to characterize the overlapping and differing information for GCM forecast 190 

ensemble mean and Niño3.4 index. While the Venn diagram in Figure 1 is largely conceptual, the right-hand side of Figure 2 

showcases the Venn diagrams generated from real-world data. The eight patterns in Table 1 are illustrated for eight grid cells 

selected from the left-hand side of Figure 2. Grid cell A (36ºN, 115ºE) is under the pattern 000: the areas of the circles that 

represent the ratios of explained variance are rather small, implying little information of observed precipitation in GCM 

forecasts and Niño3.4 index. By contrast, the areas of the circles are larger for the other seven selected grid cells, suggesting 195 

the existence of significant overlapping or differing information. For example, the significant overlapping information is 

highlighted in grid cell D (36°N, 115°E); the significant differing information in GCM forecasts from Niño3.4 index is shown 

in grid cell E (46°N, 0°); and the significant differing information in Niño3.4 index from GCM forecasts is highlighted in grid 

cell B (35°N, 117°E). 

 200 
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Figure 2: Spatial plots of correlation skill (upper left part) and ENSO teleconnection (lower left part) for global precipitation in DJF, 

and Venn diagrams (right part) of overlapping and differing information for eight selected grid cells under the eight patterns. 
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 205 

Figure 3: Spatial distribution of the eight patterns of overlapping and differing information. 

 

The spatial distribution of the eight patterns is shown in Figure 3 by applying the SOCD method to all the land grid cells. Grid 

cells under the pattern 000, which indicates poor GCM correlation skill and limited ENSO teleconnection, are in grey. In the 

meantime, it is noted that a considerable amount of grid cells around the world are colored. That is, for the overlapping 210 

information and two types of differing information, at least one of them is significant. From the left-hand side of Figure 2, it 

can be found that positive correlation skill corresponds to positive ENSO teleconnection in southern North America and 

Eastern Africa and that positive correlation skill corresponds to negative teleconnection over the northern part of South 

America, southern Africa and Southeast Asia. In the meantime, from Figure 3 it can be observed that in these regions a 

considerable number of grid cells fall under the patterns 010, 110 and 011, indicating significant overlapping information. 215 

 

4.2 Patterns of overlapping and differing information 

The eight patterns serve as a link between correlation skill and ENSO teleconnection. The pattern 010 that is concentrated on 

the overlapping information is shown in Figure 4. At the left-hand side of the figure are the results for grid cells under the 

pattern 010 (the results for the other grid cells are masked). The overlapping information is significant in southern North 220 

America where positive correlation skill (upper left part of Figure 4) coincides with positive ENSO teleconnection (lower left 

part of Figure 4). It is also significant in southern Africa and northern South America where positive correlation skill and 

negative ENSO teleconnection coexist. As both correlation skill and ENSO teleconnection are mathematically the Pearson’s 

correlation coefficient, they each can be classified into three cases, i.e., significantly positive (P), non-significant (ns) and 
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significantly negative (N) (Kirtman et al., 2014; Emerton et al., 2017; Huang and Zhao, 2022). At the right-hand side of Figure 225 

4, the Sankey diagram shows that 18.95% of the global land grid cells exhibit the pattern 010. For this pattern, 8.98% of grid 

cells exhibit significantly positive correlation skill, 9.85% non-significant correlation skill and 0.12% significantly negative 

correlation skill; 3.77% exhibiting significantly positive ENSO teleconnection, 10.92% non-significant ENSO teleconnection 

and 4.25% significantly negative ENSO teleconnection. 

 230 

 

Figure 4: Illustrations of correlation skill (upper left part) and ENSO teleconnection (lower left part) under the pattern 010 (middle 

left part) and Sankey diagram showing the percentages of grid cells exhibiting significantly positive (P), non-significant (ns) and 

significantly negative (N) correlation skill/ENSO teleconnection (right part). Grid cells under the other patterns are masked and 

therefore not shown in the spatial plots and the Sankey diagram. 235 

 

The pattern 100 focuses on the significant differing information of global precipitation in GCM forecasts from Niño3.4 index. 

From the left-hand side of Figure 5, it can be observed that this pattern (middle left part) tends to cover grid cells where 

correlation skill is around or above 0.3 (upper left part) but ENSO teleconnection is nearly zero (lower left part). This 

observation is confirmed by the right-hand side of Figure 5. As can be seen, while the percentage of grid cells falling into the 240 

pattern 100 is 17.71%, most of them are with significantly positive correlation skill (15.78% in 17.71%) but all of them exhibit 
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non-significant ENSO teleconnection (17.71% in 17.71%). These grid cells tend to locate in Europe and North Asia, where 

the influence of ENSO is limited and skillful GCM forecasts can relate to other teleconnections such as Arctic Oscillation and 

North Atlantic Oscillation (Hamouda et al., 2021). 

 245 

 

Figure 5: As for Figure 4 but for the pattern 100. 

 

The pattern 110 indicates that the overlapping information is significant and that the differing information in GCM forecasts 

from Niño3.4 index is also significant. The implication is that regarding global seasonal precipitation in DJF, GCM forecasts 250 

not only contain information that is contained in Niño3.4 index but also provide a considerable amount of new information. 

On the left-hand side of Figure 6, some grid cells under the pattern 110 are observed in southeast Australia, eastern Africa and 

northeastern Asia. Comparing Figure 6 to Figure 4, it is observed that some grid cells in southern North America, northern 

South America and southern Africa are under the pattern 110, although many of them tend to be under the pattern 100. Around 

the world, the percentage of grid cells falling into the pattern 110 is 11.35%. For these grid cells, correlation skill is 255 

predominantly significantly positive (11.25% in 11.35%) and by contrast ENSO teleconnection tends to be non-significant 

(7.09% in 11.35%). 
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Figure 6: As for Figure 4 but for the pattern 110. 260 

 

The pattern 001 pays attention to the differing information in Niño3.4 index from GCM forecasts. As shown in Figure 7, this 

pattern covers 4.87% of grid cells around the world. On the left-hand side of Figure 7, it is worthwhile to note that a number 

of grid cells in Western Australia exhibit significantly negative ENSO teleconnection but non-significant correlation skill. The 

implication is that therein GCM forecasts might fail to account for the information of ENSO teleconnection. At the right-hand 265 

side of Figure 7, it is observed that most grid cells under the pattern 001 are with neutral correlation skill (4.86% in 4.87%) 

and that their corresponding ENSO teleconnection can be significantly negative (2.21% in 4.87%) or significantly positive 

(1.73% in 4.87%). 
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 270 

Figure 7: As for Figure 4 but for the pattern 001. 

 

The pattern 011 indicates that both the overlapping information and the differing information in Niño3.4 index from GCM 

forecasts are significant. Grid cells exhibiting this pattern tend to be scattered in parts of southern North America, northern 

South America, Southeast Asia and southern Africa. They account for 4.38% of grid cells around the world. Among them, 275 

1.72% exhibit significantly positive ENSO teleconnection and 2.66% significantly negative ENSO teleconnection. For these 

areas, the significant overlap suggests that a substantial amount of information in seasonal precipitation can be explained by 

both GCM forecasts and Niño3.4, while the significant differing information indicates the part that can only be explained by 

the Niño3.4 index. 

 280 
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Figure 8: As for Figure 4 but for the pattern 011. 

 

The pattern 101 is shown in Figure 9. It suggests that at some grid cells, the overlapping information is not significant but the 

two types of differing information are significant for both GCM forecasts and Niño3.4 index. About 1.86% of grid cells fall 285 

into this pattern. 

The pattern 111 is shown in Figure 10. It implies that at some other grid cells, the overlapping information and the two types 

of differing information can all be significant. It is noted that only 0.26% of grid cells around the world exhibit pattern 111. 
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 290 

Figure 9: As for Figure 4 but for the pattern 101. 
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Figure 10: As for Figure 4 but for the pattern 111. 

 295 

Among the eight patterns, the pattern 000 covers the most grid cells. The left-hand side of Figure 11 shows that grid cells under 

the pattern 000 generally exhibit non-significant correlation skill and non-significant ENSO teleconnection. This result is in 

sharp contrast to the pattern 010 which indicates reasonable correspondence between correlation skill and ENSO 

teleconnection (Figure 4) and to the patterns 100 and 110 which suggest significantly positive correlation skill (Figures 5 and 

6). Overall, the percentage of grid cells under the pattern 000 is 40.62%. These grid cells predominantly exhibit neutral 300 

correlation skill (40.30% in 40.62%) and neutral ENSO teleconnection (40.47% in 40.62%). 
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Figure 11: As for Figure 4 but for the pattern 000. 

 305 

4.3 Association of correlation skill with ENSO teleconnection 

The results under the eight patterns are furthermore pooled in the analysis. From Figure 12, it can be observed that the eight 

patterns serve to be an effective link between correlation skill and ENSO teleconnection at the global scale. For the patterns 

that indicate significant information, the Sankey diagram at the right-hand side suggests that the percentage from the highest 

to the lowest is respectively 18.95% for the pattern 010, 17.71% for the pattern 100, 11.35% for the pattern 110, 4.87% for the 310 

pattern 001, 4.38% for the pattern 011, 1.86% for the pattern 101 and 0.26% for the pattern 111. More than half of the grid 

cells that exhibit significant correlation skill have significant overlapping information with Niño3.4, with 11.25% (8.98%) of 

grid cells under the pattern 110 (010), indicating considerable impacts of ENSO teleconnection on CFSv2 correlation skill. 
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 315 

Figure 12: Illustrations of correlation skill (upper left part) and ENSO teleconnection (lower left part) under the eight patterns 

(middle left part) at the global scale and Sankey diagram showing the percentages of grid cells exhibiting significantly positive (P), 

non-significant (ns) and significantly negative (N) correlation skill/ENSO teleconnection (right part) 

 

GCM forecasts and Niño3.4 index generally represent two different sources of information of global precipitation. In Figure 320 

13, GCM forecast correlation skill is plotted against ENSO teleconnection by using scatter plots. Figure 13a pools global land 

grid cells and employs the Viridis heatmap to indicate point density. It can be observed that the correlation skill is largely 

positive and fall above the horizontal line. In addition, the heatmap suggests that the correlation skill tends to increase with the 

increase of positive ENSO teleconnection and also with the decrease of negative ENSO teleconnection. These results suggest 

that the skill of GCM forecasts benefits from the prominence of ENSO teleconnection since GCMs tend to capture the 325 

influences of ENSO on the variability of global precipitation (Saha et al., 2014; Khan et al., 2017; Delworth et al., 2020; 

Johnson et al., 2019b; Becker et al., 2022). 

The other eight subplots of Figure 13 are arranged in descending order of the percentage of grid cells (Figures 13b-i). Overall, 

a close but divergent association of correlation skill with ENSO teleconnection can be observed: 
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1) There exists significant overlapping information in GCM forecasts and Niño3.4 index under the patterns 010 (Figure 13c), 330 

110 (Figure 13e), 011 (Figure 13g) and 111 (Figure 13i). The significance is for 34.94% of grid cells, i.e., 18.95% (010) +11.35% 

(110) + 4.38% (011) + 0.26% (111). From the corresponding scatter plots, it can be observed that both correlation skill and 

ENSO teleconnection ought to be reasonably high to facilitate significant overlapping information; 

2) There is significant differing information in GCM forecasts from Niño3.4 index under the patterns 100 (Figure 13d), 110 

(Figure 13e), 101 (Figure 13h) and 111 (Figure 13i). The significance is for 31.18% of global land grid cells, i.e., 17.71% (100) 335 

+ 11.35% (110) + 1.86% (101) + 0.26% (111). Under these patterns, it is highlighted that the correlation skill tends to be higher 

than ENSO teleconnection. In particular, significantly positive correlation skill coincides with overall non-significant ENSO 

teleconnection under the pattern 100 in Figure 13f. Overall, these results imply that apart from ENSO, GCMs account for other 

hydro-climatic teleconnections to produce skilful precipitation forecasts (Saha et al., 2014; Delworth et al., 2020; Lin et al., 

2020); 340 

3) There is significant differing information in Niño3.4 index from GCM forecasts under the patterns 001 (Figure 13f), 011 

(Figure 13g), 101 (Figure 13h) and 111 (Figure 13i). The significance is for 11.37% of global land grid cells, i.e., 4.87% (001) 

+ 4.38% (011) + 1.86% (101) + 0.26% (111). Under these patterns, ENSO teleconnection is generally higher than correlation 

skill. Remarkable ENSO teleconnection coincides with overall non-significant correlation skill under the pattern 001 in Figure 

13b. These results suggest that some ENSO teleconnection is still yet to be exploited by GCMs to improve precipitation 345 

forecast skill. 

4) Neither the overlapping information nor the two types of differing information are significant under the pattern 000. It 

covers 40.62% of grid cells. From Figure 13b, it can be observed that either correlation skill or ENSO teleconnection is limited 

and that the corresponding scatter plot tends to cluster around the origin point. This result suggests that despite limited ENSO 

teleconnection, GCM forecasts still have plenty of room for improvement. 350 
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Figure 13: Scatter plots of the association of GCM forecast correlation skill with ENSO teleconnection at the global scale with the 

heatmap indicating the density of scatter points (a). The association of correlation skill with ENSO teleconnection under the eight 

patterns is illustrated in descending order of the percentage (b-i) 355 

 

5 Discussion 

The SOCD method is furthermore applied to investigate the eight patterns considering the effects of seasonality, lead time, lag 

time and significance level. The additional results are presented in the supplementary material. 1) The effect of seasonality is 

shown in Figures S1 to S6. It can be observed that regions exhibiting significant ENSO teleconnections vary by season (Figures 360 

S1 to S3) and that the eight patterns remain effective in characterizing the overlapping and differing information (Figures S4 
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to S6). 2) The effect of lead time is illustrated in Figures S7 to S10. At the lead times of 1 and 2 months, the percentage of the 

pattern 010 remains the highest among the seven patterns other than 000. This result highlights the existence of significant 

overlapping information in DJF, particularly over southern North America, northern South America and Southern Africa. 3) 

The effect of the lag time of Niño3.4 index is illustrated in Figures S11 to S14. Compared to the concurrent teleconnection, 365 

the spatial distribution of the eight patterns tends to be similar for monthly Niño3.4 index at the lag times of 1 and 2 months, 

with a slight increase in the percentage of the pattern 000. The result confirm the temporal persistency in the Niño3.4 index 

(Yang et al., 2018). 4) The effect of the significance level is shown in Figures S15 to S18. As the significance level is reduced 

from 0.10 to 0.05 and furthermore to 0.01, the percentage of the pattern 000 evidently increases but the seven patterns that 

highlight significant overlapping and differing information remain. 370 

The SOCD method is also extended to evaluate the overlapping and differing information under other GCM forecasts and 

hydroclimatic teleconnections. In the supplementary material, Figures S19 and S20 show the results for the CanCM4 forecasts 

generated at the Canadian Meteorological Center (CMC) (Merryfield et al., 2013). The CanCM4 forecasts seem to be less 

skilful in Europe but more skilful in the western part of Australia. Overall, the percentage of the pattern 000 is slightly higher 

than that for CFSv2 forecasts. These results suggest that different GCM forecasts can be complementary to each other in 375 

different regions and that they can be combined to generate more skilful forecasts (Kirtman et al., 2014; Slater et al., 2019; 

Schepen et al., 2020). Figures S21 and S22 present the eight patterns for the Indian Ocean Dipole (IOD) (Cai et al., 2021). It 

can be observed that the percentage of the pattern 010 is reduced from 18.95% to 9.41% while the percentage of the pattern 

100 is increased from 17.71% to 22.83%. The indications are that CFSv2 forecasts exhibit less overlapping information with 

IOD and that there exists considerable differing information in CFSv2 forecasts from IOD teleconnection. 380 

The correlation skill is one of the most popular measures of forecast skill owing to its simplicity in calculation and robustness 

to zero and missing values (Barnston et al., 2012; Yuan et al., 2014; Ma et al., 2016; Slater et al., 2019; Huang and Zhao, 

2022). From spatial plots of correlation skill at regional or global scales, it can be observed where GCM forecasts are skilful 

and where GCM forecasts are not satisfactory (Ma et al., 2016; Slater et al., 2019; Delworth et al., 2020). Previously, it was 

observed that GCM forecasts tend to be skilful in regions subject to prominent influences of ENSO; accordingly, forecast skill 385 

is attributed to the effectiveness of GCMs in capturing ENSO-related climate dynamics (Kirtman et al., 2014; Slater et al., 

2019; Lin et al., 2020). In this paper, the developed SOCD method not only confirms the significant overlapping information 

but also highlights that there exists significant differing information in GCM forecasts from ENSO teleconnection for 31.18% 

of global land grid cells and that there is significant differing information in ENSO teleconnection from GCM forecasts for 

11.37% of grid cells. It is noted that the simple linear regression only accounts for linear relationships. Possible nonlinear 390 

relationships between forecasts and observations suggest the usage of nonlinear models in future analysis of the overlapping 

and differing information (Strazzo et al., 2019; Schepen et al., 2020; Li et al., 2021). 

 



24 

6 Conclusions 

While ENSO teleconnection has been conventionally used in hydroclimatic forecasting of regional precipitation and 395 

streamflow, GCM forecasts are increasingly available for hydrological applications. It is important to investigate to what extent 

emerging GCM forecasts provide “new” information compared to conventional ENSO teleconnection. The SOCD method 

developed in this paper addresses this issue through the mathematical formulation of set operations. Specifically, the union 

operation quantifies the information of global seasonal precipitation contained in both GCM forecasts and Niño3.4 index; the 

intersection operation derives the overlapping information of global precipitation in GCM forecasts and Niño3.4 index; and 400 

furthermore, the difference operation illustrates two types of differing information, i.e., the differing information in GCM 

forecasts from Niño3.4 index and the differing information in Niño3.4 index from GCM forecasts. The significance tests of 

the three types of information facilitate in total eight patterns to disentangle the close but divergent association of GCM forecast 

correlation skill with ENSO teleconnection. GCM forecasts and Niño3.4 index generally provide two different sources of data 

for hydroclimatic forecasting. While the existence of significant overlapping information suggests that they can provide some 405 

similar information, the existence of significant differing information indicates that the two data sources can also be 

complementary to each other. In the future, more efforts can be devoted to investigating more datasets of GCM forecasts and 

more hydroclimatic teleconnections to yield insights into the forecast skill of GCM forecasts and to facilitate applications of 

GCM forecasts to hydrological modelling and water resources management. 
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