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Abstract. Accurate river streamflow forecasts are a vital tool in the fields of water security, flood preparation and agriculture,

as well as in industry more generally. Traditional physics-based models used to produce streamflow forecasts have become

increasingly sophisticated, with forecasts improving accordingly. However, the development of such models is often bound

by two soft limits: empiricism – many physical relationships are represented empirical formulae; and data sparsity – long

time-series of observational data are often required for the calibration of these models.5

Artificial neural networks have previously been shown to be highly effective at simulating nonlinear systems where knowl-

edge of the underlying physical relationships is incomplete. However, they also suffer from issues related to data sparsity.

Recently, hybrid forecasting systems, which combine the traditional physics-based approach with statistical forecasting tech-

niques, have been investigated for use in hydrological applications. In this study, we test the efficacy of a type of neural network,

the long-short term memory (LSTM), at predicting streamflow at ten river gauge stations across various climatic regions of the10

western United States. The LSTM is trained on the catchment-mean meteorological and hydrological variables from the ERA5

and GloFAS-ERA5 reanalyses as well as historical streamflow observations. The performance of these hybrid forecasts is eval-

uated and compared to the performance of both raw and bias-corrected output from the Copernicus Emergency Management

Service (CEMS) physics-based Global Flood Awareness System (GloFAS).

Two periods are considered, a testing phase (June 2019 to June 2020), during which the models were fed with ERA5 data to15

investigate how well they simulated streamflow at the ten stations; and an operational phase (September 2020 to October 2021),

during which the models were fed forecast variables from ECMWF’s Integrated Forecasting System (IFS), to investigate how

well they could predict streamflow at lead times of up to ten days.

Implications and potential improvements to this work are discussed. In summary, this is the first time an LSTM has been

used in a hybrid system to create a medium-range streamflow forecast, and in beating established physics-based models, shows20

promise for the future of neural networks in hydrological forecasting.
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1 Introduction

Accurate forecasts of river streamflow are vital across a range of sectors, including, but not limited to, agriculture, water

security, recreation, disaster management, and heavy industry. As such, modelling streamflow as a function of observable

hydrological and meteorological variables has been the subject of focused study for nearly 200 years, and has intensified25

considerably over the past few decades as demands on water resources continue to increase dramatically (Beven, 2011).

The earliest attempt (Mulvaney, 1851) comprised a simple linear relationship between streamflow and catchment rainfall,

derived using linear regression. Key early developments then split the catchment into regions based on estimated travel time

to the gauge (Imbeaux, 1892; Ross, 1921) and included more variables in the regression model (Linsley et al., 1949). One of

the first physics-based streamflow models was developed by Horton (1933), who considered the role of excess soil filtration30

in runoff. Since then, physics-based models have largely dominated, particularly with continued improvements to process

understanding (e.g. Freeze and Harlan, 1969), computing power (e.g. Kollet et al., 2010; Schiemann et al., 2018), observation

systems – including discharge data vital for model calibration (e.g. Newman et al., 2015), and remote sensing (e.g. Huffman

et al., 1995; Robock et al., 2000).

Although physics-based models have improved substantially they are still currently limited by lack of process understanding,35

lack of – particularly subsurface – data, and inadequate grid resolution (Wood et al., 2011). Such problems can be overcome

by the application of artificial neural networks, which can produce highly accurate simulations of physical systems even if the

underlying physical relationships are not known. In hydrology, a particular type of artificial neural network, known as a Long

Short-Term Memory network (LSTM; Hochreiter and Schmidhuber, 1997; Gers et al., 2000), has become increasingly popular

due to its ability to process sequential data (Shen and Lawson, 2021).40

LSTMs are a special case of so-called recurrent neural networks (RNNs), i.e., artificial neural networks that are capable of

processing data containing temporal sequences. The basic feature of RNNs is a feedback loop that allows the network to retain

information over time. However, due to their relatively simple construction, RNNs do not readily retain long-term temporal

dependencies (Hochreiter and Schmidhuber, 1997). This is overcome in LSTMs by the addition of a special unit, known as a

memory cell or the forget gate, that can preserve information indefinitely, allowing LSTMs to learn long-term dependencies45

that other RNNs cannot. In modelling river discharge over the United States, Kratzert et al. (2018) showed that LSTMs vastly

outperform conventional RNNs.

For the reasons outlined above, it is unsurprising that LSTMs are being increasingly used to explore complicated hydrological

problems including modelling river streamflow. In this regard, studies fall into two categories – either seeking to create a model

capable of replicating existing streamflow observations, or seeking to create a model capable of forecasting streamflow at some50

future time. This distinction is minor in a machine learning context, since replication is a form of prediction; however, they

have important distinctions in their application to the hydrological community. Several highly illustrative studies approach the

former topic. In particular, a series of papers published by researchers at Johannes Kepler University Linz (Kratzert et al.,

2018, 2019a, b; Klotz et al., 2021; Gauch et al., 2021b) demonstrated the remarkable ability of LSTMs to simulate daily

streamflow in catchments across the United States and in the quantification of streamflow uncertainty. Extending this work,55
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Gauch et al. (2021a) showed that reanalysis-trained LSTMs could predict streamflow at any given temporal resolution, and at

multiple resolutions simultaneously. These studies demonstrated that simple LSTM architectures (i.e. unstacked) performed as

well as stacked ones in simulating streamflow. They also showed that better performance could be achieved by training a single

LSTM over many basins and including data on basin geography than by individual LSTMs trained on a per-basin basis, even

extending to good performance in ungauged basins.60

The latter topic has proven more challenging, with only a handful of studies trying (to the authors’ knowledge) to use LSTMs

to predict streamflow (Slater et al., 2021). The most basic of these rely on rivers where streamflow has a strong annual cycle

and large lagged autocorrelation (i.e. high persistence), using only antecedent streamflow data from the same site. Such studies

have mixed, although promising results (de Melo et al., 2019; Sahoo et al., 2019; Sudriani et al., 2019; Zhu et al., 2020). More

advanced models also incorporate upstream data, either just streamflow at different sites (Silva et al., 2021), or additionally65

precipitation (Le et al., 2019; Hu et al., 2020) with improved results. Le et al. (2019), for a case study in Vietnam, and Silva

et al. (2021), for a case study in Brazil, achieved good results at 3- and 5-day lead times respectively. Ding et al. (2019)

produced perhaps the most sophisticated LSTM-based hydrological forecast model to date. A LSTM that ingested ECMWF

forecasts of precipitation, soil moisture, and other variables to produce a runoff forecast around the confluence region of the

Lech and Danube Rivers. They verified forecasts up to lead times of nine hours, finding a Nash-Sutcliffe efficiency of 0.71,70

rising to 0.77 after the inclusion of an attention mechanism. The use of the ECMWF forecasts (created using a physics-based

numerical weather prediction system) to feed an LSTM (a machine learning method) puts the Ding et al. (2019) study into the

realm of hybrid forecasting.

The definition of a hybrid forecasting system is broad and currently blurry in the literature, partly due to the cross-disciplinary

nature of the topic and partly due to the wide range of opportunities for integrating the two approaches into a single forecasting75

system (e.g., see Düben et al., 2021). Generally speaking, in hydrology, a hybrid hydrological forecasting system is one which

incorporates physically based and statistical or machine learning methods. Combining the contrasting approaches is anticipated

to provide superior forecasts by compensating for the limitations of each approach when used independently (some of which are

discusses above). However, this definition is subjective and depends on where you draw the boundaries around the hydrological

forecasting system. Is the NWP considered part of the hydrological forecasting system or as input data (e.g., Ding et al., 2019;80

Liang et al., 2018)? If the model calibration of a physical model is aided by machine learning is this process included in the

definition of a hybrid system (e.g., Teweldebrhan et al., 2020)? Would deep-learning-based quality control of observations

be included within a hybrid-system (e.g., Sha et al., 2021)? Other potential inclusions into the class of hybrid forecasting

systems are machine-learning aided data assimilation (Boucher et al., 2019; He et al., 2020; Liu et al., 2021), and commonly

post-processing (e.g., Liu et al., 2022; Sharma et al., 2021; Lee and Ahn, 2021; Frame et al., 2021; Nearing et al., 2020).85

Answering these questions is beyond the scope of this study and requires a discipline-wide collaboration to definitively define

a hydrological forecasting system. Therefore, we restrict our discussions to the less disputed part of the hydrological forecasting

chain: the representation of the runoff-routing processes.

The hybridisation of hydrological models within the forecasting chain can be achieved in multiple ways. The simplest

approach would be to combine the output from two hydrological models, one physically based, and one machine learning90
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based (Wagena et al., 2020; Booker and Woods, 2014). Alternatively, machine-learning based and process based models can

be coupled. This can either by sequentially (e.g., Noori and Kalin, 2016) or in parallel with sub-models representing different

processes (Reichstein et al., 2019; Bennett and Nijssen, 2021; Meng et al., 2016; Okkan et al., 2021).

More recently, more integrated methods of hybridisation have been introduced to hydrological modelling. Theory-guided (or

physics-informed Karpatne et al., 2017; Raissi et al., 2019), machine learning approaches aim to overcome the interpretability95

issues identified with ‘black-box’ machine learning methods and constrain the output to theoretically plausible outputs (Xu

et al., 2021; Chadalawada et al., 2020). Hoedt et al. (2021) included mass-conservation as a constraint into an LSTM architec-

ture and found that for streamflow, although a decrease in the Nash-Sutcliffe Efficiency metric was seen, the mass-conserved

LSTM better predicted extreme flow values (e.g., flood peaks). However, Frame et al. (2022b) found that the addition of the

mass-constraint reduced the skill when predicting extreme values suggesting further work is necessary. Alternatively, other100

studies have used neural networks in process-based models to solve differential equations more efficiently whilst allowing

interpretability of the output (Höge et al., 2022; Rackauckas et al., 2020; Raissi et al., 2020).

In this study, we seek to expand on these previous efforts and develop an LSTM capable of providing skilful river streamflow

forecasts at lead times of up to ten days at ten stations across the western United States. We will train the model mainly

using meteorological variables from the ERA5 reanalysis (Sec. 3.1) and hydrological variables from GloFAS-ERA5 (Sec. 3.3,105

meaning that we are not at the mercy of potentially sparse observational data, but will use official gauge observations (Sec. 2)

as the target to give optimal calibration. Once trained, the LSTM will be used to produce forecasts by replacing ERA5 inputs

with forecast variables from the ECMWF Integrated Forecast System (IFS; Sec. 3.2). Again the use of the IFS means that the

LSTM forecasts are not vulnerable to data latency of observations in an operational setting. Additionally, since the IFS is used

to drive the ERA5 reanalysis, any significant climatological biases in one are likely to be present in the other. Since we are110

training the model with ERA5 data, such biases – so long as they are consistent between the two products – will be mitigated

as the LSTM either applies an internal bias correction, or gives the field a low weighting in the input layer. We train the model

on publicly-available ERA5, rather than IFS hindcasts, so that our methods can be completely reproduced by any interested

reader. The forecasts will be made under operational time and data constraints for a thirteen month period (September 2020 to

October 2021) and the results compared with GloFAS (Sec. 3.3), a physics-based streamflow forecast produced by ECMWF; a115

new, bias-corrected version of GloFAS (Sec. 4.3); and a simple persistence model. The core aims of this study are to determine

(a) whether such an LSTM based hybrid system can provide skilful streamflow forecasts, (b) whether a hybrid system can

perform better than existing state-of-the-art physics-based systems, and (c) whether advanced bias-correction techniques can

improve the skill of physics-based models. An important caveat here is that seven of the ten catchments are smaller than the

recommended usage threshold for GloFAS (2000 km2), and so we would probably expect to see improvement when adding120

degrees of freedom through bias-correction or hybridising with an LSTM.

The study is laid out as follows: we discuss the study region and the climatological characteristics of the ten gauge stations

in Sec. 2. We then describe the data used in Sec. 3 and methods – including the bias-correction algorithm and the LSTM setup

– in Sec. 4. The results section is split into two parts, verification of a testing phase – where the models are driven with ERA5
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– in Sec. 5.1, and verification of the operational phase – where the models are driven with IFS output – in Sec. 5.2. Finally, we125

discuss potential applications and improvements to our work in Sec. 6 and conclude with a summary in Sec. 7.

2 Study region and choice of stations
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Figure 1. Locations of the ten streamflow gauges (red) and their catchment basins (dark blue). Overlaid are the climatological precipitation

(filled contours, 1981–2010, from PRISM), smoothed orography (black line contours at 500 m intervals) from ETOPO, and state boundaries

(dotted black lines).

The choice of study region and stations was dictated by the US Department of Reclamation, part of whose remit is water

security over the western half of the contiguous United States. Between September 2020 and September 2021, they sponsored

a competition (https://www.topcoder.com/community/streamflow) to predict streamflow at ten locations (Fig. 1 and Tab. 1) at130

lead times of up to ten days, into which we entered three forecasts, raw and bias-corrected GloFAS and an LSTM, which are

discussed in greater detail in Sec. 4, and which form the basis of this study.

The ten gauge locations are shown in the context of climatological precipitation (from PRISM; Daly et al., 2008) and

topography (from ETOPO1 Amante and Eakins, 2009) in Fig. 1, along with their respective catchment basins in blue. The ten

locations represent a considerable diversity in climate and environment: two stations (TCCC1, NFDC1) are on the windward135

side of the Sierra Nevada, a region of high climatological rainfall; four (NFSW4, LABW4, ESSC2, TRAC2) are situated at high

elevations along the Rockies; and four (ARWN8, CLNK1, CARO2, BNDN5) are in the relatively arid plains of the Midwest

and south. These locations are summarised in Tab. 1.
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Location ID USGS Station Number Description Longitude Latitude

BNDN5 8353000 Rio Puerco near Bernardo, NM -106.85 34.41

ARWN8 6468250 James River above Arrowwood Lake near Kensal, ND -98.80 47.40

TCCC1 11523200 Trinity River above Coffee Creek near Trinity Center, CA -122.70 41.11

CARO2 7301500 North Fork Red River near Carter, OK -99.51 35.17

ESSC2 6733000 Big Thompson River above Lake Estes, CO -105.51 40.38

NFDC1 11427000 North Fork American River at North Fork Dam, CA -121.02 38.94

LABW4 9209400 Green River near La Barge, WY -110.16 42.19

CLNK1 6847900 Prairie Dog Creek above Keith Sebilius Lake, KS -100.10 39.77

TRAC2 9107000 Taylor River above Taylor Park, CO -106.57 38.86

NFSW4 6279940 North Fork Shoshone River at Wapiti, WY -109.43 44.47

Table 1. Summary of the locations of the ten river streamflow gauges used in this study. See also Fig. 1.

Station ID Basin area (km2) Elevation (m) Discharge (m3 s−1) Missing (%)

25% median mean 75%

BNDN5 13739 1439 0.000 0.000 0.368 0.042 23.8

ARWN8 1165 439 0.195 1.44 8.24 9.34 50.6

TCCC1 386 773 12.1 17.2 20.5 24.1 1.6

CARO2 5367 508 0.821 1.95 3.28 3.82 9.0

ESSC2 357 2290 0.680 1.76 4.47 5.30 22.2

NFDC1 885 217 24.2 37.4 49.0 53.2 4.1

LABW4 10123 1987 18.3 21.2 26.0 28.6 37.1

CLNK1 1527 712 0.059 0.122 0.142 0.187 14.3

TRAC2 331 2847 0.963 1.05 1.19 1.39 33.3

NFSW4 1810 1700 4.76 6.17 8.55 10.1 18.5

Table 2. Summary of the climatological hydrological parameters of the ten river streamflow gauges used in this study. ‘Missing’ indicates

the fraction of measurements since 01 Jan 1990 recorded either as ‘Ice’ or some other non-numeric value. Data from USGS and DWR, as

outlined in Sec. 3.4.

Selected hydrological statistics are shown for each gauge in Tab. 2. These are computed over the entire measurement record

for each gauge (minimum ∼30 years) and reflect the variance in river characteristics chosen by the Bureau of Reclamation.140

Notably, only three stations (BNDN5, CARO2, LABW4) have a drainage basin whose area exceeds 2000 km2; this is the

recommended threshold for GloFAS analysis, as basins smaller than this are not necessarily resolved by the underlying model.
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Station ID Mean 2-m temp (◦C) Mean precip (mm d−1)

Annual Jan Jul Annual Jan Jul

BNDN5 10.9 -1.6 22.7 1.0 0.8 1.8

ARWN8 4.9 -12.7 20.6 2.0 0.8 3.3

TCCC1 8.0 -0.4 20.2 3.4 6.6 0.5

CARO2 15.6 3.5 27.6 1.8 0.9 1.6

ESSC2 1.9 -8.4 14.8 2.1 1.3 3.1

NFDC1 10.2 2.2 21.4 4.3 8.6 0.1

LABW4 1.6 -9.9 16.4 1.5 1.7 0.7

CLNK1 12.0 -1.0 25.8 1.9 0.6 2.8

TRAC2 -0.9 -11.4 11.7 1.7 1.7 1.7

NFSW4 0.0 -10.6 14.2 2.0 2.0 1.2

Table 3. Summary of the climatological meteorological parameters of the ten river streamflow gauges used in the competition. Data from

ERA5, as outlined in Sec. 3.1.

The remaining seven stations, therefore, provide us with a forecast challenge. As Tab. 2 shows, some gauges are in extremely

arid locations (e.g. BNDN5), and some have a great quantity of missing data (e.g. ARWN8), both of which present potential

difficulties in the training and operational use of the LSTM. Overall (Tab. 3), the basin-average meteorology varies considerably145

between the gauges, reflecting their geographical diversity.

3 Data

3.1 ERA5

The Copernicus Climate Change Service (C3S) at ECMWF produces the five-generation ERA5 atmospheric reanalyses of

global climate covering the period since January 1950 (Hersbach et al., 2020). Data from ERA5 (available from https://apps.150

ecmwf.int/mars-catalogue/?class=ea) cover the entire globe on a 30 km grid and resolve the atmosphere on 137 levels from

the ground up to 80 km in altitude. At reduced spatial and temporal resolutions, ERA5 includes uncertainty information for all

variables. We use catchment-mean ERA5 variables (near-surface, surface, and subsurface) as training data for the LSTM.

3.2 IFS

The study uses the ECMWF Integrated Forecasting System (IFS, version CY47R1). This IFS was run at full complexity155

with the configuration used for operational weather forecasts at ECMWF, as well as for the re-analysis (ERA5). The system

is described in detail (https://www.ecmwf.int/en/publications/ifs-documentation) and has a turbulent diffusion and exchange

with the surface represented by the Monin-Obukhov similarity theory in the surface layer and an Eddy-Diffusivity Mass-Flux
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(EDMF) framework above the surface layer and includes a mass-flux shallow-convection; a multilayer, multitiled land-surface

scheme (HTESSEL); a five-species cloud microphysics model; and a shortwave and longwave radiation scheme including160

cloud radiation interactions. IFS data, up to a 10-day lead time, are used as input to the LSTM when it is run operationally

(available from https://apps.ecmwf.int/mars-catalogue/?class=od&stream=oper). Each morning throughout the operational pe-

riod (September 2020 to October 2021), the control member (the member generated with unperturbed initial conditions) of the

ensemble was downloaded using the Meteorological Archival and Retrieval System (MARS) API. This comprises more than

20 variables, globally, at a six-hourly frequency and resolution of 0.1×0.1◦. Having to download and pre-process this large165

volume of data within the time constraints allowed limited us to using only one ensemble member. To retain more realistic

variability at longer lead times, we chose to use the control member, rather than the ensemble mean. The full list of variables

used is given in Sec. 4.4.

3.3 GloFAS

The worldwide Global Flood Awareness System (GloFAS; Harrigan et al., 2020), created collaboratively by the European170

Commission and the European Centre for Medium-Range Weather Forecasts (ECMWF), is a global hydrological forecasting

and monitoring system that is not constrained by administrative or political boundaries. It combines cutting-edge meteoro-

logical predictions with a hydrological model, and due to its continental scale setup, it can deliver information on upstream

river conditions as well as continental and global overviews to downstream nations. Since 2011, GloFAS has been producing

daily ensemble flood predictions and monthly seasonal streamflow outlooks since November 2017 and is run operationally175

as a component of the Copernicus Emergency Management Service. For dates prior to May 25 2021 (i.e. all of the test-

ing period and most of the operational period), we use GloFAS version 2.1 (Zsoter et al., 2019a), thereafter we use Glo-

FAS version 3.1 (Zsoter et al., 2021). GloFAS products are freely available from its dedicated Information System, open

to all following registration (www.globalfloods.eu) and its hydrological data from Copernicus Climate Data Store (https:

//cds.climate.copernicus.eu/#!/home). More detail on GloFAS service can be found on the dedicated wiki (https://confluence.180

ecmwf.int/display/CEMS/Global+Flood+Awareness+System). Two sets of GloFAS data were used: GloFAS-ERA5 (Zsoter

et al., 2019b), a global modelled dataset of daily river discharge created by forcing the hydrological model with the ERA5

reanalysis; and GloFAS forecasts (Zsoter et al., 2019a, 2021), an ensemble of global daily river discharge forecasts, forced by

ensemble forecasts from the ECMWF IFS. As with the IFS above, for forecasts we use the control member up to a lead time of

ten days, downloaded using the MARS API (available from https://apps.ecmwf.int/mars-catalogue/?class=ce&stream=wfas).185

The control member of GloFAS is the ensemble member produced using the control member of the IFS ensemble forecast.

These data are global, have daily frequency, and a resolution of 0.1×0.1◦.

3.4 Observational station data

Observational gauge data were downloaded from https://dwr.state.co.us/Tools/Stations (for ESSC2) and https://waterdata.usgs.

gov/nwis (all others). These data are available at three-hourly resolution, published in near real-time, and mostly with coverage190
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Figure 2. Schematic showing the workflow of the raw GloFAS forecasts, the bias-corrected GloFAS forecast, and the LSTM hybrid forecast.

from about 1990 onwards. Coverage and streamflow data are given in Tab. 2. These data are used to train the LSTM and

calibrate the parameters for both stages of the bias-correction algorithm (see Sec. 4.3), and later for forecast verification.

4 Methods

In this section we describe the verification and forecasting method used in this study. Three forecasts are created each day with

6-hourly timesteps out to a maximum lead-time of 10 days. The overall workflow used to create these forecasts is shown in195

Fig. 2. More detail is provided in the following sections.

First, we describe the different time periods used in this study to train and validate the LSTM and bias-correction methods.

4.1 Training, testing, and operational forecasting periods

We define three periods which are used consistently throughout the study.

– The training period runs from January 1990 to June 2019. Although some stations have observational data prior to200

1990, this start date was chosen to ensure a consistent length of training dataset across all gauges and to reduce the effect

of spurious or sparse data on the training algorithms. The end date was chosen so that a twelve-month testing period

was available before the start of the operational forecasting period. The same training period and dataset is used for the

quantile mapping, spatial optimisation, and LSTMs.

9



– The testing period runs from June 2019 to June 2020, fixed as a twelve-month period that ended just before the opera-205

tional phase was due to begin.

– The operational forecasting period runs for thirteen months from September 2020 to October 2021. The start and end

date were fixed by the competition.

4.2 Verification metrics

The Kling-Gupta Efficiency (KGE, Gupta et al., 2009; Kling et al., 2012) is used to evaluate the performance of the forecasts.210

The KGE is defined as

KGE= 1−
√

(r− 1)2 +(β− 1)
2
+(γ− 1)

2 (1)

where r is the Pearson’s correlation coefficient, β is the bias ratio, and γ is the variability ratio. The bias and variability ratios

are defined as

β =
µsim

µobs
, (2)215

and

γ =
σsim

σobs
, (3)

where µsim and σsim are the mean and standard deviation of the forecast discharge and µobs and σobs are the equivalent for

the observed discharge. The KGE is widely used in hydrology as each component is a measure of a different type of error. The

correlation coefficient, r, is a measure of temporal errors, the bias ratio, β indicates whether the discharge tends to be over-220

or under-predicted by the forecast, and the variability ratio, γ measures if the forecast captures the variability of the discharge

magnitudes (Harrigan et al., 2020).

For a perfect forecast, each component (r, β, and γ) has a value of 1, giving KGE= 1. We also define two benchmarks. We

define a ‘skilful’ forecast as one where the KGE is higher than for a mean observed discharge benchmark i.e., KGE> 1−
√
2∼

−0.414. However, beating the long-term climatological mean is often easy (Pappenberger et al., 2015) and for certain flow225

regimes not even a helpful metric (Knoben et al., 2019) – although in our case, failing to surpass this benchmark does clearly

indicate a lack of skill. To this end, we also arbitrarily define a ‘highly skilful’ forecast as one where KGE>
√
2/2∼ 0.707.

This benchmark corresponds to a mean relative error in the three coefficients of about 17%, or an error of about 30% in one

coefficient if the other two have zero error.

As an additional upper benchmark, we will also use persistence forecasts. Persistence forecasts can help us to determine230

which stations are ‘easy’ or ‘hard’ to forecast. For each station, these are constructed by persisting its mean observed discharge

from the previous 48 hours. For example, the 5-day persistence forecast for May 23 is given by the mean flow between May

16 and May 18. Evaluated at a fixed lead time, such persistence forecasts asymptotically approach the observed mean and

standard deviation of the observations over long periods, typically giving them high KGEs.
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As such, we also use the Nash-Sutcliffe Efficiency Nash and Sutcliffe (NSE; 1970), which validates forecast or simulated235

flow based only on covariance with the observations, thus:

NSE = 1− Σt(Qsim(t)−Qobs(t))
2

Σt(Qobs(t)−Qobs(t))2
, (4)

where Qsim is the simulated discharge, Qobs is the observed discharge, and the overbar denotes a long-term average.

4.3 Bias correction

When undertaking bias correction, we have a range of choices of complexity – ranging from the very simple (additive/multiplicative)240

through increasingly advanced methods (e.g. quantile mapping). Here, we have the advantage of a long timeseries of training

data and we want to maximise the forecast skill under the single constraint that forecast output from GloFAS is the only in-

put. To that end, we employ both quantile mapping and spatial fitting techniques, splitting the bias correction into two serial

algorithms, which we outline in the following subsections. Quantile mapping remaps modelled values to reduce systematic

bias and is a standard practice in meteorological and hydrological bias correction (Thrasher et al., 2012). The spatial opti-245

misation method, newly developed for this work, provides an additional layer of bias correction, accounting for the fact that

consistent spatiotemporal biases in hydrometeorological fields such as precipitation (should they exist), will result in consistent

upstream/downstream biases in modelled streamflow — information that can be used to improve forecasts.

4.3.1 Quantile mapping

For the first stage of the bias correction we employ a basic quantile mapping method. The training period (January 1990 to250

June 2019) was extracted from the observational record. GloFAS-ERA5 streamflow was extracted for the same period, not only

for the grid point in which the gauge of interest is located, but also for surrounding points in a 0.6◦ × 0.6◦ box centred on the

gauge. This gives a total of 36 locations (given the 0.1◦ spacing of global GloFAS output).

Iteratively, these are then quantile-mapped to the observed streamflow, that is:

mbc(i, t) = q̃obs(qraw(mraw(i, t))) , (5)255

where q is a function that maps streamflow to streamflow quantiles, q̃ is its inverse, mraw and mbc are the raw and bias-corrected

modelled streamflows respectively, and i and t are spatiotemporal indices. The forms of qraw and qobs are both computed using

data from the training period and used unchanged for the testing period and operational forecasts. For example, consider a

forecast streamflow value of 38.7 m3 s−1 for a grid point containing the NFSW4 gauge. This value, were it in the GloFAS-

ERA5 training period, would have a quantile value of 0.88. The 0.88th quantile (or 88th percentile) for observed streamflow260

at NFSW4 in the training period is 77.0 m3 s−1, and so this would be the value used for mbc for that point at that forecast

time. This makes sense, given that raw GloFAS underestimates high flow at NFSW4 by about 50% (cf. Fig. 5). This quantile

mapping technique is then carried out independently for each of the 36 grid points in the neighbourhood of each gauge, in each

case mapping the GloFAS output for the specific grid point to the observations taken at the gauge (as opposed to observations

taken at the grid point itself).265
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4.3.2 Spatial optimisation

We must then convert these forecast values over the neighbourhood grid points into a single forecast value. This was achieved

through a simple linear summation, i.e.,

mbc(t) = Σiaimbc(i, t) , (6)

where the coefficients ai are to be determined.270

To compute ai, eq. 6 was treated as an optimisation problem using the same training period as earlier (January 2005 to June

2018). Here, we seek to minimise

−NSE(m,o)−KGE(m,o) , (7)

i.e. the negative sum of the Kling-Gupta and Nash-Sutcliffe efficiencies over the training period. This optimisation was carried

out subject to the constraint that 0≤ ai ≤ 1, to prevent unphysical behaviour, and computational noise. We minimise this275

combination of NSE and KGE because using NSE alone leaves the optimization procedure vulnerable to incorrect local minima

(e.g., an incorrect mean). However, we also found that using KGE alone tended to result in a bias correction that weighted

correct mean and variance too highly compared to correlation, which is not useful for improving forecasts. We found that

combining the two improved the weighting more in favour of correlation, while avoiding spurious local minima. Because the

number of training datapoints is several orders of magnitude higher than the number of fitting parameters, and because of280

the constraints we impose on ai, overfitting is very unlikely. This is confirmed later by validation over the testing period in

Sec. 5.1.2.

A sequential quadratic programming technique was then used to compute the optimal bias matrix, ai, due to its ability to

obey constraints through Lagrange multipliers (Nocedal and Wright, 2006). The resulting (static) 6×6 matrices were computed

and stored for each of the ten gauges and are then used during each forecast to convert the quantile-mapped nt×6×6 forecasts285

into 1D vectors of length nt.

As an example, the bias matrix for NFSW4 is:

0.089 0 0 0 0.138 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0.754 0.009 0

0 0 0 0 0 0

0 0 0.001 0 0 0.023


. (8)

It is clear that the gauge is located in the grid point associated with ai = 0.754; however, there are some additional contributions

from nearby river points. Aside from the direct spatial error described in the previous subsection, these uncentred contributions290

(both in NFSW4 and at other stations) largely work to correct two smaller biases. Firstly, any local spatial bias in the ERA5

precipitation used to drive GloFAS-ERA5 that, for example, incorrectly increases the streamflow in a nearby channel. Secondly,
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a temporal bias in the streamflow, for example a downstream point may receive nonzero weighting if the modelled streamflow at

the gauge is occurring later than in observations. This method has the additional advantage that no topological data is required.

Two final adjustments are made when the bias correction is run operationally. Firstly, the bias-corrected forecast is slightly295

relaxed towards the raw forecast (qnew
bc = 0.25qraw +0.75qold

bc ) to account for the different climatologies of GloFAS-ERA5 and

GloFAS. GloFAS-ERA5 and GloFAS forecasts have different climatologies because they take meteorological input from differ-

ent sources (ERA5 and IFS forecasts respectively). ERA5 and IFS themselves have different climatologies because, although

they share the same driving model, ERA5 is a reanalysis and is nudged towards observations, whereas IFS forecasts are not.

At the beginning of the operational phase, we noticed that the differences between GloFAS and GloFAS-ERA5 were leading300

to an overenthusiastic bias correction. The damping ratio was chosen by testing the effect of selected values in the range 0–1.

Secondly, the whole forecast is then shifted by an additive δ, the difference between the mean observations and the mean day-1

forecasts over the two days prior to the forecast being issued.

4.4 LSTM

4.4.1 Summary305

For the reader’s reference, we provide a brief summary of the LSTM and its use. The LSTM is trained separately on each of the

ten basins in Tab. 1 using historical observations of streamflow and catchment-mean hydrological and meteorological variables

from ERA5, giving 23 training variables (Tab. 5) and one target variable (streamflow) in total.

For each gauge, the LSTM is trained 100 times using random starting weights, with the mean of the five best-performing

ensemble members from the training period used for validation during the testing period and forecasting during the forecast310

period. We differ from the suggested best practice of the JKU papers (see Introduction) of using a single LSTM trained over

many basins only because the majority of our code base had been written and models trained by the time those papers were

published.

During the testing period, the LSTMs are run at six-hourly timesteps, ingesting catchment-mean ERA5 variables from the

preceding week at a six-hourly resolution (giving an input vector of length 28, fixed during the training process). This process315

results in a single estimate of streamflow for each timestep at each gauge. During the forecast period, we want to provide daily

streamflow forecasts out to a ten-day lead time at six-hourly resolution (i.e. 40 timesteps). To achieve this, at each gauge, the

LSTM is run 40 times daily and the outputs concatenated to build the desired timeseries. For each timestep, the input vector

– still of length 28 – is constructed from catchment-mean IFS forecast variables. For example, a day-4 forecast to be issued

on March 15, valid on March 19, would use an input vector comprising data from the following IFS forecasts and lead times:320

March 13 day-0, March 14 day-0, March 15 day-0, March 15 day-1, March 15 day-2, March 15 day-3 and March 15 day-4.

4.4.2 Setup and training

A number of hyperparameters are required for an LSTM and our selection was largely guided by previous literature (e.g.

Kratzert et al., 2018). This included: using mean squared error as our loss function; a learning rate of 0.001 with no decay; and
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Figure 3. Example training of a single LSTM ensemble member for the NFSW4 gauge, showing (a) the full dataset of observed streamflow,

with the testing period shaded in grey; and (b) comparison of the training and validation losses over the ten training epochs. For a fair com-

parison, the validation loss has been multiplied by the ratio of the variances of the testing and training datasets. Also shown are comparisons

of the predicted streamflow to observations for the full (c) and start (d) of the testing period.

a dropout of 0.1. For a full inventory of hyperparameters, see the code repository link at the end of the paper. We decided to use325

basin-mean variables so that the LSTM architecture would be consistent for each of the ten gauges. With this setup fixed, we

tested stacked architectures with permutations of 5, 10, 20, 50, and 100 neurons in each LSTM layer. The best performance,

judged using the testing period at each gauge, was achieved by the 50×50×50 permutation, giving the architecture described

in Tab. 4.

There are three stacked LSTM layers, one input and two hidden, each with fifty neurons, and a single neuron dense output330

layer. Following Kratzert et al. (2018) and other hydrological-LSTM papers, we use all surface or near-surface variables

available in ERA5 tht are potentially relevant to streamflow prediction. This gives us a total of 23 input variables, outlined in

Tab. 5. For each of the ten gauges, all variables except streamflow and the historic mean (which are taken as point data at the
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Figure 4. The Nash-Sutcliffe efficiency and logarithm of the root mean square error in streamflow (m3 s−1) for each of the hundred ensemble

members of each gauge-specific LSTM, computed over the June 2019 – June 2020 testing period. Each member was trained for ten epochs,

except for five that were trained for 100 epochs. These five are marked with an additional black ring.

Layer Input Activation Output

LSTM layer 1 (28,23) ReLU (28,50)

LSTM layer 2 (28,50) ReLU (28,50)

LSTM layer 3 (28,50) tanh (1,50)

dense (1,50) linear (1)

Table 4. Description of the LSTM architecture used in this study.

gauge location) are averaged over the catchment (see Fig. 1) at a six-hourly frequency. We use a seven-day sequence for the

input, giving the vector for each variable a length of 28 timesteps.335

The LSTM was trained separately for each gauge over the training period (January 2005 to June 2018). For each gauge,

the LSTM was trained 100 times using random starting weights over ten epochs each. Fig. 3 shows the training, validation,

and testing of one ensemble member for the NFSW4 gauge – demonstrating that both the diurnal and seasonal cycles of this

high-volume gauge are well simulated by individual ensemble members. Five additional ensemble members were also trained

over 100 epochs to determine whether extending the number of epochs provided a significant performance gain. Fig. 4 shows340

the performance of each ensemble member of the LSTM for each gauge, computed over the testing period (June 2019 to June

2020). We see that there is no significant advantage to extending the number of epochs beyond ten per member. The sensitivity
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Surface meteorology

(ERA5/IFS)

Surface hydrology

(ERA5/IFS)

Subsurface hydrology

(ERA5/IFS)
Other

10-m u wind precipitation rate subsurface runoff raw streamflow (GloFAS-ERA5/GloFAS)

10-m v wind total runoff soil moisture layer 1 bias-corrected streamflow (GloFAS-ERA5/GloFAS)

2-m temperature surface runoff soil moisture layer 2 mean historical streamflow for day of year (obs)

2-m dewpoint skin reservoir content soil moisture layer 3

skin temperature snowfall soil moisture layer 4

snow depth soil temperature layer 1

snow cover

surface latent heat flux

evaporation

Table 5. List of the 23 input variables used during the training, testing, and operational use of the LSTM streamflow model.

of model skill to initial weights is quite large, in agreement with earlier studies (Kolen and Pollack, 1990; Graves et al., 2013),

and could be reduced in future work by using early stopping criteria.

For the operational product, the mean is taken from the five best-performing ensemble members (those with the highest NSE345

in Fig. 4). For eight out of the ten gauges, this yields a better KGE over the testing period than using the best-performing single

member, as we will see in Sec. 5.1. The LSTM is trained using data from ERA5 and GloFAS-ERA5, which we also use for the

testing phase. Although this leaves the operational LSTM vulnerable to biases in the IFS, these are mitigated to an extent with

the IFS being the driving model for ERA5. On the positive side, this means that evaluation of the ability of the forecasts will

be conservative and thus more informative to potential users who, in not having access to decades of archived forecasts with a350

consistent model version, must also resort to using reanalysis training data.

5 Results

5.1 Evaluation over test period: June 2019 to June 2020

5.1.1 Raw GloFAS-ERA5

Figure 5 compares raw (i.e. not bias corrected) GloFAS-ERA5 streamflow to observations at each of the ten stations over the355

test period (June 2019 to June 2020). Note that for the test period, all models (including in Secs. 5.1.2 and 5.1.3), are driven with

ERA5 data and output a single streamflow value per gauge per timestep. The product is skilful (NSE>0 and KGE> 1−
√
2) at

six of the ten stations and highly skilful (KGE>
√
2/2) at two. The stations where raw GloFAS-ERA5 was not skilful (BNDN5,

ARWN8, CARO2, and CLNK1) are characterised by low mean flows and highly intermittent peaks. Often, peaks appear at the
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Figure 5. Comparison of observed streamflow [black] with raw GloFAS-ERA5 output [red] for each of the ten gauges over the testing

period (June 2019 to June 2020). Gaps in the observational record over the winter are due to river freezing. Nash-Sutcliffe and Kling-Gupta

efficiencies over the year-long period are given for each gauge.

wrong time – as exemplified at CLNK1 during the autumn months of 2019 – or respond too slowly or too smoothly to short360

precipitation stimuli.

At stations where the raw GloFAS-ERA5 product is skilful but not highly skilful (TCCC1, ESSC2, NFDC1, and LABW4)

are typically marked by it capturing the annual cycle well, but generally missing some or most intraseasonal variability. This

is evident in ESSC2 and LABW4, where the summer maximum and winter minimum were well captured, but autumn and

spring storms were not. Those stations where the product is highly skilful (TRAC2 and NFSW4) also capture intraseasonal365
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variability well – see for example April and May 2020 at NFSW4, where the discharge associated with two spring storms is

well simulated by the model.

5.1.2 Bias-corrected GloFAS-ERA5
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Figure 6. Comparison of observed streamflow [black] with bias-corrected GloFAS-ERA5 output [red] for each of the ten gauges over the

testing period (June 2019 to June 2020). Gaps in the observational record over the winter are due to river freezing. Nash-Sutcliffe and Kling-

Gupta efficiencies over the year-long period are given for each gauge.

Bias-corrected GloFAS-ERA5 is compared with observational streamflow for each of the ten gauges over the testing period

in Fig. 6. The results are a substantial improvement over the raw GloFAS-ERA5 output: NSE is improved at seven of the ten370
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stations (except BNDN5, ARWN8, TCCC1) and KGE is also improved at seven stations (except BNDN5, TCCC1, NFDC1).

Following bias-correction, GloFAS-ERA5 is now skilful at seven stations and highly skilful at four.

Failures at BNDN5 and ARWN8 are mostly due to the bias correction algorithm being unable to calibrate low and sporadic

flow; although at ARWN8, the quantile mapping brings the simulated mean and variance closer to observations as desired,

resulting in an improved KGE. Although the simulated flow at CLNK1 is still not skilful, it has been improved considerably by375

the bias correction where the spatial optimisation routine has somewhat improved the timing of the peaks. Both CARO2 and

TRAC2 also saw large increases in NSE and KGE due to improved representation of intraseasonal variability.

5.1.3 LSTM

Fig. 7 shows the performance of the LSTM model, ingesting ERA5 and GloFAS-ERA5, at each gauge over the testing period.

It represents a step-change in model efficiency over the bias-corrected GloFAS-ERA5 output, being skilful at nine gauges and380

highly skilful at six. The KGE is greater than 0.9 at three stations and the NSE is greater than 0.9 at four.

Despite this, the BNDN5 and CLNK1 gauges remain relative poorly modelled (although the latter does qualify as skilful).

In the observations, BNDN5 is characterised by long periods of no flow, with occasional short-lived (typically less than two

days) peaks. The LSTM does manage to capture these peaks, but the timing is incorrect – usually several days late – and

the magnitude is often far too small. The first of these issues, and perhaps the second, is likely due to the LSTM ingesting385

catchment-mean variables. The catchment basin for BNDN5 is large and arid, and therefore rain falling over it is probably not

appropriately captured using this simplification. Future development of an LSTM model for streamflow at BNDN5 or similarly

large and arid basins should thus consider an expanded input that ingests variables over all (or representative) grid points in

the basin. At most of the other gauges, intraseasonal variability is captured very well. This is true both for individual storms –

for example high-discharge events at TCCC1 in early December 2019 and NFDC1 in late January 2020 were almost perfectly390

simulated – and broader flow patterns such at ESSC2 in summer 2019 and NFSW4 in spring 2020.

5.2 Verification over operational period: September 2020 to October 2021

Following testing, we ran all three models (raw GloFAS, bias-corrected GloFAS, and the LSTM) operationally for thirteen

months between September 1 2020 and October 1 2021, producing ten-day forecasts at daily frequency. As discussed in Sec. 4,

the major difference between the testing period and the operational period is the switch from ERA5 to IFS for the variables395

ingested by the GloFAS prediction system and by the LSTM. The effects of this switch are somewhat mitigated by using the

same underlying model (ERA5 uses the IFS), but there will be biases in IFS forecasts that are not present in ERA5, since the

latter is nudged with simultaneous observations that are not available to the forecasts at nonzero lead times.

Forecasts at each station are evaluated at 2-, 5-, and 8-day lead times against the official observations. Results are given over

the entire operational period for the raw GloFAS forecasts in Fig. 8, the bias-corrected GloFAS forecasts in Fig. 9, and for400

the LSTM forecasts in Fig. 10. As expected, even at short lead times, the forecasts generally perform more poorly than their

reanalysis-based counterparts. There are a handful of notable exceptions to this, particularly for the raw GloFAS forecasts at

BNDN5, TCCC1, and CLNK1. Although the GloFAS forecasts derive from a marginally more recent version of the IFS than
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Figure 7. Comparison of observed streamflow [black] with the LSTM ensemble output [members:grey, mean:red] for each of the ten gauges

over the testing period (June 2019 to June 2020). Gaps in the observational record over the winter are due to river freezing. Nash-Sutcliffe

and Kling-Gupta efficiencies over the year-long period are given for each gauge.

does ERA5, the gains in this context are likely to be insignificant. At BNDN5 and CLNK1, the difference appears to be due

to the hydrographs of the testing and operational periods having different characteristics. During the testing period, there was405

no flow at BNDN5 except for several very short (∼daily) pulses of nonzero discharge in autumn 2019; during the operational

period, however, autumn 2021 was parked by a period of low but continuous flow. The lagged autocorrelation of the latter

situation almost invariably makes it easier to model. At CLNK1, constant very low flow is punctuated by occasional, short-

lived peaks. There was only one significant peak in the operational period compared with four in the testing period, making it
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Figure 8. Verification of the 2-day (blue), 5-day (orange) and 8-day (yellow) raw GloFAS forecasts against observations (black) over the

operational period (September 2020 to October 2021). Observations are plotted at six-hourly resolution to match the forecasts and are not

plotted when the river is frozen. Kling-Gupta efficiencies for each lead time at each station are also given.

easier to model correctly. This is arguable also the case at TCCC1, where increased subseasonal variability in the operational410

period – notably two big storms in December 2019 and January 2021 – made it more challenging to simulate than the testing

period.

Evaluating overall performance by computing the KGE of the 5-day forecasts, we find that the bias-corrected GloFAS

forecast beats the raw GloFAS forecast at six stations, the LSTM forecast beats the bias-corrected GloFAS forecast at all ten

stations and the raw GloFAS forecast at nine. The raw GloFAS 5-day forecasts were skilful at seven stations and highly skilful415
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Figure 9. Verification of the 2-day (blue), 5-day (orange) and 8-day (yellow) bias-corrected GloFAS forecasts against observations (black)

over the operational period (September 2020 to October 2021). Observations are plotted at six-hourly resolution to match the forecasts and

are not plotted when the river is frozen. Kling-Gupta efficiencies for each lead time at each station are also given.

at one of these; the bias-corrected GloFAS 5-day forecasts were also skilful at seven stations and highly skilful at one of these

– though with significant improvement over the raw GloFAS forecasts at six of the seven showing skill. The LSTM 5-day

forecasts were skilful at nine stations and highly skilful at five of these.

To complete this evaluation, we now extend our analysis to all lead times and include a simple persistence model as a

benchmark (Sec. 4). For sufficiently long verification periods, the mean and variance of persistence forecasts by definition420

asymptotically approaches those of the observations. This has two key implications: firstly, since KGE is sensitive to the errors
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Figure 10. Verification of the 2-day (blue), 5-day (orange) and 8-day (yellow) LSTM forecasts against observations (black) over the opera-

tional period (September 2020 to October 2021). Observations are plotted at six-hourly resolution to match the forecasts and are not plotted

when the river is frozen. Kling-Gupta efficiencies for each lead time at each station are also given.

in forecast mean and variance, the persistence model receives a large advantage in this score compared to the other models;

secondly, following on from the first point, KGE is no longer a fair descriptor of model performance, so we must also consider

NSE.

Fig. 11 shows how the KGE and NSE vary for each model at each station as a function of lead time. Here, we are more425

interested in the higher values of these metrics (i.e. if a model is skilful, how skilful is it?) than the orders of magnitude of

negative KGE and NSE values produced by useless forecasts, and so we truncate the plots at NSE=-1 and KGE=0. For each
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Figure 11. Overall performance of the three models during the operational period (September 2019 to October 2020) compared with a

persistence benchmark (grey). For each model, at each station, for each lead time (from one to ten days), the Nash-Sutcliffe and Kling-Gupta

efficiencies – compared to observations – are plotted. Lead times are connected sequentially by markers of diminishing size, with the ten-day

lead time having the smallest marker. Values of KGE below zero or NSE below -1 are not plotted.

model at each station, scores are plotted from lead times of one to ten days inclusive, denoted by markers of diminishing

radius, and connected in order by thin lines of the same colour, creating ‘phase space caterpillars’. Presenting the metrics in

this way allows a quick intercomparison between models, for example we can see clearly where bias correction has worked430

well (ESSC2, NFDC1, TRAC2) by identifying where the bias-corrected points have moved significantly upward and to the

right compared to their raw counterparts. With the exception of BNDN5, CLNK1 and CARO2, we see that the LSTM forecasts

tend to have comparable KGE to the persistence forecasts, but higher NSEs. Both the persistence and LSTM forecasts tend

to outperform the raw and bias-corrected GloFAS forecasts. We also note that stations with a high lagged autocorrelation

(i.e. those stations where the persistence model does well) tend also to have discharge that is well simulated by all three of the435

operational models. Exemplified by LABW4 and NFSW4, these are typically high-discharge sites with large catchment areas

and slow response times. Indeed, those stations where the GloFAS and LSTM models struggle the most are characterised by

flash responses, with their dominant mode of variability on the diurnal, rather than annual or semiannual timescale.

Next, to understand how the models perform as a function of forecast lead time, we decompose the KGE values into their

three components: correlation (Fig. 12, bias ratio (Fig. 13), and variability ratio (Fig. 14). As before, we truncate the graphs440

to remove poor performing metric values where necessary. In terms of the correlation coefficient, the LSTM performs best at

24



five of the ten stations (ARWN8, TCCC1, NFDC1, TRAC2, NFSW4) and most notably is the only forecast to have a positive

correlation with the observation at ARWN8. This is mainly due to a fictional peak in the raw GloFAS which is exacerbated

by the bias correction, but which is filtered out by the LSTM. In addition to these five stations, the LSTM also has the highest

correlation at short lead times at LABW4 but this decreases at longer lead times, dropping below the correlation coefficient445

of the other two forecasts after four days. The timing of the largest peak at LABW4 during the operational period is better

predicted by the raw and bias-corrected GloFAS forecasts at longer lead times, whereas for the LSTM it is shorter lead times

that accurately predict this peak. The raw forecast has comparable correlation coefficients to the bias-corrected and LSTM

forecasts at the three largest stations (BNDN5, CARO2, LABW4) but is notably lower for smaller catchments supporting the

need for caution when using the raw GloFAS forecast for catchments below the recommended 2000 km2 threshold. Since the450

bias-correction method is based on quantiles it can impact the correlation of the forecasts. The bias-corrected GloFAS has an

improved correlation compared to the raw GloFAS forecast at seven of the ten stations (TCCC1, ESSC2, NFDC1, CLNK1,

TRAC2, NFSW4, ARWN8 (not shown)).

Figure 12. Correlation coefficient, r, calculated over the verification period for all three forecast models at each station for each lead-time

(from 1 to 10 days). Negative correlations for ARWN8 have not been plotted.

Surprisngly, the bias ratio of the bias-corrected GloFAS forecasts is worse than than the raw GloFAS forecasts at four of

the ten stations (BNDN5, ARWN8, TCCC1, CLNK1). These four stations tend to have low streamflow variability except for455

some short-duration large peaks. As these peaks are largely seasonal this vulnerability in the bias correction technique is likely

due to the change in discharge distribution throughout the year, a problem that could be rectified by applying a season-based

quantile mapping. The large bias ratios at BNDN5 and ARWN8, and CLNK1 and CARO2 at longer lead-times, are often due to

unprecedentedly large values forecast by the raw GloFAS. The quantile mapping extrapolates these quantities to unphysically
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large values (see, e.g., 5000 m3 s−1 in September 2021 at CARO2 in Fig. 9). The raw GloFAS forecasts underpredict the460

streamflow at the small catchments at high elevations (ESSC2, TRAC2). The bias correction does partially correct for this bias,

but the LSTM forecast still has the lowest bias at these stations. In fact, the LSTM is the least biased forecast for eight of the

ten stations, the exceptions being BNDN5 and CLNK1, where the raw forecast is better. For the largest catchment, BNDN5,

the raw GloFAS forecast has a relatively small bias ratio compared to the other two forecasts mainly because it consistently

predicted the zero-flow during the first half of the verification period.465

Figure 13. Bias ratio, β, calculated over the verification period for all three forecast models at each station for each lead-time (from 1 to 10

days). Note the logarithmic scale of the y-axis for ARWN8.

The raw GloFAS forecast has the best variability ratio of all three forecasts at the two larger high-elevation catchments

(LABW4, NFSW4), although at both stations the bias-corrected forecast has similar variability ratios at some lead times.

However, the bias correction only improved the flow variability of raw GloFAS forecasts at half of the stations (BNDN5,

ESSC2, NFDC1, CLNK1, TRAC2). However, these stations vary significantly in catchment characteristics (catchment size,

elevation, peak duration, meteorological regimes), as do the stations where the bias correction is beneficial, so there is no470

obviously favourable catchment characteristic. The unphysical streamflow predictions seen at BNDN5, ARWN8, CLNK1 and

CARO2 also impact their variability ratio metric. The LSTM has the best variability ratio at three of the ten stations (BNDN5,

ARWN8, TRAC2) and comparable values at a further four (CARO2, ESSC2, LABW4, CLNK1). All forecasts have a higher

variability ratio at longer lead-times at NFDC1 with the rate of increase similar for all three forecasts. This suggests that the

change with lead-time is due to factor impacting both such as a bias in the IFS forecast which is used to drive the LSTM and475

the LISFLOOD hydrological model used to create the GloFAS forecasts.
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Figure 14. Variability ratio, γ, calculated over the verification period for all three forecast models at each station for each lead-time (from 1

to 10 days). The y-axis has been truncated to γ-values = 5.2 for stations ARWN8, CARO2, and CLNK1.

Finally, as this is a study on forecasting, we would be remiss not to analyse a single forecast. Fig. 15 shows the forecasts

issued for the ten stations on May 1 2021, along with the persistence forecast, verified against observations. We see more easily

here how the bias correction often – but not always – nudges the raw GloFAS forecast in the right direction, with particularly

successful results at ARWN8 for this forecast. Of particular interest during this period was a pair of rain-on-snow events that480

impacted stations in the Rockies (NFSW4, LABW4, ESSC2, and TRAC2). These resulted in large spikes in the streamflow,

visible in the observations, centred on May 3 and May 9. Neither the raw nor the bias-corrected GloFAS forecasts captured

this, nor did a number of other operational forecasts (Kenneth Nowack; personal communication). While the LSTM mostly

underestimated the magnitude of these events, it did predict them. This highlights the ability of LSTMs in general to learn

complex non-linear relationships that may be altogether absent from physics-based models.485

6 Discussion

6.1 Potential improvements

As with any newly-developed forecast models or techniques, we encountered scope for improvement during the operational

phase and post-operational analysis. There are two potential improvements to the bias correction, in its current form. The first

is to further granularise the process, computing a new quantile mapping and bias-correction matrix for (e.g.) each season. This490

would have the advantage of further reducing the relative bias caused by seasonally-varying environmental factors (e.g., snow
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Figure 15. Example forecasts, issued on May 1 2021, for lead times of up to ten days. The four models (persistence: grey, raw GloFAS: red,

bias-corrected GloFAS: orange, LSTM: blue) are verified against the official observations, plotted in black crosses.

on ground in winter; or intense storms in the summer saturating the soil). Such work must be careful to avoid overfitting the

matrices given the increased degrees of freedom.

The bias correction would also benefit from a dependence on forecast lead time. Since biases invariably grow as a function

of lead time, the correction required for a 10-day forecast is likely to be larger than the correction required for a 2-day forecast.495

In using GloFAS-ERA5 to compute our bias correction terms in Sec. 4.3, we effectively limited ourselves to a 0-day lead time

correction. The hindcasts that would be required for this now exist from 1997 onwards, and work at ECMWF has used them

for bias correction of flood threshold forecasts through CDF mapping (Zsoter et al., 2020).

Similarly, the LSTM was trained on ERA5 data, but then ingested IFS output when run operationally. Although the two

products will share some biases, they will inevitably be larger in IFS (the forecast) than ERA5 (the reanalysis), resulting in500

errors that propagate non-linearly through the LSTM. Originally, we chose to train the model on ERA5 so that our methods

were reproducible, but there is no reason other forecasters should be bound by this desire. The optimal strategy is to train the

LSTM on IFS hindcasts – though this would require careful adjustment of the architecture to account for different lead times.

Similarly, such an approach must be careful of changing hindcast model versions.

28



In our model, the LSTM is trained on, and subsequently ingests, catchment-mean variables (with the exception of streamflow,505

which is taken at the point of interest). However, as we know, rain falling far away from the station takes longer to reach it than

rain falling nearby – a relationship lost when this approximation is made. By replacing the catchment-mean pre-processing step

with a convolutional layer in the LSTM, the LSTM would be able to learn such spatiotemporal relationships and likely produce

improved forecasts as a result. As we saw in the introduction, work by Le et al. (2019) showed that even a relatively simple

LSTM that ingested data from different points upstream could produce excellent results. Despite the potential advantages, there510

are some caveats to adding a convolutional layer. Firstly, training convolutional LSTMs is computationally very expensive.

Secondly, different basins have different areas, and therefore have to ingest a different number of vectors. This either requires

a new architecture for each basin (essentially unfeasible) or intelligent preprocessing, e.g., grouping the data by distance to the

station. Thirdly, related to the second point, it does not allow transferability between products of different spatial resolutions

without additional preprocessing. One option may be dimensionality reduction of the 2D catchment into a generalised 1D515

representation. Another, recently explored by Feng et al. (2021), is to use graph convolutional networks.

Could the LSTM be replaced with a simpler statistical or machine learning model which is easier to train, such as a multiple

linear regression, random forest, or XGBoost? Although this may be tempting, recent research suggests that LSTMs comfort-

ably outperform both random forest models (Adnan et al., 2021) and XGBoost (Gauch et al., 2021b) on streamflow prediction

problems, particularly with increasing sample size. LSTMs are now well established as a powerful tool for modelling complex520

and nonlinear hydrological systems (Gauch et al., 2021a). However, their limitations – such as lack of parallelisation and long-

range dependencies – mean that they are being increasingly overlooked in sequential data problems in favour of gated recurrent

units (GRUs) and attention-based models (Vaswani et al., 2017). Little research has yet been done into whether such models

are more useful than LSTMs in hydrological contexts. It is likely, however, that switching to the method proposed in Kratzert

et al. (2019b) – that is, using a single LSTM trained across multiple basins – would improve the forecasts. This approach would525

also allow the LSTM to be applied in ungauged catchments.

Generalisation when provided with out-of-distribution data and lack of interpretability are often cited as limitations of

machine learning, particularly in the environmental sciences. However, as shown in Kratzert et al. (2019a), LSTMs trained

across multiple basins actually perform well on previously unseen (even ungauged) basins that might typically be considered

out-of-distribution. Similarly, such LSTMs can capture extreme values of streamflow driven by out-of-distribution extreme530

precipitation events (Frame et al., 2022a). Taken together, these results suggest that such LSTMs are capable of capturing the

underlying hydrological relationships that connect precipitation, runoff, and streamflow. Since climate change does not affect

the underlying physical relationships, well-constructed LSTMs – and other ML models in general – should be largely immune.

However, there are other types of changes, e.g. increasing urbanisation, that will affect the underlying relationships, and would

then degrade the skill of the LSTM — although this would happen in any other kind of hydrological model if not appropriately535

updated. Although recent work has shown potential for interpretability in streamflow LSTMs (e.g., using attention theory; Li

et al., 2021), this is still generally a weakness compared to physics-based models. However, in not having to rely on prescribed

relationships, machine learning products can potentially learn new ones.
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The LSTM as set-up in this paper still requires a hydrological model, LISFLOOD, to be calibrated in an offline procedure

and then run daily in the operational period to create the forecasts. Therefore, whilst the LSTM ingests both meteorological540

and hydrological variables, and therefore likely represents some of the hydrological processes itself, it could be seen as a post-

processing method for the GloFAS forecasts. It would be interesting to see how the difference in perspective impacts users’

trust in the forecasts. Additionally, the need to run the hydrological model limits some of the benefits available via the LSTM

such as computational efficiency. Future work should look at the contribution made by the LISFLOOD streamflow input data to

the final LSTM forecasts and whether the impact is significant enough to warrant the additional resources. Alternatively, future545

research could investigate incorporating machine learning techniques directly into LISFLOOD either to speed up calculations

(Höge et al., 2022; Rackauckas et al., 2020; Raissi et al., 2020) or to replicate processes that are not currently modelled in

LISFLOOD within GloFAS such as the impact of reservoir management.

Finally, due to data pipeline constraints, we used only the control member of the IFS and GloFAS throughout our operational

deployment. Two open research questions remain: what is the best way to combine ensemble members as inputs to an LSTM;550

and how can ensemble members be leveraged to provide accurate uncertainty estimates in the forecasts?

6.2 Potential applications

We have demonstrated, as have other authors, that LSTMs show a great deal of promise for river streamflow modelling and

forecasting. Given this, there are other potential applications that are not immediately obvious from this work.

Perhaps the most exciting is the idea propounded by Kratzert et al. (2018), that LSTMs such as the one in this study are555

not black boxes, rather they are often ‘grey’ boxes, often containing many neurons whose output can be physically interpreted.

In some cases – Kratzert et al. (2018) highlighted a neuron responsible for calculating snowmelt – representing relationships

already captured by physics-based models; in others – e.g., if the rain-on-snow phenomenon described earlier is produced by

a single neuron – representing relationships not necessarily captured by existing physics-based models. There is, then, the

potential for new hydrological relationships to be discovered through careful investigation of a well-trained LSTM.560

Another potential application is to use an LSTM model – in a basin where it has a high KGE and NSE – to infill missing

data in the observational record, or to extend it further back in time where reanalysis coverage permits. Continuous long-term

streamflow records are useful for both climate and hydrology research, as well as the insurance industry. Similarly, because

the LSTM is extremely cheap to run once trained, it could readily be applied to climate model output (either following bias

correction of that data, or by using transfer learning to adjust the internal weights of the LSTM) to produce projections of565

streamflow over selected basins in future climate scenarios.

7 Conclusions

In this study, we explored the efficacy of three models at simulating, and then forecasting up to a 10-day lead time, streamflow at

ten different sites across the western United States. The forecasts were then verified against official observations and compared

with a benchmark persistence model. The three models were:570
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station BNDN5 CLNK1 ARWN8 CARO2 TCCC1 NFDC1 LABW4 ESSC2 TRAC2 NFSW4

mean discharge (m3 s−1) 0.368 0.142 8.24 3.28 20.5 49.0 26.0 4.47 1.19 8.55

missing obs (%) 24 14 51 9.0 1.6 4.1 37 22 33 19

Raw KGE (testing) -0.517 -0.164 -0.241 0.064 0.452 0.480 0.666 0.646 0.716 0.822

BC KGE (testing) <-1 -0.045 -0.098 0.406 0.414 0.413 0.741 0.768 0.914 0.860

LSTM KGE (testing) -0.185 0.182 0.635 0.704 0.843 0.897 0.922 0.939 0.897 0.943

Raw KGE (5-day fc) 0.186 -0.287 <-1 <-1 0.463 0.067 0.605 0.105 0.417 0.812

BC KGE (5-day fc) <-1 0.361 <-1 <-1 0.155 0.521 0.675 0.618 0.577 0.863

LSTM KGE (5-day fc) <-1 0.367 0.025 0.285 0.808 0.876 0.685 0.837 0.876 0.838

Table 6. Summary of results by station, showing the mean discharge and fraction of missing observations during the training period; the

KGE for each of the three models over the testing period; and the KGE for 5-day forecasts from each of the three models over the operational

period. Values of KGE greater than 0.707 (i.e., ‘highly skilful’) are marked in bold. Stations are ordered according to mean model skill during

the testing period, with better performing gauges towards the left.

1. The control member of the Global Flood Awareness System (GloFAS) ensemble, a physics-based model developed by

ECMWF and the Joint Research Centre of the European Commission that provides global forecasts at a resolution of

0.1◦×0.1◦.

2. A bias-corrected version of the raw GloFAS forecast above. The bias correction technique was newly developed for this

study: firstly, each pixel is corrected using a simple quantile-mapping technique, where the mapping is computed using575

historical observations and the reanalysis version of GloFAS, GloFAS-ERA5. Secondly, the final streamflow is estimated

using an optimised linear combination of streamflow from surrounding pixels. The matrix of coefficients for this linear

combination is computed by maximising the sum of the Kling-Gupta and Nash-Sutcliffe efficiencies of the output.

3. A type of recurrent neural network, known as a long short-term memory network (LSTM), the development of which was

a key focus of this study. The LSTM was trained to ingest catchment-mean meteorological and hydrological variables580

and output streamflow at six-hourly intervals. Trained using historical ERA5 reanalyses and observations, when run

operationally, the LSTM ingested forecasts from the ECMWF Integrated Forecasting System (IFS).

Each of the three models were run for a twelve-month testing period (June 2019 to June 2020), for which they used ERA5 as

input, to test how well they could simulate streamflow at the ten stations. Defining skilful as having a KGE greater than -0.414

and highly skilful as having a KGE greater than 0.707, the LSTM performed best (skilful at nine stations, highly skilful at585

six of these, and with a KGE exceeding 0.9 at three of those), followed by the bias-corrected GloFAS (skilful at seven, highly

skilful at four), followed by the raw GloFAS (skilful at six, highly skilful at two). The bias correction improved the KGE of

simulated streamflow at seven of the ten stations, implying that it is better at improving the skill of already skilful simulations

than adding skill to unskilful ones.
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The three models were then run operationally for a thirteen-month period (September 2020 to October 2021), using forecast590

output from the control member of the IFS as input. Forecast efficiencies were calculated for 2-, 5-, and 8-day lead times. Again,

the LSTM performed best, with 5-day forecasts being skilful at nine stations, of which five were highly skilful; followed by

the bias-corrected GloFAS, with 5-day forecasts being skilful at seven stations, of which one was highly skilful; and then raw

GloFAS, which also had skilful 5-day forecasts at seven stations, one of which was highly skilful, but had lower KGE at six of

the seven stations showing skill. An important caveat is that seven of the ten stations (all except BNDN5, CARO2, and LABW4)595

had catchment areas smaller than 2000 km2, the recommended lower bound for using GloFAS forecasts. However, of these

seven, the raw and bias-corrected 5-day GloFAS forecasts were skilful at six (highly skilful at one). The 5-day LSTM forecasts

performed better than the raw and bias-corrected GloFAS forecasts at two of the three largest catchments not BNDN5), where

the comparison is most fair.

Finally, the three models were compared at all lead times and at all stations against a benchmark persistence model. The600

LSTM had a higher mean NSE than the persistence model at six of the ten stations – NSE is the preferred evaluation metric

here given the dependence of KGE on errors in flow mean and variance, which are zero by definition for a long period of

persistence forecasts. Overall, stations with a clearly defined annual cycle and low variance about that cycle were the easiest to

predict for all models, whereas stations whose variance was dominated by single storms provided the greatest challenge. The

results show a promising future for LSTMs in river streamflow forecasting.605

These results are summarised in Tab. 6, showing, for each of the ten gauges: the mean discharge and fraction of missing

observations over the whole training period (January 1990 to June 2019), and, for all three models, the KGE for both the

simulated discharge during the testing period and the 5-day discharge forecasts during the operational period. There is no

significant relationship between model performance and either catchment size or altitude, despite the fact that seven gauges

have catchments smaller than the recommended minimum for using GloFAS. Instead, model performance generally improves610

with larger mean discharge, a more pronounced seasonal cycle, and more complete historical observations.

Code availability. All code used to generate, train, and test the models, as well as produce the figures and analysis for this paper, are

available in a dedicated GitHub repository: https://github.com/kieranmrhunt/us-streamflow/. The IFS data used to drive the forecasts are

freely available from ECMWF operational archive: https://apps.ecmwf.int/archive-catalogue/?class=od.
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