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Abstract. Global sustainable agricultural systems are under threat, due to projected increases of co-occurring drought and 8 

salinity with climate change. Combined effects of drought and salinity on agricultural crops have traditionally been 9 

evaluated in small-scale experimental studies. As such the need exists for large scale studies that increase our understanding 10 

and assessment of the combined impacts in agricultural practice in real life scenarios. This study aims to provide a new 11 

approach to estimate and compare the impacts of drought, salinity and their combination on crop traits at large spatial 12 

(138.74 km2) and temporal extents in the Netherlands using remote sensing observations. Specifically, for both maize and 13 

potato, we calculated five functional traits from Sentinel-2 observations, namely: leaf area index (LAI), the fraction of 14 

absorbed photosynthetically active radiation (FAPAR), the fraction of vegetation cover (FVC), leaf chlorophyll content 15 

(Cab) and leaf water content (Cw). Individual and combined effects of the stresses on the seasonal dynamics in crop traits 16 

were determined using both one-way and two-way ANOVAs. We found that both stresses (individual and co-occurring) 17 

affected the functional traits of both crops significantly (with R2 ranging from 0.326 to 0.796), though with stronger 18 

sensitivities to drought than to salinity. While we found exacerbating effects within co-occurrent stresses, the impact-level 19 

depended strongly on the moment in the growing season. For both crops, LAI, FAPAR and FVC dropped the most under 20 

severe drought stress conditions. The patterns for Cab and Cw were more inhibited by co-occurring drought and salinity. 21 

Consequently, our study constitutes a way towards evaluating drought and salinity impacts in agriculture with the 22 

possibility of potential large-scale application for a sustainable food security.  23 

Keywords: Drought; Salinity; Agriculture; Remote sensing; Functional traits 24 

1 Introduction  25 

Food production is required to increase by 70% to satisfy the growing population demand by the year 2050 (Godfray et al., 26 

2010). Meanwhile, food security is becoming increasingly threatened due to the increasing abiotic stresses under the 27 

influence of global climate change. Currently, abiotic stresses, including drought, soil salinity, nutrient stress and heavy 28 

metals, are estimated to constrain crop productivity by 50% ~ 80% (Shinozaki et al., 2015). Of these stresses, drought and 29 

salinity have been identified as the two main factors to limit crop growth, affecting respectively 40% and 11% of the global 30 

irrigated areas (FAO, 2020;Dunn et al., 2020). With drought and salinity forecasted to increase spatially and in severity 31 

(Schwalm et al., 2017;Trenberth et al., 2013;Rozema and Flowers, 2008), and with predictions of higher co-occurrence 32 

around the world (Wang et al., 2013;Corwin, 2020;Jones and van Vliet, 2018), food production will be deeper challenged 33 

by both stresses.  34 

Numerous small-scale experimental studies for a large variety of crops have shown that the impact of co-occurring drought 35 

and salinity stress is additive. It was found that co-occurrence of drought and salinity stress decreased the yield of spinach 36 

(Ors and Suarez, 2017) and of the forage grass Panicum antidotale (Hussain et al., 2020) more than compared with the 37 
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occurrence of one of these stresses only. Likewise, cotton root growth was observed to be more inhibited under the co-38 

occurrence of drought and water stress than by isolated occurrences (Zhang et al., 2013). Similarly, the exacerbating effect 39 

of co-occurring stresses has been shown to limit both maize reproductive growth and grain formation (Liao et al., 2022). 40 

While these small-scale experimental studies demonstrate the exacerbating effects of drought and salinity, they have 41 

limitations in projecting the impact towards real farmers’ conditions due to their small-scale experimental nature. Thus, 42 

research focusing on the combined impacts of drought and salinity with respect to large-scale evaluation is still a knowledge 43 

gap.   44 

Remote sensing (RS) provides a huge potential to close this knowledge gap due to its capability of monitoring continuous 45 

large areas at a frequent interval. Traditionally, remote sensing has used vegetation indices, such as Normalized Difference 46 

Vegetation Index (NDVI) (Tucker, 1979), to monitor the impact on crop growth. Nevertheless, such indices provide limited 47 

information on how this impact is achieved (e.g. Wen et al., 2020) and how it can be mitigated. With the launch of better 48 

multispectral and high-resolution satellite sensors (such as Sentinel-2), new RS methods (e.g., hyperspectral, thermal 49 

infrared, microwave) have been identified to detect stress in both natural vegetation (Gerhards et al., 2019;Vereecken et 50 

al., 2012) as well as for agricultural applications (Homolova et al., 2013;Weiss et al., 2020). Specifically, these new RS 51 

methods allow for the retrieval of plant traits that directly link to plant processes, such as leaf biochemistry and 52 

photosynthetic processes, and thereby provide high potential for agricultural applications. RS plant traits of specific interest 53 

to monitor crop health include: leaf area index (LAI) (Wengert et al., 2021), canopy chlorophyll content (Cab*LAI) 54 

(Gitelson et al., 2005), canopy water content (Cw*LAI) (Kriston-Vizi et al., 2008), the fraction of absorbed 55 

photosynthetically active radiation (FAPAR) (Zhang et al., 2015), and the fraction of vegetation cover (FVC) (Yang et al., 56 

2018). However, while there have been several attempts to monitor the response of crop health based on a multi-trait, multi-57 

crop, and either drought or salinity focus, not much research has taken these three factors into account simultaneously 58 

(Wen et al., 2020). 59 

In this study, we propose a novel approach to estimate, compare and evaluate the impacts of drought, salinity, and their 60 

combination on crop traits using remote sensing. A stress co-occurrence map was created by overlaying a high-resolution 61 

drought map of 2018 with a groundwater salinity map. Then, we characterized the response of maize and potato to different 62 

stress conditions based on five plants traits (LAI, FAPAR, FVC, Cab and Cw). Two-way ANOVAs were adopted to test 63 

the main effects and the interactive effect between stress combinations and time on crop traits. Moreover, the effect of 64 

drought and salinity on crop traits was determined across the growing season with one-way ANOVAs. Consequently, this 65 

approach facilitates simultaneously monitoring crop health at various scales (regional, national, continental) across multiple 66 

stresses (drought, salinity) and multiple species. 67 

2 Methodology 68 

To achieve our aim of monitoring the impacts of (co-occurring) drought and salinity on agricultural production, we 69 

developed a new approach to estimate crop traits from remote sensing observations. Specifically, we developed an approach 70 

that integrates image-processing techniques, such as image classification, co-registration, land surface parameter retrieval, 71 

and time-series analysis. Using these techniques, we were able to estimate the drought, salinity and vegetation growth.  72 

 73 

https://doi.org/10.5194/hess-2022-50
Preprint. Discussion started: 22 February 2022
c© Author(s) 2022. CC BY 4.0 License.



3 
 

 74 

Figure 1. Technical workflow of the maps and data framework.  75 

To allow for a detailed evaluation, we focused on the 2018 summer drought in the Netherlands. This period was selected 76 

because of the extreme drought that affected a large part of Europe (Masante D., 2018). Within parts of the selected area 77 

salinity was reported to increase during that same period (Broekhuizen, 2018). Hence this study area provides us with the 78 

opportunity to investigate the combined impacts of these stresses on crops. In the following paragraphs, we provide more 79 

information on the specific processing steps.  80 

2.1 Study area and data  81 

2.1.1 Drought map 82 

A drought map of the Netherlands in 2018 was created based on the standardized precipitation evapotranspiration index 83 

(SPEI) drought index, which was calculated from long-term precipitation data and potential evapotranspiration, from 2004 84 

to 2018 (Chen et al., 2021). Specifically, SPEI was estimated using a 3-month sliding time window, as this found best to 85 

investigate the impacts on the local ecosystems. We have extracted SPEI-3 data from April 1st to October 30th, totally 214 86 

days, as this coincided with the crop growth period of both maize and potato. Then, the drought map was resampled to 87 

250m resolution using the nearest neighbor interpolation and reprojected to RD_new projection. Finally, the drought map 88 

was classified into three classes namely no drought (SPEI from-214 to 0), moderate drought (SPEI from -321 to -214), and 89 

severe drought (SPEI < = -321) (McKee et al., 1993) (Fig. 2a).  90 

2.1.1 Salinity map  91 
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A topsoil salinity map of the Netherlands was created based on a nationwide fresh-salt groundwater dataset, which derived 92 

chloride concentrations as salinity indicator (https://data.nhi.nu/). To obtain the topsoil salinity map, 15 layers of the 93 

groundwater salinity were extracted from the 3D groundwater salinity map. For each location, the layer closest to the 94 

corresponding to location's elevation (according to the Digital Elevation Model), i.e. closest to the soil surface, was 95 

selected. The salinity map was resampled to 250 m resolution and reprojected to RD_new projection. Ultimately, the 96 

salinity map was classified into three levels namely no-salinity (0.1 g‧L-1to 0.8 g‧L-1), moderate salinity (0.8 g‧L-1 to 2.5 97 

g‧L-1), severe salinity (>= 2.5 g‧L-1) according to the salt-resistant capacity of various crops cultivated in the Netherlands 98 

(Mulder et al., 2018;Stuyt, 2016) (Fig. 2b).  99 

2.1.3 Crop map 100 

The crop map of the Netherlands in 2018 was collected from the Key Register of Parcels (BRP) of the Netherlands 101 

Enterprise Agency (https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-). The crop map was 102 

resampled to 250m resolution and reprojected to RD_new projection.  103 

2.1.4 Co-occurrence map of drought and salinity 104 

The drought map and the salinity map were overlain to evaluate co-occurrences of drought and salinity of the Netherlands 105 

in 2018 (Fig. 2c). By classifying the three stress levels for the individual occurrences, we obtained nine stress classes of 106 

co-occurring drought and salinity, namely no stress, moderate drought only (MD), severe drought only (SD), moderate 107 

salinity only (MS), severe salinity only (SS), moderate drought and moderate salinity (MD+MS), moderate drought and 108 

severe salinity (MD+SS), severe drought and moderate salinity (SD+MS), and severe drought and severe salinity (SD+SS).  109 

 110 

 111 

Figure 2. The overlap map of a) drought and b) salinity in the Netherlands to show c) co-occurrence of drought and salinity. The selected 112 
study area is indicated by black lines in panel c. 113 

2.1.5 Study area selection   114 

Based on the national map of the Netherlands (Fig. 2c), a single region with similar soil type, climate, tillage systems, and 115 

irrigation methods was chosen to minimize the interference of these factors on the observed trait expressions. The province 116 

of North-Holland was selected because it contained the most (7 out of 9) combinations of drought and salt stress (Fig. 2c), 117 

namely: no stress, MD, SD, MS, SS, MD+MS, and SD+SS. Moreover, both maize and potato were cultivated across all 118 

stress combinations in this province. For further analysis, MS and SS were grouped into a new class of salinity stress since 119 

the area of MS and SS was quite limited. Therefore, six classes of stress combinations namely no stress, MD, SD, salinity 120 

(MS+SS), MD+MS, and MD+SS were analyzed for the study area.  121 
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2.2 Traits retrieval 122 

2.2.1 Satellite data 123 

Eight cloud-free scenes were found (21/04/2018, 06/05/2018, 26/05/2018, 30/06/2018, 15/07/2018, 13/09/2018, 124 

13/10/2018, and 28/10/2018) to cover the crop growth cycle.  In prior analyses, we found that none of the scenes in August 125 

(04/08/2018, 09/08/2018, 14/08/2018, 19/08/2018, 24/08/2018, and 29/08/2018) was of high quality, i.e. with low cloud-126 

cover, and we therefore choose to omit August from our analysis. After this prior analysis, we downloaded Level 2A (L2A) 127 

data from The Copernicus Open Access Hub (https://scihub.copernicus.eu/). Then, bands in 20 m and 60 m resolution were 128 

resampled to 10 m resolution to match consistency for traits retrieval.   129 

2.2.2 Traits selection  130 

Plant traits were selected in consideration of their corresponding impacts on crop functioning and their potential for 131 

assessment by remote sensing. LAI is a critical vegetation structural trait related to various plant functioning processes 132 

such as primary productivity, photosynthesis, and transpiration (Jarlan et al., 2008;Asner et al., 2003;Boussetta et al., 133 

2012;Fang et al., 2019). FAPAR depends on vegetation structure, energy exchange, and illumination conditions while 134 

FAPAR is also an important parameter to assess primary productivity (Liang, 2020;Weiss and Baret, 2016). FVC is a 135 

promising parameter corresponding to the energy balance process such as temperature and evapotranspiration (Weiss and 136 

Baret, 2016). Cab is an effective indicator of stress and is strongly related to photosynthesis and resource strategy (Croft 137 

et al., 2017). Cw plays an important role in transpiration, stomatal conductance, photosynthesis and respiration (Bowman, 138 

1989;Zhu et al., 2017), as well as in drought assessment (Steidle Neto et al., 2017).  139 

2.3 dataset processing  140 

The biophysical processor of Sentinel Application Platform (SNAP) was used to compute the selected canopy traits (LAI, 141 

FAPAR, FVC, Cab*LAI, and Cw*LAI) for each pixel from the Sentinel-2 top of canopy reflectance data. This biophysical 142 

processor is driven by an artificial neural network (ANN) approach, trained using the PROSAIL simulated database (Weiss 143 

and Baret, 2016). To eliminate the effects of crop biomass on canopy levels of chlorophyll and water, they were expressed 144 

as their leaf content counterparts, namely Cab (=’Cab*LAI’ / LAI) and Cw (=’Cw*LAI’ / LAI).  145 

Pixels with quality flags were eliminated from the dataset. It was observed that in April no crop had yet been planted. 146 

Instead, we observed that only along the edge of the plots, e.g. in ditches, vegetation was found. This feature was used to 147 

generate a ditch map and to mask out pixels in trait maps for the other months. For each variable and each date, only data 148 

within the 95% confidence interval were taken to increase data robustness.    149 

2.4 Analysis 150 

Due to the unbalance in the occurrence of stress conditions, drought and salinity were not considered as two independent 151 

factors. Instead two-way ANOVAs were adopted to test the main effects and the interactive effect between stress 152 

combinations (consisting of 6 levels) and time (5 months) on crop traits. Significant effects of the main stress condition 153 

were investigated through post hoc tests to test whether interaction effects between drought and salinity had occurred. Two-154 

way ANOVAs were run separately for each trait and each crop type (maize and potato) as we expected different patterns. 155 

In the Netherlands, potato and maize are planted between mid-April to early May. Crops are surfacing in May and harvested 156 

in October. Therefore, to evaluate the response of crops to stresses across the growing season, the effect of drought and 157 

salinity on crop traits was determined for May, June, July, and September with a one-way ANOVA. Tukey HSD post hoc 158 
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tests were performed to identify the differences among the six stress combinations. All statistical analyses were performed 159 

with SPSS 27.0 (SPSS Inc., USA). 160 

3 Results  161 

3.1 Stress impacts depend on moment in growing season 162 

The two-way ANOVAs revealed strong effects of date and stress level on the five traits with effect sizes of the response 163 

(R2) ranging from 0.326 to 0.796 for the five traits, which was similar for maize and potato. For both maize and potato, R2 164 

values were lowest for Cab and highest for LAI, FAPAR and FVC. For maize, we found a significant main effect of both 165 

date and stress (p < 0.05) for Cab, Cw, FAPAR, and FVC. In contrast, LAI was not significantly different across the 166 

different stress conditions. For potato, all main effects of date and stress were significant for all five crop traits (Table 1). 167 

For all traits and both crops, the interaction between the effects of time and stress conditions was significant (p < 0.05) 168 

(Table 1), indicating that the impact of stress depended on the moment in the growing season. Despite the significant 169 

interaction terms, the partial Eta squared values (Table 1) show that the effects of time in the growing season were much 170 

stronger than those of stress or the interaction of date and stress. The effects of date for maize were stronger than for potato. 171 

Interestingly, the effects of the interaction between date and stress were stronger than those of the main effects of stress, 172 

suggesting strongly time-specific impacts of stress on the crop traits investigated. The interaction terms were strongest for 173 

FVC.  174 

Table 1. Two-way ANOVA for different crop traits by time series and stress interactions. 175 

Crops Traits Factors F p 
Partial Eta 
Squared 

R2 

Maize 

LAI 

date 2144.5 0.000 0.636 

0.766 stress 1.4 0.226 0.001 

date*stress 8.5 0.000 0.033 

Cab 

date 333.9 0.000 0.222 

0.326 stress 10.7 0.000 0.008 

date*stress 3.6 0.000 0.015 

Cw 

date 952.1 0.000 0.449 

0.590 stress 9.9 0.000 0.007 

date*stress 4.0 0.000 0.017 

FAPAR 

date 1865.9 0.005 0.603 

0.738 stress 3.3 0.000 0.002 

date*stress 8.5 0.000 0.033 

FVC 

date 2022.5 0.000 0.622 

0.761 stress 22.1 0.000 0.015 

date*stress 28.7 0.000 0.105 

Potato 

LAI 

date 752.1 0.000 0.273 

0.782 stress 13.7 0.000 0.006 

date*stress 8.1 0.000 0.020 

Cab 

date 96.4 0.000 0.050 

0.329 stress 54.2 0.000 0.024 

date*stress 8.7 0.000 0.023 

Cw 

date 347.4 0.000 0.158 

0.571 stress 68.1 0.000 0.030 

date*stress 10.3 0.000 0.027 

FAPAR 
date 612.7 0.000 0.234 

0.744 
stress 25.8 0.000 0.011 
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date*stress 14.0 0.000 0.034 

FVC 

date 844.0 0.000 0.297 

0.796 stress 18.8 0.000 0.008 

date*stress 13.6 0.000 0.033 

3.2 Response of LAI, FAPAR, FVC to drought and salinity  176 

Given the significance of both date and stress and their interactions, subsequent one-way ANOVAs were performed to 177 

compare the effects of drought and salinity on LAI, FAPAR, and FVC for maize and potato in May, June, July, and 178 

September separately (Fig. 3). The patterns for LAI, FAPAR and FVC were very similar, although they differ in details 179 

and are therefore treated together. 180 

For maize, LAI had the lowest (p < 0.05) value under severe drought (SD) conditions while both FAPAR and FVC obtained 181 

their lowest value under MD+SS stress conditions in May. In June, both LAI and FVC dropped the most under salinity 182 

stress and it was significantly (p < 0.05) different from MD, MD+MS, and MD+SS conditions, but not significantly 183 

different from no stress conditions. In contrast, FAPAR also reached its the lowest value (under MD+MS stress conditions) 184 

in June but had a significant difference (p < 0.05) compared with no stress conditions. Both in July and September, LAI, 185 

FAPAR, and FVC all had the lowest value under SD conditions, and the difference was significant compared with no stress 186 

conditions.  187 

For potato, LAI, FAPAR, and FVC had the lowest (p < 0.05) value under MD+MS and MD+SS stress conditions. In June, 188 

LAI, FAPAR as well as FVC reached the lowest value under SD conditions and were significantly lower than in most other 189 

stress conditions even though the difference was not significant from no stress conditions. In July, there was a tendency 190 

for LAI, FAPAR and FVC to be lower at stress conditions, although none of the effects were significant. In September, 191 

however, LAI, FAPAR and FVC significantly decreased under MD, MD+MS, and MD+SS conditions, and the difference 192 

was significant compared with no stress conditions. In addition, the difference was not significant among these three stress 193 

conditions.   194 

Therefore, both for maize and potato, LAI, FAPAR and FVC dropped the most under SD stress conditions when they 195 

reached their respective maximum value, compared with other stress conditions. At the same time, maize and potato were 196 

more sensitive to drought than salinity since no significant change was observed between drought conditions and conditions 197 

with a combination of drought and salinity stress.  198 
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Figure 3. Expressions of LAI, FAPAR and FVC under various stress conditions in May, June, July and September. Different letters in 200 
each panel indicate significant differences (p < 0.05). 201 

3.3 Response of leaf chlorophyll and water content to drought and salinity  202 

The one-way ANOVAs revealed that there were significant (p < 0.05) impacts of the various stress conditions on Cab and 203 

Cw (Fig. 4). For maize, Cab obtained its lowest value under salinity stress in May and June while it was not significantly 204 

different from no stress conditions. However, in July, Cab reached the lowest value under MS+MS conditions although the 205 

difference was not significant from other stress conditions. There were no significant changes observed for Cab in 206 

September. For potato, Cab dropped the most under saline conditions in May although the difference was not significant 207 

from no stress conditions. Furthermore, Cab significantly decreased under MD+SS conditions in June and July, compared 208 

with other conditions. Although Cab dropped the most under salinity conditions in September, the difference was not 209 

significantly different from other conditions. In addition, compared with no stress, potato had the lowest Cab under MD+SS 210 

conditions while there was no significant difference between MD+SS and saline conditions only. 211 

Cw decreased under all stress conditions in May, June and July for both maize and potato, except for SD conditions in 212 

May, compared with no stress conditions. At the same time, Cw reached its lowest value under MD+SS co-occurring 213 

conditions and it was significantly different from under no stress conditions. Nonetheless, there were different changes for 214 

both maize and potato in September. Cw was not significantly different among any condition for maize while it was the 215 

lowest under salinity conditions for potato.  216 

Therefore, this analysis illustrates that salinity affected maize less than drought since crop responses were more obvious to 217 

drought than salinity for Cab and Cw. In contrast, salinity showed a more severe effect on maize and potato at the early 218 

growth stages for Cab. Meanwhile, Cab was affected by co-occurring drought and salinity in June and July for potato. It 219 

seems that there was a non-additive effect of drought and salinity, since the changes were not significant between MD 220 

conditions, salinity, and MD+MS compared to no stress conditions. 221 

 222 

Figure 4. Trait expression of Cab and Cw under various stress conditions in May, June, July and September. Different letters in each 223 
panel indicate significant differences (p < 0.05).  224 
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4 Discussion  225 

In this study, we quantified the large-scale impacts of co-occurring drought and salinity on a variety of crop traits using 226 

satellite remote sensing. We observed that –in contrast to our expectations – the impacts of salinity were not highly 227 

pronounced at this scale, with most strong impacts originating due to drought stress during the 2018 drought. However, at 228 

specific moments in the growing season, salinity and/or the combined effects of salinity and drought pronouncedly affected 229 

individual crop traits. In this way, with increasing salinity driven by more intensive droughts, water allocation should not 230 

only be governed by the amount of water shortage, but also the salinity of the remaining water. In this paper, we provide 231 

the first evidence that those impacts can be monitored through remote sensing. This might provide a basis towards a 232 

monitoring system for multiple crops with multiple stresses as well as better governance policies to release this problem. 233 

4.1 Drought stress is more important than salinity stress in farmers’ conditions 234 

The exacerbating effects of co-occurrent drought and salinity (Fig. 3 and Fig. 4) that we found are consistent with findings 235 

of small-scale experiments (e.g. greenhouses). Consistent with our results, synergistic effects of co-occurring water stress 236 

and salinity stress have been found on maize reproductive growth and grain formation in a field study (Liao et al., 2022). 237 

Spinach (Spinaciaoleracea L., cv. Racoon) yield decreased more under co-occurring water-salinity stress in comparison 238 

with separate water stress and salinity (Ors and Suarez, 2017). The co-occurring drought and salinity stress was more 239 

harmful to cotton root growth compared to their individual effects (Zhang et al., 2013). Moreover, the combined negative 240 

effect of drought and salinity stress on Panicum antidotale was stronger than that of single stress (Hussain et al., 2020).  241 

Our research showed that the outcomes of these small-scale experimental studies also apply to real large-scale 242 

environments, where different sources of variance are present. Specifically, we show that in real farmers’ conditions, the 243 

co-occurrence of drought and salinity indeed can constitute a severe threat for crop growth.  244 

In addition, we evaluated whether drought or salinity stress has more impact on crop performance. We observed that maize 245 

and potato were generally more sensitive to drought than salinity in this study (Fig. 3 and Fig. 4). This is consistent with 246 

results of previous studies that highlight that drought impacts are generally more detrimental than salinity stress for crops, 247 

e.g. for sesame (Sesamum indicum) (Harfi et al., 2016), Mentha pulegium L. (Azad et al., 2021), durum wheat (Sayar et 248 

al., 2010), grass pea (Tokarz et al., 2020), and sweet sorghum (Patane et al., 2013). However, given that the threshold of 249 

salinity at which crop damage occurs (according to the FAO guidelines (Ayers and Westcot, 1985)) was surpassed in all 250 

situations in which salinity stress was imposed (including in our study), we initially expected salinity to be a stronger 251 

explanatory variable than drought. As such, salinity impacts on crop performance (by the FAO) may have been 252 

overestimated. Indeed, in an experimental field situation in which drought stress was carefully avoided, higher thresholds 253 

of salinity-induced damage were observed for potato (van Straten et al., 2021). 254 

In combination, the results from our study (supported by results from other studies) suggest that salinity particularly induces 255 

adverse effects when co-occurring with drought stress. Thus, the detrimental effect of single drought stress on crop growth 256 

is considered to be mitigated by salinity, which might be associated with the synergetic effect in carbon assimilation and 257 

osmotic adjustment by Na+ and Cl– (Hussain et al., 2020).  258 

4.2 Drought and salinity stress differ between growth stages  259 

The responses to drought and salinity stress were different at different growth stages of the crops. This was expressed by 260 

the significant interactions between the effects of time and stress conditions for all of our crop responses (Table 1). We 261 

found that during the grain filling (maize) and tuber bulking phase (potato), the sensitivities of these crops are expressed 262 
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distinctly in the non-harvested aboveground tissues (Fig. 3 and Fig.4), with clear differences in the remote sensing plant 263 

traits.  264 

Given that we were not able to monitor the harvestable products, multiple mechanisms may explain these patterns. The 265 

relatively high leaf coverage (as related to LAI, FAPAR, and FVC) at saline and severe drought conditions at the end of 266 

the growing season may be an expression of a compensation process. Specifically, early and prolonged drought could have 267 

led to more assimilates allocated to non-harvestable potato parts for drought resistance since the number of tubers reduced 268 

(Jefferies, 1995;Schittenhelm et al., 2006). In that case, we should consider their higher leaf coverage at the end of the 269 

season a survival mechanism, rather than true drought tolerance, leading to reduced tuber yields (Daryanto et al., 2016b). 270 

Future studies that combine remote sensing with harvesting data may be able to evaluate this mechanism in more detail.  271 

In our study, different response patterns of maize and potato occurred to the different stresses over the growing season. 272 

This is consistent with previous studies focusing on the impact of drought and/or salinity onsets. For potato, it has been 273 

suggested that tuber yields particularly decreased when drought stress occurs during the vegetative and tuber initiation 274 

stages than during the tuber bulking stage (Wagg et al., 2021), although another study observed the reverse pattern 275 

(Daryanto et al., 2016b). For maize, on the other hand, drought seems to have the most detrimental impact during the 276 

maturation stage (Mi et al., 2018;Zhang et al., 2019), and the reproductive phase (Daryanto et al., 2017;Daryanto et al., 277 

2016a).  Considering, the additional co-varying factors within our ‘real-life’ study, it is very promising that we were able 278 

to detect similar effects. This suggests that we may use satellite remote sensing –albeit less spatially precise than e.g. 279 

sensing through drones- as a cost-effective early warning signal for detecting drought and salinity stress at moments during 280 

the growing season when differences in crop performance are still subtle.  281 

4.3 A multi-trait approach to understanding crop responses to stress  282 

In addition to being able to evaluate crop performance during multiple stages of the growing season (in contrast to most 283 

destructive methods), remote sensing also allows a multi-trait approach to better understand the mechanisms involved in 284 

crop responses. In our study, Cab and Cw had a response to drought and salinity distinct from LAI, FAPAR, and FVC, 285 

which showed a similar pattern (Fig. 3 and Fig. 4). Given that individual crop traits may differently respond to drought and 286 

salinity to reflect their stress resistance and tolerance strategies, the evaluation of these distinct responses may help 287 

understanding these strategies.  288 

In this study, Cw was consistently lower in all drought and salinity treatments compared to no stress conditions in May, 289 

June and July. Indeed, this is a common response of plants in response to drought and salinity (e.g. Wen et al., 2020). In 290 

that respect, it is interesting that no decrease in Cw was observed at the end of the growing season, in October. Whether 291 

the phenomenon is related to the survival mechanism mentioned above or to the lower transpiration demands at the end of 292 

the season because of lower aboveground biomass, cannot be concluded from these data. Some evidence pointing to the 293 

survival mechanism is the finding (Ghosh et al., 2001; Levy, 1992) that the leaf dry matter increased for potato under 294 

drought/salinity stress (like in our study) while the dry matter of the tubers appeared to have a greater decline.  295 

With respect to chlorophyll contents, we observed a decline in Cab at saline conditions, at the salinity treatment in May 296 

and the MS+SS treatment in June and July, while no decrease was observed in any of the treatments exposed to drought 297 

only. This indicates that while total leaf area was not (much) affected by salinity, the salinity did negatively affect crop 298 

performance. It has been reported that chlorophyll content in maize was significantly reduced upon salinity, along with 299 

other plant traits including plant height, shoot/root biomass, and leaf numbers (Fatima et al., 2021;Mahmood et al., 2021). 300 
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Likewise, similar patterns were obtained in potato plants in saline soil (Efimova et al., 2018). Hence, this implies that soil 301 

salinity tends to negatively affect crop growth and restrict nutrient uptake.  302 

5 Conclusions  303 

In this study, we represent the first attempt to evaluate the effects of drought, salinity and their combination on crop traits 304 

in real-life conditions based on remote sensing information. Our approach gives new insights for monitoring multi-crop 305 

growth under co-occurring stresses at a large scale with high-resolution data. We found that while in general temporal 306 

patterns –reflecting crop growth dynamics- were stronger than effects of stress conditions, stress impacts depended on the 307 

time of the growing season. Furthermore, we also found that the temporal dynamics in crop responses to drought and 308 

salinity were different for maize vs. potato. In general, the five investigated traits were more negative affected by a 309 

combination of drought and salinity stress compared to individual stress. Meanwhile, both maize and potato responded 310 

more prominently to drought, thus demonstrating a stronger sensitivity, than to salinity. Specifically, LAI, FAPAR, and 311 

FVC dropped the most under severe drought stress conditions. Consequently, the proposed new approach poses a facilitated 312 

way for simultaneously monitoring the effect of drought and salinity on crops in large-scale agricultural applications.  313 

 314 
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