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Abstract. Global sustainable agricultural systems are under threat, due to increasing and co-occurring drought and salinity 8 

stresses. Combined effects of these stresses on agricultural crops have traditionally been evaluated in small-scale 9 

experimental studies. Consequently, large-scale studies need to be performed to increase our understanding and assessment 10 

of the combined impacts in agricultural practice in real-life scenarios. This study aims to provide a new monitoring 11 

approach using remote sensing observations to evaluate the joint impacts of drought and salinity on crop traits. In our tests 12 

over the Netherlands at large spatial (138.74 km2), we calculated five functional traits for both maize and potato from 13 

Sentinel-2 observations, namely: leaf area index (LAI), the fraction of absorbed photosynthetically active radiation 14 

(FAPAR), the fraction of vegetation cover (FVC), leaf chlorophyll content (Cab) and leaf water content (Cw). Individual 15 

and combined effects of the stresses on the seasonal dynamics in crop traits were determined using both one-way and two-16 

way ANOVAs. We found that both stresses (individual and co-occurring) affected the functional traits of both crops 17 

significantly (with R2 ranging from 0.326 to 0.796), though with stronger sensitivities to drought than to salinity. While we 18 

found exacerbating effects within co-occurrent stresses, the impact-level depended strongly on the moment in the growing 19 

season. For both crops, LAI, FAPAR and FVC dropped the most under severe drought stress conditions. The patterns for 20 

Cab and Cw were more inhibited by co-occurring drought and salinity. Consequently, our study constitutes a way towards 21 

evaluating drought and salinity impacts in agriculture with the possibility of potential large-scale application for sustainable 22 

food security.  23 
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1 Introduction  25 

Food production is required to increase by 70% to satisfy the growing population demand by the year 2050 (Godfray et al., 26 

2010). Meanwhile, food security is becoming increasingly threatened due to the increasing abiotic stresses under the 27 

influence of global climate change; abiotic stresses including drought, soil salinity, nutrient stress and heavy metals are 28 

estimated to constrain crop productivity by 50% ~ 80% (Shinozaki et al., 2015). Of these stresses, drought and salinity 29 

have been identified as the two main factors to limit crop growth, affecting respectively 40% and 11% of the global irrigated 30 

areas (FAO, 2020; Dunn et al., 2020). With drought and salinity forecasted to increase spatially and in severity (Schwalm 31 

et al., 2017; Trenberth et al., 2013; Rozema and Flowers, 2008), and with predictions of higher co-occurrence around the 32 

world (Wang et al., 2013; Corwin, 2020; Jones and van Vliet, 2018), food production will be more deeply challenged by 33 

both stresses.  34 

Numerous small-scale experimental studies for a large variety of crops have shown that the impact of co-occurring drought 35 

and salinity stress is exacerbated. Co-occurrence of drought and salinity stress is found to decrease the yield of spinach 36 

(Ors and Suarez, 2017) and the forage grass Panicum antidotale (Hussain et al., 2020) compared with the occurrence of 37 
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one of these stresses only. Likewise, cotton root growth tends to be more inhibited under the co-occurrence of drought and 38 

salinity than by isolated occurrences (Zhang et al., 2013). Similarly, the exacerbating effect of co-occurring stresses limits 39 

both maize reproductive growth and grain formation (Liao et al., 2022). While these studies demonstrate the exacerbating 40 

effects of co-occurring drought and salinity stress, they have limitations in projecting the impact towards real farmers’ 41 

conditions due to their small-scale experimental nature. Thus, there is still a significant knowledge gap concerning the 42 

large scale evaluation of the combined impacts of drought and salinity.   43 

Remote sensing (RS) provides a huge potential to close this knowledge gap due to its capability to monitor continuous 44 

large areas at a frequent interval. For this, remote sensing has traditionally used vegetation indices, such as Normalized 45 

Difference Vegetation Index (NDVI) (Tucker, 1979). However, such indices provide limited information on how the 46 

impact is achieved (e.g. Wen et al., 2020) and how it can be mitigated. With the launch of better multispectral and high-47 

resolution satellite sensors (such as Sentinel-2), new RS methods (e.g., hyperspectral, thermal infrared, microwave) have 48 

been identified to detect stress in both natural vegetation (Gerhards et al., 2019; Vereecken et al., 2012) as well as for 49 

agricultural applications (Homolova et al., 2013; Weiss et al., 2020). Specifically, these new RS methods allow for the 50 

retrieval of plant traits that directly link to plant processes, such as leaf biochemistry and photosynthetic processes, and 51 

thereby provide high potential for agricultural applications. RS plant traits of specific interest to monitor crop health include 52 

leaf area index (LAI) (Wengert et al., 2021), canopy chlorophyll content (Cab*LAI) (Gitelson et al., 2005), canopy water 53 

content (Cw*LAI) (Kriston-Vizi et al., 2008), the fraction of absorbed photosynthetically active radiation (FAPAR) (Zhang 54 

et al., 2015) and the fraction of vegetation cover (FVC) (Yang et al., 2018). However, while there have been several 55 

attempts to monitor the response of crop health based on a multi-trait, multi-crop, and either drought or salinity focus, not 56 

much research has taken these factors into account simultaneously (Wen et al., 2020). 57 

In this study, we propose a novel approach to estimate, compare and evaluate the impacts of drought, salinity, and their 58 

combination on crop traits using remote sensing. To allow for a detailed evaluation of this approach we applied it to analyze 59 

the impacts of the 2018 summer drought in the Netherlands on agricultural crops.  In this, a stress co-occurrence map was 60 

created by overlaying a high-resolution drought map of 2018 with a groundwater salinity map. Then, we characterized the 61 

response of maize and potato to different stress conditions based on five plant traits (LAI, FAPAR, FVC, Cab, and Cw). 62 

Two-way ANOVAs were adopted to test the main effects and the interactive effect between stress combinations and time 63 

on crop traits. Moreover, the effect of drought and salinity on crop traits was determined across the growing season with 64 

one-way ANOVAs. Consequently, this approach facilitates simultaneously monitoring crop health at various scales 65 

(regional, national, continental) across multiple stresses (drought, salinity) and multiple species. 66 

2 Methodology 67 

To achieve our aim of monitoring the impacts of (co-occurring) drought and salinity on agricultural production, we 68 

developed a new approach to estimate crop traits from remote sensing observations. Specifically, we developed an approach 69 

that integrates image-processing techniques, such as image classification, co-registration, land surface parameter retrieval, 70 

and time-series analysis. Using these techniques, we were able to estimate the drought, salinity, and crop growth.  71 

 72 
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 73 

Figure 1. Technical workflow of the maps and data framework.  74 

To allow for a detailed evaluation, we focused on the 2018 summer drought in the Netherlands. This period was selected 75 

because of the extreme drought that affected a large part of Europe (Masante D., 2018). Within parts of the selected area 76 

salinity was reported to increase during that same period (Broekhuizen, 2018). Hence this study area provides us with the 77 

opportunity to investigate the combined impacts of these stresses on crops. In the following paragraphs, we provide more 78 

information on the specific processing steps.  79 

2.1 Study area and data  80 

2.1.1 Drought map 81 

A drought map of the Netherlands in 2018 was created based on the standardized precipitation evapotranspiration index 82 

(SPEI) drought index, which was calculated from long-term precipitation data and potential evapotranspiration, from 2004 83 

to 2018 (Chen et al., 2022). Specifically, SPEI was estimated using a 3-month sliding time window, as this was found best 84 

to investigate the impacts on the local ecosystems. We have extracted SPEI-3 data from April 1st to October 30th, totally 85 

214 days, as this coincided with the crop growth period of both maize and potato. Then, the drought map was resampled 86 

to 250m resolution using the nearest neighbor interpolation and reprojected to RD_new projection. The RD_new projection 87 

(EPSG:28992) is a projected coordinate reference system of the Netherlands. All maps were projected to RD_new 88 

projection to create consistent data layers. We defined -1 and -1.5 as daily thresholds for different drought severity classes 89 

according to previous classifications (McKee et al., 1993; Tao et al., 2014). Thus, (cumulative) SPEI for no drought should 90 

be between -214 to 0, SPEI for moderate drought should be between -321 to -214 and for severe drought, SPEI should be 91 

lower than -321 when calculated for the whole growing period (Fig. 2a).  92 
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2.1.1 Salinity map  93 

A top-soil salinity map of the Netherlands was created based on a nationwide fresh-salt groundwater dataset, which derived 94 

chloride concentrations as a salinity indicator (https://data.nhi.nu/). To obtain the salinity map of the top-soil, 15 layers of 95 

the groundwater salinity were extracted from the 3D groundwater salinity map. For each location, the layer closest to the 96 

corresponding to location's elevation (according to the Digital Elevation Model), i.e. closest to the soil surface, was 97 

selected. The salinity map was resampled to 250 m resolution and reprojected to RD_new projection. Ultimately, the 98 

salinity map was classified into three levels namely no-salinity (0.1 g‧L-1to 0.8 g‧L-1), moderate salinity (0.8 g‧L-1 to 2.5 99 

g‧L-1), severe salinity (>= 2.5 g‧L-1) according to the salt-resistant capacity of various crops cultivated in the Netherlands 100 

(Mulder et al., 2018; Stuyt, 2016) (Fig. 2b).  101 

2.1.3 Crop map 102 

The crop map of the Netherlands in 2018 was collected from the Key Register of Parcels (BRP) of the Netherlands 103 

Enterprise Agency (https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp-). The crop map was 104 

resampled to 250m resolution and reprojected to RD_new projection (Fig. 2d).  105 

2.1.4 Co-occurrence map of drought and salinity 106 

The drought map and the salinity map were overlain to evaluate co-occurrences of drought and salinity of the Netherlands 107 

in 2018 (Fig. 2c). By classifying the three stress levels for the individual occurrences, we obtained nine stress classes of 108 

co-occurring drought and salinity, namely no stress, moderate drought only (MD), severe drought only (SD), moderate 109 

salinity only (MS), severe salinity only (SS), moderate drought and moderate salinity (MD+MS), moderate drought and 110 

severe salinity (MD+SS), severe drought and moderate salinity (SD+MS), and severe drought and severe salinity (SD+SS).  111 
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 112 

 113 

Figure 2. Map of the Netherlands overlaying a) drought and b) salinity to show c) the co-occurrence of drought and salinity. The selected 114 
study area is indicated by black lines in panel c. d) The associated crop map of the study area. 115 

2.1.5 Study area selection   116 

Based on the national map of the Netherlands (Fig. 2c), a single region with similar soil type, climate, tillage systems, and 117 

irrigation methods was chosen to minimize the interference of these factors on the observed trait expressions. The province 118 

of North-Holland was selected because it contained the most (7 out of 9) combinations of drought and salt stress (Fig. 2c), 119 

namely: no stress, MD, SD, MS, SS, MD+MS, and SD+SS. Moreover, both maize and potato were cultivated across all 120 

stress combinations in this province. For further analysis, MS and SS were grouped into a new class of salinity stress since 121 

the area of MS and SS was quite limited. Therefore, six classes of stress combinations namely no stress, MD, SD, salinity 122 

(MS+SS), MD+MS, and MD+SS were analyzed for the study area.  123 

2.2 Traits retrieval 124 

2.2.1 Satellite data 125 
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The Sentinel-2 mission consists of two satellites equipped with the high-resolution Multispectral Instrument (MSI) in the 126 

same orbit. This sensor acquires 13 spectral bands (with varying spatial resolutions) in the visible and near-infrared 127 

spectrum at 5 days of revisit times (ESA, 2015). In our study, we used both the 10m and 20m Level 2A observations, 128 

downloaded from The Copernicus Open Access Hub (https://scihub.copernicus.eu/), to facilitate the requirement of the 129 

Sentinel Application Platform (SNAP) toolbox for both optical and near-infrared observations to be available for 130 

determining the functional traits. To create consistency across the bands, those with a 20m resolution (B5, B6, B7, B8A, 131 

B11, and B12) were resampled to the 10m resolution of B3 and B4. In total, eight cloud-free scenes were found 132 

(21/04/2018, 06/05/2018, 26/05/2018, 30/06/2018, 15/07/2018, 13/09/2018, 13/10/2018, and 28/10/2018) to cover the crop 133 

growth cycle.  Although additional cloud-free scenes were found in August (04/08/2018, 09/08/2018, 14/08/2018, 134 

19/08/2018, 24/08/2018, and 29/08/2018), none were of high quality, and we therefore choose to omit August from our 135 

analysis.  136 

2.2.2 Traits selection  137 

Plant traits (e.g. LAI, FAPAR, FVC, Cab and Cw) were selected in consideration of their corresponding impacts on crop 138 

functioning and their potential for assessment by remote sensing. LAI is a critical vegetation structural trait related to 139 

various plant functioning processes such as primary productivity, photosynthesis, and transpiration (Jarlan et al., 2008; 140 

Asner et al., 2003; Boussetta et al., 2012; Fang et al., 2019). FAPAR depends on vegetation structure, energy exchange, 141 

and illumination conditions while FAPAR is also an important parameter to assess primary productivity (Liang, 2020; 142 

Weiss and Baret, 2016). FVC is a promising parameter corresponding to the energy balance process such as temperature 143 

and evapotranspiration (Weiss and Baret, 2016). Cab is an effective indicator of stress and is strongly related to 144 

photosynthesis and resource strategy (Croft et al., 2017). Cw plays an important role in transpiration, stomatal conductance, 145 

photosynthesis, and respiration (Bowman, 1989; Zhu et al., 2017), as well as in drought assessment (Steidle Neto et al., 146 

2017).  147 

2.3 dataset processing  148 

The biophysical processor within the SNAP toolbox derives the five traits, namely LAI, FAPAR, FVC, canopy chlorophyll 149 

content (CCC), and canopy water content (CWC), for each pixel from the Sentinel-2 top of canopy reflectance data. This 150 

processor utilizes an artificial neural network (ANN) approach, trained using the PROSAIL simulated database (Weiss and 151 

Baret, 2016). This training utilized canopy traits rather than leaf traits (estimated by multiplication with LAI) to improve 152 

their neural network performance. To obtain their leaf counterparts (Cw and Cab), to create fully independent variables, 153 

CCC and CWC thus need to be divided by LAI to obtain Cab (=CCC / LAI) and Cw (=CWC / LAI). Pixels with quality 154 

flags were eliminated from the dataset. It was observed that in April no crop had yet been planted. Instead, we observed 155 

that only along the edge of the plots, e.g. in ditches, vegetation was found. This feature was used to generate a ditch map 156 

and to mask out pixels in trait maps for the other months. For each variable and each date, only data within the 95% 157 

confidence interval were taken to increase data robustness.    158 

2.4 Analysis 159 

Since the pixel counts of the six classes of stress combinations namely no stress, MD, SD, salinity, MD+MS, and MD+SS 160 

were (highly) different, drought and salinity were not considered as two independent factors. Instead, two-way ANOVAs 161 

were adopted to test the main effects and the interactive effect between stress combinations (consisting of 6 levels) and 162 

time (5 months) on crop traits. Significant effects of the main stress condition were investigated through post hoc tests to 163 
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test whether interaction effects between drought and salinity had occurred. Two-way ANOVAs were run separately for 164 

each trait and each crop type (maize and potato) as we expected different patterns. In the Netherlands, potato and maize 165 

are planted between mid-April to early May. Crops are surfacing in May and harvested in October. Therefore, to evaluate 166 

the response of crops to stresses across the growing season, the effect of drought and salinity on crop traits was determined 167 

for May, June, July, and September with a one-way ANOVA. Tukey HSD post hoc tests were performed to identify the 168 

differences among the six stress combinations. All statistical analyses were performed with SPSS 27.0 (SPSS Inc., USA). 169 

3 Results  170 

3.1 Stress impacts depend on the moment in the growing season 171 

The two-way ANOVAs revealed strong effects of date and stress level on the five traits with effect sizes of the response 172 

(R2) ranging from 0.326 to 0.796 for the five traits, which was similar for maize and potato. For both maize and potato, R2 173 

values were lowest for Cab and highest for LAI, FAPAR, and FVC. For maize, we found a significant main effect of both 174 

date and stress (p < 0.05) for Cab, Cw, FAPAR, and FVC. In contrast, LAI was not significantly different across the 175 

different stress conditions. For potato, all main effects of date and stress were significant for all five crop traits (Table 1). 176 

For all traits and both crops, the interaction between the effects of time and stress conditions was significant (p < 0.05) 177 

(Table 1), indicating that the impact of stress depended on the moment in the growing season. Despite the significant 178 

interaction terms, the partial Eta squared values (Table 1) showed that the effects of time in the growing season were much 179 

stronger than those of stress or the interaction of date and stress. The effects of date for maize were stronger than for potato. 180 

Interestingly, the effects of the interaction between date and stress were stronger than those of the main effects of stress, 181 

suggesting strongly time-specific impacts of stress on the crop traits investigated. The interaction terms were strongest for 182 

FVC.  183 

Table 1. Two-way ANOVA for different crop traits by time series and stress interactions. 184 

Crops Traits Factors F p 
Partial Eta 
Squared 

R2 

Maize 

LAI 

date 2144.5 0.000 0.636 

0.766 stress 1.4 0.226 0.001 

date*stress 8.5 0.000 0.033 

Cab 

date 333.9 0.000 0.222 

0.326 stress 10.7 0.000 0.008 

date*stress 3.6 0.000 0.015 

Cw 

date 952.1 0.000 0.449 

0.590 stress 9.9 0.000 0.007 

date*stress 4.0 0.000 0.017 

FAPAR 

date 1865.9 0.005 0.603 

0.738 stress 3.3 0.000 0.002 

date*stress 8.5 0.000 0.033 

FVC 

date 2022.5 0.000 0.622 

0.761 stress 22.1 0.000 0.015 

date*stress 28.7 0.000 0.105 

Potato 

LAI 

date 752.1 0.000 0.273 

0.782 stress 13.7 0.000 0.006 

date*stress 8.1 0.000 0.020 

Cab 

date 96.4 0.000 0.050 

0.329 stress 54.2 0.000 0.024 

date*stress 8.7 0.000 0.023 
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Cw 

date 347.4 0.000 0.158 

0.571 stress 68.1 0.000 0.030 

date*stress 10.3 0.000 0.027 

FAPAR 

date 612.7 0.000 0.234 

0.744 stress 25.8 0.000 0.011 

date*stress 14.0 0.000 0.034 

FVC 

date 844.0 0.000 0.297 

0.796 stress 18.8 0.000 0.008 

date*stress 13.6 0.000 0.033 

Note: F indicates the test statistic of the F-test; p indicates whether the effect is statistically significant in comparison to the significance 185 

level (p < 0.05); Partial Eta Squared indicates the effect size of different factors; R2 indicates the percentage that the model coincides 186 

with the data.  187 

3.2 Response of LAI, FAPAR, FVC to drought and salinity  188 

Given the significance of both date and stress and their interactions, subsequent one-way ANOVAs were performed to 189 

compare the effects of drought and salinity on LAI, FAPAR, and FVC for maize and potato in May, June, July, and 190 

September separately (Fig. 3). The patterns for LAI, FAPAR, and FVC were very similar, although they differ in details 191 

and were therefore treated together. 192 

For maize, all of LAI, FAPAR, and FVC obtained their lowest value under MD+SS stress conditions in May. In June, both 193 

LAI and FVC dropped the most under salinity stress and it was significantly (p < 0.05) different from MD, MD+MS, and 194 

MD+SS conditions, but not significantly different from no stress conditions. In contrast, FAPAR also reached its lowest 195 

value (under MD+MS stress conditions) in June but had a significant difference (p < 0.05) compared with no stress 196 

conditions. Both in July and September, LAI, FAPAR, and FVC all had the lowest value under SD conditions, and the 197 

difference was significant compared with no stress conditions.  198 

For potato, LAI, FAPAR, and FVC had the lowest (p < 0.05) value under MD+MS and MD+SS stress conditions in May. 199 

In June, LAI, FAPAR as well as FVC reached the lowest value under SD conditions and were significantly lower than in 200 

most other stress conditions even though the difference was not significant from no stress conditions. In July, there was a 201 

tendency for LAI, FAPAR, and FVC to be lower under stress conditions, although none of the effects were significant. In 202 

September, however, LAI, FAPAR, and FVC significantly decreased under MD, MD+MS, and MD+SS conditions, and 203 

the difference was significant compared with no stress conditions. In addition, the difference was not significant among 204 

these three stress conditions.   205 

Therefore, both for maize and potato, LAI, FAPAR, and FVC dropped the most under SD stress conditions when they 206 

reached their respective maximum value, compared with other stress conditions. At the same time, maize and potato were 207 

more sensitive to drought than salinity since no significant change was observed between drought conditions and conditions 208 

with a combination of drought and salinity stress.  209 
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Figure 3. Expressions of LAI, FAPAR, and FVC under various stress conditions in May, June, July, and September. Different letters in 211 

each panel indicate significant differences (p < 0.05). MD, moderate drought only; Salinity, salinity only; MD+MS, moderate drought 212 

and moderate salinity; MD+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only.  213 

3.3 Response of leaf chlorophyll and water content to drought and salinity  214 

The one-way ANOVAs revealed that there were significant (p < 0.05) impacts of the various stress conditions on Cab and 215 

Cw (Fig. 4). For maize, Cab obtained its lowest value under salinity stress in May and June while it was not significantly 216 

different from no stress conditions. However, in July, Cab reached the lowest value under MD+MS conditions although 217 

the difference was not significant from other stress conditions. There were no significant changes observed for Cab in 218 

September. For potato, Cab dropped the most under salinity conditions in May although the difference was not significant 219 

from no stress conditions. Furthermore, Cab significantly decreased under MD+SS conditions in June and July, compared 220 

with other conditions. Although Cab dropped the most under salinity conditions in September, the difference was not 221 

significantly different from other conditions. In addition, compared with no stress, potato had the lowest Cab under MD+SS 222 

conditions while there was no significant difference between MD+SS and salinity conditions in most growing periods. 223 

Cw decreased under all stress conditions in May, June, and July for both maize and potato, except for SD conditions in 224 

May, compared with no stress conditions. At the same time, Cw reached its lowest value under MD+SS conditions and it 225 

was significantly different from under no stress conditions. Nonetheless, there were different changes for maize and potato 226 

in September. Cw was not significantly different among any conditions for maize while it was the lowest under salinity 227 

conditions for potato.  228 

Therefore, this analysis illustrates that salinity affected maize less than drought since crop responses were more obvious to 229 

drought than salinity for Cw. In contrast, salinity showed a more severe effect on maize and potato at the early growth 230 

stages for Cab. Meanwhile, Cab was affected by co-occurring drought and salinity in June and July for potato. It seems 231 

that there was a non-additive effect of drought and salinity for Cw since the changes were not significant between MD+MS, 232 

MD+SS, MD, and salinity conditions. 233 

 234 

Figure 4. Expressions of Cab and Cw under various stress conditions in May, June, July, and September. Different letters in each panel 235 

indicate significant differences (p < 0.05). MD, moderate drought only; Salinity, salinity only; MD+MS, moderate drought and moderate 236 

salinity; MD+SS, moderate drought and severe salinity (MD+SS); SD, severe drought only. 237 
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4 Discussion  238 

In this study, we quantified the large-scale impacts of co-occurring drought and salinity on a variety of crop traits using 239 

satellite remote sensing. We observed that –in contrast to our expectations – the impacts of salinity were not highly 240 

pronounced at this scale, with most strong impacts originating due to drought stress during the 2018 drought. Although 241 

irrigation may modify the severity of drought impacts on crops, we have evidence that irrigation did not play a major role 242 

in the patterns found in this case since all croplands included within our research area have been identified as rainfed 243 

cropland according to the ESA/CCI land cover map in 2018 (https://maps.elie.ucl.ac.be/CCI/viewer/). In addition, while -244 

in the area- farmers are known to irrigate their cropland, the Dutch government announced a temporary national irrigation 245 

ban in various areas including our research area in 2018 (Perry de Louw, 2020) to spare water. Therefore, we assumed that 246 

irrigation management was absent during our study period. At specific moments in the growing season, salinity and/or the 247 

combined effects of salinity and drought pronouncedly affected individual crop traits. In this way, with increasing salinity 248 

driven by more intensive droughts, water allocation should not only be governed by the amount of water shortage, but also 249 

the salinity of the remaining water. In this paper, we provide the first evidence that those impacts can be monitored through 250 

remote sensing. This might provide a basis towards a monitoring system for multiple crops with multiple stresses as well 251 

as better governance policies to release this problem. 252 

4.1 Drought stress is more important than salinity stress in farmers’ conditions 253 

The exacerbating effects of co-occurrent drought and salinity (Fig. 3 and Fig. 4) that we found are consistent with findings 254 

of small-scale experiments (e.g. greenhouses). Consistent with our results, synergistic effects of co-occurring water stress 255 

and salinity stress have been found on maize reproductive growth and grain formation in a field study (Liao et al., 2022). 256 

Spinach (Spinaciaoleracea L., cv. Racoon) yield decreased more under co-occurring water-salinity stress in comparison 257 

with separate water stress and salinity (Ors and Suarez, 2017). The co-occurring drought and salinity stress was more 258 

harmful to cotton root growth compared to their individual effects (Zhang et al., 2013). Moreover, the combined negative 259 

effect of drought and salinity stress on Panicum antidotale was stronger than that of single stress (Hussain et al., 2020).  260 

Our research showed that the outcomes of these small-scale experimental studies also apply to real large-scale 261 

environments, where different sources of variance are present. Specifically, we show that in real farmers’ conditions, the 262 

co-occurrence of drought and salinity indeed can constitute a severe threat due to its interactive effects on crop growth.  263 

In addition, we evaluated whether drought or salinity stress has more impact on crop performance. We observed that maize 264 

and potato were generally more sensitive to drought than salinity in this study (Fig. 3 and Fig. 4). This is consistent with 265 

results of previous studies that highlight that drought impacts are generally more detrimental than salinity stress for crops, 266 

e.g. for sesame (Sesamum indicum) (Harfi et al., 2016), Mentha pulegium L. (Azad et al., 2021), durum wheat (Sayar et 267 

al., 2010), grass pea (Tokarz et al., 2020), and sweet sorghum (Patane et al., 2013). However, given that the threshold of 268 

salinity at which crop damage occurs (according to the FAO guidelines (Ayers and Westcot, 1985)) was surpassed in all 269 

situations in which salinity stress was imposed (including in our study), we initially expected salinity to be a stronger 270 

explanatory variable than drought. As such, salinity impacts on crop performance (by the FAO) may have been 271 

overestimated. Indeed, in an experimental field situation in which drought stress was carefully avoided, higher thresholds 272 

of salinity-induced damage were observed for potato (van Straten et al., 2021). 273 

In combination, the results from our study (supported by results from other studies) suggest that salinity particularly induces 274 

adverse effects when co-occurring with drought stress. Water stress impacts on photosynthesis and biomass of plants were 275 

extenuated by salinity since salinity enhances the synthesis of ATP and NADPH by promoting photosynthetic pigments 276 



12 
 

and photosystem II efficiency. The impacts of combined drought and salinity stress on plant growth, chlorophyll content, 277 

water use efficiency, and photosynthesis were less severe compared to drought alone. This indicates compensating effects 278 

on carbon assimilation due to osmotic adjustments induced by Na+ and Cl– (Hussain et al., 2020). Thus, the detrimental 279 

effect of single drought stress on crop growth is considered to be mitigated by salinity. 280 

4.2 Drought and salinity stress differ between growth stages  281 

The responses to drought and salinity stress were different at different growth stages of the crops. This was expressed by 282 

the significant interactions between the effects of time and stress conditions for all of our crop responses (Table 1). We 283 

found that during the grain filling (maize) and tuber bulking phase (potato), the sensitivities of these crops are expressed 284 

distinctly in the non-harvested aboveground tissues (Fig. 3 and Fig.4), with clear differences in the remote sensing plant 285 

traits.  286 

Given that we were not able to monitor the harvestable products, multiple mechanisms may explain these patterns. The 287 

relatively high leaf coverage (as related to LAI, FAPAR, and FVC) at salinity and severe drought conditions at the end of 288 

the growing season may be an expression of a compensation process. Specifically, early and prolonged drought could have 289 

led to more assimilates allocated to non-harvestable potato parts for drought resistance since the number of tubers reduced 290 

(Jefferies, 1995; Schittenhelm et al., 2006). In that case, we should consider their higher leaf coverage at the end of the 291 

season as a survival mechanism, rather than true drought tolerance, leading to reduced tuber yields (Daryanto et al., 2016b). 292 

Future studies that combine remote sensing with harvesting data may be able to evaluate this mechanism in more detail.  293 

In our study, different response patterns of maize and potato occurred to the different stresses over the growing season. 294 

This is consistent with previous studies focusing on the impact of drought and/or salinity onsets. For potato, it has been 295 

suggested that tuber yields particularly decreased when drought stress occurs during the vegetative and tuber initiation 296 

stages than during the tuber bulking stage (Wagg et al., 2021), although another study observed the reverse pattern 297 

(Daryanto et al., 2016b). For maize, on the other hand, drought seems to have the most detrimental impact during the 298 

maturation stage (Mi et al., 2018; Zhang et al., 2019), and the reproductive phase (Daryanto et al., 2017; Daryanto et al., 299 

2016a).  Considering the additional co-varying factors within our ‘real-life’ study, it is very probable that we were able to 300 

detect similar effects. This suggests that we may use satellite remote sensing –albeit less spatially precise than e.g. sensing 301 

through drones- as a cost-effective early warning signal for detecting drought and salinity stress at moments during the 302 

growing season when differences in crop performance are still subtle.  303 

4.3 A multi-trait approach to understanding crop responses to stress  304 

In addition to facilitating the evaluation of crop performance during multiple stages of the growing season (in contrast to 305 

most destructive methods), remote sensing also allows a multi-trait approach to better understand the mechanisms involved 306 

in crop responses. Each of the five traits is associated with different functions of plants that might be individually impacted 307 

by the different stresses. Therefore, focusing on only one individual metric (as commonly done; see Wen et al. (2020) for 308 

a review) limits our capacity to gain full insight into drought and salinity responses. Hence, given that individual crop traits 309 

may respond differently to drought and salinity reflecting its stress resistance and tolerance strategy, the evaluation of these 310 

distinct responses may help to understand this strategy.  311 

In this study, Cw was consistently lower in all drought and salinity treatments as compared to no stress conditions in May, 312 

June, and July. Indeed, this is a common response of plants in response to drought and salinity (e.g. Wen et al., 2020). In 313 

this respect, it is interesting that no decrease in Cw was observed at the end of the growing season, in September. Whether 314 
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the phenomenon is related to the survival mechanism mentioned above or to the lower transpiration demands at the end of 315 

the season because of lower aboveground biomass, cannot be concluded from these data. Some evidence pointing to the 316 

survival mechanism is the finding (Ghosh et al., 2001; Levy, 1992) that the leaf dry matter increased for potato under 317 

drought/salinity stress (like in our study) while the dry matter of the tubers appeared to have a greater decline.  318 

With respect to chlorophyll contents, we observed a decline in Cab under salinity conditions in May and the MS+SS 319 

treatment in June and July, while no decrease was observed in any of the treatments exposed to drought only. This indicates 320 

that while total leaf area was not (much) affected by salinity, the salinity did negatively affect crop performance. It has 321 

been reported that chlorophyll content in maize was significantly reduced upon salinity, along with other plant traits 322 

including plant height, shoot/root biomass, and leaf numbers (Fatima et al., 2021; Mahmood et al., 2021). Likewise, similar 323 

patterns were obtained in potato plants in saline soil (Efimova et al., 2018). Hence, this implies that soil salinity tends to 324 

negatively affect crop growth and restrict nutrient uptake.  325 

Cab and Cw responses to drought and salinity were distinct from responses of LAI, FAPAR, and FVC (Fig. 3 and Fig. 4). 326 

LAI, FAPAR, and FVC showed similar patterns to stress due to their highly physical correlation (Hu et al., 2020). The 327 

different patterns of Cw and Cab point to different drought and salinity resistance strategy components associated with 328 

these traits: LAI (and FAPAR/FVC) reflect the decrease in biomass due to stress, partly because stress directly and 329 

negatively impacts growth and partly because having lower biomass decreases the evapotranspiration demands of the crop, 330 

which increases the resilience of the crop to deal with drought. Cw represents another pathway to reduce evapotranspiration 331 

demands, i.e. by reducing the amount of water per gram of leaves. Also, this response may be a direct effect of the more 332 

negative pressure heads due to drought or due to increased osmotic pressures (due to salinity). It may also be part of the 333 

adaptive strategy of the crop to increase its resilience. Cab also responds to drought and salinity, but in its own way, i.e. by 334 

adapting its photosynthetic capacity while being affected by a lower stomatal conductance (due to drought and/or salinity). 335 

See e.g. Wright et al. (2003) for a framework explaining these nitrogen-water interactions. 336 

In addition, our approach gives the insight to analyze the effect of stresses on yield based on the five traits, even though 337 

yield cannot directly be derived from remote sensing. Traits including Cab, LAI, and FAPAR, have been used (either 338 

separately or in combination) as a proxy for final yield estimates from remote sensing in many studies. For instance, NDVI 339 

-which is based on the combination of LAI and Cab- is extensively used to estimate crop yield (Huang et al., 2014; 340 

Mkhabela et al., 2011; Vannoppen et al., 2020). Also, LAI itself has been used for predicting the final yield (Sun et al., 341 

2017; Dente et al., 2008; Doraiswamy et al., 2005). Meanwhile, Cab and FAPAR were also proven to be highly correlated 342 

with crop yield (López-Lozano et al., 2015; Ghimire et al., 2015). Thus, while yield cannot be estimated directly from 343 

remote sensing or ground truth data at the desired high spatial resolution, our indicators do relate to yield and can be used 344 

in more application-based contexts to inform on yield impacts. 345 

5 Conclusions  346 

In this study, we present the first attempt to evaluate the real-life effects of drought, salinity, and their combination on crop 347 

health using multiple traits from remote sensing monitoring. Our approach gives new insights for monitoring crop growth 348 

under co-occurring stresses at a large scale with high-resolution data. We found that while in general temporal patterns –349 

reflecting crop growth dynamics- were stronger than effects of stress conditions, stress impacts depended on the time of 350 

the growing season. Furthermore, we also found that the temporal dynamics in crop responses to drought and salinity were 351 

different for maize vs. potato. In general, the five investigated traits were more negatively affected by a combination of 352 

drought and salinity stress compared to individual stress. Meanwhile, both maize and potato responded more prominently 353 
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to drought, thus demonstrating a stronger sensitivity, than to salinity. Specifically, LAI, FAPAR, and FVC dropped the 354 

most under severe drought stress conditions. Consequently, the proposed new approach poses a facilitated way for 355 

simultaneously monitoring the effect of drought and salinity on crops in large-scale agricultural applications.  356 
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