## **Online Supplemental Material**

**Article title**: Intertidal spring discharge to a coastal ecosystem and the impacts of climate change on future groundwater temperature: A multi-method investigation

Journal name: Hydrology and Earth System Sciences

Authors: Jason J. KarisAllen<sup>1</sup>, Aaron A. Mohammed<sup>1,2</sup>, Joseph J. Tamborski<sup>3</sup>, Rob C. Jamieson<sup>1</sup>, Serban Danielescu<sup>4</sup>, Barret L. Kurylyk<sup>1</sup>

<sup>1</sup>Department of Civil and Resource Engineering and Centre for Water Resources Studies, Dalhousie University, Halifax, B3H 4R2, Canada

<sup>2</sup>Department of Earth and Planetary Sciences, McGill University, Montréal, H3A 0E8, Canada

<sup>3</sup>Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, 23529, USA

<sup>4</sup>Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada

<sup>5</sup>Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, Fredericton, New Brunswick E3B 4Z7, Canada

Tables begin on the following page.

Table S1: Information on sensors deployed for this study. See figures in the Figure Reference column for locations. The IDs in the Map ID column in this table align with the IDs noted in Fig. S6 in this supplement. All associated data can be found in the dataset described in the Data Availability section at the end of the main paper.

|                    |                                                     |                                               | Normhan af | Man ID (masfin   |                                                                                                                              | Data Period Provided                             | E' anna                    |
|--------------------|-----------------------------------------------------|-----------------------------------------------|------------|------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|
|                    | Parameter(s)<br>Provided                            | Sensor Make/Model                             | Sensors    | and ID#)         | Approximate Location(s) by ID# (Long,<br>Lat)                                                                                | (Discontinuous and varies per parameter)         | Figure<br>Reference(s)     |
| Streams            | Water<br>temperature                                | Onset HOBO<br>MX2203 TidbiTs                  | 4          | St1, 2, 3, and 4 | 1) 62.1243660°W 46.3865830°N<br>2) 62.1246730°W 46.3862840°N<br>3) 62.0914720°W 46.3957510°N<br>4) 62.0889510°W 46.3971560°N | Start: 2020-07-21 11:15<br>End: 2020-11-02 16:30 | 1 and 6                    |
|                    | Water flow                                          | HOBO U20-001-04 &<br>SonTek<br>Flow Tracker 2 | 4          | St5, 6, 7, and 8 | 5) 62.1273340°W 46.3867770°N<br>6) 62.1270000°W 46.3900000°N<br>7) 62.0952870°W 46.3974070°N<br>8) 62.0906230°W 46.3987880°N | Start: 2020-07-21 13:00<br>End: 2020-08-31 23:00 | 1 and S6                   |
| Springs            | Water<br>temperature                                | Onset HOBO<br>MX2203 TidbiTs                  | 2          | Sp1 and 2        | 1) 62.1194598°W 46.3848724°N<br>2) 62.0998038°W 46.3905342°N                                                                 | Start: 2020-07-25 17:30<br>End: 2020-11-02 16:30 | 1, 6, 7, S2, S3,<br>and S4 |
|                    | Water<br>temperature                                | Onset HOBO<br>MX2203 TidbiTs                  | 1          | Sp3              | 3) 62.0889360°W 46.3941150°N                                                                                                 | Start: 2019-06-26 0:00<br>End: 2020-11-02 16:30  | 1, 7, S2, S5,<br>and S7    |
| Lagoon             | Water<br>temperature                                | Onset HOBO<br>MX2203 TidbiTs                  | 2          | L3 and 4         | 3&4) 62.0879200°W 46.3950140°N                                                                                               | Start: 2019-06-26 2:45<br>End: 2020-11-02 16:30  | 1, 6, and S7               |
|                    | Water<br>temperature                                | Onset HOBO<br>MX2203 TidbiTs                  | 2          | L1 and 2         | 1&2) 62.0953385°W 46.3910513°N                                                                                               | Start: 2020-07-25 15:30<br>End: 2020-11-02 16:30 | 1                          |
|                    | Water<br>temperature and<br>pressure                | Solinst<br>Levelogger 5 LTC                   | 1          | L5               | 5) 62.1106386°W 46.3817063°N                                                                                                 | Start: 2020-07-21 12:30<br>End: 2020-11-02 16:30 | 1, 6, and 8                |
| Piezometer         | Water<br>temperature and<br>pressure                | Onset HOBO<br>U20-001-01                      | 1          | P1               | 1) 62.1020736°W 46.3900142°N                                                                                                 | Start: 2019-08-17 14:45<br>End: 2020-11-02 16:30 | 1                          |
| Climate<br>Station | Air temperature,<br>radiation, and<br>precipitation | Onset HOBO<br>Micro Station Logger            | 1          | Cl1              | 1) 62.1030470°W 46.3890710°N                                                                                                 | Start: 2019-06-26 0:00<br>End: 2020-11-02 16:30  | 1, 6, and S7               |

| Table S2: Measured thermal plume areas of 34 springs in Basin Head lagoon over the study period (locations displayed in |
|-------------------------------------------------------------------------------------------------------------------------|
| Figure 1b and Figures S2-S5). The instantaneous discharge of Springs A, B, and C (grey rows) were measured and used to  |
| develop the plume size-spring discharge relationship, whereas Springs 1-31 were estimated using their measured area and |
| the developed relationship. The date/time indicates when the thermal image was captured. Area was obtained as indicated |
| in Figure 2 and Figure S1 and included short distances of overland flow.                                                |

| Spring ID | Date/time        | Area (m <sup>2</sup> ) | Discharge (m <sup>3</sup> s <sup>-1</sup> ) | Spring location (Lat; Long) |
|-----------|------------------|------------------------|---------------------------------------------|-----------------------------|
| А         | 22-07-2020 19:37 | 360                    | 3.1E-03*                                    | 46.389305; -62.102322       |
| В         | 22-07-2020 19:35 | 51                     | 5.2E-04*                                    | 46.390244; -62.10096        |
| С         | 22-07-2020 19:36 | 10                     | 7.5E-05*                                    | 46.388714; -62.103432       |
| 1         | 29-08-2020 15:27 | 694                    | 6.2E-03                                     | 46.386246; -62.110306       |
| 2         | 29-08-2020 15:33 | 360                    | 3.1E-03                                     | 46.38493; -62.119438        |
| 3         | 24-07-2020 19:33 | 289                    | 2.5E-03                                     | 46.390179; -62.101189       |
| 4         | 22-07-2020 19:36 | 259                    | 2.2E-03                                     | 46.396149; -62.08857        |
| 5         | 21-07-2020 20:17 | 171                    | 1.4E-03                                     | 46.394167; -62.088889       |
| 6         | 24-07-2020 18:16 | 164                    | 1.4E-03                                     | 46.386944; -62.115067       |
| 7         | 24-07-2020 18:16 | 133                    | 1.1E-03                                     | 46.386944; -62.115067       |
| 8         | 24-07-2020 19:29 | 115                    | 9.6E-04                                     | 46.39827; -62.080589        |
| 9         | 22-07-2020 19:36 | 65                     | 5.3E-04                                     | 46.390114; -62.101421       |
| 10        | 21-07-2020 20:15 | 59                     | 4.8E-04                                     | 46.392818; -62.090939       |
| 11        | 24-07-2020 19:29 | 57                     | 4.6E-04                                     | 46.398132; -62.080959       |
| 12        | 22-07-2020 17:04 | 55                     | 4.4E-04                                     | 46.386448; -62.107201       |
| 13        | 24-07-2020 19:30 | 48                     | 3.9E-04                                     | 46.396732; -62.08556        |
| 14        | 22-07-2020 19:37 | 48                     | 3.9E-04                                     | 46.390339; -62.100193       |
| 15        | 24-07-2020 19:36 | 41                     | 3.3E-04                                     | 46.394882; -62.089233       |
| 16        | 24-07-2020 19:31 | 31                     | 2.5E-04                                     | 46.396442; -62.086929       |
| 17        | 24-07-2020 18:13 | 25                     | 2.0E-04                                     | 46.386459; -62.118565       |
| 18        | 21-07-2020 20:15 | 22                     | 1.8E-04                                     | 46.392975; -62.090805       |
| 19        | 24-07-2020 18:18 | 21                     | 1.6E-04                                     | 46.386646; -62.111988       |
| 20        | 24-07-2020 19:36 | 15.9                   | 1.2E-04                                     | 46.394653; -62.088825       |
| 21        | 22-07-2020 19:37 | 13.3                   | 1.0E-04                                     | 46.390591; -62.099422       |
| 22        | 22-07-2020 17:07 | 12.6                   | 9.7E-05                                     | 46.386269; -62.110722       |
| 23        | 21-07-2020 20:16 | 11.2                   | 8.6E-05                                     | 46.393421; -62.089939       |
| 24        | 24-07-2020 19:31 | 9.2                    | 7.0E-05                                     | 46.396744; -62.085999       |
| 25        | 24-07-2020 18:15 | 7.4                    | 5.6E-05                                     | 46.38686; -62.116539        |
| 26        | 24-07-2020 18:14 | 6.7                    | 5.1E-05                                     | 46.386528; -62.118763       |
| 27        | 21-07-2020 20:16 | 3.1                    | 2.3E-05                                     | 46.393661; -62.089458       |
| 28        | 24-07-2020 18:13 | 2.4                    | 1.7E-05                                     | 46.386433; -62.11874        |
| 29        | 21-07-2020 20:16 | 2.0                    | 1.4E-05                                     | 46.393745; -62.089233       |
| 30        | 24-07-2020 19:37 | 1.9                    | 1.4E-05                                     | 46.393871; -62.089138       |
| 31        | 21-07-2020 20:14 | 1.7                    | 1.2E-05                                     | 46.392387; -62.092205       |

\*Measured spring discharges used in the plume size-spring discharge relationship. The accuracy of measured discharges was estimated to be within  $\pm 25\%$ .

| Sample ID     | Sample ID Sample Type      |      | Salinity | <sup>222</sup> Rn             |
|---------------|----------------------------|------|----------|-------------------------------|
|               |                            | (°C) | (psu)    | ( <b>Bq m</b> <sup>-3</sup> ) |
| August 2020   |                            |      |          |                               |
| Spring A      | fractured sandstone spring | 8.6  | 0.93     | $8,360 \pm 1,280$             |
| Spring B(1)   | fractured sandstone spring | 9.8  | 0.76     | $10,080 \pm 1,670$            |
| Spring B(2)   | fractured sandstone spring | 9.4  | 0.87     | $16,570 \pm 1,180$            |
| Spring C      | fractured sandstone spring | 11.6 | 0.25     | $6{,}740\pm880$               |
| November 2020 |                            |      |          |                               |
| Spring A      | fractured sandstone spring | 7.9  | 0.87     | $7,530 \pm 1,060$             |
| Spring B(1)   | fractured sandstone spring | 9.5  | 0.71     | $13,220 \pm 470$              |
| Spring B(2)   | fractured sandstone spring | 9.2  | 0.80     | $12,620 \pm 680$              |
| Spring C      | fractured sandstone spring | 9.3  | 0.21     | $7,880 \pm 770$               |
| Stream S1     | Stream                     | 5.3  | 0.25     | $3,410 \pm 590$               |
| Stream S2     | Stream                     | 5.0  | 0.30     | $410 \pm 100$                 |
| Stream S3     | Stream                     | 6.2  | 0.15     | $360 \pm 110$                 |
| Stream S4     | Stream                     | 6.1  | 0.15     | $360 \pm 60$                  |
| Stream S6     | Stream                     | 6.2  | 0.13     | $940 \pm 140$                 |
| WT1           | Porewater (0.2 m)          | 0.7  | 16.6     | $710 \pm 300$                 |
| WT2           | Porewater (0.4 m)          | 0.7  | 17.3     | $1,000 \pm 410$               |
| OP1           | Porewater (0.2 m)          | 7.9  | 19.6     | $500 \pm 240$                 |
| MP2           | Porewater (0.4 m)          | 1.6  | 18.0     | $340 \pm 140$                 |

Table S3: Summary of groundwater springs, baseflow-fed streams and shallow porewaters collected in August and November 2020. Porewater values in parentheses indicate sample collection depth. Stream locations are shown in Figure 1.

Table S4: Summary of parameters and fluxes used in the <sup>222</sup>Rn mass balance.

| Term                           | Definition                                    | Value    | Uncertainty | Units                           |
|--------------------------------|-----------------------------------------------|----------|-------------|---------------------------------|
| А                              | Lagoon area                                   | 5.90E+05 | 5.90E+04    | m <sup>2</sup>                  |
| Ι                              | Mean excess <sup>222</sup> Rn inventory       | 18       | 15          | Bq m <sup>-2</sup>              |
| Qstream                        | Stream discharge                              | 0.05     | 0.02        | m <sup>3</sup> s <sup>-1</sup>  |
| C <sub>stream</sub>            | Stream <sup>222</sup> Rn                      | 1100     | 1200        | Bq m <sup>-3</sup>              |
| $C_{GW}$                       | Fractured-sandstone spring <sup>222</sup> Rn  | 10400    | 3700        | Bq m <sup>-3</sup>              |
| C <sub>Ra</sub>                | <sup>226</sup> Ra activity                    | 10       | 8           | Bq m <sup>-3</sup>              |
| $\lambda_{Rn}$                 | <sup>222</sup> Rn decay constant              | 0.181    | -           | $d^{-1}$                        |
| <sup>222</sup> Rn Sinks        |                                               |          |             |                                 |
| $\mathbf{J}_{\mathrm{atm}}$    | Atmospheric evasion                           | 6.4E+06  | 6.6E+06     | Bq d <sup>-1</sup>              |
| $\mathbf{J}_{\mathrm{mix}}$    | Mixing losses                                 | 8.4E+07  | 5.9E+07     | $Bq d^{-1}$                     |
| $\mathbf{J}_{\text{decay}}$    | Radioactive decay                             | 1.9E+06  | 1.6E+06     | Bq d <sup>-1</sup>              |
| <sup>222</sup> Rn Sources      |                                               |          |             |                                 |
| $\mathbf{J}_{\mathrm{diff}}$   | Molecular diffusion                           | 6.4E+06  | 3.2E+06     | $\mathbf{Bq} \ \mathbf{d}^{-1}$ |
| $J_{Ra-226}$                   | <sup>226</sup> Ra production                  | 1.1E+06  | 8.5E+05     | $Bq d^{-1}$                     |
| J <sub>stream</sub>            | Stream <sup>222</sup> Rn flux (inc. baseflow) | 4.7E+06  | 5.6E+06     | Bq d <sup>-1</sup>              |
| $\mathbf{J}_{\mathrm{spring}}$ | Groundwater <sup>222</sup> Rn                 | 8.0E+07  | 6.0E+07     | Bq d <sup>-1</sup>              |
| -                              | Groundwater discharge                         | 0.09     | 0.07        | m <sup>3</sup> s <sup>-1</sup>  |



Grayscale intensity bins (0-255)

Figure S1. Generic characteristic type-curve used in the areal analysis of a thermal-discharge assessment. Inflection points are identified using near-perpendicular lines connecting the type-curve and the linear intersects. The plume thermal group (i.e., plume area) extends to the plume area inflection point. The lagoon thermal group begins at the second inflection point and extends onward, and there is a steep transition zone between groups. See Roseen (2002) for a description of a similar approach.



Figure S2. (Series image 1 of 4) Spring locations in the Basin Head lagoon. Black boxes each represent an area depicted in subsequent series images that include spring IDs with reference to Table S1. (1) Figure S, (2) Figure S, and (3) Figure S. Basemap is attributed to Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.



Figure S3. (Series image 2 of 4) Locations and IDs of springs in main basin of the Basin Head lagoon. N.D. = No Data. Basemap is attributed to Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.



Figure S4. (Series image 3 of 4) Locations and IDs of springs in the main basin and north-east arm of the Basin Head lagoon. N.D. = No Data. Map prepared in ArcGIS Pro (Version 2.3.3, 2018). Basemap is attributed to Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.



Figure S5. (Series image 4 of 4) Locations and IDs of springs in the upper north-east arm of the Basin Head lagoon. Basemap is attributed to Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.



Figure S6: A map of all sensors with data include in the data archive (see Data Availability section of main paper). This additional map is included to provide context for the Sensor IDs noted in Table S1, which correspond to the sensor IDs in the figure. To enable the clear presentation of the sensor IDs, no springs are shown in this figure. Basemap is attributed to Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.



Figure S7: Daily stream hydrographs of the primary four tributaries discharging to Basin Head lagoon over the 35-day focussed study period (date presented as yyyy-mm-dd). Discharge is entirely attributed to baseflow over this period.



Figure S8: (a) Hourly local air temperature and water temperature data (top and bottom of water column) from the upper north-east arm of Basin Head lagoon (date presented as yyyy-mm-dd). (b) The difference between Spring 5 temperature and the average of the channel surface and bottom temperature (shown in a) approximately 30 m away. This difference demonstrates the local cooling effect of springs on the lagoon water temperature and can be inserted into Eq. (1) in the main text.