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Abstract. The understanding of spatiotemporal dynamics of Earth’s hydrological components and their controls is critical for 

efficient water resource management, especially in the agriculture-dominated landscapes. In this study, we utilize the empirical 

orthogonal function (EOF), random combination, and temporal stability approach on the soil moisture (SM) and depth to 

groundwater table (DTGT) observations from the Critical Zone Observatory in the Ganga basin to understand their 10 

spatiotemporal variability and optimal sampling strategies. Around 91% of the observed DTGT spatial variation are explained 

by the first two spatial EOF whereas the first five EOFs explains only 67% of the total SM variability. Topography and soil 

texture (% clay) are considered to be the leading factors that drive the spatial pattern of both the attributes. Furthermore, we 

noted that four SM sampling locations and two monitoring well, selected randomly can capture the mean spatial variability 

with an accuracy of 3% ݈݋ݒ/݈݋ݒ and 0.90 ܾ݈݉݃ (meter below ground level) respectively. Moreover, four temporally stable 15 

SM sites and a single observation well are identified, which provide the spatial mean with an absolute error of ±2% ݈݋ݒ/݈݋ݒ 

and 0.36 ܾ݈݉݃ respectively. Overall, this study provides an insight to spatiotemporal hydrological controls in an intensively 

managed landscape and has important implications for water resource management in such regions. 

1 Introduction 

Variability of Earth’s hydrological components, integrated over space and time influence the global terrestrial water cycle and 20 

sustaining ecosystems (Blume et al., 2009; Taylor et al., 2013). Recent development of the concept of Earth’s critical zone 

(CZ), from treetops to groundwater (Brantley et al., 2016; National Research Council, 2001) and thereby a critical zone 

observatory (CZO) provides the hydrological basement to understand the spatiotemporal characteristics of surface and sub-

surface hydrological processes (Western et al., 2004). Soil moisture and groundwater form two major components in the CZ 

processes and their interaction controls the exchange of energy and water between land surface and atmosphere, characterizing 25 

a highly complex feedback mechanism (Seneviratne et al., 2006; Vereecken et al., 2014; Western et al., 2004). Several 

meteorological networks and SM stations have been established worldwide (Dorigo et al., 2011), however, local variabilities 

in in-situ hydro-physical properties such as soil type, topography and precipitation lead to several uncertainties (Broca et al., 

2010; Famiglietti et al., 1999). There has also been a profound multiplicative impact of the anthropogenic causal factors such 
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as the spatially varying groundwater extraction which can lead to alteration of the near surface soil moisture (Miguez-Macho 30 

and Fan, 2012; Soylu et al., 2011). Therefore, an understanding the spatiotemporal dynamics of the soil moisture and 

groundwater level depth and their associated controls is critical to improve the water resource managements, particularly in 

the agroclimatic domains (Liu et al., 2016). 

Several methods exist to characterize the spatiotemporal variability of soil moisture and groundwater level such as the 

interpolation techniques (Ruybal et al., 2019; Zhang et al., 2019), principal component analysis (de Queiroz et al., 2020; Misi 35 

et al., 2018), trend analysis (Joshi et al., 2021; Ye et al., 2019), multiple linear regression (Jia et al., 2020), and singular 

spectrum analysis (Cao and Zheng, 2016). However, natural complexity and local anthropogenic alteration of near surface 

components limit the detailed understanding of the hydrological system in a crop water system. On the other hand, the empirical 

orthogonal function (EOF) analysis effectively analyses large spatiotemporal observations and has been extensively used in 

many hydrological processes (Joshi and Mohanty, 2010; Meng et al., 2022; Jawson and Niemann, 2007; Yu and Chu, 2010; 40 

Yue et al., 2020).  

The EOF analysis is a multivariate statistical method, used in decomposing the large space-time datasets into a set of spatial 

orthogonal functions and temporal expansion coefficients (Hannachi et al., 2007). The EOFs can also be correlated with the 

regional characteristics to predict major controlling factors (Jawson and Niemann, 2007). Apart from hydrological 

applications, this method has been extensively applied in other disciplines such as the meteorology (Hannachi et al., 2007; 45 

Meher and Das, 2020), earthquakes (Chao and Liau, 2019), and other physical environments (Sauquet et al., 2000). A very 

recent application of EOF for analysing annual soil moisture observations in the Mongolian plateau showed that a 54% 

variability could be explained by a single primary mode of decomposition, governing with the groundwater as the greatest 

influence on it (Meng et al., 2022). Investigation of the physical controlling factors of the Soil Moisture Experiment 2002 

(SMEX02) by Joshi and Mohanty (2010) suggested a mixed effect of the rainfall, topography and soil texture on the major 50 

EOFs. Application of the EOF analysis to monthly observation of groundwater table depth from 67 monitoring well in parts 

of Northwest China found the evaporation and temperature as the major drivers of the temporal variability (Yue et al., 2020).  

Another important aspect of the in-situ spatiotemporal hydrological data are the optimization of the sampling locations 

representing the mean catchment variability using the (a) random combination analysis and (b) temporal stability approach. 

Estimating the number of required samples (NRS) for mean variability through random combination approach has been 55 

explored by many authors (Brocca et al., 2010, 2012; Chen et al., 2016; Zhao et al., 2013). For instance, Brocca et al. (2012) 

and Singh et al. (2019) selected 2 and 10 random sites within an area of 100 kmଶ in Upper Tiber River, central Italy, and 

Mahanadi River basin in India respectively to estimate the catchment mean with a 2% error. Surprisingly, studies pertaining 

to the implementation of this approach in groundwater measurements are almost non-existent. 

The concept of temporal stability was first introduced by Vachaud et al. (1985) for the SM dynamics and its implementation 60 

to estimate time-invariant characteristics of sampling locations has been documented in the literature (Li and Shao, 2014; Sur 

et al., 2013; Wang et al., 2013). Again, most of the work conducted in the past used this concept in depicting the representative 
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sampling site for SM whereas very few studies addressed the spatial groundwater variability (Wang et al., 2018; Xu et al., 

2015). 

Therefore, the present study was carried out with the aim of addressing the following research questions: (a) understanding the 65 

spatiotemporal dynamics of SM and groundwater level and its influence through EOF analysis, (b) exploring the concept of 

random combination and temporal stability analysis for the mean catchment SM and groundwater variability. The study has 

been conducted over an agricultural critical zone observatory (CZO) located in the central Ganga plain in North India. 

2 Study region and datasets 

2.1 Study area 70 

Soil moisture and ground water measurements were carried out in an agriculture-dominated Critical Zone Observatory (CZO) 

in the Pandu basin, a small plains-fed tributary of the Ganga River (Fig. 1). The CZO here is referred to as the HEART 

(Heterogeneous Ecosystem of an Agro Rural Terrain) CZO with an area of ~21.5 km2 and was established in 2016 (Gupta et 

al., 2019) in the rural parts of the Ganga plain. The predominant land use in this region is the agriculture, constituting more 

than 90% of the total area. The elevation in the HEART CZO ranges from 126 to 143 m above mean sea level. This region 75 

falls in sub-humid climatic regime with the observed average annual maximum and minimum temperatures of 42°C and 8.6°C, 

respectively. Mean annual rainfall in the CZO is approximately 821.9 mm where the monsoonal rainfall (June-September) 

contributes more than 90%. Soil texture is predominantly sandy loam and loam and the major crops grown are rice and wheat 

in Kharif (July-October) and Rabi (October-March) season, respectively. 

 80 
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Figure 1: Location map of the study area, the Critical Zone Observatory in the Pandu basin. The study region is located within the 
Ganga-Yamuna interfluve. The soil moisture and the ground water monitoring locations along with the in-situ weather station are 
shown in right. Location index, 06, 11 and 20 of soil moisture are irrigated with surface water bodies (river and canal) whereas 
cropping at location index 03, 04 and 19 mostly produced using both surface and groundwater sources. The remaining locations are 
irrigated using groundwater sources. The CZO, shown in the right also includes a sampling scheme (not to scale) adopted for the 85 
soil moisture measurements (inset on the upper-left corner). The green circles of the sampling scheme represent the Theta probe 
measurement in an agricultural field. 

2.2 SM measurements 

Based on the heterogeneity in agricultural water use, soil texture and topography, a total of 20 different sites were selected for 

SM monitoring. The measurements were carried out manually at each location. All measurement locations are placed within 90 

the agricultural fields which use different sources of water such as the canal, groundwater, and river (Fig. 1). A total of 62 days 

(from September 2017 to December 2019) of sampling was done to capture the inter-annual variability. These periods excluded 

the summer months, when the fields are completely dry and days of surface ponding because of ample precipitation. 

Furthermore, multiple linear regression was used to approximate the unmeasured sampling locations on a given day based on 

its proximity to the nearest sampling location and the overall annual cropping patterns. Also, the field campaign was mostly 95 

conducted in early morning based on the dates of descending pass of Soil Moisture Active Passive (SMAP) satellite over the 

study region. 

A sampling scheme of five measurements in and around the centre of each agricultural field was chosen to represent the mean 

SM of the site (Fig. 1). The sampling was conducted manually using a handheld impedance based ML3 ThetaProbe SM sensor 

(Delta-T Devices, Cambridge, England) with a reported accuracy of ±1%. The sensor was also calibrated prior to field 100 

campaign using adequate soil samples from the in-situ locations. Accordingly, 37 soil samples were tested in the laboratory 

using the gravimetric measurements for establishing the calibration equation although Kaleita et al. (2005) showed that 20 

samples are adequate to calibrate the ThetaProbe. Calibration coefficients were derived by comparing the gravimetric 

measurements of the water content along with the simultaneous measurement through the sensor (Delta-T readings) from a 

saturated to wilting state of soil samples Eq. (1). 105 

௔௖௧௨௔௟ܯܵ = 0.9557 × ௢௕௦௘௥௩௔௧௜௢௡ (்௛௘௧௔௉௥௢௕௘)ܯܵ + 0.31  (1) 

2.3 Groundwater measurements 

A total of 58 open observation wells throughout the CZO have been monitored to estimate the spatiotemporal variability of 

the groundwater level in this region (Fig. 1). The ground water level (GWL) recorder (Virtual Hydromet, Uttarakhand, India) 

was used to measure the depth to groundwater table (DTGT) at each well at a biweekly interval. The monitoring period was 110 

selected to be same as the SM campaign to observe the integrated spatiotemporal variability. The measurements were mostly 

conducted in 2017 and 2019 with very few observations during 2018 constituting a total of 22 monitoring days. The annual 

maximum and minimum value for the groundwater level are found to be -0.06 m and -8.32 m respectively (negative value is 

indicative of the depth below the surface). 
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In addition, meteorological data from in-situ automatic weather stations, elevation from shuttle radar topographic mission (Farr 115 

et al., 2007), and soil texture information from SoilGrids (Poggio et al., 2021) were used for characterization of the in-situ 

attributes of the observation locations. 

3 Methods 

3.1 Statistical analysis 

Both SM and groundwater data were analysed to compute the temporal mean and coefficient of variation. If ߠ௜௝௞ is the in-situ 120 

SM measurement or groundwater data observed at point ݅, sampling location ݆ and sampling day ݇, then, 

, ݊ܽ݁݉ ݈݃݊݅݌݉ܽܵ ௝௞ߠ̅ = ଵ
ே೛
∑ ௜௝௞ߠ
ே೛
௜ୀଵ   (2) 

where, ௣ܰ, is the number of point measurements within an agricultural field, ݆, and sampling day, ݇. Using this approach, the 

spatial mean of both the SM and DTGT in CZO for each sampling day, ̅ߠ௞, and temporal mean for each sampling location, ̅ߠ௝ , 

was calculated as follows: 125 

௞ߠ̅ = ଵ
ே
∑ ௝௞ேߠ̅
௝ୀଵ      (3) 

௝ߠ̅ = ଵ
ெ
∑ ௝௞ெߠ̅
௞ୀଵ      (4) 

where, N is the total number of sites and M is the total number of sampling days in the campaign. 

The coefficient of variation (ܸܥ) for ݇௧௛ sampling day in space, ܥ ௞ܸ was computed as: 

ܥ ௞ܸ = ఙೖ
ఏഥೖ

=
ට భ
ಿషభ∑ ൫ఏഥೕೖିఏഥೖ൯

మಿ
ೕసభ

ఏഥೖ
   (5) 130 

where, ߪ௞ is the spatial standard deviation. Similarly, the ܥ ௝ܸ for ݆௧௛ sampling location can be defined analogously. 

3.2 Empirical orthogonal function (EOF) analysis 

This study employed the EOF analysis to decompose the spatiotemporal SM and DTGT data into a set of spatial empirical 

orthogonal functions (EOFs) and temporal expansion coefficients (ECs). The maximum variation in the datasets can be 

explained by first few EOFs/ECs. The EOF analysis for a space-time dataset is described as below. 135 

The spatial anomaly matrix (X) for a given space-time datasets need to be computed as below: 

ܺ = ൥
ଵଵݔ ⋯ ଵெݔ
⋮ ⋱ ⋮
ேଵݔ ⋯ ேெݔ

൩     (6) 

where, ݔ௝௞ = ௝௞ߠ̅ − ௝௞ߠ̅ ௞ is the individual spatial anomaly for the ݆௧௛ location and ݇௧௛ sampling day andߠ̅  is the sampling mean 

at each location and ̅ߠ௞ is the catchment spatial mean. N is the total number of sites and M is the total number of sampling 

days.  140 

Then, the covariance matrix ܥ can be calculated as: 
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ܥ = ଵ
ெ
ܺ ∙ ்ܺ      (7) 

where, the superscript ܶ indicates the transpose of the matrix. 

The EOFs and ECs can be solved by computing the eigen vectors and eigen values of ܥ , satisfying the following relation: 

ܥ × ܸ = ܸ ×  145 (8)      ܧ

where, V is the eigen vectors having ܰ × ܰ dimension and E is the diagonal matrix of eigen values such as: 

ܧ = ൥
ଵߣ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ேߣ

൩     (9) 

The ECs (F) and the percentage of individual EOF variance (ܧ ௞ܸ) can further be calculated as: 

ܨ = ்ܸ × ܺ      (10) 

ܧ ௞ܸ = ఒೖ
∑ ఒ೔ಿ
೔సభ

× 100     (11) 150 

This process transforms the datasets into several spatial EOFs that explain the decreasing trend of variability in a 

multidimensional space. In addition, the relation between the leading EOFs and the in-situ physical parameters has been 

assessed in this study using the Pearson’s correlation coefficient for both the SM and the DTGT. 

3.3 Optimal sampling design 

3.3.1 Random combination approach for determining number of required samples (NRS) 155 

In this study, we applied the random combination approach based on the bootstrap technique to determine the NRS, 

characterizing the mean catchment dynamics for SM and DTGT (Brocca et al., 2010, 2012; Wang et al., 2008, Zhao et al., 

2013). This method is independent of any assumption on sampling statistical distribution (Wang et al., 2008). Fig. 2 describes 

the schematic workflow of the random combination approach for the space-time data. More details of the workflows of random 

combination approach have been discussed by Wang et al. (2008) and Brocca et al. (2012). This approach resulted in a time 160 

series of the mean and the standard deviation of each randomly combined series which were evaluated against benchmark 

value using the root mean square difference (RMSD) and coefficient of determination (R2) values. 
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Figure 2: Sequence of operation for the random combination approach 

3.3.2 Temporal stability analysis 165 

The NRS obtained above only computes the number of sampling locations (in-situ points for SM and open wells for 

groundwater) considered randomly for mean SM or groundwater variability for a region. However, identification of a 

representative site/open well in space to estimate the absolute mean value (within a predefined accuracy), can be achieved 

through temporal stability analysis, proposed by Vachaud et al. (1985). Temporal stability analysis can be mathematically 

explained as below. 170 

For a sampling location ݆, sampling day ݇, the relative difference, ߜ௝௞ was calculated as: 

௝௞ߜ =
ఏഥೕೖିఏഥೖ
ఏഥೖ

      (12) 

The mean relative difference, ߜ௝̅  and the standard deviation, ߪ൫ߜ௝൯ were calculated for each sampling locations as per the 

following expressions: 

௝̅ߜ = ଵ
ெ
∑ ௝௞ெߜ
௞ୀଵ       (13) 175 

௝൯ߜ൫ߪ = ට ଵ
ெିଵ

∑ ൫ߜ௝௞ − ௝̅൯ߜ
ଶெ

௞ୀଵ     (14) 

The ߜ௝̅ of a sampling location helps to identify the wetness and dryness compared to the areal mean. This can be identified 

with a low value of |ߜ௝̅| and ߪ൫ߜ௝൯. In addition, a single metric called the Index of Stability (ITS) which combines both (|ߜ௝̅| 

and ߪ൫ߜ௝൯) can also be used for better evaluation of the sampling locations (Jacobs et al., 2004; Zhao et al., 2020b; Zhu et al., 

2020). This is calculated for each site using the following expression:  180 
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ܵܶܫ = ቀߜ௝̅
ଶ + ௝൯ߜ൫ߪ

ଶ
ቁ
ଵ/ଶ

     (15) 

A major advantage of determining the time stable location through ITS is that both relative difference and its variances are 

taken into consideration. Jacobs et al. (2004) suggested that the location having a lowest value of ITS can be considered as a 

temporally stable location. 

4 Results and analysis 185 

4.1 Spatiotemporal mean and variability 

Temporal dynamics of soil moisture and the DTGT are shown in Fig. 3, that represents the overall seasonal behaviour of 

surface dryness/wetness and the subsurface groundwater level. Fig. 3a shows the spatial variability of field mean SM with ±1 

standard deviation for each sampling day in addition to the daily rainfall observed at the in-situ weather station. Spatial mean 

SM values for the entire field campaign ranges from 10% (vol/vol) to 43% (vol/vol). The SM values show a high dependence 190 

on the prevailing rainfall pattern in the region. This is primarily observed during the monsoon period (July-September) of the 

year. The standard deviation during the monsoon period shows a low value because of low spatial variability, while the non-

monsoon periods show a high value of standard deviation. 

 

https://doi.org/10.5194/hess-2022-47
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



9 
 

 195 
Figure 3: a) Temporal variation of spatial mean soil moisture with ±1 standard deviation. The blue bars are the daily rainfall 
observed at the in-situ weather station. b) Box-Whisker plot showing the date-wise variation of depth to groundwater table (DTGT) 
in CZO. The top and bottom edge of box represent the data within interquartile range (25%-75%), whereas the inside horizontal 
line shows the median value. Filled circle, inside the box represents the mean and the whisker shows the standard deviation (±1) 
from mean value. The cross marks at both the end of the box shows the minimum and maximum value. 200 

Fig. 3b shows the diurnal variation of the DTGT in the CZO for the specific dates of observation. The variation in the mean 

level of groundwater depth follows the seasonality of precipitation in the study region. The interquartile range for all sampling 

days shows a significant range of variability including the monsoon period (June-September), when there is ample 

precipitation. Also, the mean DTGT shows a decreasing pattern from pre-monsoon (March-May) to monsoon (June-

September) and an increase during the post-monsoon period (October-December) and winter (January-February). A sharp 205 

change in the mean DTGT on 9th June 2018 is attributed to the early and infrequent monsoon rainfall that resulted in rise of 

the groundwater level. 

The temporal mean of both the datasets are presented in Fig. 4. Soil moisture data shows a wide annual variation because of 

natural and human-induced water fluxes whereas the groundwater level primarily depends on infiltration and abstractions for 

irrigation. Temporal variability for SM was found to be 20-31% vol/vol. Low/high temporal means of a particular SM location 210 

indicate the drier/wetter characteristics of the sampling point. The measurement location L-06 has the highest value of temporal 

mean, and therefore, minimum variability (ߪ௝  =  It is noted that the lowest temporal mean (19.89% vol/vol) .(݈݋ݒ/݈݋ݒ 5.96% 

is observed at location, L-14, and the highest standard deviation (ߪ௝  =  is at location, L-15; both sites are (݈݋ݒ/݈݋ݒ 11.92% 

located downstream of the catchment. Temporal mean of DTGT ranges from 1.09-6.59 ܾ݈݉݃ with a standard deviation of (±) 

0.39-1.93 ܾ݈݉݃. Monitoring wells close to each other have similar characteristics, and therefore, show similar mean values 215 
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and standard deviation. Also, a similar trend in the depth to groundwater table for all monitoring wells was observed which 

suggests that the rate of change in the water pressure for a particular sampling day is same for all the observation wells. 

 
Figure 4: Spatial pattern of the temporal mean of soil moisture (SM) and depth to groundwater level (DTGT) for each location. The 
size of the bubble represents the temporal mean value for the SM (blue) and the DTGT (orange). Locations of all the locations of 220 
SM (text in blue) and the DTGT (text in orange) are shown for better interpretation. The temporal standard deviation (±1) of the 
SM (blue line) and the DTGT (orange line) for all the measurement locations are shown in the right. 

4.2 Statistical analysis of the SM and DTGT 

The statistical analysis has been carried out to investigate the spatiotemporal variability in both the SM and the groundwater 

level depth. Considering the statistics of higher order moments, i.e., standard deviation (SD) and coefficient of variation (CV), 225 

the spatial variability of both the datasets are presented in Fig. 5. The variation in CV allows to compare the measurement 

variability across different spatial and temporal scales. On the spatial scale, the spatial ܥ ௞ܸ of observed SM was found to be 

fairly high (maximum 0.69) during the dry period (1st July 2019) and quite low (0.05) during the monsoon (9th September 

2018) (Fig. 5a). On an average, the spatial variability, ܥ ௞ܸ was found to be 0.28 and can be ascribed not only to the number of 

measurements points but also to the physical water input (watering by farmers) at the sampling site before measurements. 230 

However, temporal coefficient of variation (ܥ ௝ܸ) varies from 0.19 to 0.54. Further, the ܥ ௞ܸ for the spatial DTGT ranges from 

0.23 to 0.60 with an average of 0.4 (Fig. 5b). Although higher order spatial DTGT variability has been observed at CZO, but 

this refers to the number and seasonality of the selected sampling days (22 in total). A close examination of the ܥ ௝ܸ on SM and 

DTGT observation data shows that the average value in both cases is the same i.e., 0.36, suggesting a consistent seasonal 

variability of both. 235 

The observed decreasing trend between ̅ߠ௞ and ܥ ௞ܸ was embedded (Fig. 5a) and was fitted with the analytical exponential 

relationship (Eq. 16), as usually demonstrated in the past studies (Brocca et al., 2010, 2012). Here, we also applied the same 

relationship to the DTGT time series, and the result shows a trend similar to the SM (Fig. 5b). The fitting parameters along 
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with the determination coefficient (R2) are shown in Fig. 5. 

ܥ ௞ܸ = ܽ. ݁ି௕.ఏഥೖ      (16) 240 

 
Figure 5: Relationship between spatial mean a) soil moisture and b) DTGT with standard deviation and coefficient of variation. The 
solid lines are fitted through an exponential relationship between the mean-coefficient of variation (࢑ࢂ࡯ = -and the mean (࢑ഥࣂ.࢈ିࢋ.ࢇ
standard deviation (࢑࣌ = ࢑ഥࣂ.࢈ିࢋ.ࢇ  relationships are shown within the box. The fitting between ࢑ഥࣂ -࢑ࢂ࡯ The fitted parameters of .(࢑ഥࣂ.
 relations. 245 ࢑ഥࣂ-࢑ࢂ࡯ is based on the parameters derived from ࢑࣌-࢑ഥࣂ

Fig. 5 also indicates the relationships of between the ̅ߠ௞ and the ߪ௞ for both the observational datasets. The trend of ߪ௞ with 

the mean SM shows that the variability is high for low (< 19%) soil moisture values and vice versa i.e., low variability in the 

monsoon period when the soil moisture values are high. Similar interpretations can be made for the groundwater level data, 

where higher variability of mean DTGT is observed for < 4m below ground level. 

4.3 EOF analysis of soil moisture and groundwater level 250 

Spatial anomalies of DTGT and SM are subjected to the EOF analysis, yielding 58 and 20 pairs of EOFs/ECs respectively. 

The EOFs and ECs jointly explain the total spatiotemporal variability of the corresponding earth observation attributes. Fig. 

6a-b shows the spatial distribution of the first two EOFs for the SM and DTGT observation. The DTGT spatial distribution of 

the EOF1 shows positive values ranging from 0.1 to 0.3 towards the downstream portion of the CZO, suggesting a deeper 

groundwater level compared to the shallower level at the upstream region with negative EOFs (up to -0.3). At the same time, 255 

EOF1 of SM shows high values close to the water bodies with negative values at the downstream end of the catchment. This 

suggests a drier surface at the downstream, compared to the upstream wetter area. The EOF2 spatial distribution on both the 
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SM and DTGT shows an increase in positive values compared to EOF1. An overall examination of the spatial patterns of 

EOF1 and EOF2 reveals a non-uniform variability of both attributes throughout the CZO. 

 260 
Figure 6: Spatial representation of the first EOF (a) and the second EOF (b), generated from the spatial anomalies of the 
corresponding datasets for the CZO, (c) the overall variances of the first 20 EOFs of soil moisture and DTGT, (d) timeseries of the 
first two ECs for soil moisture. (e) timeseries of the first two ECs for DTGT. The light blue shade in (d) and (e) indicates the time 
series of actual spatial mean SM and DTGT respectively. 

The spatial variance of each EOF/PC pair is shown in Fig. 6c, where the first twenty pairs of each EOFs are presented which 265 

explains almost 100% of the total spatial variability. It is observed that the first two EOFs of the DTGT explain about 91% of 

the total variability whereas the EOF1 and EOF2 of the SM represent the total variability of only 41% and the first five EOFs 

of the SM decomposition have a cumulative variance of 67%. This suggests a higher degree of variability of SM compared to 

DTGT in the CZO.  

Fig. 6d and Fig. 6e show the temporal variability of the first two ECs along with the mean variability of SM and DTGT 270 

respectively. Both positive and negative EC extremes are observed during the early post-monsoon phase, indicating a greater 

variability of SM during monsoon-post-monsoon transition period (Fig. 6d). However, some extreme values of EC are 

observed during the harvesting period of rice and beginning of wheat crop (December-January) in the study region. This 

suggests an overall similar cropping pattern in most of the crop fields during this period. This also coincides with the period 

of annual minimum air temperature which influence the SM variability to a great extent. Fig. 6e shows the major lower 275 

extremes of the temporal DTGT variability observed on the mid-June of 2018, when the water table lies near to the ground 

surface because of the infrequent rainfall in the early-monsoon phase. This may also be attributed because of the extremely 

limited observation in the year 2018. The uppermost value of the EC1 is observed during the peak of the monsoon period 
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(August-September) of the study region. The EC1 is also deprived of any of the negative weights whereas the second principal 

component (EC2) closely follows the observed temporal DTGT pattern of the region with extreme negative weights during 280 

the monsoon in the year 2017. 

4.4 Drivers of spatiotemporal SM and DTGT dynamics 

In this study, we characterize the association of the spatial EOFs with the in-situ geophysical properties such as the altitude, 

slope, topographic wetness index (TWI) by utilizing a simple correlation analysis. The TWI is a frequently used terrain index 

defined as ln(ܽ tanߚ⁄ ) where ܽ is the local upslope area draining through a certain point per unit contour length and tanߚ is 285 

the local slope (Beven and Kirkby, 1979; Sörensen et al., 2006). The TWI influences the spatial distribution of soil moisture 

and groundwater level to a significant extent (Alikhanov et al., 2021; Chaplot and Walter, 2003). Fig. 7 presents the correlation 

among the first five EOFs with the in-situ time-invariant properties. It is observed that elevation, slope, silt, and clay fraction 

are moderately correlated with the primary EOF pattern of spatial SM dynamics, indicating that the variability is related to a 

mixed effect of all these attributes (Fig. 7a). In addition, a strong correlation of clay fraction with the spatial SM is observed 290 

in the EOF3 spatial pattern. On the other hand, the sand fraction and TWI seem to play very limited role in the prime spatial 

variation of the SM, however, the rest of the EOFs show a good relationship with it. This suggest that the SM variability is 

primarily controlled by clay fraction and topography but there is a mutual control by other in-situ physical attributes. 

 
Figure 7: Relationship between the first five spatial EOFs of soil moisture (a) and DTGT (b) with the in-situ time-invariant 295 
geophysical characteristics of the CZO 

The relationship between the EOFs of DTGT spatiotemporal dynamics with the above variables are illustrated in Fig. 7b. In 

this case, the relationship of EOF1 distribution suggests that clay distribution has a great control on the groundwater table 

variation followed by silt percentage. The sand fraction also has a minor role in controlling the regional water table variation 

in the CZO when considering its relationship with rest of the EOFs. Interestingly, elevation although has an extremely low 300 
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relation with the main EOF1 distribution of DTGT, this plays a significant role in the spatial variability as observed in the 

EOF2 pattern. 

4.5 Random combination: temporal evolution of spatial mean 

4.5.1 SM evaluation 

In this study, the estimation of number of required samples (NRSSM) to approach the spatial mean on SM time series was 305 

carried out using random combination analysis (62 days and 20 location). The analysis was performed with randomly selected 

points up to ܰ − 1 number of sample locations, where ܰ is the total number of sampling locations (here N=20). The maximum 

number of combinations or replicates was set to 1000 ( ௥ܰ=1000) to minimize the computation time (Zhao et al., 2013). 

Results on the performance statistics of both the SM and the DTGT random combinations are presented in Fig. 8. A single 

random SM site can approach to the CZO spatial mean SM value with an accuracy of 6.7% vol/vol with a fairly low 310 

determination coefficient of 0.57 (Fig. 8a). Therefore, the selection of a single random site is not suited to capture the temporal 

pattern in the study region, which was expected because of a large heterogeneity of volumetric water content in the surface 

soil attributed to anthropogenic factors. The RMSE value decreases and the ܴଶ increases gradually, as the sampling size 

becomes larger. Moreover, to capture the spatial mean surface wetness with a 3% vol/vol, very limited number of sampling 

locations (i.e., 4) are needed throughout the CZO and this can have a R2 value of 0.86. These values improve a lot when the 315 

sample size is 11, selected randomly, producing the spatial mean determination coefficient of 0.97 with a RMSD of ±1%, 

whereas the number of random samples become 6, when the desired error will be ±2%. 

 
Figure 8: Coefficient of determination (R2) and root-mean-square-error (RMSE) between the time series of CZO spatial means and 
the mean value obtained by randomly selecting sampling sites for (a) soil moisture and (b) DTGT. A maximum of 30 random 320 
observation wells are shown here to estimate the mean DTGT variation within the study area. The bound indicates ±1 standard 
deviation corresponding to the mean value.  

 

https://doi.org/10.5194/hess-2022-47
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



15 
 

4.5.2 Groundwater table depth 

Similar to the SM dataset, the DTGT data were also analyzed to determine the number of required samples for mean DTGT 325 

(NRSDTGT) and Fig. 8b represents the performance statistics of the random combination analysis on the DTGT data considering 

1000 iterations for each combination. The analysis here was produced considering 57 (here N = 58) number of possible 

combinations over 22 sampling days. The results shown here are the averages of R2 and the RMSD of the time series between 

the benchmark time series and the time series obtained by averaging the combinations of randomly selected observation well 

in the study area. As compared to SM performance statistics, the performance in the DTGT shows a higher order of R2 and 330 

RMSE. It is observed that a single random monitoring well can approach the spatial mean value with evaluation statistics, R2 

= 0.76 and RMSE = 1.26 ܾ݈݉݃. The R2 value significantly increases when the NRSDTGT = 2. This means that at least two 

randomly selected DTGT observation wells can capture the spatial mean DTGT in the study region with a R2 of 0.88 and 

RMSE of 0.90 ܾ݈݉݃. The mean error becomes 0.5 ܾ݈݉݃, when the NRSDTGT = 5 to 7. Furthermore, more than six observation 

wells do not show any significant improvement in the R2 value, but the RMSE seems to be gradually lower as the number of 335 

observation wells increases. 

4.6 Spatial correlation between sampling days 

To analyse the similarity in the spatial mean between the sampling days, the Spearman rank correlation coefficients, R, has 

been computed and presented in Fig. 9a and 9b for SM and DTGT, respectively. Significant correlation was observed for most 

of the SM sampling days in 2017 and November 2019. Remaining days are found to be sparsely correlated with the days next 340 

to it. Nevertheless, the spatial correlation coefficient depends on the sampling days taken into consideration along with the 

variability of the individual agricultural fields. Fig. 9a also illustrates a significant correlation observed between 2017 and 

2018 towards the end of post-monsoon, when they are separated by one year. Irrigation effects on the sowing of wheat crops 

during early November 2019 significantly correlate to the monsoon pattern of the previous years. A negative correlation (-0.8 

> R > -1) of SM measurements on 11-Jan-2019 was observed for the sampling days in 2017 monsoon months and this lasts up 345 

to 30-Jan-2018. Fig. 9b shows the Spearman rank correlation coefficient among different DTGT monitoring dates and 

interestingly all the observed days are significantly correlated (p<0.01), indicating a strong temporal persistence for all 

measurements. In addition, significantly stronger correlation in DTGT was observed among sampling days in 2017 and 2018. 

This suggests a similar variability of DTGT during August-December of each year in the study region with a spatial scale, 

similar to CZO. 350 
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Figure 9: Spearman rank correlation coefficient of the observed values during the measurement campaigns of a) soil moisture, b) 
DTGT and c) groundwater storage anomaly. The correlation coefficients are shown as the triangle where the value is represented 355 
as generic boxes identified by ࢎ࢚࢏ row and ࢎ࢚࢐ column and each of the row/column are the sampling dates of the corresponding field 
campaign. * Indicates significance at ࢖ < ૙.૙૞, ** Indicates significance at ࢖ < ૙.૙૚ 

In addition to correlation coefficients of individual DTGT sampling days as discussed above, we also computed the correlation 

of the groundwater storage anomalies (GWSA), illustrated in Fig. 9c, which shows a wide range of variation. The groundwater 

storage anomalies are calculated for each of the 58 monitoring wells and for every sampling day. Initially, the sign of DTGT 360 

is reversed followed by subtracting long-term mean values from its individual values for each well to get the groundwater level 

anomaly (Bhanja et al., 2017; Li et al., 2015). The GWSA values are calculated further by multiplying the specific yield (12% 

https://doi.org/10.5194/hess-2022-47
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



17 
 

for CZO, CGWB report 2008-2009) with the groundwater level anomaly. Significant correlation (p<0.01) was observed during 

monsoon of 2017. Also, a stronger negative correlation was found between the pre-monsoon and monsoon months of 2019 

and 2017. On an average, both the datasets (SM and DTGT) are well correlated during the monsoon periods, when uniform 365 

variability occurs due to rainfall. 

4.7 Temporal stability analysis 

4.7.1 Rank based on relative difference 

The rank ordered mean relative difference (δത௝) and the corresponding standard deviation (σ൫δ௝൯) are presented in Fig. 10a and 

Fig. 10b for the entire DTGT and SM data, respectively. The δത௝ for SM ranges from -26% to 24%, while the corresponding 370 

σ൫δ௝൯ varies from 19% to 36% with a mean variation of 28% (Fig. 10a). The lower number of sampling days, spatial 

heterogeneity along with the time of crop watering seems to be an influencing parameter to the wide variation of both the 

parameters (δത௝ and σ൫δ௝൯) in CZO. The range of δത௝ values for DTGT is quite large varying from -71% to 82% with a σ൫δ௝൯ 

from 6%-39% (Fig. 10b). 

 375 

Figure 10: (a) Rank ordered mean relative difference of soil moisture represented with the vertical bar for each sampling site (b) the 
ordered mean relative difference of DTGT at each observation well. The ITS for each location are shown along with the vertical 
bound in each case indicates the ±1 standard deviation. The red filled circles represents the most time stable location in both the 
figures. 

Potential representative sites are characterized by low values of |ߜ௝̅| and ߪ൫ߜ௝൯ which are combined into the index of temporal 380 

stability (ITS) (Chen et al., 2016). Evaluation of ITS is suited better to identify the representative site for each measurement 

location. We have therefore selected points based on the lowest value of ITS. Also, we considered the interspace between the 

observation wells, so that the potential “representative” sites will be well spread enough to reduce the mean spatial variation 

of the groundwater table throughout the CZO. In case of SM monitoring sites, ITS lies in a range between 0.23 to 0.44 (Fig. 

10a) and this range is quite wide (0.09 to 0.91) for DTGT observation wells (Fig. 10b). In both cases, the ITS seems to be 385 
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within the range of ߪ൫ߜ௝൯ towards the high values of ߜ௝̅. The initial ten ITS values with their increasing order are shown in 

Table 1 along with the corresponding observation sites/wells for both the datasets. The temporally stable measurement site(s) 

are addressed here by characterising the corresponding ITS values and evaluation of goodness of statistics towards the CZO 

mean estimates. 

 390 
Table 1: Ten most temporally stable locations (based on their ITS value) along with their corresponding mean relative difference 
and standard deviation of mean relative difference. 

Soil moisture DTGT 

Location index ITS ࢾഥ࣌ ࢐൫࢐ࢾ൯ Well index ITS ࢾഥ࣌ ࢐൫࢐ࢾ൯ 

L-17 0.226 0.077 0.212 W-04 0.09 0.02 0.08 

L-10 0.228 -0.007 0.228 W-06 0.12 0.01 0.12 

L-19 0.231 0.086 0.215 W-03 0.14 -0.02 0.13 

L-20 0.244 0.148 0.194 W-01 0.14 0.09 0.11 

L-18 0.244 -0.106 0.220 W-31 0.14 0.12 0.08 

L-16 0.258 0.017 0.258 W-29 0.14 0.02 0.14 

L-13 0.263 0.049 0.259 W-42 0.15 0.02 0.15 

L-07 0.267 0.003 0.267 W-53 0.15 -0.02 0.15 

L-08 0.273 0.032 0.272 W-13 0.16 -0.06 0.15 

L-03 0.281 -0.035 0.279 W-54 0.16 0.15 0.06 

4.7.2 Single site estimation 

Fig. 11 shows the selection and evaluation metric for a single “representative” SM site as well as the DTGT observation well. 

We used the determination coefficient, R2, root mean square error, RMSE, and Nash–Sutcliffe efficiency coefficient, NSE, as 395 

the metric between the time series of spatial mean and measurements at the representative site itself, for evaluating the 

temporally stable sites. The NSE is a normalized statistic parameter widely used in hydrologic studies that determines the 

relative magnitude of the residual variance compared to the measured variance (Nash and Sutcliffe, 1970; Hwang et al., 2012). 

The NSE can be estimated as per the following equation: 

ܧܵܰ = 1 −
∑ ൫ఏഥೖିఏഥೕೖ൯

మಾ
ೖసభ

∑ ൫ఏഥೖିఏೖ෢൯
మಾ

ೖసభ
      (17) 400 

where, ̅ߠ௞ is the spatial mean values for ݇௧௛ sampling day, ߠ௞෢ is the average value of ̅ߠ௞ for all sampling days, ݆ can be a single 

or mean of the combined selected sites and ܯ is the total number of sampling days. The NSE can be an indicative of the 

goodness of fit of the observed and simulated values with 1:1 line. This means that the model is predicting well when the NSE 

is close to 1.  
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The selection of a particular site was based on the preference on the order of the lowest to highest ITS values. So, considering 405 

the lowest value of ITS for both the datasets, the L-17 (L for SM sampling location) SM site and W-04 (W for observation 

well) DTGT observation well in the CZO (Fig. 1) as the single representative site, the annual mean spatial variability can be 

computed in the study region (Table 1). However, time series of the corresponding measurement values of L-17 are plotted 

against the actual spatial mean and it can be seen that the goodness of fit statistics, R2, RMSE and NSE are fairly low having 

0.659 and 4.8% and 0.525 respectively for SM (Fig. 11). But this relation performs extremely well when a single monitoring 410 

well (W-04) is considered which captures the mean spatial DTGT of the study region. The goodness of fit statistics (R2=0.959, 

RMSE=0.36 ܾ݈݉݃, NSE=0.883) agrees with the observed values (scatter plot in row 2, column 3 of Fig. 11). The reason for 

the requirement of a smaller number of monitoring well might be because of the directional dependence of sub-surface water 

availability in compared to SM which exhibit large spatial heterogeneity. Although, a single time stable representative site can 

demonstrate the average values for a catchment, it is worth evaluating multiple combinations which might predict the overall 415 

temporal pattern accurately (discussed in 4.7.3). 

 
Figure 11: Scatter plots showing the comparison of CZO spatial mean value and the observed value at a single representative site or 
the mean of one or more sites for both soil moisture and DTGT. The corresponding R2, RMSE and NSE values are shown for each 
scatter plot. The red lines represent the 1:1 relation. 420 
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4.7.3 Multiple site combinations 

Since all site locations behave independently because of the spatial heterogeneity that influences the existing parameters, a 

single time stable point (not always) is limited by reproducing measurements for all spatially located sites (Schneider et al., 

2008). So, here we consider a multiple combination of sampling sites, as it might further decrease the error and thereby increase 

the determination coefficient for predicting the actual spatial mean. This is also presented in Fig. 11, where selected 425 

combinations (up to five) of SM sites and observation wells (up to three) are shown, based on the increasing order of ITS. An 

interchangeable ITS value (0.244) is observed for the SM sampling site, L-18, and L-20 (Table 1). However, a close 

examination of the sampling distance between these two sites and their metrics of evaluation to approach the actual spatial 

mean reveals that L-17, L-10, L-19, and L-18 can be considered as the “optimal” measurement sites to capture the temporal 

pattern of the spatial mean SM values in the study region with an error of ±2%. It can be seen that the goodness of fit statistics 430 

is gradually increasing from a single site to a combination of five most temporally stable sites for SM measurements. However, 

the combination of all the five locations does not show any significant improvement in RMSE and NSE compared to the 

previous four SM sites.  

A similar analysis has been produced in identifying the temporally stable monitoring open well for DTGT measurements in 

CZO (Fig. 11). We consider the well index 31 as the second most representative site for the DTGT measurements with the 435 

single optimal site (W-04), even though there are three intermediate open well sites (W-06, W-03, W-01; Table 1). This is 

because the intermediate observation wells are located close to W-04 (Fig. 1) and also it is found that the  ߪ൫ߜ௝൯ values of 

those locations are relatively higher (0.11-0.13), compared to W-31. Parameters of the goodness of fit statistics for the 

combined mean DTGT (W-04 and W-31) also show a good correlation with the spatial mean DTGT i.e., R2=0.980, 

RMSE=0.399 and NSE=0.857. Further, the R2 appears to be low, when the next ranked observation well (W-42) is added to 440 

list (scatter plot in row 3, column 2 of Fig. 11). In fact, we chose the combination average of adding W-42 because the 

intermediate observation well (W-29, ITS = 0.14, Table 1) is closely located near to W-31 (ITS = 0.14). The performance 

statistics between the spatial mean DTGT and the average time series of well indices 4, 31 and 42 shows an error value of 

±0.345 ܾ݈݉݃  and NSE of 0.893, which is comparatively good enough in terms of RMSE and NSE than the previous 

combinations. 445 

5 Discussion 

5.1 Hydrological variability and controls of SM and DTGT over the CZO 

Spatiotemporal variability of the surface soil moisture and sub-surface groundwater level has been globally reported for many 

hydroclimatic zones (Brocca et al., 2012; He et al., 2020; Joshi et al., 2021; Ye et al., 2019). However, most of the studies 

constrain to the space-time dynamics of a single hydrological attributes. Further, the inherent control over space is extremely 450 

limited in these studies, especially for the cyclic agriculture (paddy/wheat) zones. In this study, we present an integrated 
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approach of EOF analysis and statistical techniques to understand the variability-control and the optimal sampling strategy 

over space-time utilizing the spatiotemporal SM and the DTGT observations. 

The observed spatiotemporal dynamics of SM and DTGT exhibit a strong seasonality to rainfall pattern, controlling in-situ 

temporal dynamics (Fig. 3). The concave upward relation between ̅ߠ௞ and ܥ ௞ܸ and convex upward relationship between ̅ߠ௞ 455 

and ߪ௞ in the SM dynamics in Fig. 5a have been observed from numerical studies across various climatic domains (Brocca et 

al., 2010, 2012; Peterson et al., 2019). Further, the obtained relationship is also convincing for the DTGT observations (Fig. 

5b). Interestingly, the average temporal variability, ܥ ௝ܸ, for both SM and the DTGT data found consistent which suggests a 

similar rate of variation in the space-time dynamics for both the components, although there exists an inhomogeneity in the 

soil physical properties. 460 

A distinct pattern on the SM temporal mean was noticed throughout the sampling locations. It is observed that the sampling 

sites that have high temporal means (̅ߠ௝) shows a low temporal variability (ߪ௝) and vice versa (Fig. 4). This observation was 

also manifested when considering the leading EOF pattern of SM and DTGT, where around 83% of the observed 

spatiotemporal DTGT pattern and 25% of the SM is explained by the first EOF/EC pair (Fig. 6c) and this observation is in 

accordance with Yu and Lin (2015) for the groundwater study in Pingtung Plain, Taiwan. The negative values of EOF1 in the 465 

downstream reveals a drier annual SM, consistent with Singh et al., 2019 for a tropical basin in Eastern India. Conversely, the 

positive EOF1 pattern of DTGT in the downward side of the catchment shows a deeper water level compared to the upstream 

(Fig. 6a). This observation could be better represented through mapping of the seasonal (pre-monsoon and post-monsoon) 

variability of DTGT, and the results shows that the temporal means of DTGT at the downstream is more than 4 ܾ݈݉݃ in 

compared to the upstream (<4 ܾ݈݉݃) (Fig. 12). In addition, this is attributed to a 15 km long upper Ganga canal along the 470 

eastern edge of the CZO along with more than 70% of water bodies, present in the upstream part of CZO. 

Controls on the above observations are revealed in this study through correlation analysis between the major spatial EOFs and 

the in-situ properties. An outcome of moderate correlation of the EOF1 of SM spatial pattern with the elevation and slope 

suggests that the elevation has some influence on the SM variability (Fig. 7a), and this might contribute to the present spatial 

variation of SM in the CZO catchment. The estimated correlation between the slope and the EOF1 for spatial SM is in 475 

accordance with Jawson and Niemann (2007) for the Southern Great Plains and is also being documented by Zhao et al. 

(2020c). The clay percentages in the surface soil becomes the second control of the SM spatial variability (Fig. 7a). This 

relationship can intuitively be true as the downstream of the catchment lacks clay fractions which has more moisture retention 

capacity in compared to other soil texture (Jawson and Niemann (2007); Pan and Peters-Lidard, 2008). The distribution of clay 

along with silt fractions also plays a significant role in the DTGT variability. It is evident from the strong negative correlation 480 

of clay percent with the EOF1, contrary to Yue et al., 2020, that drives the overall DTGT spatial pattern, although control of 

topography is reflected from its correlation with EOF2 spatial pattern in the CZO (Fig. 7b). 
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Figure 12: Groundwater level map of CZO interpolated through inverse distance weighted (IDW) for (a) pre-monsoon and (b) post-
monsoon. Water bodies present in the CZO are mapped for better interpretation of the sub-surface water variability. The most 485 
temporally stable open well location (W-04 and W-31 marked with black cross) and soil moisture monitoring sites (SM 17, SM 10, 
SM 19, and SM 18 marked with purple star) are shown. Dashed box specifies the annual deeper groundwater level in the CZO. 

5.2 Significance of optimal measurement site(s) within CZO 

Quantifying the number of samples and the site locations for estimating the mean catchment behavior was another important 

objective of this work, which can significantly reduce the measurement networks with a predefined accuracy. It is observed 490 

that a single random site (Fig. 8a) for the spatial mean SM produces a RMSE value which closely matches with the findings 

of Singh et al. (2019) for a larger scale sampling. We found that more than 10 randomly selected locations are needed for SM 

and 9 random observation wells are needed to estimate the corresponding spatial mean value with a very good accuracy (R2 ~ 

0.98 and RMSE < 1%) respectively (Fig. 8) compared to the previous study by Gao et al. (2013), choosing four random SM 

sites for a similar accuracy in a large gully in the Loess Plateau of China. Likewise, according to the results on the mean 495 

relative difference of various measurement sites, characterizing it to obtain the benchmark mean DTGT and SM, the ߜ௝̅ found 

in this study (Fig. 10a) shows a similar range as reported by Li and Shao (2014) for an irrigated region in China and for a larger 

spatial extent (178 km2 and 242 km2) in Central Italy (Brocca et al., 2012). Although, there are very few studies that documents 

the time stability analysis on the DTGT measurements, we reported a strong temporal persistence (p values<0.01, Fig. 9b) here 

and the range of ̅ߜ (Fig. 10b), is in consistent with Wang et al. (2018), obtained for 2004-2005 groundwater depth from 18 500 

observation wells in Yellow River Delta, China.  

In this paper, the ITS along with the ߜ௝̅ was considered for quantifying the most “representative” site(s) for the observation 

datasets and the range of ITS found for the SM sites are in accordance with the recent studies by Dari et al. (2019) and Zhao 

et al. (2020b) for different climatic regions and land uses classes. We found more than one representative site for the SM 

datasets (Fig. 11), in consistent with Singh et al. (2019) and in contrast to previous studies (Brocca et al., 2012; He et al., 2020; 505 

Wang et al., 2013; Zhu et al., 2020). A possible explanation to the identified time-stable SM sites (L-17, 10, 19, 18) is that the 
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most of them are located close to the water bodies/canals which maintain an overall wetter local condition, compared to the 

nearby sites. Further, the selected time-invariant sites have a wide distribution of clay fractions, ranging from 25% to 28% 

(maximum 30% for the SM sites), where the low clay bearing crop fields significantly influence the dry period SM spatial 

variability (Gao et al., 2013; Jia et al., 2013). The selection of W-04, as a single stable observation well for mean DTGT is 510 

also attributed to the vicinity of this point to a large water body upstream. Selection of DTGT monitoring well is also strongly 

controlled by clay content (Fig. 7b) and this is reflected on the combined selection of more than one temporally stable 

groundwater wells (W-4, 31) where the clay distribution has a similar range e.g., SM having 25% at W-31 and 28% at W-04. 

Although, combined monitoring predicts better mean DTGT in this region, a single observation well is sufficient (Fig. 11). 

5.3 Implications for irrigation water management strategies in the CZO 515 

Knowledge on the space-time variability of the soil moisture and groundwater is invariably useful for many hydrological 

applications which can improve land and agricultural water management, especially in water-limited environment (Hu et al., 

2019; Sekhar et al., 2016; Zhu et al., 2020). On the other hand, the in-situ SM and DTGT appear to be influenced by several 

natural and anthropogenic forcings (Asoka and Mishra, 2020; Omer et al., 2020; Van Loon et al., 2016), particularly in a purely 

agricultural domain such as the present CZO. We have integrated the information on the sub-surface architecture, our SM and 520 

DTGT observations, and local information gathered from several stakeholder engagements to represent various hydrological 

processes operating in the HERAT CZO (Fig. 13). The schematic diagram represents the section view of the critical zone from 

South-West to South-East tracking from W-37 to W-24 observation wells. Along this sequence, the DTGT varies depending 

upon topography, sub-surface soil texture and several pumping activities. The spatiotemporal SM and groundwater level 

dynamics are not only being influenced by natural surface and near-surface processes but are also modified by anthropogenic 525 

factors (Fig. 13).  
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Figure 13: Schematic representation of various hydrological processes within the study region (the HEART CZO in Ganga basin), 
represented with projection of a cross section tracing from south-west to north-east. The precipitation along with the canal network 
is supposed to be the sources of recharge in the system and contribute to the soil moisture and the groundwater through percolation. 530 
Application of water inputs to the crops are shown for the open water where the local stakeholder keeps watering the crop fields 
using the open sources such as the canals, river, and abandoned water bodies. Also, most of the crop fields in this CZO are fed 
through groundwater system where the sub-surface water extracted using the groundwater pumping system which creates the cone 
of depression near the point of extraction. In addition, a set of observation wells are drawn here for better representation of the 
subsurface water table depth at various locations. The evapotranspiration is contributed from the soil moisture and the open water 535 
bodies and is the only natural outgoing attribute in the system (Figure not to scale). 

Based on above observations and multiple discussion with the local stakeholders, following suggestions can be implemented 

in the CZO for efficient irrigation water management strategies: 

i) Soil texture and topography are found to be the major controlling factors for the spatial variability in water resources 

(Fig. 7). Therefore, use of water resources should spatially be limited by considering specific soil characteristics. It 540 

is therefore recommended for a detail and high-resolution soil texture mapping of this region which can ultimately 

reduce the uninterrupted groundwater extraction. 

ii) Correlation between individual sampling days of soil moisture in Fig. 9a suggests that the intermittent monsoon period 

exists up to three to four months in a year. Therefore, various water retention structures, particularly in the abandoned 

topographical depressions, can help in conserving rainwater for further use in the post-monsoon harvesting. Studies 545 

show that conservation of rainwater in one-tenth fallow land can support at least 60% and 75% rice and wheat, 

respectively (Ambast et al., 2006). 

iii) Since most of the representative SM locations/wells are close to the water bodies or the CZO mainstream (Fig. 12), 

an expansion/restoration of the canal network would not only reduce the overall groundwater extraction but will also 

maintain the threshold variability of the SM and DTGT as predicted from a limited number of sites/wells (Fig. 8 and 550 

Fig. 10).  

iv) Typically, 4-5 hours of pumping (3–4-inch opening diameter) of groundwater for watering a 2040 sq. meter crop field 

(mostly wheat and rice) was noticed in parts of the CZO that are deprived of open water availability (canal/river). 

Indiscriminate use of groundwater for intensive agriculture leads to declining of the water table thereby causing an 

imbalance in the hydrological processes (Fig. 13). Therefore, apart from rainwater harvesting, field scale extraction 555 

of groundwater can possibly be reduced here by incorporating moderate water intensive crops such as mustard, gram, 

and other pulses in those areas. 

6 Conclusions 

The present study is the first systematic attempt to address the spatiotemporal dynamics of ground-based soil moisture (SM) 

and depth to groundwater table (DTGT) observations over an agriculture driven critical zone observatory (CZO) in the central 560 

Ganga plains, India. The Empirical orthogonal function (EOF) analysis to decompose the observed data into a set of spatial 

EOFs and temporal ECs identified that around 91% of the total DTGT spatial variance and 67% of the total SM variance are 
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explained by first two and five EOFs, respectively. In addition, elevation and clay percentages are observed to be the major 

drivers of spatial variability of both the attributes. We found a constant average temporal coefficient of variation in both SM 

and DTGT, which suggests a consistent seasonal change in the surface-subsurface water dynamics. Random combination on 565 

both the observations revealed that four SM monitoring sites and two open wells for DTGT can capture the corresponding 

spatial mean with ± 3% (݈݋ݒ/݈݋ݒ ) and ± 0.90 ܾ݈݉݃  respectively. Using the approach of temporal stability, a single 

representative open-well (at the upstream of CZO) is identified that can reproduce the spatial mean DTGT with an absolute 

error of 0.36 ܾ݈݉݃ , determination coefficient of 0.959 and NSE of 0.883. Furthermore, a strong temporal stability was 

observed in the spatial patterns of DTGT as compared to SM at the CZO scale. Additionally, four temporally stable SM 570 

sampling sites are identified which are consistent in maintaining the temporal pattern CZO mean SM variation with an absolute 

error of 2% (݈݋ݒ/݈݋ݒ), determination coefficient of 0.92, and NSE of 0.915, irrespective of the dry or wet periods. Findings 

of this study can not only help in understanding the surface and sub-surface hydrodynamics but can also provide important 

insights for designing sustainable water resource management strategies. 
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