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Abstract 13 

Tracer-aided hydrological models integrating water isotope module into the simulation of 14 

runoff generation are useful tools to reduce uncertainty of hydrological modeling in cold basins 15 

that are featured by complex runoff processes and multiple runoff components. However, there 16 

is little guidance on the strategy of field water sampling for isotope analysis to run tracer-aided 17 

hydrological models, which is especially important for large mountainous basins on the Tibetan 18 

Plateau (TP) where field water sampling work is highly costly. This study conducted a set of 19 

numerical experiments based on the THREW-T (Tsinghua Representative Elementary 20 

Watershed - Tracer-aided version) model to evaluate the reliance of the tracer-aided modeling 21 

performance on the availability of site measurements of water isotope in the Yarlung Tsangpo 22 

River (YTR) basin on the TP. Data conditions considered in the numerical experiments included 23 

the availability of glacier meltwater isotope measurement, quantity of site measurements of 24 

precipitation isotope, and the variable collecting strategies for stream water sample. Our results 25 

suggested that: (1) In high-mountain basins where glacier meltwater samples for isotope 26 

analysis are not available, estimating glacier meltwater isotope by an offset parameter from the 27 

precipitation isotope is a feasible way to force the tracer-aided hydrological model. Using a set 28 

of glacier meltwater δ18O that were 2‰~9‰ lower than the mean precipitation δ18O resulted in 29 

only small changes in the model performance and the quantifications of contributions of runoff 30 

components (CRCs, smaller than 5%) to streamflow in the YTR basin; (2) Strategy of field 31 

sampling for site precipitation to correct the global gridded isotope product of isoGSM for 32 

model forcing should be carefully designed. Collecting precipitation samples at sites falling in 33 

the same altitude tends to be worse at representing the ground pattern of precipitation δ18O over 34 

the basin than collecting precipitation samples from sites in a range of altitudes; (3) Collecting 35 

weekly stream water samples at multiple sites in the wet and warm seasons is the optimal 36 

strategy for calibrating and evaluating a tracer-aided hydrological model in the YTR basin. It is 37 

highly recommended to increase the number of stream water sampling sites rather than 38 

spending resource on extensive sampling of stream water at a sole site for multiple years. These 39 

results provide important implications for collecting site measurements of water isotope for 40 

running tracer-aided hydrological models to improve quantifications of CRCs in the large high-41 

mountain basins. 42 

  43 
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1. Introduction 44 

Catchments located in mountainous regions generally provide important water resources 45 

for downstream regions (Viviroli et al., 2003). As typical mountainous cryosphere, the Tibetan 46 

Plateau (TP) is the source region for several large rivers in Asia, and has been called as a ‘water 47 

tower’ because of its importance for downstream livelihoods and agricultural irrigations 48 

(Schaner et al., 2012). Dominant characteristic of mountainous catchments on TP is the 49 

multiphase of water sources that generate runoff and the consequently complex hydrological 50 

processes, highlighting the importance of accurately quantifying the contributions of runoff 51 

components (CRCs) to streamflow for better understandings the runoff dynamics under 52 

changing climate. This task is difficult due to the complex hydrological processes being 53 

insufficiently represented by typical hydrological models, leading to large uncertainty of 54 

hydrological simulations (He et al., 2018). Due to the strong inter-compensation of runoff 55 

processes induced by different water sources and runoff pathways (Duethmann et al., 2015), 56 

uncertainties of the modeled CRCs in mountainous basins on the TP are rather high. Utilizing 57 

more datasets to evaluate the model performance is a feasible way to constrain modeling 58 

uncertainty and improve quantifications of CRCs in cold regions (Chen et al., 2017). 59 

Tracer-aided hydrological models integrating environmental tracer (e.g., stable oxygen 60 

isotope, 18O) modules into runoff generation processes have proved helpful for parameter 61 

calibration, model structure diagnosis and CRC quantification (Son and Sivapalan, 2007; Birkel 62 

et al., 2011), and are increasingly adopted in cold catchments (e.g., Ala-aho et al., 2017; He et 63 

al., 2019; Nan et al., 2021a). Recent studies indicated that estimates of precipitation δ18O from 64 

outputs of isotopic general circulation models (iGCMs) perform well on forcing tracer-aided 65 

models in large basins with a high cost of water sampling (Delavau et al., 2017; Nan et al. 66 

2021b). Similarly to the tracer-based end-member mixing methods that utilize the different 67 

tracer signatures of water sources to separate the hydrograph and quantify CRCs (Klaus and 68 

McDonnell, 2013; He et al., 2020), the tracer-aided hydrological models used the differed 69 

isotopic compositions of runoff components to regulate the water apportionments in runoff 70 

generation. The isotopic compositions of runoff components strongly differ in high-mountain 71 

basins resulting from the following two reasons: One is the significantly more depleted δ18O of 72 

meltwater compared to that of rain, due to the altitude and temperature effects, and the 73 

fractionation effect during melting processes (Xi, 2014; Boral and Sen, 2020). Another is the 74 

damping and lagging isotopic variability of subsurface runoff pathway, compared to that of 75 

surface runoff, as a result of the catchment hydrological functions of storing, mixing and 76 

transporting water (Bowen et al., 2019; Birkel and Soulsby, 2015; McGuire and McDonnell, 77 

2006). Consequently, water isotope signatures show potential to improve the representations of 78 

internal hydrological processes in hydrological models, if observations of water isotopes were 79 

involved in the model calibration and evaluation procedures (McGuire et al., 2007; He et al., 80 
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2019). 81 

Although a plenty of isotope-based works have been conducted in mountainous 82 

catchments on the TP to improve understandings of local hydrological processes (e.g., Li et al., 83 

2020; Kong et al., 2019; Tan et al., 2021), few of them provided guidance on data collection of 84 

water isotope for hydrological applications in large mountainous areas. Some water sampling 85 

works in large mountainous catchments were conducted in a single field campaign (e.g., Xia et 86 

al., 2019; Dong et al., 2018), which is, although helpful to understand the generations of short-87 

term runoff events, not suitable for the calibration of tracer-aided models in a multi-year 88 

simulation period (Knapp et al., 2019; Zhang et al., 2019). An exception is Stevenson et al. 89 

(2021) who utilized a 7-year dataset of stream water δ18O in a 3.2 km2 catchment to analyze the 90 

effects of stream water sampling strategies on the calibration of a tracer-aided hydrological 91 

model. Challenges arise when transferring their findings to the application of tracer-aided 92 

hydrological models in large high-mountain basins: First, it is questionable that whether 93 

sampling stream water at one site can adequately represent the isotope signature of stream water 94 

over the whole large basin, considering the strong spatial variability of hydrological processes 95 

caused by the heterogeneity in meteorological factors and land surface conditions in mountains 96 

(Wang et al., 2021; Li et al., 2020). Second, the influences of data collection of precipitation 97 

isotope on the performance of tracer-aided hydrological models remain unclear. Results of He 98 

et al. (2019) indicated that monthly sampling of precipitation at two sites seems to be able to 99 

capture the isotope variations in a 233 km2 catchment. However, the requirement of isotope 100 

data quantity to adequately capture the spatial pattern of precipitation isotope signature for 101 

forcing tracer-aided models in large basins (~105 km2) is poorly explored (Nan et al., 2021b). 102 

Third, in glacierized mountainous catchments where streamflow was fed by additional water 103 

source of glacier melt, the requirement of glacier meltwater samples for the forcing and 104 

evaluation of tracer-aided hydrological models is also unclear. Consequently, better 105 

understandings of how water sampling strategies influence the value of water isotope data for 106 

aiding hydrological modeling, is highly helpful for guiding the establishment of monitoring 107 

systems of water isotope in large mountainous regions. Considering the high costs of human 108 

and financial resources of collecting water samples in TP area, it is important to take efficient 109 

strategies for water sampling that balance the trade-off between field work burden and data 110 

adequacy well (Sprenger et al., 2019). 111 

Motivated by the mentioned backgrounds, we conducted detailed analysis on the tracer-112 

aided model performance in a large mountainous basin on the TP under different assumed 113 

situations with respect to the collection strategy of site water isotope data, based on a numerical 114 

experiment method. We adopted the tracer-aided hydrological model THREW-T developed by 115 

Nan et al. (2021a), which was forced by the global gridded isotope outputs of iGCM being 116 

merged with measurements of precipitation δ18O, to achieve the research aim. Three specific 117 
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questions were addressed: (1) how does the estimated isotopic composition of glacier meltwater 118 

influence the performance of tracer-aided hydrological modeling when no glacier meltwater 119 

samples were available, (2) how does the collection strategy of site precipitation samples for 120 

precipitation isotope data merging influence the model performance, and (3) how does the 121 

sampling strategy of stream water influence the model calibration and evaluation? 122 

2. Materials and methodology 123 

2.1 Study area 124 

The Yarlung Tsangpo River (YTR) basin, located in the southern TP (Fig. 1), extends in 125 

the ranges of 27°N -32°N and 82°E -97°E, with an elevation extent of 2900-6900 m above sea 126 

level (a.s.l.), which is one of the largest basins on the TP. The mean annual precipitation in the 127 

YTR basin is around 470mm featured by a distinct wet season from June to September, due to 128 

the dominance of the South Asian monsoon. Drainage area above the Nuxia hydrological station 129 

at the basin outlet is approximately 2×105 km2, around 2% of which is covered by glacier. 130 

The Karuxung River (KR) catchment is located in the upper regions of the YTR basin, and 131 

was chosen as a supplementary experiment catchment, because of the long term field work of 132 

water sampling in this catchment. The KR originates from the Lejin Jangsan peak of the Karola 133 

mountain (7206m a.s.l.), and flows into the Yamdrok Lake (4550m a.s.l.), draining an area of 134 

around 286 km2. Streamflow in the KR catchment is strongly influenced by glaciers which 135 

cover an area of 58 km2. 136 

[Figure 1] 137 

2.2 Hydro-meteorological and water isotope data 138 

Elevation of the YTR basin was derived from a digital elevation model (DEM) with a 139 

spatial resolution of 30m from the Geospatial Data Cloud (https://www.gscloud.cn). Daily 140 

meteorological inputs including precipitation, temperature and potential evapotranspiration 141 

were collected from the 0.1°×0.1° China Meteorological Forcing Dataset (CMFD, Yang and 142 

He, 2019). The second glacier inventory data set of China (Liu, 2012) was used to denote the 143 

glacier coverage and was assumed to be constant during the study period. The seasonal snow 144 

coverage was extracted from the Tibetan Plateau Snow Cover Extent product (TPSCE, Chen et 145 

al., 2018), and was regarded as observation data for model calibration. Vegetation coverages 146 

were extracted from the MODIS satellite products of eight-day leaf area index (LAI) dataset 147 

MOD15A2H (Myneni et al., 2015) and monthly normalized difference vegetation index (NDVI) 148 

dataset MOD13A3 (Didan et al., 2015). Soil types and properties in the tested basins were 149 

collected from the Harmonized World Soil Database (HWSD, He, 2019). Observations of daily 150 

streamflow during 2000-2015 at the Nuxia, and that during 2000-2010 at Yangcun and Nugesha 151 
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stations were used for hydrological model evaluation.  152 

In the KR catchment, daily temperature and precipitation during 2006-2012 were collected 153 

at the Langkazi meteorological station. Altitudinal distributions of temperature and 154 

precipitation across the KR catchment were estimated based on the lapse rates reported in 155 

Zhang et al. (2015). Daily streamflow during 2006-2012 was measured at the Wengguo 156 

hydrological station. 157 

Outputs of the scripps global spectral model with water isotopes incorporated (isoGSM, 158 

Yoshimura et al., 2008) with the spatial and temporal resolutions of 1.875°×1.875° and 6h were 159 

extracted to represent the spatio-temporal pattern of the precipitation isotope in the YTR basin. 160 

According to a previous evaluation of the isoGSM product (Nan et al., 2021b), it can well 161 

capture the seasonal fluctuation of precipitation δ18O, but had two aspects of shortcomings: 162 

overestimating precipitation δ18O in the YTR basin, and performing poorly on capturing the 163 

isotope signature of individual precipitation events and specific period. The bias of isoGSM 164 

product tended to be larger in higher elevation regions. To obtain measurement precipitation 165 

δ18O data, grab samples of precipitation were collected in the wet season of 2005 at four stations 166 

along the main channel of YTR, i.e., Nuxia (3691 m a.s.l.), Yangcun (4541m a.s.l.), Nugesha 167 

(4715m a.s.l.) and Lazi (4889m a.s.l.). The precipitation water samples were collected as soon 168 

as possible after the precipitation event in order to avoid the effect of evaporation. Stream water 169 

samples were collected weekly during the same period from river at the four stations.  170 

The isoGSM isotope products were merged with measurement precipitation isotope data 171 

according to Eqs. 1-3 to provide input data for model: First, the bias of isoGSM product was 172 

assumed to be linearly related to altitude. Relation between the mean bias of isoGSM products 173 

and altitude was estimated by a least square method using δ18O measurements of precipitation 174 

samples and gridded isoGSM estimates at the four sampling sites (Eqs. 1-2); Second, in each 175 

REW, precipitation δ18O was determined by Eq. 3, based on the average altitude and the 176 

availability of δ18O measurements from precipitation site samples on the date. 177 

𝐵𝑖 = 𝛿
18𝑂𝑖,M − 𝛿

18𝑂𝑖,G                        (1) 178 

𝐵 = 𝑎 · 𝐻 + 𝑏                                (2) 179 

𝛿18𝑂𝑘,𝑗,Merged =

{
 

 
𝛿18𝑂𝑘,𝑗,G +𝐵𝑘 ,                              for date 𝑗 with no data

∑ 𝛿18𝑂𝑖,𝑗,M
4
𝑖=1

4
−

∑ 𝛿18𝑂𝑖,M
4
𝑖=1

4
+ 𝛿18𝑂𝑘,G̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐵𝑘 , for date 𝑗 with data, but unit 𝑘 containing no sampling site

𝛿18𝑂𝑘,𝑗,M,                    for date 𝑗 with data, and unit 𝑘 containing sampling site

 (3) 180 

where, Bi is the bias of isoGSM at sites i. 𝛿18𝑂𝑖,M and 𝛿18𝑂𝑖,Gare the weighted average of the 181 

site measurement and isoGSM estimate over the sampling period at sites i, respectively. H is 182 

the altitude of the sampling site. Parameters a and b are the linear regression coefficients, which 183 

were estimated as -0.0046 and 14.96 by the least square method in this study. 𝛿18𝑂𝑘,𝑗,Merged 184 

is the precipitation isotope obtained by merging isoGSM and measurement data, and 𝛿18𝑂𝑘,𝑗,G 185 
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refers to the original isoGSM isotope estimate at the hydrological model unit k on the date j. 186 

Glacier meltwater δ18O was assumed to be constantly lower than the weighted average of 187 

precipitation δ18O by an offset parameter (𝛥𝛿) during the study period (Eq. 4) because of the 188 

unavailability of glacier meltwater samples, which is generally within the range of 2-9‰ in the 189 

worldwide mountain regions (Rai et al., 2019; Wang et al., 2016; He et al., 2019; Ohlanders et 190 

al., 2013; Jeelani et al., 2017) and is adopted as 5‰ from Boral and Sen (2020) in the YTR 191 

basin. 192 

𝛿18𝑂𝑘,GM = 𝛿18𝑂𝑘,Corr
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝛥𝛿                        (4) 193 

In the KR catchment, grab samples of precipitation and stream water were collected at the 194 

Wengguo station in 2006-2007 and 2010-2012 for isotope analysis. The spatial distribution of 195 

precipitation δ18O was estimated based on an altitudinal lapse of -0.34‰/100 as reported in Liu 196 

et al. (2007). Glacier meltwater δ18O was assumed to be constantly as -18.9‰ during the study 197 

period (as reported by Gao et al. 2009). Details of precipitation and stream water samples in the 198 

YTR and KR catchments were summarized in Table 1. 199 

[Table 1] 200 

2.3 Tracer-aided hydrological model 201 

A distributed tracer-aided hydrological model, THREW-T (Tsinghua Representative 202 

Elementary Watershed - Tracer-aided version) model developed by Tian et al. (2006) and Nan 203 

et al. (2021a) was adopted for streamflow and isotope simulations. This model uses the 204 

representative elementary watershed (REW) method for spatial discretization of catchments 205 

(Reggiani et al., 1999). The study catchment is first divided into REWs based on DEM, and 206 

each REW is further divided into two vertical layers (surface and subsurface layers), including 207 

eight hydrological subzones based on the land cover and soil properties. In total, 63 and 41 208 

REWs were extracted for the YTR basin and KR catchment, respectively (Tian et al., 2020; 209 

Nan et al., 2021a, 2021b). Areal averages of the gridded estimates of meteorological variables, 210 

vegetation cover and soil property were calculated in each REW to drive the model. A module 211 

representing glacier melting and snowpack evolution was incorporated into the model for 212 

application in cold regions (He et al., 2015; Xu et al., 2019; Tian et al., 2020; Nan 2021a). 213 

Accumulation and melting processes of snowpack were simulated according to temperature and 214 

precipitation, to update snow water equivalent (SWE) of each REW. The snow cover area (SCA) 215 

was then determined according to the snow cover depletion curve (Fassnacht et al., 2016) and 216 

SWE threshold value (Parajka and Bloschl, 2008) for YTR basin and KR catchment, 217 

respectively, due to the different catchment scales. The evolution of glacier was not simulated 218 

in the model for simplification. The glacier melting amount was determined by the temperature-219 

index method and was assumed to contribute to streamflow through surface runoff pathway 220 
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directly. 221 

The tracer-aided module was developed by Nan et al. (2021a). The isotope was assumed 222 

to mix completely in each hydrological simulation unit within a simulation step. The Rayleigh 223 

fractionation method was adopted to simulate the isotope fractionation during water 224 

evaporation (similarly to He et al. 2019, Hindshaw et al. 2011, Wolfe et al. 2007). The isotope 225 

concentration was updated according to the water content of each unit and fluxes among them, 226 

which have been calculated by the hydrological model, thus no parameters associated to isotope 227 

mixing was introduced. Forced by the inputs of precipitation and glacier meltwater isotopic 228 

compositions, the model simulates the isotope evolution in all the water storages in the 229 

watershed, including stream water, soil water and snowpack. The glacier evolution processes 230 

were not simulated in the hydrological model, thus its isotope composition cannot be updated 231 

by the model, and an assumed constant δ18O of glacier melt was adopted to calculate the isotope 232 

mass from glacier meltwater. The iGCM isotope products properly corrected by δ18O 233 

measurements of precipitation samples have proved feasible to force the THREW-T model in 234 

large catchments like YTR on the TP (Nan et al., 2021b). More details of hydrological model 235 

together with the snowpack evolution and tracer-aided module are given in Tian et al. (2006) 236 

and Nan et al. (2021a) 237 

The THREW-T model quantified the contributions of runoff components (CRC) to 238 

streamflow based on two definitions of runoff components as reviewed in He et al. (2021). The 239 

first definition is based on the individual water sources in the total water input triggering runoff 240 

processes, including rainfall, snowmelt and glacier melt. The second definition is based on 241 

pathways of runoff-generation processes, resulting in surface and subsurface runoff (baseflow).  242 

Physical basis and value ranges of the calibrated parameters in the THREW-T model were 243 

described in Table 2. The value of parameter was assumed to be universal for all the REWs. 244 

Two kinds of calibration approaches were conducted: (1) a bi-objective calibration using 245 

discharge and SCA, and (2) a tri-objective calibration using discharge, SCA and stream water 246 

δ18O. Metrics used to evaluate the model performance are listed in Eqs. 5-8. The Nash-Sutcliffe 247 

efficiency coefficient (NSE) was used to optimize the simulation of discharge and isotope, 248 

whereas the root-mean-square error (RMSE) was used for the evaluation of SCA simulation. 249 

The Logarithmic Nash-Sutcliffe efficiency coefficient (lnNSE) was used additionally for 250 

discharge calibration to assess the simulation of baseflow. The model parameters were 251 

calibrated by streamflow and SCA observations during 2001-2010 (at Nuxia station) and 2006-252 

2012 in the YTR and KR basins, respectively. The model performance in YTR basin was 253 

validated by the Nuxia streamflow and SCA observations during 2011-2015, and the 254 

streamflow observations at Yangcun and Nugesha stations during 2001-2010. 255 

NSEdis = 1 −
∑ (𝑄o,𝑖−𝑄s,𝑖)

2𝑛
𝑖=1

∑ (𝑄o,𝑖−𝑄o̅̅ ̅̅ )
2𝑛

𝑖=1

                          (5) 256 
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NSElndis = 1 −
∑ (ln𝑄o,𝑖−ln𝑄s,𝑖)

2𝑛
𝑖=1

∑ (ln𝑄o,𝑖−ln𝑄o̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

                       (6) 257 

RMSESCA = √
∑ (𝑆𝐶𝐴o,𝑖−𝑆𝐶𝐴s,𝑖)

2𝑛
𝑖=1

𝑛
                        (7) 258 

NSEiso = 1 −
∑ (𝛿18Oo,𝑖−𝛿

18Os,𝑖)
2𝑛

𝑖=1

∑ (𝛿18Oo,𝑖−𝛿
18Oo
̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

                       (8) 259 

where, n is the total number of observations. Subscripts of “o” and “s” refer to observed and 260 

simulated variables, respectively. 261 

An automatic algorithm Python Surrogate Optimization Toolbox (pySOT) developed by 262 

Eriksson et al. (2017) was adopted for the multiple-objective optimization. The pySOT 263 

algorithm used a surrogate model to guide the search for improved solutions, with the advantage 264 

of needing few function evaluations to find a good solution. In each pySOT running, the 265 

optimization procedure was stopped if a maximum number of allowed function evaluations was 266 

reached, which was set as 3000 in this study. For the bi- and tri-objective calibrations, 267 

0.5·(NSEdis+NSElndis)-RMSESCA and 0.5·(NSEdis+NSElndis)-RMSESCA+NSEiso were chosen as 268 

the combined optimization objectives. For each scenario, the pySOT algorithm was repeated 269 

100 times, and behavioral parameter sets were selected among the 100 final results according 270 

to the performance metric thresholds, i.e., only the parameter sets producing metrics better than 271 

certain threshold values were regarded as behavioral parameter sets. The model uncertainty was 272 

evaluated based on the model performance driven by the behavioral parameter sets. The 273 

threshold values of evaluation metrics were set as 0.5·(NSEdis+NSElndis)>0.8, RMSESCA<0.08 274 

in the YTR basin; and NSEdis>0.7, RMSESCA<0.15 in the KR catchment. Different values were 275 

adopted for the NSEiso threshold among different scenarios, which would be introduced 276 

accordingly in the Result section. 277 

[Table 2] 278 

2.4 Numerical experiments  279 

The influences of isotope data condition on model performance were evaluate in three 280 

aspects as listed in Table 3: the assumed glacier meltwater isotope, the site measurement of 281 

precipitation isotope for data merging, and the stream water sampling strategy for model 282 

calibration. 283 

[Table 3] 284 

Experiment 1: influence of assumed glacier meltwater isotope 285 

The first experiment was designed to test the reliance of model performance on the 286 

assumed glacier meltwater isotope, as glacier melt water samples are typically not available for 287 

isotope analysis in high mountain basins on the TP. In this experiment, variable glacier melt 288 

isotope signatures were adopted to calculate the isotopic contribution from glacier meltwater to 289 
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streamflow, assuming the glacier meltwater δ18O is 1‰, 3‰, 7‰ and 9‰ (i.e., Δδ values in 290 

Table 3) lower than the long-term average δ18O of precipitation. A benchmark model running 291 

by the literature based Δδ value of 5‰ was used as a baseline reference to assess the influence 292 

of the assumed glacier meltwater isotope on the model performance. 293 

Experiment 2: influence of site measurement of precipitation isotope  294 

The second experiment was designed to test the reliance of the model performance on the 295 

availability of measured site precipitation isotope that was merged with the isoGSM product. 296 

The benchmark model running was forced by the merging precipitation isotope data based on 297 

measurements of precipitation isotope from all the four sampling sites (Figure 1). Three 298 

scenarios regarding the availability of measured precipitation isotope were designed as shown 299 

in Table 3. First, we assumed that only precipitation isotope measured at the two downstream 300 

sites of Nuxia and Yangcun are available for data merging (i.e., scenario P_2stationNY in Table 301 

3). Second, we assumed that precipitation isotope measurement at the most upstream site Lazi 302 

is available in addition to the measurement at the downstream site Nuxia (i.e., scenario 303 

P_2stationNL in Table 3). Third, we assumed that only precipitation isotope measurement at 304 

the most downstream site Nuxia is available for the data merging (i.e., scenario P_1station in 305 

Table 3). 306 

Experiment 3: influence of stream water sampling strategy 307 

The third experiment was conducted to analyze the influence of stream water sampling 308 

strategy on the model performance. Two types of stream water sampling strategies were 309 

considered, i.e., a time series sampling strategy based on regular and continuous sampling work 310 

at a certain point, and a spatially distributed sampling strategy based on one-time field 311 

campaigns of sampling work. For the time series sampling strategy, 7 scenarios (scenarios begin 312 

with “RT_YTR_” in Table 3) were designed to analyze the influences of the sampling frequency, 313 

the duration of the sampling period, and the number of sampling sites. For the spatially 314 

distributed sampling strategy, two scenarios (Figure 1b) were designed to represent typical field 315 

campaign activities: colleting samples along the mainstream of the basin (RS_YTR_Main, 316 

Table 3), and collecting water samples additionally from major tributaries (RS_YTR_Tributary, 317 

Table 3). Considering the limited availability of stream water δ18O measurement in the YTR 318 

basin (only wet season in one year, Table 1), a supplementary experiment was designed to test 319 

the influence of sampling period duration on the model performance using the relatively long 320 

time-series isotope dataset in the small catchment KR (scenarios begin with “RT_KR_” in Table 321 

3). 322 

To evaluate the influence of isotope data availability on the model performance, we carried 323 

out benchmark model simulations forced by full datasets of input isotope and stream water 324 

isotope data in the YTR and KR catchments (Table 3). The benchmark model runs were 325 
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calibrated by a bi-objective calibration using SCA and streamflow observations, and a tri-326 

objective calibration using additional stream water isotope, respectively. It is noted that, in the 327 

scenarios of experiment 3 that were carried out in the YTR basin (i.e., scenarios starting with 328 

“RT_YTR” and “RS_YTR_” in Table 3), the assumed data availability was beyond the actual 329 

measurement dataset. Consequently, the assumed stream water δ18O measurements were 330 

adopted from a model simulation driven by a benchmark parameter set (rather than a subset of 331 

actual measurement stream water δ18O), which was selected from the behavioral parameters of 332 

the BM_YTR scenario calibrated by tri-objective approach. The influence of the availability of 333 

stream water δ18O measurement on the tracer-aided model were evaluated by comparing the 334 

estimated CRCs and corresponding uncertainties with the assumed true values that were derived 335 

from the tri-objective calibrated benchmark running. Mean absolute error (MAE) and standard 336 

deviation (STD) were used to quantify the accuracy and uncertainty of CRC, which were 337 

calculated in Eqs. 9 and 10.  338 

MAE𝑘 =
∑ |CRCs,𝑖

𝑘 −CRCo
𝑘|𝑛

𝑖=1

𝑛
                            (9) 339 

STD𝑘 = √
∑ (CRCs,𝑖

𝑘 −CRCs
𝑘̅̅ ̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

𝑛
                        (10) 340 

where, n is the number of behavioral parameter sets, and superscript k indicates the runoff 341 

component (one of rainfall, snowmelt, glacier melt and baseflow). Subscript s and o indicate 342 

the simulated and observed value (observed value is the CRC produced by the tri-objective 343 

calibrated benchmark running). CRCs,𝑖
𝑘  is the contribution of runoff component k simulated by 344 

the parameter set i. CRCs
𝑘̅̅ ̅̅ ̅̅ ̅ is the average CRC simulated by all the behavioral parameter sets. 345 

In the scenarios of experiments 1 and 2, the model was calibrated towards the complete 346 

stream water δ18O measurement dataset (Table 1), and the influence of isotope data availability 347 

on model performance were quantified by changes in model performance in the validation 348 

period and internal validate hydrological stations, as well as the uncertainty of CRC estimated 349 

by Eq. 10. In the scenarios of experiment 3 that were carried out in the YTR catchment (i.e., 350 

scenarios starting with “RT_YTR_” and “RS_YTR_”), a subset of simulated stream water δ18O 351 

produced by the benchmark parameter set was picked out for model calibration. In the scenarios 352 

of experiment 3 that were carried out in the KR catchment (i.e., scenarios starting with 353 

“RT_KR_” in Table 3), a subset of stream water δ18O measurement dataset (Table 1) was picked 354 

out for model calibration. 355 

3. Results 356 

3.1 Performance of the tracer-aided hydrological model  357 

Figure 2 shows performance of the benchmark model running (i.e., BM_YTR scenario in 358 

Table 3) forced and calibrated by the full available isotope dataset. The NSEiso threshold by 359 
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which behavioral parameter sets were selected in tri-objective calibration was set as 0.5. 360 

Seasonal variations in discharge and SCA were reproduced well by the bi-objective calibration 361 

(Figure 2a and 2b), indicated by the high values of NSEdis (>0.8) and lnNSEdis (>0.8), and a low 362 

RMSESCA (<0.08). The peak flows were less well reproduced by the model in comparison to 363 

the simulation of baseflow processes, partly due to the inaccurate precipitation input data at the 364 

high altitudes. The model showed extremely poor performance for the simulation of stream 365 

water isotope when looking at the large uncertainty range (Figure 2c) and low NSEiso (-0.72). 366 

The tri-objective calibration significantly improved the isotope simulation (Figure 2f), without 367 

bringing much sacrifice to the performance in simulating discharge and SCA (considering the 368 

minimum values of NSEdis and lnNSEdis are around 0.7 in Figure 2d and 2e). Moreover, the tri-369 

objective calibration slightly reduced uncertainty for simulation of the rising hydrograph in the 370 

2009 spring (Figure 2d). The seasonal variations in stream water δ18O were captured well at all 371 

the four stations by simulations from the tri-objective calibration. The mean contributions of 372 

rainfall and snowmelt to annual streamflow estimated by the bi-objective calibration were 62.8% 373 

and 10.8%, which were around 1%-7% smaller than those estimated by the tri-objective 374 

calibration (Table 4). In contrast, the contribution of glacier melt estimated by the tri-objective 375 

calibration (17.1%) was lower than that estimated by the bi-objective calibration (26.4%). 376 

Surface runoff which was mainly fed by glacier melt in the YTR showed a larger proportion in 377 

the total streamflow simulated by a bi-objective calibration (52.1%) than that in the simulation 378 

of a tri-objective calibration (44.7%), while baseflow contribution quantified by the bi-379 

objective calibration is smaller. Standard deviation values of the quantified CRCs indicated that 380 

the tri-objective calibration estimated smaller uncertainties for the quantifications of runoff 381 

components.  382 

[Figure 2] 383 

[Table 4] 384 

The uncertainty of behavioral parameter set obtained by bi- and tri-objective calibration is 385 

shown in Figure 3. Apart from the hillslope roughness coefficient (nt), the uncertainties of all 386 

the parameters were reduced by tri-objective calibration to varying degrees, especially for the 387 

parameters related to melting (DDFN and To) and flow concentration processes (C1 and C2). 388 

The higher melting temperature threshold (T0) obtained by tri-objective calibration was 389 

consistent with the lower contribution of melt water. The lower water storage capacity (WM) 390 

and higher shape coefficient (B) of tri-objective calibration should resulted in higher saturation 391 

area and consequently higher contribution of surface runoff, which was however not in 392 

agreement with the estimated CRC, indicating the important contribution of glacier melt in 393 

surface runoff. A benchmark parameter set that performed well on multiple objectives was 394 

selected among the behavioral parameters of BM_YTR calibrated by tri-objective method (as 395 

shown in Table 5), to produce stream water δ18O for model calibration in experiment 3 in YTR 396 
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basin. It is noted that this benchmark parameter set was only used to produce stream water δ18O 397 

data for model calibration in experiment 3 in YTR basin, not necessarily an optimal parameter 398 

set representing the true hydrological processes. 399 

[Figure 3] 400 

[Table 5] 401 

Figure 4 shows model performances in the KR catchment. The parameter sets producing 402 

positive NSEiso were selected as behavioral for tri-objective calibration. Variations of discharge 403 

and SCA were reproduced comparably well by the bi- and tri-objective calibrations indicated 404 

by the similar metric values. However, the bi-objective calibration produced extremely poor 405 

performance for the isotope simulation with low NSEiso and a large simulation error of ~5‰ 406 

(Figure 4c). The tri-objective calibration captured the seasonal variations in stream water δ18O 407 

during the study period well. Similarly to YTR, the tri-objective calibration resulted in lower 408 

uncertainty in the simulated hydrograph (e.g., early 2010, 2006 and 2008), benefiting from 409 

involving isotope for the model calibration to reject parameter sets that produced good 410 

performance for discharge and SCA simulations but poor performance for isotope simulation. 411 

Regarding the CRCs to total streamflow, the bi-objective and tri-objective calibrations 412 

estimated similar results with differences up to 3%. The mean contributions of rainfall, 413 

snowmelt and glacier melt to annual streamflow in the KR catchment were around 45%, 22% 414 

and 33%, respectively. Contribution of surface runoff estimated by the bi-objective calibration, 415 

however, was 13% lower than that estimated by the tri-objective calibration. In contrast, 416 

baseflow is more important in the total streamflow simulated by the bi-objective calibration 417 

(accounting for 38%) in comparison to the simulation of the tri-objective calibration 418 

(accounting for 25%). Again in the KR catchment, uncertainties of CRCs quantified by the tri-419 

objective calibration are much smaller than those estimated by the bi-objective calibration 420 

(Table 4). 421 

[Figure 4] 422 

3.2 Changes in model simulations forced by different assumed glacier meltwater isotopes 423 

Behavioral parameter sets of experiment 1 were selected based on the same NSEiso 424 

threshold (0.5) with the benchmark running. Model simulations forced by assumed glacier 425 

meltwater δ18O that are 5‰ (scenario BM_YTR, Δδ=5‰) and 7‰ (scenario G_Δ7, Δδ=7‰) 426 

lower than the long-term average precipitation δ18O showed the best discharge simulations in 427 

the validation period (2011-2015) and stations (Yangcun and Nugesha), indicated by the high 428 

average metric values (Figure 5). It is noted that simulations of all the glacier meltwater isotope 429 

input scenarios in experiment 1 except G_Δ1 performed better than the bi-objective calibration 430 

in which isotope data was not involved for parameter optimization. The model in the scenario 431 

G_Δ1 performed better on discharge simulation for validation period (Figure 5a), but worse for 432 
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internal stations (Figure 5b and 5c) than the result obtained by bi-objective calibration. 433 

[Figure 5] 434 

Figure 6 shows the average CRCs and corresponding uncertainties estimated by the 435 

different glacier melt isotope inputs. Scenarios with larger Δδ values (i.e., glacier meltwater 436 

isotope is much lower than precipitation isotope) tended to result in higher contributions of 437 

precipitation and lower contributions of glacier melt (Figure 6). This can be expected, as stream 438 

water δ18O is a mixture mainly from δ18O of precipitation and glacier meltwater in YTR basin 439 

and precipitation δ18O is fixed in all the scenarios. Result of scenario G_Δ1, however, estimated 440 

a smaller contribution of glacier melt than the scenario G_Δ3. This was likely due to that the 441 

behavioral parameter sets were selected based on the performance of both discharge and isotope 442 

simulations. Parameter sets that estimated higher glacier melt contribution with good 443 

performance in isotope simulation but performed poorly on discharge simulation were excluded 444 

from the behavioral set in the G_Δ1 scenario. 445 

[Figure 6] 446 

3.3 Changes in model performance forced by isoGSM product merged with different site 447 

measurements of precipitation isotope 448 

Figure 7 shows the relationship between REW-scale weighted averages of precipitation 449 

δ18O and the longitude/elevation of corresponding REW for the scenarios in experiment 2. The 450 

precipitation δ18O showed similar spatial pattern in the scenarios merging isoGSM with 451 

measurement data at more than one sites. In scenario P_1station that merged isoGSM with 452 

measurement data only at the most downstream station Nuxia, however, spatial pattern was 453 

different, showing as significantly higher precipitation δ18O than other scenarios. The different 454 

precipitation δ18O pattern was mainly a result of different altitudinal lapse rates of the isoGSM 455 

bias (i.e., parameter a in equation 2). Representing the bias characteristic in the whole basin 456 

solely by the data measured at the most downstream station resulted in significantly 457 

underestimated isoGSM bias, and consequently overestimated precipitation δ18O.  458 

Different precipitation δ18O input data inevitably resulted in different simulations of stream 459 

water δ18O as shown in Figure 8. The NSEiso threshold was set as 0.5 except for scenario 460 

P_1station, which produced extremely poor δ18O simulation due to the high bias in merged 461 

precipitation δ18O input data (Figure 8d). The other three scenarios all perform well in stream 462 

δ18O simulation (Figure 8a-c), among which scenario P_2stationNL produced highest behavior, 463 

followed by P_4station and P_2stationNY. 464 

[Figure 7] 465 

[Figure 8] 466 

Different precipitation isotope input data also led to different performance in hydrological 467 

modeling (Figure 9). While different scenarios produced similar SCA simulations in the 468 
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validation period (Figure 9d), the performance of discharge simulation significantly differed 469 

among the precipitation isotope input scenarios. In scenarios BM_YTR and P_2stationNL, the 470 

model performed better than the bi-objective calibration in the validation period (Figure 9a) 471 

and stations (Figure 9b and 9c), showing higher average values and smaller ranges of NSEdis, 472 

which indicated that the model benefitted from involving isotope data for calibration. The 473 

model performance forced by scenario P_2stationNY was close to that of the bi-objective 474 

calibration, with poorer discharge simulation at internal stations (Figure 9b and 9c). Using 475 

precipitation isotope input from the scenario P_1station, however, the model performance was 476 

significantly worse than that of the bi-objective calibration. Reasons for the variable model 477 

performance forced by the precipitation isotope input scenarios could be: Site measurements of 478 

precipitation isotope used in scenarios BM_YTR (using data at four sampling stations) and 479 

P_2stationNL (using data at the most downstream sampling station and the most upstream 480 

sampling station) tended to provide more informative spatial distribution of precipitation δ18O 481 

in the basin and were the most valuable data for the precipitation isotope data merging; in the 482 

scenario of P_1station, on the contrary, the bias of isoGSM product was inadequately corrected 483 

by site precipitation isotope measured only at the most downstream station Nuxia, resulting in 484 

much errors in the isoGSM product at high altitudes. Although precipitation isotope input data 485 

did not influence simulation of hydrological processes, the calibration process that attempted 486 

to match simulated stream δ18O with measurement influenced the parameter, and consequently 487 

affected the internal hydrological processes. 488 

[Figure 9] 489 

Figure 10 shows the average CRCs and corresponding uncertainties estimated by the 490 

different precipitation isotope input scenarios. All scenarios produced lower uncertainties than 491 

the bi-objective calibration, which can be expected as they were calibrated by a tri-objective 492 

approach. The variable precipitation input scenarios resulted in contribution differences of 493 

around 10% in runoff components of rainfall, glacier melt and baseflow. The sort of estimated 494 

contribution of rainfall (P_2stationNL > BM_YTR > P_2stationNY > P_1station) was opposite 495 

to that of average precipitation δ18O shown in Figure 7, which was as expected according to an 496 

estimation based on the end-member mixing method. 497 

[Figure 10] 498 

Among the evaluation metrics, discharge simulation at Nugesha station showed the largest 499 

sensitivity to precipitation isotope inputs. As shown in Figure 11, scenarios P_2stationNY and 500 

P_1station estimated higher contribution of meltwater, earlier discharge onset timing and higher 501 

peak flow. The discharge began to rise especially early (around February) in scenario P_1station, 502 

because of the low calibrated value for the melting temperature threshold T0 (-4.5℃), resulted 503 

in extremely poor discharge simulation (average NSE is around 0, Figure 11d). 504 

[Figure 11] 505 
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3.4 Model performance constrained by different stream water sampling strategies  506 

Figure 12 shows the accuracy and uncertainty metrics of CRCs produced by experiment 3 507 

in the YTR basin. The NSEiso threshold was set as 0.8, because the stream isotope data for 508 

model calibration was generated by a benchmark parameter set, towards which good simulation 509 

was rather easy to produce. In comparison to the baseline scenario of RT_TYR_BM, collecting 510 

stream isotope data in the dry season (i.e., from November to next February in scenario 511 

RT_YTR_WholeYear) brought little benefits to the estimation of water sources proportions, but 512 

significantly improved the quantifications of runoff generation pathways indicated by the lower 513 

MAE and STD in Figure 9b. The stream water in dry season was fed mainly by groundwater. 514 

Stream water isotope data collected in this period reflect the release of groundwater storage, 515 

thus helping to constrain the partition between surface and subsurface runoff pathway. On the 516 

other hand, reducing the frequency of stream isotope data from weekly to monthly (i.e., scenario 517 

RT_YTR_Monthly) led to significantly higher MAE and STD for both the partitions of water 518 

sources and runoff pathways, which indicated that stream water isotope data collected by a 519 

monthly sampling strategy could provide less constrains to model calibration. Extending the 520 

duration of stream isotope sampling period by one or two years (i.e., scenarios RT_YTR_2year 521 

and RT_YTR_3year) did not bring much benefits to the quantifications of CRCs regarding the 522 

similar metric values. Using stream water isotope data from a three years’ sampling 523 

(RT_YTR_3year) even led to higher MAE and STD than that using stream water isotope data 524 

from a 2 years’ sampling (RT_YTR_2year), which might be an occasional result obtained by 525 

the random calibration procedure (100 pySOT runs). In comparison to simulations constrained 526 

by stream water isotope data from multiple sampling years, results constrained by stream water 527 

isotope data from multiple sampling sits (i.e., scenarios of RT_YTR_2station and 528 

RT_YTR_4station) yielded lower MAE and STD for the quantified CRCs.  529 

[Figure 12] 530 

Model simulations calibrated by spatially distributed stream δ18O data collected in a one-531 

time field campaign reduced the CRC uncertainty compared to the bi-objective calibration 532 

(Figure 12). However, its MAE and STD for the quantifications of CRCs were higher than that 533 

estimated by the model when calibrated by weekly sampled time series of stream δ18O. 534 

Additionally using stream isotope data from four major tributaries (i.e., scenario 535 

RS_YTR_Tributary) brought little benefits to the model performance than using isotope data 536 

from the main stream solely (RS_YTR_Main), partly due to the signatures of stream water 537 

isotope from tributaries were already reflected by water samples collected at confluences on 538 

the main river channel. 539 

In the KR catchment, stream isotope data was collected from five continues years, 540 

providing better data basis for the evaluation of the influence of sampling period duration. The 541 
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NSEiso threshold was set as 0, same with the benchmark scenario in KR catchment. Figure 13 542 

and 14 compare the CRC estimations and their uncertainty metric STD of variable scenarios. 543 

For the estimate of water sources, the model produced rather large uncertainty ranges of ~20% 544 

and ~40% for the contributions of rainfall and glacier melt when calibrating the model using 545 

discharge and SCA. Using one-year’s stream water isotope data for model calibration, the 546 

uncertainty ranges were reduced by rejecting some outliers as shown in Figure 10a-c, but the 547 

STD was still large (Figure 13). The STD can be reduced by increasing the number of 548 

calibration isotope data at a rate of ~1%/year. Using isotope data collected from five years, 549 

however, didn’t result in further decrease in the CRC uncertainties compared to the result 550 

calibrated by isotope data collected in a four-year sampling period. The situation, however, was 551 

quite different for the estimates of runoff pathways. The bi-objective calibration produced a 552 

large uncertainty of ~40% and a STD of ~10% (Figure 13d) for the contribution of baseflow. 553 

Using one-year’s data for model calibration, the uncertainty range was significantly reduced by 554 

about half of that modelled by the bi-objective calibration (from ~10% to ~5%). However, 555 

further increase in the duration of sampling period did not bring much improvements on 556 

constraining the uncertainties in quantifications of runoff pathways with STD fluctuating 557 

around only 4%. It is indicated that model calibration upon more stream isotope data was useful 558 

to better constrain the uncertainties of the model simulations and modeled CRCs, but benefit 559 

would disappear after a certain duration of stream water sampling period has been reached. 560 

[Figure 13] 561 

[Figure 14] 562 

4. Discussions 563 

4.1 Implications for water sampling for isotope analysis in high mountains of TP 564 

This study tested the reliance of the benefits of using tracer-aided hydrological model on 565 

isotope data availability in two mountainous catchments YTR and KR on the TP. Our findings 566 

consistently showed that the model robustness, with respect to performance in the validation 567 

period and internal stations and the quantifications of CRCs, can be significantly improved by 568 

involving isotope data for parameter calibration, similarly to previous tracer-aided modeling 569 

studies (e.g., He et al., 2019; Ala-aho et al., 2017; Birkel et al., 2010). It can be expected that 570 

more data help to provide more constrains on identification of model parameters. Nonetheless, 571 

water sampling in high mountains on the TP is restricted by environment accessibility, financial 572 

and human costs (Stevenson et al., 2021, Li et al., 2020). It is therefore highly needed to find 573 

optimal strategies of collecting water samples that balance well between data adequacy for 574 

model running and affordable sampling cost (Sprenger et al., 2019). 575 

As an important water source in mountainous catchment on the TP, sampling of glacier 576 
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meltwater was expected to be favorable for the determination of glacier meltwater isotopic 577 

composition and its contribution to total streamflow (He et al., 2019). Field campaign for 578 

sampling of glacier melt water is strongly challenging in the YTR basin in this study, due to the 579 

harsh accessibility of very high altitudes where glaciers lie. We thus assumed that glacier 580 

meltwater δ18O was lower than the average local precipitation δ18O by an offset parameter (Δδ). 581 

This simple assumption turned to work well on driving the tracer-aided hydrological model and 582 

produced better performance than the bi-objective calibration in both validation periods and 583 

internal stations. Experiments by using different Δδ values indicated that the prior assumed 584 

isotopic compositions of glacier melt have small influence on the estimated glacier meltwater 585 

contribution in the YTR basin. It should be noted that this was different from the results of some 586 

hydrograph separation works (e.g., Pu et al., 2020; Lone et al., 2021), which indicated that the 587 

change of meltwater isotope composition would lead to significant difference in the 588 

contribution of runoff component. Those works were based on the end-member mixing 589 

approach, which was applied in a short time scale, and was more dependent on the isotope 590 

composition of each runoff component. However, this work applied the tracer-aided 591 

hydrological model in a longer time scale, where the temporal variability of isotope 592 

composition played a more important role than its absolute value, on the parameter calibration. 593 

Consequently, when the temporal variability of isotope composition of each water source was 594 

reproduced properly, the glacier melt δ18O value in a reasonable range would have little 595 

influence on the model performance. The Δδ values ranging from 2‰-9‰ led to only ~5% 596 

difference in the estimated contributions of glacier melt. Using a Δδ to estimate glacier 597 

meltwater δ18O could serve as an option to force the tracer-aided hydrological models in high-598 

mountain catchments where collecting glacier meltwater samples is highly challenging. 599 

Results of experiment 2 indicated that the original isoGSM precipitation δ18O data showed 600 

large bias in the high mountain basins on TP, and must be corrected by measurement data before 601 

using to force the tracer-aided hydrological model. Our experiments showed that measurement 602 

of precipitation isotope at only two sampling sites (scenario P_2stationNL) in the large YTR 603 

basin of 2×105 km2 can be highly valuable for isotope data merging. Forced by isoGSM data 604 

that was merged with precipitation δ18O measurements from two sampling sites, the model 605 

performed better than the bi-objective calibration in simulating discharge in the validation 606 

period and internal stations, and performed comparably to the simulations of a benchmark 607 

running which used precipitation δ18O measurements from four stations for the data merging. 608 

This benefitted from the large altitudinal range covered by the two sampling sites (a most 609 

downstream site Nuxia and a most upstream site Lazi) to represent the spatial pattern of isoGSM 610 

bias. Likewise using measurement data at two sites in the scenario P_2stationNY, model 611 

performance deteriorated visibly, as the sampling sites (Nuxia and Yangchun) were both located 612 

in the downstream regions, being worse at representing the spatial pattern of precipitation δ18O 613 
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over the basin. Consequently, the strategy of collecting precipitation samples for isotope data 614 

merging should be carefully designed; spending high cost on collecting precipitation samples 615 

within a small region might be not worth at improving the performance of the tracer-aided 616 

hydrological model. 617 

Measurements of stream water δ18O are essential for the calibration and evaluation of 618 

tracer-aided hydrological models. Three kinds of sampling strategies in YTR basin were 619 

evaluated in experiment 3: one-time campaign field sampling, continuous sampling at a fixed 620 

location for a long period, and continuous sampling at multiple fixed locations during a short 621 

period. It is indicated that continuously sampled stream water δ18O at a fix location is more 622 

valuable for aiding hydrological model than that collected by one-time field sampling 623 

campaigns at distributed sites. Seasonality of stream water δ18O referring to the processes of 624 

water storage, mixture and transport in the basin can be better captured by continuous time 625 

series measurements of δ18O data (McGuire and McDonnell, 2006). Spatially sampled stream 626 

water δ18O data by one-time field sampling campaigns possibly miss seasonal δ18O signatures 627 

of stream water that were caused by seasonal runoff generation processes (Kendall and Coplen, 628 

2001; Nan et al., 2019), and provide less constrains for the model calibration. Sampling of 629 

stream water during dry season (scenario RT_YTR_WholeYear) brought little improvements 630 

to the modeling of water source proportions, which is consistent with the findings in Stevenson 631 

et al. (2021). High frequency like weekly sampling of stream water in the dry season makes 632 

small senses on improving the stream δ18O data quality, as stream δ18O in this season has little 633 

variations due to small precipitation triggered runoff inputs. Monthly sampling of stream water 634 

(RT_YTR_Monthly) turned to be insufficient to capture the strong hydrological variations in 635 

the wet season (Birkel and Soulsby, 2015). For large basins like YTR, increasing the number 636 

of sampling site for stream water δ18O is more useful than extending the years of sampling 637 

period at fixed sites, as seasonality of δ18O signatures of water sources should be similar among 638 

years in a short study period. Consequently, continuous sampling at multiple locations in a short 639 

period like one or two years seems to be the optimal stream sampling strategy for running 640 

tracer-aided hydrological model in mountainous basins like YTR on the TP. The value of 641 

extending sampling period was more significant in a smaller catchment KR. The uncertainty of 642 

CRC estimation kept decreasing until the data series length reached four years and two years, 643 

for the aspects of water source and runoff pathway, respectively. This was consistent with the 644 

finding by Stevenson et al. (2021) that the benefits from isotope plateaued after a certain year 645 

number, which was five for that study. 646 

4.2 Uncertainties and limitations 647 

This study used simulated stream δ18O produced by a benchmark parameter set (Table 5) 648 

to represent the fully available dataset of stream δ18O for water sampling in the YTR basin, due 649 
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to the limited stream water samples. This procedure likely caused the inherent correlation of 650 

the stream δ18O dataset, which made the model easily reproduce the assumed measurements of 651 

stream δ18O and may underestimate the value of stream δ18O data collected in extended 652 

sampling years and sampling sites. Results in this study serve to provide preliminary 653 

understandings of the influences of stream water sampling strategy on the model performance. 654 

More solid evaluations, however, can be further benefited from using more real field 655 

measurements of stream δ18O in the mountain basins. 656 

Our study tried to look for optimal water sampling strategies to provide isotope input and 657 

calibration data for the tracer-aided hydrological model in the YTR basin and KR catchment on 658 

the TP. The transferability of our findings to other basins can be partly expected. For example, 659 

we can expect that in catchments where precipitation δ18O and runoff processes show small 660 

spatial heterogeneity, collecting water samples at multiple stations would bring few additional 661 

benefits for the modeling work than collecting water samples at a sole station. The influence of 662 

assumed glacier meltwater would differ with the glacier covered area fraction in the basins. 663 

However, situations in catchments with different geographical and climatic characteristics were 664 

not evaluated in this study, which is restricted by the fact that high-quality water isotope data 665 

in a set of mountain basins on the TP were hardly available currently (Birkel and Soulsby, 2015). 666 

The authors suggest tracer-aided modeling researchers to publish their water isotope data to 667 

improve the evaluation of the reliance of tracer-aided modeling performance on water sampling 668 

strategy (similarly to He et al. 2021; Niinikoski et al., 2016; Yde et al., 2016). 669 

The model performances were evaluated based on the behavioral parameter sets, which 670 

were selected by the threshold values of evaluation metrics. The threshold values were 671 

determined by looking at the graph comparing simulation and observation values, and 672 

artificially judging whether good fitness has been achieved. This process was rather subjective, 673 

and had inevitable influence on the evaluation result. However, this was widely used method 674 

(e.g., Birkel et al., 2011; Delavau et al., 2017; He et al., 2019), and the threshold values were 675 

set at levels achieved by the studies conducted in the same region (e.g., Zhang et al., 2015; 676 

Chen et al., 2017), thus the model evaluation process has little influence on the key conclusions 677 

of this study. 678 

Another limitation of the model was the lack of isotope data for snow and glacier melt 679 

water. Previous researches indicated that the spatio-temporal variability of melt water isotope 680 

composition has important influence on the estimated contribution of runoff components (Pu et 681 

al., 2020; Lone et al., 2021). Although the spatio-temporal variability of melt water isotope was 682 

characterized in the model by simulating the isotope composition of snowpack storage, and 683 

estimating the glacier melt isotope according to the average local isotope composition of 684 

precipitation, it was difficult to valid whether they were characterized properly due to the data 685 

limitation. We could only infer that the simulation of melt water isotope was acceptable, by the 686 
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fact that the model performs better on the simulation of discharge and stream isotope at both 687 

outlet and internal stations, compared to the result obtained by bi-objective calibration without 688 

calibrating isotope. More data of melt water isotope would be helpful to verify the isotope 689 

simulation and estimation of CRC. 690 

5. Conclusion 691 

The value of water isotope data for aiding hydrological modeling in large mountainous 692 

catchments was tested by a set of numerical experiments in the YTR basin. Reliance of the 693 

tracer-aided model performance on the availability of input isotope data and evaluation stream 694 

water isotope data was extensively investigated in the numerical experiments. Results could 695 

provide important guidance for collecting water samples and establishing tracer-aided 696 

hydrological model in mountainous regions on the TP. Our main finds are as follows: 697 

1. In high-mountain basins where glacier meltwater samples for isotope analysis are not 698 

available, estimating isotopic composition of glacier meltwater by an offset parameter from 699 

precipitation isotope is a feasible way to force the tracer-aided hydrological model. Our test 700 

indicated that using a set of glacier meltwater δ18O that are 2‰~9‰ lower than the mean 701 

precipitation δ18O, resulted in small changes in the model performance and the quantifications 702 

of CRCs (smaller than 5%) in the YTR basin. This influence, however, is expected to change 703 

with the glacier area coverages in other mountain basins. 704 

2. Strategy of field sampling for precipitation to collect measurement precipitation δ18O 705 

merged with isoGSM product should be carefully designed. Collecting precipitation samples at 706 

sites from the same altitude tends to be worse at representing the spatial pattern of precipitation 707 

δ18O over the basin than collecting precipitation samples from sites covering a range of altitudes. 708 

Measurements of precipitation isotope at only two sampling sites covering an elevation range 709 

of 2900-6900m in the large YTR basin of 2×105 km2 can be highly valuable for precipitation 710 

isotope data merging.  711 

3. Colleting weekly stream water samples at multiple sites in the wet and warm seasons is 712 

the optimal strategy to capture more hydrological process variability for calibrating and 713 

evaluating a tracer-aided hydrological model in the YTR basin. It is highly recommended to 714 

increase the number of stream water sampling sites in the high-mountain basins rather than 715 

extending the duration of sampling period at a sole site. Benefits from extending the duration 716 

of sampling period is more visible in a small catchment but smaller in large basins, and tend to 717 

disappear when a certain duration of sampling period has been reached. 718 

 719 

Code and data availability 720 

Code and data availability. The isotope data and the code of THREW-T model used in this study 721 

are available from the corresponding author (tianfq@tsinghua.edu.cn). Other data sets and the 722 
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calibration program pySOT are publicly available as follows: DEM 723 

(http://www.gscloud.cn/sources/details/310?pid=302, last access: 1 January 2019, Geospatial 724 

Data Cloud Site, 2019), CMFD (https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 725 

Yang and He, 2019), glacier data (https://doi.org/10.3972/glacier.001.2013.db, Liu et al., 2012), 726 

NDVI (https://doi.org/10.5067/MODIS/MOD13A3.006, Didan et al., 2015), LAI 727 

(https://doi.org/10.5067/MODIS/MOD15A2H.006, Myneni et al., 2015), HWSD 728 

(https://data.tpdc.ac.cn/zh-hans/data/3519536a-d1e7-4ba1-8481-6a0b56637baf/?q=HWSD, 729 

last access: 1 January 2019, He, 2019) and the pySOT program 730 

(https://doi.org/10.5281/zenodo.569554, Eriksson et al., 2017). These data sets and programs 731 

are also referred to in the main text (Yang et al., 2010; Chen et al., 2018). 732 
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Table 1. Summary of precipitation and stream water samples in the YTR and KR catchments. 982 

Catchment (Station) Year Sampling 

period 

Precipitation  Stream 

Sample number δ
18

O
̅̅ ̅̅ ̅̅

 (‰) Std (‰) Sample number δ
18

O
̅̅ ̅̅ ̅̅

 (‰) Std (‰) 

YTR (Nuxia) 

2005 

14/Mar to 23/Oct 86 -10.33 7.18 34 -15.74 1.60 

YTR (Yangcun) 17/Mar to 05/ Oct 59 -13.17 7.10 30 -16.57 1.69 

YTR (Nugesha) 14/Mar to 22/ Oct 45 -14.29 7.99 25 -17.84 0.99 

YTR (Lazi) 06/ Jun to 22/Sep 42 -17.41 5.75 22 -16.52 1.43 

KR (Wengguo) 

2006 06/Apr to 11/Nov 24 -15.22 3.83 31 -17.35 1.68 

2007 23/Apr to 09/ Oct  39 -16.99 5.93 25 -17.30 1.01 

2010 05/May to 18/ Oct 63 -19.25 5.03 23 -17.44 1.29 

2011 28/Mar to 06/Nov 69 -13.99 5.90 32 -17.11 1.30 

2012 16/ Jun to 22/ Sep 42 -13.88 6.21 14 -17.01 0.60 

983 
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 984 

Table 2. Calibrated parameters of the THREW-T model 985 

Symbol  Unit Physical descriptions Value 

range 

nt  - Manning roughness coefficient for hillslope 0-0.2 

WM  cm Tension water storage capacity, used in Xinanjiang 

model to calculate saturation area 

0-10 

B  - Shape coefficient used in Xinanjiang model to calculate 

saturation area 

0-1 

KKA  - Coefficient to calculate subsurface runoff in Rg=KKD⋅

S⋅KS
S⋅(yS/Z)KKA, where S is the topographic slope, KS

S is 

the saturated hydraulic conductivity, ys is the depth of 

saturated groundwater, Z is the total soil depth 

0-6 

KKD  - See description for KKA 0-0.5 

T0  ℃ Temperature threshold above which snow and glacier 

melt 

-5-5 

DDFN  mm/℃/day Degree day factor for snowmelt 0-10 

DDFG  mm/℃/day Degree day factor for glacier melt 0-10 

C1  - Coefficient to calculate the runoff concentration process 

using Muskingum method: O2=C1 ⋅ I1+C2 ⋅ I2+C3 ⋅

O1+C4⋅Qlat, where I1 and O1 is the inflow and outflow at 

prior step, I2 and O2 is the inflow and outflow at current 

step, Qlat is lateral flow of the river channel, C3=1-C1-

C2, C4=C1+C2 

0-1 

C2  - See description for C1 0-1 

  986 



31 

 

Table 3. Descriptions of water sampling scenarios in the three numerical experiments. δ18OGM is the assumed glacier meltwater 987 

isotope signature and δ18OPR̅̅ ̅̅ ̅̅ ̅̅ ̅ refers to the long term mean isotope signature of precipitation. 988 

Experiment Scenarios Isotope data conditions 

Benchmark model 

running in the YTR 

basin 

BM_YTR Using assumed glacier meltwater isotope as: δ18OGM=δ18OPR̅̅ ̅̅ ̅̅ ̅̅ ̅ - 5‰ 

Using IsoGSM outputs that were merged with sample measurements of precipitation 

isotope from four sampling sites 

Using all available stream water samples in the study period to calibrate the model 

Benchmark model 

running in the KR 

catchment 

BM_KR Using all available stream water samples in the study period to calibrate the model 

Experiment 1: 

Estimate of glacier 

meltwater isotope 

G_Δ1 Assuming glacier meltwater isotope as: δ18OGM=δ18OPR̅̅ ̅̅ ̅̅ ̅̅ ̅ - 1‰ 

G_Δ3 Assuming glacier meltwater isotope as: δ18OGM=δ18OPR̅̅ ̅̅ ̅̅ ̅̅ ̅ - 3‰ 

G_Δ7 Assuming glacier meltwater isotope as: δ18OGM=δ18OPR̅̅ ̅̅ ̅̅ ̅̅ ̅ - 7‰ 

G_Δ9 Assuming glacier meltwater isotope as: δ18OGM=δ18OPR̅̅ ̅̅ ̅̅ ̅̅ ̅ - 9‰ 

Experiment 2: Site 

sampling data of 

precipitation 

isotope 

P_1station Using IsoGSM outputs merged with measurements of precipitation isotope collected 

at one station (Nuxia) in YTR 

P_2stationNY Using IsoGSM outputs merged with measurements of precipitation isotope collected 

at two stations (Nuxia and Yangcun) in YTR 

P_2stationNL Using IsoGSM outputs merged with measurements of precipitation isotope collected 

at two stations (Nuxia and Lazi) in YTR 

Experiment 3: 

Stream water 

sampling strategy 

for model 

evaluation 

RT_YTR_BM Sampling strategy: time series sampling; Sampling timing: wet season; Sampling 

frequency: weekly; Duration of sampling period: 1 year (2005): Number of 

sampling site: 1 station (Nuxia) 

RT_YTR_WholeYear Same to RT_YTR_BM, but with the sampling timing as the whole study years 

RT_YTR_Monthly Same to RT_YTR_BM, but with the sampling frequency as monthly 

RT_YTR_2year Same to RT_YTR_BM, but with the duration of sampling period as only 2 years 

(2005 and 2006) 

RT_YTR_3year Same to RT_YTR_BM, but with the duration of sampling period as only 3 years 

(2005-2007) 

RT_YTR_2station Same to RT_YTR_BM, but with the number of sampling site as 2 stations (Nuxia 

and Yangcun) 

RT_YTR_4station Same to RT_YTR_BM, but with the number of sampling site as 4 stations (Nuxia, 

Yangcun, Nugesha and Lazi) 

RS_YTR_Main Sampling strategy: spatially distributed sampling in a single field campaign; 

Location of sampling site: along the main stream 

RS_YTR_Tributary Same to RS_YTR_Main, but using stream water samples from additional sites along 

the tributaries 

RT_KR_1year Sampling strategy: time series sampling; Duration of sampling period: 1 year (2006) 

RT_KR_2year Same to RT_KR_1year, but with the duration of sampling period as 2 years (2006 

and 2007) 

RT_KR_3year Same to RT_KR_1year, but with the duration of sampling period as 3 years (2006-

2007, 2010) 

RT_KR_4year Same to RT_KR_1year, but with the duration of sampling period as 4 years (2006-

2007, 2010-2011) 

RT_KR_5year Same to RT_KR_1year, but with the duration of sampling period as 5 years (2006-

2007, 2010-2012) 
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Table 4. Contributions (%) of runoff components in the YTR basin and KR catchment 990 

estimated by different calibration variants in the benchmark scenario. 991 

Runoff 

Component 

YTR basin KR catchment 

Bi-objective 

calibration* 

Tri-objective 

calibration 

Bi-objective 

calibration 

Tri-objective 

calibration 

Rainfall 62.8 (±6.5) 70.7 (±2.5) 46.4 (±5.0) 43.9 (±1.4) 

Snowmelt 10.8 (±1.1) 12.2 (±0.4) 22.6 (±2.4) 21.4 (±0.7) 

Glacier melt 26.4 (±7.5) 17.1 (±2.9) 31.0 (±7.4) 34.6 (±2.0) 

Surface runoff 52.1 (±10.5) 44.7 (±6.7) 62.0 (±10.9) 75.1 (±3.3) 

Subsurface runoff 47.9 (±10.5) 55.3 (±6.7) 38.0 (±10.5) 24.9 (±3.3) 

*: Values in brackets refer to the standard deviation of the contribution of runoff component produced 992 

by the behavioral parameter sets. 993 
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Table 5. Benchmark parameter set and corresponding model behavior that are used to produce 995 

stream water δ18O data for model calibration in experiment 3 in YTR basin. 996 

Parameter value Model behavior 

nt 0.09 NSEdis (Nuxia,calibration) 0.87 

WM 0.92 NSEdis (Nuxia,validation) 0.80 

B 0.62 RMSESCA (calibration) 0.08 

KKA 3.22 RMSESCA (validation) 0.12 

KKD 0.14 NSEiso 0.58 

T0 1.59 NSEdis (Yangcun) 0.85 

DDFN 8.04 NSEdis (Nugesha) 0.76 

DDFG 8.28 Contribution of rainfall 70% 

C1 0.0004 Contribution of snowmelt 12% 

C2 0.075 Contribution of glacier melt 18% 

  Contribution of baseflow 56% 
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List of Figures 998 

 999 

 1000 

 1001 

Figure 1. Locations and topography of the (a) Tibetan Plateau, (b) Yarlung Tsangpo river 1002 

basin and (c) Karuxung catchment. Triangles in figure b refer to hydrometric stations and 1003 

sampling sites for precipitation and stream water isotope. Dots in figure b refer to assumed 1004 

stream water sampling locations in RD_YTR scenarios. 1005 
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 1007 

Figure 2. Uncertainty ranges and metrics values of the simulated discharge (Nuxia station), 1008 

SCA, and stream δ18O (at four stations during 2005) in the YTR basin, that were produced by 1009 

the behavioral parameter sets of a bi-objective calibration (a-c) and a tri-objective (d-f) 1010 

calibration in the benchmark model running. 1011 
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 1013 

Figure 3. Uncertainties of behavioral parameter set obtained by bi- and tri-objective 1014 

calibration methods for BM_YTR scenario in YTR basin. 1015 

  1016 



37 

 

Figure 4. Uncertainty ranges and metrics values of the simulated discharge, SCA, and stream 1017 

δ18O in the KR catchment produced by the behavioral parameter sets of a bi-objective 1018 

calibration (a-c) and a tri-objective (d-f) calibration in the benchmark model running.1019 
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 1020 

 1021 

Figure 5. Model performances in simulating discharge and SCA in the YTR basin in validation 1022 

period/station produced by the behavioral parameter sets of scenarios using different glacier 1023 

meltwater isotope inputs (experiment 1). Subplot (a) and (d) are the performances for Nuxia 1024 

streamflow and SCA simulation in validation period, respectively. Subplot (b) and (c) are the 1025 

performances for streamflow simulation in internal stations Yangcun and Nugesha, respectively. 1026 
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 1028 

Figure 6. Runoff component contributions in the YTR basin estimated by the behavioral 1029 

parameter sets of scenarios in experiment 1. 1030 
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 1032 

Figure 7. Comparisons of weighted averages of precipitation δ18O on 63 REWs in the YTR 1033 

by elevation (a) and longitude (b) in each scenario of experiment 2. 1034 
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 1036 

Figure 8. Uncertainty ranges of stream water δ18O simulations at four stations in 2005 1037 

produced by the behavioral parameter sets of each scenario in experiment 2. 1038 
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 1040 

 1041 

Figure 9. Model performances in simulating discharge and SCA validation period/station in 1042 

YTR basin produced by the behavioral parameter sets of scenarios using precipitation isotope 1043 

measurements from different sampling sites (experiment 2). Subplot (a) and (d) are the 1044 

performances for Nuxia streamflow and SCA simulation in validation period, respectively. 1045 

Subplot (b) and (c) are the performances for streamflow simulation in internal stations 1046 

Yangcun and Nugesha, respectively.  1047 
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 1048 

Figure 10. Runoff component contributions in the YTR basin estimated by the behavioral 1049 

parameter sets of scenarios in experiment 2. 1050 

  1051 



44 

 

 1052 

Figure 11. Uncertainty range and metrics values of simulated discharge at Nugesha station 1053 

produced by the behavioral parameter sets of each scenario in experiment 2. 1054 
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 1056 

Figure 12. Accuracy and uncertainty metrics of estimated CRCs in the YTR basin derived from 1057 

the different stream water sampling strategies (experiment 3). (a) for CRCs quantified under 1058 

the definition of water source and (b) for CRCs quantified under the definition of runoff 1059 

pathway.  1060 
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 1062 

Figure 13. Uncertainties of the contributions of (a) rainfall, (b) snowmelt, (c) glacier melt and 1063 

(d) baseflow in the KR catchment, estimated by scenarios with different durations of 1064 

sampling period (experiment 3). 1065 
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 1067 

Figure 14. Uncertainty metrics of estimated CRCs in the KR catchment estimated by 1068 

scenarios with different durations of sampling period. 1069 
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