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Abstract. Statistical post-processing techniques are widely used to reduce systematic biases and quantify forecast 

uncertainty in numerical weather prediction (NWP). In this study, we propose a method to correct the raw daily forecast 

precipitation by combining large-scale circulation patterns with local spatiotemporal information such as topography and 

meteorological factors. Particularly, we first use the self-organizing map (SOM) model to classify large-scale circulation 10 

patterns for each season, then build the convolutional neural network (CNN) model to extract spatial information (e.g., 

elevation, specific humidity, and mean sea level pressure) and long short-term memory network (LSTM) model to extract 

time series (e.g., t, t-1, t-2), and finally correct local precipitation for each circulation pattern separately. Furthermore, the 

proposed method (SOM-CNN-LSTM) is compared with other benchmark methods (i.e., CNN, LSTM, and CNN-LSTM) in 

the Huaihe River basin with a lead time of 15 days from 2007 to 2021. The results show that the proposed SOM-CNN-15 

LSTM post-processing method outperforms other benchmark methods for all lead times and each season with the largest 

correlation coefficient improvement (32.30%) and root mean square error reduction (26.58%). Moreover, the proposed 

method can effectively capture the westward and northward movement of the western Pacific subtropical high (WPSH), 

which impacts the basin's summer rain. The results illustrate that incorporating large-scale circulation patterns with local 

spatiotemporal information is a feasible and effective post-processing method to improve forecasting skills, which would 20 

benefit hydrological forecasts and other applications. 

1 Introduction 

Precipitation is an important component of the global water cycle and a fundamental driver of surface hydrological processes, 

such as flood and drought (Xu et al. 2022). In particular, floods generated by heavy precipitation can cause a wide range of 

costly, disruptive, and dangerous consequences (Herman and Schumacher, 2018). Accurate and reliable precipitation 25 

forecasts are vital for flood disaster warnings and water resource management. As the dominant way of precipitation 

forecasting (Bauer et al. 2015), numerical weather prediction (NWP) can provide forecast information within two weeks and 

the forecast skills continue to improve by about one day per decade. 
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However, due to the chaotic nature of the model dynamics and multisource deficiencies of the NWP models, such as 

initial condition, boundary condition errors, and model structural errors, raw forecasts usually exhibit systematic and random 30 

errors that are rapidly magnified in time (Vannitsem et al. 2021; Gneiting and Raftery, 2005). In order to reduce systematic 

biases and quantify forecast uncertainty, statistical post-processing techniques are often employed, which can be divided into 

parametric and nonparametric methods statistically (Li et al. 2022b). Classical parametric methods based on distribution 

assumptions include bayesian model averaging (BMA) (Raftery et al. 2005), ensemble model output statistics (EMOS) 

(Scheuerer and Hamill, 2015), and bayesian joint probability (BJP) (Shrestha et al. 2015). Nonparametric methods contain 35 

quantile regression (Bremnes, 2004), ensemble copula coupling (ECC) (Schefzik et al. 2013), and the schaake shuffle (SSH) 

(Clark et al. 2004), and the latter two methods can consider space-time variability and reestablish the dependence structure. 

Besides the above traditional methods, machine learning (ML) methods, with the advantages of strong self-learning ability 

and dealing with nonlinear problems, have been used in statistical post-processing in recent years (Ghazvinian et al. 2021; 

Zhang and Ye, 2021; Peng et al. 2020). Especially, these methods can calibrate the model by using a variety of predictor-40 

related characteristics as input variables. Furthermore, the recent developments in deep learning, especially the convolutional 

neural networks (CNN), have enabled it to be applied in the meteorological domain by taking into account high-dimensional 

structured spatial data (Pan et al. 2019; Veldkamp et al. 2021). For example, Li et al. (2022b) adopted the CNN model to 

correct raw forecast precipitation by considering multi-spatial information such as temperature, total column water, mean sea 

level pressure, and specific humidity. 45 

Precipitation is not only influenced by large-scale circulation systems (e.g., the western Pacific subtropical high, the South 

Asian High) but also by local topography and meteorological elements (e.g., elevation, specific humidity, and mean sea level 

pressure), their interaction together determines the location, intensity, and duration of precipitation (Liu et al. 2016; Ning et 

al. 2017). For instance, the July 2021 extraordinary rainfall events in Henan (“21·7”) happened under an abnormally strong 

northerly western Pacific subtropical high, and the topographic blocking effect from the Funiu Mountain and Taihang 50 

Mountains (Zhang et al. 2022; Zhang et al. 2021). In addition, the meteorological information from a few days ago will have 

an impact on the precipitation. However, the aforementioned post-processing methods (e.g., BMA, EMOS, and BJP) usually 

do not effectively incorporate large-scale circulation patterns with local spatiotemporal information. The self-organizing map 

(SOM) is a nonlinear cluster technique, which has been widely used to identify large-scale circulation patterns and determine 

their possible effects on local-scale precipitation and temperature (Horton et al. 2015; Loikith et al. 2017). The CNN-LSTM 55 

model can effectively combine the advantages of CNN in processing spatial information and LSTM in processing time series, 

and has been applied in precipitation fusion (Wu et al. 2020), soil moisture prediction (Li et al. 2021), and flood prediction 

(Chen et al. 2022). In this study, we aim to combine the SOM technique and CNN-LSTM model to correct the raw forecast 

precipitation and thus propose the SOM-CNN-LSTM post-processing method. First, considering the influence of large-scale 

circulation on local precipitation, we use the SOM model to classify large-scale circulation patterns in the target basin. 60 

Second, we build the CNN-LSTM model to extract spatiotemporal information (e.g., elevation, specific humidity, and mean 

sea level pressure) and correct local precipitation for each circulation pattern separately. 
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This study mainly focuses on the following three questions: (1) The effectiveness of using the SOM model for large-scale 

circulation classification. (2) Will building a SOM-CNN-LSTM model separately for each circulation pattern improve the 

quality and usefulness of precipitation forecasts? (3) Will using the CNN-LSTM model to extract spatiotemporal information 65 

enhance precipitation forecast skills? 

The rest of this paper is organized as follows. Section 2 describes the study area and datasets. Section 3 describes the 

details of the SOM model and the CNN-LSTM model. Sections 4 and 5 present the results and discussion, respectively. The 

conclusion of the current research is drawn in the last section. 

2 Study area and datasets 70 

2.1 Study area 

In this study, we choose the Huaihe River basin as the research area. The Huaihe River basin (30°55’∼36°20’N, 

111°55’∼121°20’E) is located in the east of China and has an area of 270,000 km2, including two major water systems: 

Huaihe River and Yishusi River (Fig. 1). Due to the effect of complex circulation systems, the precipitation has significant 

inter-annual differences in this area, and the annual distribution is extremely uneven. The rainfall in the flood season (June to 75 

September) accounts for about 50-75% of the annual precipitation(700mm-1600mm). The Huaihe River basin is located at 

the boundary of the north and south climate, and the monsoon climate is very prone to heavy rains or plum rains, which can 

cause floods. Therefore, accurate precipitation forecast is critical to decision-making and disaster prevention (Liu et al. 2013). 

2.2 Datasets 

In this study, we choose the CN05.1 dataset as the standard precipitation data. The CN05.1 dataset is constructed based on 80 

over 2400 observing stations following the ‘anomaly approach’, which is a spatial resolution of 0.25° × 0.25° (Wu and Gao, 

2013). We select the daily precipitation from 2007 to 2021 for calibrating and validating the forecast dataset. 

TIGGE (THORPEX Interactive Grand Global Ensemble) database collects ensemble forecasts generated by thirteen 

numerical weather prediction (NWP) centers (Bougeault et al. 2010), such as European Centre for Medium-Range Weather 

Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) and China Meteorological Administration 85 

(CMA). ECMWF consists of one control forecast and 50 perturbed forecasts generated by perturbed initial conditions, with a 

spatial resolution of 0.5° × 0.5°. Previous studies have compared the performance of different TIGGE products and 

suggested that ECMWF outperforms other products in most cases (Hamill, 2012; Huang and Luo,2017; Li et al. 2022a). 

Therefore, in this study, we use the ECMWF dataset and download a 51-member ensemble forecast of precipitation for the 

lead time of 15 days initialized at 00UTC every day. We choose meteorological factors and topography as predictors. 90 

Meteorological factors include mean sea level pressure, U and V components of wind at 500/850/1000 hPa, 10 m U and V 

wind components, and specific humidity at 500/850/1000 hPa. Among them, humidity can reflect the water vapor 

availability, sea level pressure and wind components can reflect the moisture transport (Li et al. 2020). We also use elevation 
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to represent the topography, which is downloaded from the Geospatial Data Cloud of China and further extracted by ArcGIS 

software. Considering that the ensemble means usually contain most of the information in the ensemble forecast, we only use 95 

the 51-member mean for all predictors. The above predictors are resampled to 0.25° with the bilinear interpolation technique. 

Besides, 500 hPa geopotential height anomalies with a lead time of 15 days are selected to describe the large-scale 

circulation patterns. Forecast precipitation, meteorological factors, and 500 hPa geopotential height are from the forecast 

dataset of ECMWF and can be downloaded from the following website: https://apps.ecmwf.int/datasets/data/tigge. 

 100 

Figure 1 Overview of the topography and rivers in the Huaihe River basin 

3 Methodology 

Fig. 2 presents a flowchart of the proposed SOM-CNN-LSTM post-processing methodology for ECMWF forecasting 

precipitation. First, we adopt the SOM model to get the large-scale circulation patterns over the Huaihe River basin for each 

lead time. Second, at each lead time, we build a CNN-LSTM model for each circulation pattern separately to correct local 105 

precipitation. Due to the significant seasonal difference in ECMWF raw forecast precipitation skills, we build statistical 

postprocessing models for each season separately. Details about the SOM and CNN-LSTM models will be presented in 

Sections 3.1 and 3.2, respectively. Section 3.3 presents the experimental design and statistical metrics. 
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Figure 2 The flowchart of the SOM-CNN-LSTM method. The 500 hPa-gha stands for the daily 500 hPa geopotential height 110 

anomalies; 1000-u stands for the U component of wind at 1000 hPa;1000-sh stands for the specific humidity at 1000 hPa; 

The pressure stands for mean sea level pressure. Others and so on 

3.1 SOM model 

The Self-organizing map (SOM) is an unsupervised neural network first introduced by Kohonen (1990) and makes no a 

priori assumptions about the data, which is more practical and robust than principal component analysis (PCA) or empirical 115 

orthogonal functions (EOFs) in circulation classification (Wang et al. 2019; Zhou et al. 2020). To represent daily large-scale 

circulation patterns over the Huaihe River basin, we use the daily 500 hPa geopotential height anomalies over the domain 

95–135°E, 12–53°N as input for the SOM model and circulation pattern in each lead time is different. The larger domain is 

selected to consider the influence of multiple circulation agents on precipitation (Zhou et al. 2020). The 500 hPa geopotential 

height is chosen because it provides valuable information for diagnosing weather conditions in the low-level atmosphere. On 120 

the other hand, it plays a central role in controlling synoptic dynamics (Ford et al. 2015; Wang et al. 2022). The calculation 

formula of 500 hPa geopotential height normalized anomaly can be expressed as: 

⟨𝑍⟩ =
𝑍−Z𝑚𝑒𝑎𝑛

𝜎𝑍
cos𝜙⁡                                                                                                                                                                    (1) 

Where 𝑍 is 500 hPa geopotential height, Z𝑚𝑒𝑎𝑛  is the mean 500 hPa geopotential height over the quarterly average of all data, 

𝜎𝑍is the standard deviation,⁡𝜙 is the latitude. The cosine-latitude(⁡cos𝜙) is adopted to account for area differences across the 125 

grid points(Loikith et al. 2017; Mechem et al. 2018). 

The SOM nodes are the clustered large-scale circulation patterns, which need to be determined before implementing the 

SOM model. A fewer number of nodes in the SOM array cannot capture specific circulation patterns while a greater number 
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of nodes will produce redundant circulation patterns that are similar. Therefore, choosing the optimal SOM node is critical. 

In this study, we have tested several SOM arrays by quantization and topological errors, including 2×2, 2×3, 2×4, 3×4 nodes, 130 

and found that 6 distinctive circulation patterns with 2×3 configuration can provide enough details for physical interpretation 

and satisfactorily describe the variations of the synoptic situations in Huaihe River basin. In this study, the SOM analysis is 

performed mainly using the Python miniSOM library (Vettigli, 2021), and the corresponding optimal parameters are 

summarized in Table 1. 

Table 1 SOM optimal parameters in this study 135 

SOM optimal parameters Value 

Sigma 0.5 

Learning_rate 0.05 

Neighborhood_function gaussian 

Random_seed 5 

Train_batch 10000 

3.2 CNN-LSTM model 

CNN has the advantage of extracting distinctive spatial features from images and LSTM has the ability to deal with temporal 

series data (Shen, 2018; LeCun et al. 2015). Considering that the precipitation is influenced by the surrounding topography, 

the weather state of the current day and the previous days, we develop a spatiotemporal deep neural network model by 

combining CNN and LSTM. We build the model in the following steps: 140 

1. Data preparation. Taking summer precipitation as an example, first, each predictor is normalized to reduce the influence 

of different dimensions by min-max normalization. Second, we use the normalized data to construct input arrays with 

dimensions of (508*1380)×14×5×5×3, where 508 represents the number of precipitation grids in the basin, 1380 represents 

the number of summer days, 14 is the number of predictors(Table 2), 3 represents the time dimension(i.e., t, t-1, t-2), and for 

each grid, a 5 × 5 sub-grids(about 125km×125km) centered on it is extracted to fully consider the spatial information (Fig. 145 

S4). Third, in order to build models separately for each circulation pattern, we divide the input arrays into 6 groups based on 

the SOM results.  

2. CNN model construction. Convolutional neural network (CNN) has been widely used in image recognition, object 

detection, and precipitation forecasting. It can extract more abstract features from the original image through a simple 

nonlinear model, avoiding the complex feature extraction process. As shown in Fig. 2, the CNN model includes an input 150 

layer with dimensions of 14×5×5, two convolutional layers, and a flattening layer. The convolution layer can extract 

informative local features from the input layer, and the flattening layer converts the matrix into a one-dimensional feature 

vector that is used as the input to the LSTM layer (Amini et al. 2022). Among them, the kernel size of the first convolutional 

layer is set to 32× 3 × 3, where 32 is the output channel number, and 3 × 3 is the size of the kernel. To avoid overfitting and 

accelerate the training, batch normalization is applied to convolution layers (Pan et al. 2019). 155 
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3. LSTM model construction. The Recurrent Neural Network (RNN) is a kind of neural network for processing sequence 

data, which can mine time series and semantic information from data. As a special RNN model, the long short-term memory 

network (LSTM) can overcome the vanishing and exploding gradient problems (Hochreiter and Schmidhuber, 1997). 

Besides, the interactive operation among the input gate, output gate and forget gate in LSTM enables the model to solve the 

long-term dependency problem (Huang and Kuo, 2018). As shown in Fig. 2, the LSTM model includes an input layer where 160 

the data comes from the output of the CNN, a bidirectional LSTM layer with 16 hidden units, and a fully connected layer. 

Considering the impact of previous meteorological information on the precipitation, the input of the LSTM model not only 

includes the data of the current day but also two days ago (i.e., t-1, t-2).  

We select the Python package Pytorch as the framework of the above models, and the NVIDIA A5000 GPU (Graphics 

Processing Unit) to accelerate model training. The hyperparameters of models, such as learning rate, epochs, and batch size, 165 

are determined by the trial-and-error method. Furthermore, the above models are trained with the Adam optimization 

algorithm (Kingma and Ba, 2014). 

Table 2 The predictors in this study 

ID Variable name Abbreviation 

1 Specific humidity(500hPa) 500-sh 

2 Specific humidity(850hPa) 850-sh 

3 Specific humidity(1000hPa) 1000-sh 

4 U component of wind(500hPa) 500-u 

5 U component of wind(850hPa) 850-u 

6 U component of wind(1000hPa) 1000-u 

7 V component of wind(500hPa) 500-v 

8 V component of wind(850hPa) 850-v 

9 V component of wind(1000hPa) 1000-v 

10 10 metre U wind component surface-u 

11 10 metre V wind component surface-v 

12 Surface pressure pressure 

13 elevation elevation 

14 Total Precipitation precipitation 

 

3.3 Experimental design and statistical metrics 170 

To answer the three questions in the introduction, we compare the SOM-CNN-LSTM method with three other benchmark 

methods including CNN, LSTM, and CNN-LSTM. The design differences of the four methods are shown in Table 3. Among 

them, the CNN-LSTM method is used to illustrate the effectiveness of circulation classification, while the CNN and LSTM 
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methods are used to illustrate the importance of the incorporation of temporal and spatial information. Besides, the 

precipitation forecast skill continuously decreases with increasing lead times, so we build the post-processing method for 175 

each lead time separately. This means that only for the SOM-CNN-LSTM method, we need to build 15 × 6 × 4 = 360 models, 

where 15 represents the number of lead times, 6 represents the number of circulation patterns, and 4 represents different 

seasons. Therefore, to improve work efficiency, we first filter out the optimal parameter combination for one model and then 

adjust other model parameters based on that. In addition, each season has different training samples (Table 4) and we use 

four-fold cross-validation to calibrate and evaluate the model accuracy. For four-fold cross-validation, the 15 years of 180 

datasets are randomly grouped into four groups, and one group of datasets is selected as validation data while the other 

groups of datasets are used as the training data to fit the statistical post-processing models (i.e., SOM-CNN-LSTM, CNN, 

LSTM, and CNN-LSTM). This step will be repeated four times until all datasets are used for validation. 

Table 3 Experiment design of different methods 

Methods Circulation patterns Spatial information Temporal information 

SOM-CNN-LSTM Included Included Included 

CNN Included Included Not included 

LSTM Included Not included Included 

CNN-LSTM Not included Included Included 

Table 4 Training samples of different seasons 185 

Season Months Total days Total grids Training samples 

Spring Mar, Apr, May 1380 508 701040 

Summer Jun, Jul, Aug 1380 508 701040 

Autumn Sep, Oct, Nov 1365 508 693420 

Winter Dec, Jan, Feb 1354 508 687832 

To evaluate the performance of the post-processing results, three statistical metrics are selected, including root mean 

square error (RMSE), correlation coefficient (CC), and relative bias (RB). 

𝑅𝑀𝑆𝐸 = √
∑  𝑛
𝑖=1 (𝑃𝑖−𝑂𝑖)

2

𝑛
                                                                                                                                                               (2)   

𝐶𝐶 =
∑  𝑛
𝑖=1 (𝑃𝑖−𝑃̅)(𝑂𝑖−𝑂̅)

√∑  𝑛
𝑖=1 (𝑃𝑖−𝑃̅)

2×√∑  𝑛
𝑖=1 (𝑂𝑖−𝑂̅)

2
                                                                                                                                                  (3) 

𝑅𝐵 =
∑  𝑛
𝑖=1 (𝑃𝑖−𝑂𝑖)

∑  𝑛
𝑖=1 𝑂𝑖

                                                                                                                                                                         (4) 190 

Where 𝑃𝑖  and 𝑂𝑖  represent simulated and observed precipitation at the 𝑖th point, respectively; 𝑃̅ and 𝑂̅ denote the average 

simulated and observed precipitation, respectively; 𝑛⁡is the number of samples. 
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4 Results 

4.1 Linkages between large-scale circulation patterns and precipitation 

Fig. 3 presents six large-scale circulation patterns at the lead time of 1 day in the summer of 2007-2021. It can be seen that 195 

the SOM model can well capture the key atmospheric circulation of the western Pacific subtropical high (WPSH) that affects 

the summer precipitation in eastern China (Zhou et al. 2020). For WPSH, pattern CP1 exceeds 30°N in the eastern zone of 

the Huaihe River basin, pattern CP4 extends westward to 113°E and reaches the southeast zone of the basin, while pattern 

CP3 is in the southeast zone of the basin and is located around 20°N. From the perspective of geopotential height anomalies, 

patterns CP2, CP3, CP5, and CP6 have similar features, with negative (positive) 500 hPa geopotential height anomalies to 200 

the north (south) of the basin, while CP1 and CP4 have positive anomalies in the entire basin. 

To further characterize the relationship between circulation patterns and precipitation, we calculate the percent of each 

circulation pattern, the percent of rainy days, and the percent of precipitation contribution, which can be seen in Table 5. In 

general, CP1 and CP4 are frequent circulation patterns, and they contribute most to total summer precipitation, exceeding 

40%. In contrast, CP3 has the lowest frequency (11.09 %) with a small contribution to precipitation (only 4.96 %). Besides, 205 

precipitation is more likely to occur in CP1(76.70 %) and CP4(75.86 %), although it can occur in any circulation pattern. 

The above results show that the change of WPSH (moving westward and expanding northward) exerts considerable impacts 

on precipitation in the Huaihe River Basin. On the other hand, it also indirectly confirms the effectiveness of the circulation 

classification.  

Considering precipitation mainly occurs in summer, we only take this season as an example to analyze the results of large-210 

scale circulation patterns and its statistical relationship with precipitation. The results of other seasons are shown in 

Supplement. 
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Figure 3 Circulation patterns at the lead time of 1 day in the summer of 2007-2021. The bold blue line (5880 gpm) is the 

characteristic position of WPSH; The red rectangle represents the scope of the Huaihe River basin; The colored shading 215 

stands for the geopotential height anomalies at 500 hPa; The numbers for each circulation pattern are shown in the upper 

right corner. 

Table 5 Contribution of different circulation patterns(CPs) to summer precipitation at the lead time of 1 day during 2007-

2021 

Category CP1 CP2 CP3 CP4 CP5 CP6 

CPs days 279 222 153 290 230 206 

Precipitation days 214 149 61 220 162 117 

Total precipitation(mm) 1685 1360 372 1795 1334 957 

Percent of CPs days(%) 20.22 16.09 11.09 21.01 16.67 14.92 

Percent of rainy days(%) 76.70 67.12 39.87 75.86 70.43 56.80 

Percent of precipitation 

contribution(%) 
22.46 18.13 4.96 23.92 17.78 12.75 
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4.2 Overall performance of different post-processing methods 220 

Fig. 4 shows the values of CC for different post-processing methods (i.e., SOM-CNN-LSTM, CNN, LSTM, CNN-LSTM) 

over 1-15 lead days during spring, summer, autumn, and winter. Overall, for each lead day and season, the four methods 

generally perform better than the raw forecasts. For example, the CC of the four methods ranges from 0.05 to 0.78, increased 

by an average of 18.69% compared with the raw forecasts. Particularly, the SOM-CNN-LSTM method performs best, 

followed by CNN-LSTM, CNN, and LSTM. For instance, compared with the raw forecasts, the CC values of the SOM-225 

CNN-LSTM method increase by an average of 32.30%, followed by 16.90%(CNN-LSTM), 13.42%(CNN), and 

12.15%(LSTM).  

As shown in Fig. 5, the raw forecasts have a relatively higher RMSE, once the four post-processing methods are applied, 

RMSE values of the four seasons are largely decreased. Once again, the SOM-CNN-LSTM method exhibits the preferable 

performance with the lowest RMSE. For example, compared with the raw forecasts, the RMSE of the SOM-CNN-LSTM 230 

method decreases by an average of 26.58%, followed by 23.64%(CNN-LSTM), 22.16%(CNN), 21.86%(LSTM). 

The relative bias (RB) of the four post-processing methods is shown in Fig. 6. Similar to the above results, the SOM-

CNN-LSTM method has the lowest RB. Taking summer precipitation as an example, the average RB of the SOM-CNN-

LSTM method is 1.83%, CNN-LSTM is 2.12%, CNN is 2.35%, and the LSTM is 2.40%, while the average RB of the raw 

forecasts is highest, reaching 2.6%, which further illustrates that the SOM-CNN-LSTM method outperforms other methods. 235 

Besides, forecast precipitation is overestimated in spring, summer and winter, and underestimated in autumn. For example, 

for the optimal SOM-CNN-LSTM method, precipitation is overestimated by 11.12% in spring, 1.83% in summer, 11.42% in 

winter, and underestimated by 4.17% in autumn. Particularly, the underestimation of the SOM-CNN-LSTM method is 

especially visible during the fourth lead time of summer and autumn, exceeding 15 %.  

From the above results of three statistical metrics, the proposed SOM-CNN-LSTM post-processing method outperforms 240 

the no-circulation-pattern method (CNN-LSTM), the no-temporal information method (CNN), and the no-spatial information 

method (LSTM) at all lead times and each season, indicating that incorporating large-scale circulation patterns with local 

spatiotemporal information (e.g., elevation, specific humidity, and mean sea level pressure) can improve forecast skills. 

We further adopt the CC, RMSE, and RB to compare the correction skills of the optimal SOM-CNN-LSTM method in 

different seasons and lead times. As shown in Fig. 7(a) and 7(c), the values of CC(RMSE) continuously decrease(increase) 245 

with increasing lead times, which indicates the precipitation forecast skill has deteriorated over time. Taking 0.4 as the limit 

of CC, the effective lead time is 9 days in winter, 7 days in spring and autumn, and only 3 days in summer. In addition, 

winter forecast precipitation has the highest CC and lowest RMSE, followed by spring, autumn, and summer. However, 

winter precipitation has a larger RB compared with other seasons (Fig. 7(e)), the reason is that a small deviation may lead to 

a large relative bias. The above results indicate that winter forecast precipitation performs better than other seasons, 250 

especially in summer, which is consistent with previous studies (Buizza et al. 1999). As shown in Fig. 7(b) and 7(d), the 

improvement of CC(RMSE) is highest in summer with an average of 0.09(1.78), followed by 0.07(0.60) in autumn, 
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0.06(0.60) in spring, and 0.05(0.32) in winter, indicating that the SOM-CNN-LSTM method has better correction skills in 

summer. The further comparison reveals that, while the precipitation forecast performance in winter is superior, the 

corrective ability is weaker. Although the summer precipitation forecast performance is not as good as the winter, it displays 255 

superior correction skills. 

Since the above results show that the SOM-CNN-LSTM method has the best performance, we only use it to analyze the 

spatial correction skills. The first two columns in Fig. 8 show the spatial distribution of CC for the SOM-CNN-LSTM 

method and raw forecasts at the lead time of 1 day, revealing the significant seasonal differences in CC. For instance, for 

most regions of the Huaihe River basin, winter raw forecasts have the highest CC (0.55-0.75), followed by autumn (0.45-260 

0.71), spring (0.42-0.68), and summer (0.40-0.60), and this trend remains unchanged after SOM-CNN-LSTM correction. 

The third column indicates that the CC values exhibit improvement in all seasons for most regions of the basin after bias 

correction. Particularly, most regions in summer and the midlands in autumn show the better correction skill (Fig. 8f and 8i), 

whereas south and northwest of the basin in spring generally show a poorer performance (Fig. 8c), and winter has the lowest 

improvement of CC. In addition, all seasons have relatively poor correction skills in the northwest, which may be related to 265 

the higher topography in the region. The spatial distribution of the RMSE is similar to Fig. 8, which are shown in 

Supplement (Fig. S5). 
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Figure 4 Correlation coefficient (CC) of different methods over 1-15 lead days in 4 seasons. 
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 270 

Figure 5 Root mean square error (RMSE) of different methods over 1-15 lead days in 4 seasons. 
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Figure 6 Relative bias (RB) of different methods over 1-15 lead days in 4 seasons. 
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 275 

Figure 7 (a) CC, (c) RMSE, and (e) RB of SOM-CNN-LSTM method over 1-15 lead days during spring, summer, autumn, 

and winter. The second column is the (b)improvement (IM) of CC, (d) RMSE, and (f) RB relative to raw forecasts. 
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Figure 8 Spatial distributions of the CC for SOM-CNN-LSTM method and raw forecasts at the lead time of 1 day. The third 280 

column is the improvement of CC in spring, summer, autumn and winter. 

4.3 Evaluation of inter-annual and different precipitation intensities in Summer 

4.3.1 Inter-annual assessment of different methods 

In the previous section, we mainly focus on analyzing the overall and spatial forecast skills of different post-processing 

methods. The forecast skills of precipitation in the time dimension may be also different. Therefore, in this subsection, we 285 

take the summer precipitation as an example to analyze the annual forecast skills of different methods. Fig. 9 presents the RB 

of four methods for each summer over 1-15 lead days during 2007-2021. Overall, for each year and most lead times, the 
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SOM-CNN-LSTM method performs best with the lowest RB, lowest RMSE (Fig. S7), and highest CC (Fig. S8). In addition, 

there are significant inter-annual differences in the forecast performance. For example, precipitation of all four methods is 

significantly underestimated for most lead times in 2018, 2019, and 2021, and overestimated in 2009, 2011, and 2012. 290 

Furthermore, when the lead time exceeds 12 days, forecast precipitation is overestimated in most years, especially in 2013 

and 2014. This significant interannual difference may be related to large-scale circulation configuration. Besides, forecast 

precipitation has larger biases in 2007, 2020 and 2021compared with other years (Fig. S7), and the CC is below 0.4 in most 

years when the lead time exceeds three days (Fig. S8). 

 295 
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Figure 9 RB of different methods for each summer over 1-15 lead days from 2007 to 2021. The “*” indicates the best 

method with the lowest RB for each lead time. 

4.3.2 Performance under different precipitation intensities 

We further investigate the performance of four post-processing methods at different intensities, namely 0-1, 1-5, 5-10, 20-40, 300 

and >=40 mm/d, corresponding to no rain, light rain, moderate rain, heavy rain, and violent rain, respectively (Zambrano-

Bigiarini et al. 2017). Considering that precipitation mainly occurs in summer, we take the season as an example for analysis. 

As shown in Fig. 10, the values of RMSE for all post-processing methods are lower than raw forecasts at different 

precipitation intensities, especially for no rain, light rain, and moderate rain events, which indicates that the four post-

processing methods can reduce the bias and significantly improve the forecast skills. Clearly, the SOM-CNN-LSTM method 305 

achieves better scores than other methods in terms of the lowest RMSE. For example, compared with the raw forecasts, the 

RMSE values of the SOM-CNN-LSTM method in moderate rain events (Fig. 10c) decrease by an average of 39.70%, 

followed by 36.02% (CNN-LSTM), 34.95% (CNN), and 33.91% (LSTM). For heavy and violent rain events, the SOM-

CNN-LSTM method has relatively better performance under lead times ranging from 1 to 7 days, with the RMSE decreasing 

by 14.85% and 3.05%, respectively, whereas the advantage is no longer obvious when the lead time exceeds 7 days, the 310 

values of RMSE only decrease by 5.4% and 2.34% respectively. We can also get the similar conclusion from the CC and RB 

(Fig. S9 and S10). The reason is that the accuracy of forecast skills decreases with increasing lead times, and on the other 

hand, few violent rain events cannot provide enough training samples for deep learning models. In addition, there is a large 

RB between for both no rain and light rain (Fig. S9), which may be due to a small deviation leading to a large relative bias.  
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 315 

Figure 10 RMSE of different methods over 1-15 lead days in summer at different intensities of (a) no rain, (b) light rain, 

(c)moderate rain, (d) heavy rain, and (e) violent rain. 

5 Discussion 

Raw precipitation forecasts usually exhibit systematic and random errors due to the initial condition, boundary condition 

errors, and model structural errors from NWP. Prior work has documented the effectiveness of statistical post-processing 320 

techniques in reducing these biases and improving the accuracy of NWP. For instance, Scheuerer and Hamill (2015) 

presented a parametric post-processing method by fitting censored, shifted gamma distributions to access the conditional 
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distribution of observed precipitation, which can significantly improve forecast skills. Particularly, for Huaihe River basin, 

Tao et al. (2014) adopted the ensemble pre-processor (EPP) method to calibrate the TIGGE multimodel ensemble forecast 

precipitation and Li et al. (2022b) adopted the CNN model to correct raw forecast precipitation by considering multi-spatial 325 

information. Although the above results show that post-processed precipitation forecasts have substantial improvement over 

the raw forecasts, these traditional post-processing methods overlook the influence of large-scale circulations and 

spatiotemporal information on precipitation. To overcome the problem, we propose the SOM-CNN-LSTM post-processing 

method. We compare the method with other benchmarks, including CNN, LSTM, and CNN-LSTM methods. The findings of 

this research are as follows.  330 

Firstly, the SOM model can well capture the westward and northward movement of the WPSH, the primary circulation 

system influencing summer precipitation in eastern China, suggesting the effectiveness of circulation classification using 

SOM. The SOM-CNN-LSTM method performs better than the CNN-LSTM method in terms of three statistical metrics, 

indicating the effectiveness of considering the large-scale circulation patterns to correct the forecast precipitation. Secondly, 

the SOM-CNN-LSTM method performs better than CNN and LSTM methods, which indicates that considering both 335 

temporal and spatial information can improve forecast skills.  

There are a growing number of deep learning models for statistical post-processing of numerical weather prediction, such 

as CNN (Pan et al. 2019) and ConvLSTM (Shi et al. 2015). The highlight of our work is the effective combination of the 

advantages of CNN for spatial data and LSTM for time series. On the other hand, through circulation classification, the 

effective information of the large-scale circulation pattern (i.e., westward and northward movement of the WPSH) is subtly 340 

integrated into the deep learning model. 

However, some limitations still need to be further studied. Firstly, we primarily use 500 hPa geopotential height for 

circulation classification, more circulation variables such as column-integrated moisture fluxes (Zhang et al. 2022), sea level 

pressure (Loikith et al. 2017), and vertical velocity (Schlef et al. 2019), can also be used to represent the large-scale 

circulation patterns. Particularly, persistence and/or transitioning of circulation patterns may influence the local precipitation, 345 

which can be incorporated into the post-processing frame (Roller et al. 2016). Secondly, the SOM-CNN-LSTM method has 

relatively poor performance in heavy and violent rain when the lead time exceeds 7 days, which can be attributed to the 

limited violent rain samples training the model. Therefore, more studies on how to improve the forecast skills of violent rain 

should be carried out (Chen and Wang, 2022; Li et al. 2018). Thirdly, the spatiotemporal deep neural network can 

significantly improve the precipitation forecast skills, however, as a black box model, interpretability and understanding 350 

have been seen as potential weaknesses (Guidotti et al. 2019; Reichstein et al. 2019), meaning that we cannot understand 

how these predictors (e.g., elevation, specific humidity, and mean sea level pressure) affect the precipitation process. It will 

be valuable to consider interpretability in post-processing. 
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6 Conclusion 

In this study, we propose the SOM-CNN-LSTM statistical post-processing method that combines large-scale circulation 355 

patterns with local spatiotemporal information to correct the raw ECMWF forecast precipitation over 1–15 lead days in the 

Huaihe River basin from 2007 to 2021. The proposed method is systematically evaluated with other benchmark methods (i.e., 

CNN, LSTM, and CNN-LSTM) in terms of root mean square error, correlation coefficient, and relative bias, and is also 

evaluated from space-scale, time-scale, and intensity. The main conclusions of the study are as follows: 

(1) The SOM model can effectively classify the large-scale circulation patterns over the Huaihe River basin. Particularly, 360 

the SOM can well capture the westward and northward movement of the western pacific subtropical high, and the 

corresponding circulation patterns CP1 and CP4 contribute the most to the total summer precipitation, exceeding 40%. 

(2) The proposed SOM-CNN-LSTM post-processing method outperforms the no-circulation-pattern method (CNN-

LSTM), the no-temporal information method (CNN), and the no-spatial information method (LSTM) at all lead times and 

each season, and the optimal method has the largest correlation coefficient improvement (32.30%) and root mean square 365 

error reduction (26.58%). The results indicate incorporating large-scale circulation patterns with local spatiotemporal 

information can improve forecasting skills. 

(3) There are significant seasonal and inter-annual differences in the forecast skills of precipitation. Winter precipitation 

has better forecast skills than summer, whereas summer precipitation has better correction skills than winter. Summer 

precipitation is significantly underestimated in 2018, 2019, and 2021, and overestimated in 2009, 2011, and 2012. 370 

Furthermore, when the lead time exceeds 12 days, forecast precipitation is overestimated in most years, especially in 2013 

and 2014. 

(4) The SOM-CNN-LSTM method also performs best for different precipitation intensities. Particularly, for heavy and 

violent rain events, the SOM-CNN-LSTM method has relatively better performance under lead times ranging from 1 to 7 

days, whereas the advantage is no longer obvious when the lead time exceeds 7 days, which can be attributed to the limited 375 

precipitation samples for training the model. 

In summary, this study provides a feasible and effective post-processing method to improve precipitation forecasting skills, 

which would benefit hydrological forecasts and other applications. 
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authors on request. 385 
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