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Abstract. Drought is a devastating natural disaster, where water shortage often manifests itself in the health of vegetation.

Unfortunately, it is difficult to obtain high-resolution vegetation drought impact, which is spatially and temporally consistent.

While remotely sensed products can provide part of this information, they often suffer from data gaps and limitations in

spatial or temporal resolutions. A persistent feature among remote sensing products is tradeoffs between spatial resolution and

revisiting times, where high temporal resolution is met by coarse spatial resolution and vice verse. Machine learning methods5

have been successfully applied in a wide range of remote sensing and hydrological studies. However, global applications to

resolve drought impacts on vegetation dynamics still need to be made available, while there is significant potential for such a

product to aid improved drought impact monitoring. To this end, this study predicted global vegetation dynamics based on the

Enhanced Vegetation Index (evi) and the popular Random Forest algorithm (RF) at 0.1◦. We assessed the applicability of RF

as a gap filling and downscaling tool to generate spatial and temporal consistent global evi estimates. To do this, we trained10

an RF regressor with 0.1◦ evi data using a host of features indicative of water and energy balances experienced by vegetation

and we evaluated the performance of this new product. Next, to test whether the RF is robust in terms of spatial resolution,

we downscale global evi, the model trained on 0.1◦ data is used to predict evi at 0.01◦ resolution. The results show that the

RF can capture global evi dynamics at both the 0.1◦ (RMSE: 0.02 - 0.4) and at the finer 0.01◦ (RMSE: 0.04 - 0.6) resolution.

Overall errors were higher in the down-scaled 0.01◦ compared to the 0.1◦ product. Yet, relative increases remained small,15

thus demonstrating that RF can be used to create downscaled and temporally consistent evi products. Additional error analysis

reveals that errors vary spatiotemporally, with underrepresented landcover types and periods of extreme vegetation conditions

having the highest errors. Finally, this model is used to produce global spatially continuous evi products at both the 0.1◦ and

0.01◦ spatial resolution for 2003-2013 at an 8-day frequency.

1 Introduction20

The impacts of natural hazards are felt on a local scale, but creating impactful risk management strategies requires a global

view on the impacts and driving processes (Ward et al., 2020). Given its complex and multivariate nature, a global perspective

is especially necessary when considering drought hazards and their impacts. Drought is one of the most disruptive natural

hazards, causing negative repercussions on the environment, economy, and society, which can affect large areas and populations

(Naumann et al., 2014; Vereinte Nationen, 2021). However, a universal definition of what constitutes a drought event remains25
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elusive, and as a result, we lack a comprehensive understanding of the direct and indirect effects of drought on the environment

and soceity (Blauhut et al., 2016; Vogt et al., 2018; Sutanto et al., 2019). Remotely sensed products that monitor earth system

responses during drought periods are one promising tool that can enable a global perspective on linking drought hazards and

their impacts (AghaKouchak et al., 2015; West et al., 2019). However, they suffer from trade-offs between spatial and temporal

resolution, where we either have high-resolution low frequency products or vice versa. The production of high-resolution30

spatially continuous products can facilitate a more holistic view of drought responses and management by incorporating more

relevant fine-scale processes (Chen et al., 2022; Schneider et al., 2017).

Vegetation is involved in numerous drought-impact pathways and using remote sensing to track vegetation responses has

been widely used (Zhang et al., 2021b; AghaKouchak et al., 2015). Drought disrupts terrestrial water and carbon cycles,

which can reduce the integrity of ecosystem dynamics and associated ecosystem services (Banerjee et al., 2013; Crausbay35

et al., 2017; Han et al., 2018; Smith et al., 2020). More subtlely, vegetation also affects the dynamics of drought propagation;

Under favourable antecedent conditions, vegetation overshoot may exacerbate and facilitate the onset of rapid and intense

droughts (Zhang et al., 2021b). Vegetation is also expected to play a crucial role in shaping drought resistance under future

climate change (Vereinte Nationen, 2021). In the absence of such resistance, interventions to alleviate the negative impacts of

disrupted ecosystem services can cost up to a billion dollars per drought event (Banerjee et al., 2013; Cammalleri et al., 2020).40

It follows that formulating appropriate responses to drought and alleviating the negative effects of ecosystem disruption during

these periods requires accurate predictions.

In recent decades, numerous satellite-based vegetation indices have been developed (Li et al., 2021a). For example, the

Enhanced Vegetation Index (evi), have proven to be an indispensable tool for monitoring vegetation at multiple scales, from

the fine scale, such as crop patches (Moussa Kourouma et al., 2021; Sharifi, 2021) to the global scale (Huang et al., 2021;45

Vicente-Serrano et al., 2010). However, a persistent feature among these products are trade-offs between spatial resolution

and revisiting times, where high temporal resolution is met by coarse spatial resolution and vice verse. For example, the

Moderate Resolution Imaging Spectroradiometer (MODIS) captures the entire Earth with a high temporal resolution every 1

to 2 days (Zhao and Duan, 2020) with a maximum resolution of 250 m. Landsat and Sentinel-2 data have a higher spatial

resolution, 10 and 30 m, but longer revisiting times of approximately 10 and 5 days, respectively (Zhu, 2017; Li et al., 2021a).50

Revisiting times for Landsat and Sentinel-2 are further prolonged when sensors or retrievals are interrupted by cloud cover,

pollution in the atmosphere, or even technical issues. In addition to temporal frequency, temporal coverage is another important

consideration. Coarser scale products are associated with older satellites and have more extended temporal coverage than the

newer ones; MODIS products reach as far back as 1999 whereas Sentinel-2 products only go back to 2017. The ideal product

for monitoring vegetation dynamics would have global coverage, little to no data gaps, and high spatial and temporal resolution.55

Machine learning (ML) methods have been used for downscaling and gap filling purposes in remote sensing products and

can be seen as one tool that can lead to the production of high-quality remote sensing products and thus alleviate the limitations

around resolution and coverage current products exhibit (Zhu et al., 2022; Zeng et al., 2013). ML methods have been success-

fully applied to a wide range of drought-related (Hauswirth et al., 2021; Shamshirband et al., 2020; Tufaner and Özbeyaz,

2020; Shen et al., 2019; Das et al., 2020; Hauswirth et al., 2022) and remotely detected vegetation studies (Roy, 2021; Li et al.,60
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2021b; Reichstein et al., 2019). Compared to conventional statistical downscaling techniques, ML is considered the superior

alternative; given that no strict statistical assumptions are required, complex and non-linear relationships are well captured and

provide high precision (Ebrahimy et al., 2021).

One ML algorithm that has been widely applied for gap filling and downscaling in remote sensing data is the Random Forest

Regressor (RF) (Zhang et al., 2021a; Fu et al., 2022; Liu et al., 2020; Wang et al., 2022). Gap-filling can achieved by training a65

RF on available data and then use the model to predict values where data is sparse or missing (Wang et al., 2022). Using RF to

downscale data involves establishing an RF at a coarse scale and predicting targets at finer resolutions by feeding the algorithm

with high-resolution auxiliary data (Liu et al., 2020). These studies have highlighted that ML methods can accurately predict

the dynamics of vegetation (Roy, 2021; Gensheimer et al., 2022). However, studies applying ML methods to global vegetation

dynamics and assessing their suitability to investigate drought responses are less prominent, and it remains to be seen whether70

this approach is applicable at the global scale (Li et al., 2021b; Zhang et al., 2021b; Chen et al., 2021).

This study aims to further our understanding on how well ML methods can be used create vegetation products that are

useful for global drought impact applications. This will allow us to quantify to what degree ML can be used for continues

drought monitoring, as well as for gapp-filling of existing remote sensing products. We set out to establish whether ML

methods can alleviate missing data and resolution limitations of remote sensing-based vegetation health products by linking75

vegetation condition (evi) with meteorological and hydrological data. This was done in three steps; first, assess whether ML is

an appropriate tool to predict the condition of vegetation on a global scale and act as a gap filling tool. Second, to determine

whether ML can be used to downscale vegetation conditions and predict values at spatial scales finer than those provided

during training. High degrees of transferability between scales allow for further spatial up- or down-scaling of the RF in future

applications while still providing robust results. Last, to explore how these products can be applied to drought impact studies,80

we investigated how well the ML-based vegetation maps predict vegetation status for different types of land cover and during

drought periods.

2 Materials and Methods

The materials and methods are constructed so that each subsection corresponds to one of the objectives. We first have a look at

an overview of the experimental approach used to assess how well an ML approach can be used as gap filling and downscaling85

tool. We then detail how we trained a RF and which data was used, followed by how we tested the gap-filling and downscaling

capabilities in two separate sections. Last, the gap-filled and down-scaled products are stress tested by investigating how well

they can be used to derive insights into global vegetation dynamics, specifically under drought conditions.

The relative abundance of remotely sensed vegetation data provides an opportunity to effectively establish the applicability

of ML based methods for gap-filling and downscaling. In this study we relied on already assimilated data products to test the90

applicability of RF as a downscaling and gap-filling tool. To do this we first set out to train an RF in a subset of the available

evi data at 0.1◦. As a test of its gap-filling abilities, the model was then used to predict evi values at locations not seen during

training. To determine how viable the RF is for downscaling, we predicted evi at the 0.01◦ resolution. Ideally, all data used in
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this prediction would also be at 0.01◦. However given the that this is not possible we provided it with 0.01◦ where possible and

also provided it with data at 0.1◦ data where such high resolution data where not available.95

2.1 Random Forest Regressor

2.1.1 Data Sources

The data sources (Table 1 and further information in the following subsections) described below were used to construct a 0.1◦

resolution dataset to train and test the ML model. The data set spans 10 years, from 2003 to 2013. The goal was to have all data

at a 0.1◦ resolution, in cases where the resolution of the downloaded data was not, the relevant treatments are described below.100

Table 1. Target variable (evi) and potential features with accompanying units, spatial resolution (Spat. Res.) and temporal resolution (Temp.

Res.)

Name Units Spat. Res. Temp. Res. Reference

Target Variable

evi - 0.01◦ 8 day Gao et al. (2000)

Feature Variables

lc - 500m Yearly Friedl, Mark and Sulla-Menashe, Damien (2019)

elv m

hnd m 92m Static Yamazaki et al. (2019)

aspect ◦

slope ◦

tp mm.day−1

t2m ◦C Muñoz-Sabater et al. (2021)

swvl1 - Hourly

stl1 ◦C

pet mm.day−1 0.1◦ Singer et al. (2021)

spi1,spi3,...spi24 - 0.1◦ Monthly this study

spei1,spei3,...spei24 -

evi - Enhanced Vegetation Index, lc - Landcover Types, elv - Elevation, hnd - Height Above Nearest Drainage, aspect - Aspect, slope - Slope, tp - Total Precipitation, t2m -

Two Meter Temperature, swvl1 - Volumetric Soil Water Layer level 1, stl1 - Soil Temperature layer level 1, pet - Potential Evapotranspiration, spi1,... spi24 - Standardized

Precipitation Index (1-month, ... 24-month), spei1,... spei24 - Standardized Precipitation Evapotranspiration (1-month, ... 24-month). Highlighted rows indiciate that features

were dropped from further analysis after conducting feature selection prior to model fitting.

Vegetation Index - The reference data used in this study is the evi index. evi data provide the observational benchmark

for the training and validation of the ML-based products created in this study. The evi can be used as an indicator of overall

vegetation status and health, as it is sensitive to chlorophyll content and correlates with primary production, photosynthesis

rates, and vegetation physiognomy (Box et al., 1989). Compared to the more widely used Normalized Difference Vegetation

Index, evi is considered the superior index, as it is less sensitive to atmospheric conditions and saturation effects in areas of105
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dense vegetation (Gao et al., 2000). These data arise from the Moderate Resolution Imaging Spectroradiometer aboard the

Terra and Aqua satellites. Sensors aboard Terra and Aqua are identical, and the 16-day composite images from each sensor are

released 8-days apart. In this study, Google Earth Engine’s python Application Program Interface (Gorelick et al., 2017) was

used to access the terra (MOD13A2.006) and aqua (MYD13A2.006) evi data. These two products were combined to produce

a quasi-eight-day time series (Didan, 2015, 2021). For the experimental setup used here, we required two sets of evi data, one110

at the 0.1◦resolution, for training the RF and test its gap filling capability, and another at the 0.01◦ resolution to assess its

downscaling abilities. The GEEMAP package was used to upscale the original 0.01◦ evi data to 0.1◦ (Wu, 2020).

Feature Variables - Global vegetation type patterns are largely driven by terrestrial water and energy balances (Hawkins

et al., 2003). Similarly, the responses of vegetation to drought are regulated, in part, by water and energy availability (Xu et al.,

2010). Consequently, a suite of data indicative of terrestrial water and energy balances was selected as potential input variables.115

These variables are introduced below, and Table 1 provides an overview.

Meteorology - Hourly data for total precipitation (tp), two-meter temperature (t2m), volumetric soil moisture layer 1 (swvl1),

and soil temperature layer 1 (stl1) were retrieved from the hourly ERA5-Land Reanalysis product by the European Centre for

Medium-Range Weather Forecasts (Muñoz-Sabater et al., 2021). In addition, potential daily evaporation (pet) was acquired

from Singer et al. (2021), pet is calculated following the Penman-Monteith formulation with ERA5-Land as the input data. All120

meteorological data were resampled to match the 8-day frequency of the evi data. Tp was aggregated by taking the cumulative

sum of the previous 8 days, whereas the remainder of the variables were averaged over 8 day windows.

Drought Indices - Aside from short-term changes in water availability, it is also key to understand the long-term dynamics

to identify drought legacy effects on the current vegetation states (Schwalm et al., 2017). To this end, the Standardised Pre-

cipitation Index (spi) (McKee et al., 1993) and Standardized Precipitation Evapotranspiration Index (spei) (Vicente-Serrano125

et al., 2010) were used to characterise these legacy effects. The spi and spei were calculated at the 1, 3, 6, 9, 12 and 24-month

aggregation lengths. The different lengths of aggregation are related to types of drought: precipitation, soil moisture, and hy-

drological droughts. Precipitation and soil moisture droughts mostly correlate short-term deficits in soil water (1-3 months),

and are important for vegetation with shallow roots; hydrological drought (6-12 months) can be a good proxy for impacts

on shrubs, bushes and trees that have deeper roots and are likely to rely on local groundwater for water (12-24 months). In130

addition, the inclusion of drought indices allows for the characterisation of past climate memory effects on current vegetation

growth (Reichstein et al., 2019; Schwalm et al., 2017) associated with past climatic conditions. The equations and steps for

calculating spi and spei are detailed in Appendix A2.

Landcover Types and Topography - Land cover type is an important predictor of vegetation abundance and health (Meza

et al., 2020). Here, the Moderate Resolution Imaging Spectroradiometer Yearly Land cover Types (MCD12Q1.006) were135

retrieved from the Google Earth Engine’s Application Program Interface (Friedl, Mark and Sulla-Menashe, Damien, 2019).

Given that the original data is at a spatial resolution of 500m, the GEEMAP package (Wu, 2020) was again used to upscale

the data to 0.1◦ and 0.01◦. In this product, landcover types are classified according to the International Geosphere-Biosphere

Programme classification scheme. Barren land, deserts, permanent snow and water bodies were masked in all further analyses.

It is important to note that the RF was supplied with the remainder 15 unique landcover types; however, these were collapsed140
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into eight broader classifications for brevity and clarity in the results, discussion and visualisations. To capture the variations

in water and energy availability attributable to topographic effects, elevation (elv) and height from the nearest drainage basin

(hand) were accessed from MERIT Hydro, a high-resolution global hydrography map (Yamazaki et al., 2019). Lastly, slope

and aspect was calculated from elv using the relevant functions in xarray-spatial (Hoyer and Hamman, 2017). This data

was upscaled from the original 92m resolution to 0.1◦ and 0.01◦ using the GEEMAP package (Wu, 2020).145

2.1.2 Random Forest Model

Figure 1. The five sequential steps followed during the

RF fitting and evaluation.

While an abundance of ML approaches has been used to predict vege-

tation status, here the Random Forests Regressor (RF) was selected to

link meteorology, land cover, topography, and drought inputs to vegeta-

tion health. RF is an ensemble method that fits many decision trees on150

different subsets of data. RF is advantageous given its relatively straight-

forwarded implementation, ability to incorporate categorical features,

ability to easily identify causal links and limited risk of overfitting. The

general pipeline used throughout consisted of five sequential steps (Fig.

1). Here, the RF was implemented in Python 3.9 (Rossum and Drake,155

2010) under the scikit_learn framework (Pedregosa et al., 2011).

Feature Selection - In an attempt to include only relevant data in the

ML model, the list of potential variables described in Section 2.1.1 and

Table 1 was evaluated for their ability to provide meaningful information

during model fitting. A pairwise Spearman rank correlation was calcu-160

lated between all features to ensure that input data correlated with evi.

Those variables that exhibited strong correlations were retained in further

analysis, whereas variables that experienced weak correlations were ex-

cluded. Aspect did not exhibit strong correlations with evi (Fig. A1). Sim-

ilarly, spi (at all aggregation times) did not correlate strongly with evi. In165

addition, spi and were closely correlated with spei, spi was excluded in

favour of spei (Fig. A1). spi and aspect were excluded from further analyses; features that were excluded are highlighted in

Table 1.

Pre-processing - Given that the RF algorithm accepts 2-dimensional numeric arrays as input, the 3-dimensional data was

processed so that each unique latitude and longitude was associated with a time series of each variable. The single categorical170

feature (lc) was converted to binary numeric. Each unique landcover type is assigned to a new feature, with 1 indicating

presence and 0 indicating absence.

Split Strategy and Hyper-parameter optimisation - HalvingRandomSearchCV with a 3-fold cross-validation ap-

proach was applied to refine the number of estimators and maximum depth. This hyper-parameter optimisation provides the
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optimal configuration for the RF so that the critical vegetation dynamics are captured while simultaneously reducing the175

RF complexity and preventing over-fitting. The hyper-parameter optimisation focused on two parameter settings, namely,

Maximum_depth and the number_of_estimators; the search space was 1-40 and 1-20, respectively. Increasing the

Maximum_depth and number_of_estimators past 12 and 15, respectively, yielded only marginal increases in test

scores (Fig. 2a). Given that only the risk of overfitting increases with increasing Maximum_depth and number_of_estimators

and only marginal increases in test scores are observed past these points, 12 and 15 were identified as the optimal settings.180

After determining optimal parameter settings, the data were split into training and validation sets. However, three-dimensional

data could conceivably be split along the temporal dimension where the model is trained on all locations with only a subset

of the temporal availability (i.e., temporal splitting), or the data can be split according to location where only a subset of the

grid pixels are selected for training but over the entire available period (i.e., spatial splitting). Given that previous research

has highlighted that RF performance is sensitive to spatial vs temporal splitting, this is especially true for extreme events such185

as droughts (Hauswirth et al., 2021). We conducted a cursory analysis to determine whether a temporal or spatial splitting

approach better balances trade-offs between computational complexity and learning rates. Learning curves for cursory RF

models using each splitting approach were quantified and compared. Each model was supplied with increasing training sizes,

and test scores were calculated and plotted to visualise learning curves. This cursory analysis revealed that spatial splitting

yields faster learning curves than the temporal splitting approach (Fig. 2b); therefore, spatial splitting was identified as the190

preferred approach.

Figure 2. (a) Evolution of RF performance during HalvingRandomSearchCV hyper-parameter optimization of: maximum_depth

(blue) and number_of_estimators (red). (b) RF performance following the incremental increase of train set size using a location (red)

based split approach compared to a temporal (blue) based split approach.

Train - For the final RF model, a spatial split with a (0.06:0.94) (train: predict) ratio was used to train the final model. A

0.06:0.94 split was chosen, and there was very little increase in performance past training sixes of 6% (Fig. 2b). Maximum_depth

and number_of_estimators were set at 12 and 13, respectively. The parameters that were not subjected to hyper-

parameter optimisation were set as follows: the squared_error criterion was used to measure the quality of the splits195
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in branches, the maximum number_of_features considered in each split was set at auto, and the minimum and maxi-

mum samples_per_leaf_nodes was set at 1 and 2, respectively.

2.2 Gapfilling evi using Random Forests

As a test of the RF gap-filling cabalities, we predicted evi for the 94% of the grid cells that were not used during training. The

accuracy of these predictions was evaluated against the evi data obtained from MODIS. As a first-pass assessment of overall200

performance, the model was scored using default coefficient of determination (R2) scorer in the RF implementation of scikit.

The model predictions were further evaluated by calculating the root mean squared error (RMSE) and Pearson correlation

coefficients. These were calculated independently for each grid cell to provide information on the spatial variation of errors.

Last, to gain insight into which features were the most essential for predicting evi, global feature importance was calculated

using Shapley Additive exPlanations’ (SHAP) TreeExplainer (Lundberg et al., 2020).205

2.3 Downscaling evi using Random Forests

In this section, the focus shifted toward whether RF can be used to downscale global evi values, that is, whether a model trained

on 0.1◦ can accurately predict evi at a finer 0.01◦ scale. To this end, a 0.01◦ data set was compiled. In cases where data were

not at the 0.01◦ resolution, the nearest neighbour interpolation scheme from xarray (Hoyer and Hamman, 2017) was used to

match the variables to the same spatial resolution. This data set was used as new input data to the already trained RF model to210

predict evi at the 0.01◦ scale. The evaluation approach for the downscaled values remained much the same, the overall model

accuracy was assessed using (R2) and (RMSE), and Pearson correlation coefficients were calculated for each grid cell.

2.4 Applicability of ML informed vegetation status products during periods of drought

One noticeable shortcoming of the RF is its relatively poor ability to predict extreme values depending on the training selection

(Hauswirth et al., 2021). To determine to what extent this may influence the generality of the two products mentioned above,215

we further investigated the accuracy of the predicted evi under low growing conditions by calculating the anomaly correlation

coefficient (ACC; Eq. 1), where eviAi,j denotes evi anomaly for the month j in year i, ¯evi,j denotes the average evi of month

j over 2003-2013; σ stands for the standard deviation of evi during the period. We use this metric to assess the applicability of

the RF based 0.1◦ and 0.01◦ evi predictions against remotely sensed evi.

eviAi,j =
evii,j − ¯evij

σ
(1)220
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3 Results

The results here are presented in three parts. First, the results of the model trained on the 0.1◦ data are presented; here, the focus

is retained on the model’s performance and ability to predict the status of the vegetation at the spatial resolution it is trained

and act as a gap-filling tool. We also touch on which features are most important in predicting the status of the vegetation.

Subsequently, we present the model’s performance when used to downscale evi and predict 0.01◦ data. We explore how this225

module can be used to gain insight into global vegetation dynamics by assessing the accuracy of both products under drought

conditions. A more general discussion on the quality of input data and comparisons with related studies is presented last.

Figure 3. Mean (2003 - 2013) observed (top) and mean predicted evi values by the model at the 0.1◦ (left) and 0.01◦ (right). Barren land,

deserts, permanent snow, and water bodies were masked and represented by black.
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3.1 Gapfilling evi using Random Forests

The model was able to reproduce global vegetation patterns by correctly predicting high vegetation density in tropical forests

and low vegetation density in arid and urban regions of the world (Fig. 3). SHapley Additive exPlanations values provided an230

understanding of the relative importance of each feature in predicting evi. The most important features were those associated

with meteorology, landcover type and topography; drought indices proved to be a lower degree of information (Fig. 4).

Figure 4. Feature importance for the RF predicting evi at 0.1◦. The features are ordered by level of importance, with higher mean SHAP

values indicating higher importance.

When trained on only 6% of the data, the RF was able to predict global evi accurately with a spatial resolution of 0.1◦

(R2 = 0.86; Fig. 3, 5, 6 & 7a). Looking more closely at the distribution of errors, less than 1% of grid cells showed negative

correlations and more than 80% showed correlations higher than 0.5 (Fig. 7c) and RMSE ranged between 0.02 and 0.4 (mean:235

0.05 ± 0.03; Fig. 7d). However, it is important to note that the accuracy was neither spatially nor temporally uniform. Landcover

types were an important feature in determining predictive ability. The predictions of evi in areas dominated by urban, mixed

and crop landcover types showed the highest degree of error (Fig. 6a). On the contrary, the most natural types of land cover,

such as forests and grasslands, were the most accurately represented by the model (Fig. 5a & 6a). For all types of land cover,

the periods of maximum and minimum evi were less accurately predicted than the intermediate periods (Fig. 6a). Predicted evi240

was consistently underestimated by the model in urban landcovers (Fig. 6a).
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Figure 5. RMSE calculated for the Amazon Basin, Great Lakes and Western Europe for predicted evi values by the model at the (a) 0.1◦ and

(b) 0.01◦.
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3.2 Downscaling evi using Random Forests

When the model trained with 0.1◦ data was used to predict evi at 0.01◦ spatial resolution, there was a slight drop in accuracy.

The predictive capacity was still good but reduced compared to the 0.1◦ product, with a median R2 of 0.75 (Fig. 7b). Again,

the RF was able to accurately capture spatial and temporal vegetation dynamics when supplied with 0.01◦ data (Fig. 3 & 6b).245

The errors also increased, the proportion of grid cells displaying negative correlations now being 5% (Fig. 7c) compared to

less than 1% for the 0.1◦product. RMSE ranged between 0.04 and 0.6 (mean: 0.09 ± 0.07; Fig. 7d), with the majority of the

grid cells exhibiting RMSE around 0.05. For the filling of the gap, the precision was dependent on the land cover, with urban

mixed and crops performing the worst (Fig. 6b). Noticably, for urban landcover types the model consistently uder-estimated

evi.250

Figure 6. Time series of average predicted (black) and observed (red) evi, per major land cover type at (a) 0.1◦ and (b) 0.01◦. F=Forest,

Shr=Shrubland, Sav=Savanna, G=Grassland, W=Wetlands, C=Crops, U=Urban, M=Mixed.

3.3 Accuracy under drought conditions

The ACC analysis revealed that the RF was still able to capture evi anomalies (Fig. 8), but to a lesser extent compared to

overall performance (Fig. 7c). The majority of grid cells showed positive correlations, with less than 10% displaying negative

correlations. At least 50% of grid cells exhibited an ACC of 0.25 for 0.1◦ compared to 45% when evi was predicted at 0.01◦

(Fig. 8). This indicates that for that 90% of the locations, the RF can reproduce anomalies from the average seasonal cycle and255

thus can be used to identify periods of negative or positive evi impacts resulting from droughts or more favourable growing

conditions.
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Figure 7. : (a) Scatter plot of observed and predicted evi at 0.1◦ and (b) 0.01◦; Cumulative distribution function for (c) Pearson Correlation

Coefficients overall grid pointsat 0.1◦ (blue) and 0.01◦ (orange), (d) violin plot of RMSE for all grid points at 0.1◦ and 0.01◦

Figure 8. Cumulative distribution curves of anomaly correlation coefficients for evi predicted by a RF at 0.1◦ (blue) and 0.01◦ (orange).
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4 Discussion

This study assessed whether the RF algorithm is an appropriate tool for predicting evi dynamics at the global scale. RF was

evaluated for its ability to be used as a gap-filling and downs-scaling tool. The discussion is outlined as follows, first, the overall260

performance of the RF is discussed; after that its usefulness as a gap-filling or downscaling tool is critically evaluated. We then

highlight important outcomes from applying the model during periods of drought.The importance of landcover types and input

data accuracy in determining model accuracy is then discussed. Finally, the use of ML in drought monitoring of vegetation

status touched on.

4.1 Overall performance265

The RF successfully predicted evi at 0.1◦ scale from meteorological, topography, and landcover types as input data. Of these

data, features related to water and energy balances were most important in predicting evi. The RF successfully captured annual

vegetation growth cycles and was able to distinguish between the main global biomass with high accuracy. Error analysis

revealed that prediction accuracy could have been more homogeneous across space and time and varied according to the

growing season and land cover type. This behaviour can also be linked to the relative abundance of land cover types, where270

more dominant land cover types are simulated with higher accuracy.

4.2 Gapfilling evi using Random Forests

A promising aspect of this study is that the RF can accurately predict evi at unseen geographic locations when trained on

relatively few data - only 6% in this case. It follows that this approach can be used to for gap-filling purposes and produce

high-resolution vegetation indices from other satellite sources or be used in conjunction with satellite products. For example,275

Landsat and Sentinel-2 data produce high-resolution data vegetation products; however, retrievals are strongly affected by

weather conditions, which results in data gaps. In addition, its relatively low orbiting altitude means that the spatial coverage

for each pass over is low. The approach outlined in this study could be applied to Landsat and Sentinel-2, to produce continuous

vegetation index data sets at the 30-10m spatial resolution. This approach has been previously used to impute missing values

for other remote sensing products like land cover types (Holloway-Brown et al., 2021), leaf traits (Moreno-Martínez et al.,280

2018) and soil moisture (Nguyen et al., 2022) and can now be the extent to vegetation health or evi.

4.3 Downscaling evi using Random Forests

The RF accurately predicted evi at finer spatial scales than was trained, successfully predicting evi at a scale of 0.01◦ using high-

resolution auxiliary data. However, it should be noted that this resulted in a reduction in precision compared to the 0.1◦product.

This is an expected result, given that evi at the 0.01◦ resolution will exhibit greater variances and more extreme values during285

periods of high and low growth. Scale-dependent drivers of vegetation dynamics may be another phenomenon that contributes

to decreased precision when predicting evi at the 0.01◦ using a model trained at a coarser resolution. Meteorology has been

shown to be tightly coupled to vegetation at the ecosystem scale but less so at finer scales, where biotic processes, such as
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competition, herb ivory, disease, and fire, are more important (Franklin et al., 2020). When predicting evi, the relative increases

in error remained small. This product can be of particular use in cases where the benefits of having high resolution long-term290

evi products outweigh the limitations associated with error increases. The product presented here can and should be used in

further studies investigating global vegetation dynamics.

4.4 Random Forests for predicting drought effects

Compared to the overall performance, the RF was less capable of capturing extreme values of evi. The increase in error among

extreme values is a known limitation of the RF (Hauswirth et al., 2021). During RF training, an evaluation metric, in this case295

squared_error, is used to minimise the error for the model as a whole. In this scenario, optimal fits inevitably result in

reduced errors for values close to the mean at the expense of inflated errors for the outliers (Ribeiro and Moniz, 2020). In the

current study, this means that evi during normal growth periods is prioritised over periods of extremely low or high vegetation

growth. Production of ML frameworks that accurately reproduce vegetation responses during extreme periods is an essential

consideration for future research directives.300

4.5 Importance of Landcover Types and Input Data

Varying error according to landcover type in the 0.1◦ and 0.01◦ is expected for at least two reasons. The first relates to

the inherent features of the RF algorithm itself, and the second to the environmental process that affects the dynamics of

evi. A limitation of the RF algorithm is that when data is imbalanced, underrepresented groups are less well explained by

the algorithm. Accordingly, accuracy varied according to a proportional abundance of landcover types (Jung et al., 2020).305

Dominant landcover types, such as forests and grasslands, displayed the least amount of error; in contrast, minority landcover

types regions that have undergone human modification (i.e., urban areas and croplands) were associated with the highest error.

Second, the features used in this study may not incorporate processes critical to vegetation status equally among landcover types

(Moussa Kourouma et al., 2021). Forests, grasslands, and other natural ecosystems are closely coupled to natural weather

processes. However, croplands and urban areas may be less influenced by weather and more influenced by anthropogenic310

manipulations of water and energy balances (Zhang et al., 2004; Hawkins et al., 2003; Tang et al., 2021). A potential solution

to this problem is to rely on Extreme Gradient Boosted Decision Trees, which have been shown to provide more accurate

predictions where data are imbalanced (Li et al., 2021b) or include information on human-water management to better represent

drought responses (Wanders and Wada, 2015).

Landcover-specific variations in the model’s ability to predict vegetation are an important outcome of this study. Apart from315

the statistical reasons detailed in the previous paragraph as potential mechanisms for this phenomenon, an additional, and most

likely compounding explanation is that the data used to predict evi may be more relevant for some landcover types and levels

of vegetation growth than others. For instance, vegetation status in urban areas and croplands shows weak correlation or high

errors (Fig. 5 & 6). The meteorological data used here to predict evi may not be the only factor driving the vegetation dynamics

in human-modified areas. It is possible that irrigation, harvesting, and water management influence vegetation. Indeed, vege-320

tation in urban areas have been shown to grow more rapidly and have a longer growing season than rural counterparts; this is
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thought to be driven by higher temperatures, high concentration of airborne phosphorous and other aerosol pollutants (Sicard

et al., 2018a, b; Pretzsch et al., 2017). In contrast, natural forests and grasslands show high levels of accuracy and correlations,

thus suggesting that the data used here is appropriate for the machine learning models to capture vegetation dynamics. Simi-

larly, poor accuracy in wetlands is not unexpected as wetland vegetation is primarily driven by water quality, salinity, and pH325

(Grieger et al., 2021). On the contrary, forests and grasslands show high accuracy when using meteorological variables, since

these are important drivers of vegetation growth in these areas. Although not directly related to vegetation, Hauswirth et al.

(2021) showed that by including water management practices in machine learning models, the predictions of groundwater head

and stream flow were more accurately predicted.

One other possibility is that uncertainty in the input data prevents more accurate predictions by the model. The temperature of330

ERA5-Land is known to show weaker correlations with the observed data in the tropics compared to more northern and southern

latitudes (Muñoz-Sabater et al., 2021). When considering the quality of land cover data used here, some inconsistencies may

affect the ability of the RF to accurately predict evi. For example, when croplands are smaller than the pixel size used in

MODIS, these croplands are incorrectly assigned as natural vegetation. Furthermore, temperate evergreen needleleaf forests are

misclassified as broadleaf evergreen forests, and some grassland areas are classified as savannas. The relatively poor predictive335

performance in mixed landcover types further reiterates the need to provide models with appropriate input data sources where

string signals are present.

4.6 The use of ML in drought monitoring

This study shows that ML can be used for drought monitoring at high spatial and temporal resolutions, however there are

trade-offs when it comes to using machine learning for vegetation drought impact monitoring. ML based evi esimates can be340

used to assess the potential impact of droughts on vegetation, however this ML based estimates still require meteorological

input dataset. The ML model also needs to be trained on actual remotely sensed evi observations to identify the relationship

between these meteorological variables and vegetation drought impacts. This inherently makes the ML based estimates as good

as the remotely sensed product, and as long as no reliable alternative exists it will be difficult to fully replace remotely sensed

evi observations. However, there is an added benefit of having continues high resolution global coverage derived from a ML345

based evi estimate. Finally, the ML-based estimates also allow us to extrapolate the evi records to historical periods for which

meteorological data exist but satellite remotely sensing was not yet available or use as post-processing in hydrological model

simulations to directly estimate drought impacts.

5 Conclusions

The results from this study reveal that the RF is an appropriate method for predicting evi at the global scale, at the 0.1◦ and350

downscaled 0.01◦ resolution. In general, RF was capable of predicting evi dynamics with high accuracy; global patterns of

vegetation and temporal dynamics were well captured. However, it is essential to note that higher errors were associated with

under-represented landcover types and periods of extreme vegetation growth, such a drought periods. Lower accuracy for
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underrepresented classes in unbalanced data sets and a hampered ability to predict extreme values is a common criticism of the

RF. In accordance with this study, landcover types that account for a smaller fractional cover of the earth’s surface, and periods355

of extreme vegetation growth, were associated with the highest error. Predicting evi at a finer resolution resulted in increased

errors. This is attributable to higher variances in the 0.01◦ product compared to 0.1◦ and it is important to note that the relative

increases remained small.

The results here also highlight the use of RF for efficiently and accurately predicting missing data and downscaling, ulti-

mately allowing for the production of spatially continuous evi data at very high spatial and temporal resolutions. Toward this360

end, this study produces spatially continuous evi product at 0.1◦ and 0.01◦ resolution, which could be used to fill existing gaps

in satellite observations or in conjunction with satellite data to have improved monitoring of drought impacts on vegetation.

These results add to the current body of research showing that RF is a powerful technique for predicting the temporal and

spatial dynamics of vegetation from remote sensor data (Roy, 2021; Staben et al., 2018; Wang et al., 2021). For example, (Roy,

2021) successfully use machine learning to predict evi at a more local scale. On a more global scale, (Han et al., 2023) provides365

an example on how a similar approach to the one used here can produce global high-resolution soil moisture. Apart from ML

based methods, this current work adds to the number of already available tools (reviewed in Peng et al. 2017) that can be used

for gap-filling and downscaling of remotely sensed vegetation data.

This study adds to previous research efforts that have successfully applied the RF in predicting vegetation status. Here the

RF was used to produce a global spatial and temporally continuous evi product at 0.1◦ and 0.01◦, with a median R2 of 0.86370

& 0.75, respectively. The approach outlined in this study could be applied to Landsat and Sentinel-2, to produce continuous

vegetation index data sets at the 30-10m spatial resolution. The RF algorithm is a powerful technique for predicting temporal

and spatial vegetation dynamics from remote sensor data, as well as those using RF for gap filling purposes on remote sensing

products. The novelty of this product, compared to previous studies, is that it has global coverage, high spatial and high

temporal resolution.375
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Appendix: A1. Feature Selection

Figure A1. Correlation Matrix of pairwise Spearman rank correlation coefficients between all potential variables

Appendix: A2. Drought Indices Calculations

For the calculation of spi:

x=

m∑
i

tpi (A1)

where i is the month in question and m= i− scale.390

For the calculation of spei:

x=

m∑
i

Di (A2)

where: Di = tpi − peti and

xk
i,j =


∑12

l=13−k+j tpi−j,l +
∑j

l=1 tpi,l, if j < k∑j
l=j−k+1 tpi,l, if j ≥ k

(A3)

This time series is then fitted to a gamma distribution taken the following steps:395

First α and β fitting parameters as calculated as:
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α̂=
1

4A
(1+

√
1+

4A

3
) (A4)

Where A= ln(x̄)−
∑

ln(x)
n with n being number of observations.

β̂ =
x̄

α
(A5)

The gamma distribution probability density (Eq. A6) function with respect to x and including the calculated estimates for α400

and β can be inserted to produce an equation for the cumulative probability of a value for (Eq. A7).

g(x) =
1

βαΓ(α)
xα−1e

x
β (A6)

where α is the shape parameter and β is the scale parameter and Γ(a) =
∞∫
0

yα−1e−ydy

G(x) =
1

β̂α̂Γ(α̂)

x∫
0

xα̂e
−x

β̂ dx (A7)

then substituting t for x
β̂

results in the incomplete gamma distribution (Eq. A8)405

G(x) =
1

Γ(α̂)

x∫
0

tα̂−1e−1dt (A8)

Values of the incomplete gamma function can be computed using Eq. A9

H(x) = q+(1− q)G(x) (A9)

Finally, values computed from Eq. A9 are transformed into the standard normal distribution to yield the spi and spei at the

relevant time scales. These calculations were completed using the relevant algorithms in the climate_indices python410

package (Adams, 2021) using tp, pet, and t2m detailed in Section 2.1.2.
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