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Abstract. Drought is a devastating natural disaster, where water shortage often manifests itself in the health of vegetation.

Unfortunately, it is difficult to obtain high-resolution vegetation drought impact, which is spatially and temporally consistent.

While remotely sensed products can provide part of this information, they often suffer from data gaps and limitations in spa-

tial or temporal resolutions. A persistent feature among remote sensing products are tradeoffs between spatial resolution and

revisiting times, where high temporal resolution is met by coarse spatial resolution and vice verse. Machine learning methods5

have been successfully applied in a wide range of remote sensing and hydrological studies. However, global applications to

resolve drought impacts on vegetation dynamics still need to be made available, while there is significant potential for such a

product to aid improved drought impact monitoring. To this end, this study predicted global vegetation dynamics based on the

Enhanced Vegetation Index (evi) and the popular Random Forest algorithm (RF) at 0.1◦. We assessed the applicability of RF

as a gap filling and downscaling tool to generate global evi estimates that are spatially and temporally consistent. To do this,10

we trained an RF regressor with 0.1◦ evi data using a host of features indicative of the water and energy balances experienced

by vegetation and evaluated the performance of this new product. Next, to test whether the RF is robust in terms of spatial

resolution, we downscale global evi, the model trained on 0.1◦ data is used to predict evi at 0.01◦ resolution. The results show

that the RF can capture global evi dynamics at both the 0.1◦ (RMSE: 0.02 - 0.4) and at the finer 0.01◦ (RMSE: 0.04 - 0.6)

resolution. Overall errors were higher in the down-scaled 0.01◦ compared to the 0.1◦ product. Yet, relative increases remained15

small, thus demonstrating that RF can be used to create downscaled and temporally consistent evi products. Additional error

analysis reveals that errors vary spatiotemporally, with underrepresented land cover types and periods of extreme vegetation

conditions having the highest errors. Finally, this model is used to produce global spatially continuous evi products at both

the 0.1◦ and 0.01◦ spatial resolution for 2003-2013 at an 8-day frequency. Drought is a devastating natural disaster, where

water shortage often manifests itself in the health of vegetation. Unfortunately, it is difficult to obtain high-resolution vege-20

tation drought impact, which is spatially and temporally consistent. While remotely sensed products can provide part of this

information, they often suffer from data gaps and limitations in spatial or temporal resolutions. A persistent feature among

remote sensing products is tradeoffs between spatial resolution and revisiting times, where high temporal resolution is met by

coarse spatial resolution and vice verse. Machine learning methods have been successfully applied in a wide range of remote

sensing and hydrological studies. However, global applications to resolve drought impacts on vegetation dynamics still need25

to be made available, while there is significant potential for such a product to aid improved drought impact monitoring. To this

end, this study predicted global vegetation dynamics based on the Enhanced Vegetation Index (evi) and the popular Random
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Forest algorithm (RF) at 0.1◦. We assessed the applicability of RF as a gap filling and downscaling tool to generate spatial

and temporal consistent global evi estimates. To do this, we trained an RF regressor with 0.1◦ evi data using a host of features

indicative of water and energy balances experienced by vegetation and we evaluated the performance of this new product.30

Next, to test whether the RF is robust in terms of spatial resolution, we downscale global evi, the model trained on 0.1◦ data is

used to predict evi at 0.01◦ resolution. The results show that the RF can capture global evi dynamics at both the 0.1◦ (RMSE:

0.02 - 0.4) and at the finer 0.01◦ (RMSE: 0.04 - 0.6) resolution. Overall errors were higher in the down-scaled 0.01◦ compared

to the 0.1◦ product. Yet, relative increases remained small, thus demonstrating that RF can be used to create downscaled and

temporally consistent evi products. Additional error analysis reveals that errors vary spatiotemporally, with underrepresented35

land cover types and periods of extreme vegetation conditions having the highest errors. Finally, this model is used to produce

global spatially continuous evi products at both the 0.1◦ and 0.01◦ spatial resolution for 2003-2013 at an 8-day frequency.

1 Introduction

The impacts of natural hazards are felt on a local scale, but creating impactful risk management strategies requires a global

view on the driving processes and impacts (Ward et al., 2020). Given its complex and multivariate nature, a global perspective is40

especially necessary when considering drought hazards. Drought is one of the most disruptive natural hazards, causing negative

repercussions on the environment, economy, and society, which can affect large areas and populations (Naumann et al., 2014;

Vereinte Nationen, 2021). However, a universal definition of what constitutes a drought event remains elusive, and as a result,

we lack a comprehensive understanding of the direct and indirect effects of drought on the environment and soceity
::::::
society

(Blauhut et al., 2016; Vogt et al., 2018; Sutanto et al., 2019). Remotely sensed products that monitor earth system responses45

during drought periods are one promising tool that can enable a global perspective on drought hazards and their impacts

(AghaKouchak et al., 2015; West et al., 2019). Yet, they suffer from trade-offs between spatial and temporal resolution, where

we either have high-resolution low frequency products or vice versa. The production of high-resolution spatially continuous

products can facilitate a more holistic view of drought responses and management by incorporating more relevant fine-scale

processes (Chen et al., 2022; Schneider et al., 2017).50

Vegetation is involved in numerous drought-impact pathways and using remote sensing to track vegetation responses has

been widely used (Zhang et al., 2021c; AghaKouchak et al., 2015). Drought disrupts terrestrial water and carbon cycles, which

can reduce the integrity of ecosystem dynamics and associated ecosystem services (Banerjee et al., 2013; Crausbay et al.,

2017; Han et al., 2018; Smith et al., 2020). More subtlely, vegetation also affects the dynamics of drought propagation itself;

under favourable antecedent conditions, vegetation overshoot may exacerbate and facilitate the onset of rapid and intense55

droughts (Zhang et al., 2021c). Vegetation is also expected to play a crucial role in shaping drought resistance under future

climate change (Vereinte Nationen, 2021). In the absence of such resistance, interventions to alleviate the negative impacts of

disrupted ecosystem services can cost up to a billion dollars per drought event (Banerjee et al., 2013; Cammalleri et al., 2020).

It follows that formulating appropriate responses to drought and alleviating the negative effects of ecosystem disruption during

these periods requires accurate predictions.60
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In recent decades, numerous satellite-based vegetation indices have been developed (Li et al., 2021a). For example, the

Enhanced Vegetation Index (evi), have proven to be an indispensable tool for monitoring vegetation at multiple scales, from

the fine scale, such as crop patches (Moussa Kourouma et al., 2021; Sharifi, 2021) to the global scale (Huang et al., 2021;

Vicente-Serrano et al., 2010). However, a persistent feature among these products are trade-offs between spatial resolution

and revisiting times, where high temporal resolution is met by coarse spatial resolution and vice verse. For example, the65

Moderate Resolution Imaging Spectroradiometer (MODIS) captures the entire Earth with a high temporal resolution every 1

to 2 days (Zhao and Duan, 2020) with a maximum resolution of 250 m. Landsat and Sentinel-2 data have a higher spatial

resolution, 10 and 30 m, but longer revisiting times of approximately 10 and 5 days, respectively (Zhu, 2017; Li et al., 2021a).

Revisiting times for Landsat and Sentinel-2 are further prolonged when sensors or retrievals are interrupted by cloud cover,

pollution in the atmosphere, or even technical issues. In addition to temporal frequency, temporal coverage is another important70

consideration. Coarser scale products are associated with older satellites and have more extended temporal coverage than the

newer ones; MODIS products reach as far back as 1999 whereas Sentinel-2 products only go back to 2017. The ideal product

for monitoring vegetation dynamics would have global coverage, little to no data gaps, and high spatial and temporal resolution.

Machine learning (ML) methods have been used for downscaling and gap filling purposes in remote sensing products and

can be seen as one tool that can lead to the production of high-quality remote sensing products and thus alleviate the limitations75

around resolution and coverage current products exhibit (Zhu et al., 2022; Zeng et al., 2013). ML methods have been success-

fully applied to a wide range of drought-related (Hauswirth et al., 2021; Shamshirband et al., 2020; Tufaner and Özbeyaz,

2020; Shen et al., 2019; Das et al., 2020; Hauswirth et al., 2022) and remotely detected vegetation studies (Roy, 2021; Li et al.,

2021b; Reichstein et al., 2019). Compared to conventional statistical downscaling techniques, ML is considered the superior

alternative; given that no strict statistical assumptions are required, complex and non-linear relationships are well captured and80

provide high precision (Ebrahimy et al., 2021).

One ML algorithm that has been widely applied for gap filling and downscaling in remote sensing data is the Random Forest

Regressor (RF) (Zhang et al., 2021a; Fu et al., 2022; Liu et al., 2020; Wang et al., 2022). Gap-filling can achieved by training a

RF on available data and then use the model to predict values where data is sparse or missing (Wang et al., 2022). Using RF to

downscale data involves establishing an RF at a coarse scale and predicting targets at finer resolutions by feeding the algorithm85

with high-resolution auxiliary data (Liu et al., 2020). These studies have highlighted that ML methods can accurately predict

the dynamics of vegetation (Roy, 2021; Gensheimer et al., 2022). However, studies applying ML methods to global vegetation

dynamics and assessing their suitability to investigate drought responses are less prominent, and it remains to be seen whether

this approach is applicable at the global scale (Li et al., 2021b; Zhang et al., 2021c; Chen et al., 2021).

This study aims to further our understanding on how well ML methods can be used create vegetation products that are90

useful for global drought impact applications. This will allow us to further quantify to what degree ML can facilitate continues

drought monitoring by gap-filling and downscaling existing remote sensing products. We set out to establish whether ML

methods can alleviate missing data and resolution limitations of remote sensing-based vegetation health products by linking

vegetation condition (evi) with meteorological and hydrological data. This was done in three steps; first, we assess whether

ML is an appropriate tool to predict the condition of vegetation on a global scale and act as a gap filling tool. Second, we95

3



determine whether ML can be used to downscale vegetation conditions and predict values at spatial scales finer than those

provided during training. High degrees of transferability between scales could allow for further spatial up- or down-scaling

of the vegitation
::::::::
vegetation

:
status in future applications while still providing robust predictions. Last, to explore how these

products can be applied to drought impact studies, we investigated how well the ML-based vegetation maps predict vegetation

status during periods of drought.100

2 Materials and Methods

The materials and methods are constructed so that each subsection corresponds to one of the objectives. We first provide an

overview of the approach used to construct a RF, using a variety of input data, which is the used to assess how well a ML

approach can be used as a gap filling and downscaling tool. We then detail how we trained the RF and which data was used,

followed by how we tested the gap-filling and downscaling capabilities in two subsequent sections. Last, the gap-filled and105

down-scaled products are stress tested by investigating how well they can be used to derive insights into global vegetation

dynamics, specifically under drought conditions.

The relative abundance of remotely sensed vegetation data provides an opportunity to effectively establish the suitability

of ML based methods for gap-filling and downscaling. In this study we relied on already assimilated data products to test the

applicability of RF as a downscaling and gap-filling tool. To do this we first set out to train an RF on a subset of the available110

evi data at 0.1◦. As a test of its gap-filling abilities, the model was then used to predict evi values at locations not seen during

training. To determine how viable the RF is for downscaling, we predicted evi at the 0.01◦ resolution by providing the model

with high resoution auxillary
::::::::
resolution

::::::::
auxiliary data that were available and regridding the data that were not available at a

high resolution.

2.1 Random Forest Regressor115

2.1.1 Data Sources

The data sources (Table 1) and further information in the following subsections were used to construct a 0.1◦ resolution dataset

to train and test the ML model. The data set spans 10 years, from 2003 to 2013. The goal was to have all data at a 0.1◦

resolution, in cases where the resolution of the downloaded data was not, the relevant treatments are described below.

Vegetation Index - The reference data used in this study is the evi index. evi data provide the observational benchmark120

for the training and validation of the ML-based products created in this study. The evi can be used as an indicator of overall

vegetation status and health, as it is sensitive to chlorophyll content and correlates with primary production, photosynthesis

rates, and vegetation physiognomy (Box et al., 1989). Compared to the more widely used Normalized Difference Vegetation

Index, evi is considered the superior index, as it is less sensitive to atmospheric conditions and saturation effects in areas of

dense vegetation (Gao et al., 2000). These data arise from the Moderate Resolution Imaging Spectroradiometer aboard the125

Terra and Aqua satellites. Sensors aboard Terra and Aqua are identical, and the 16-day composite images from each sensor
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are released 8-days apart. In this study, Google Earth Engine’s python Application Program Interface (Gorelick et al., 2017)

through the geemap package (Wu, 2020) was used to access the terra (MOD13A2.006) and aqua (MYD13A2.006) evi data.

These two products were combined to produce a quasi-eight-day time series (Didan, 2015, 2021). For the experimental setup

used here, we required two sets of evi data, one at the 0.1◦ resolution, for training the RF and test its gap filling capability,130

and another at the 0.01◦ resolution to assess its downscaling abilities. To enable for the assesment
::::::::
assessment

:
of gap-filling

and downscaling capabilities of the RF we downloaded one dataset at the 0.01◦ and another at the 0.1◦ resolution. The two

different resolution datsets
::::::
datasets

:
were acquired by relying on Google Earth Engines’ Image Pyramiding Policy. This policy

aggregates high resolution data to the required resolution using the mean for continous
:::::::::
continuous variables (i.e., evi).

Table 1. Target variable (evi) and potential features with accompanying name, description, units, spatial resolution (Spat. Res.) and temporal

resolution (Temp. Res.) and references.

Name Description Units Spat. Res. Temp. Res. Reference

Target Variable

evi Enhanced Vegetation Index - 0.01◦ 8 day Gao et al. (2000)

Feature Variables

lc Land cover Types - 500m Yearly Friedl, Mark and Sulla-

Menashe, Damien (2019)

elv Elevation m 92m

hnd Height Above Nearest

Drainage

m 92m Static Yamazaki et al. (2019)

aspect Aspect ◦ 92m

slope Slope ◦ 92m

tp Total Precipitation mm.day−1 0.1◦

t2m Two-meter Temperature ◦C 0.1◦ Muñoz-Sabater et al.

(2021)

swvl1 Soil Water Volumetric Layer 1

(0-7cm)

- 0.1◦ Hourly

stl1 Soil Temperature Layer 1 (0-

7cm)

◦C 0.1◦

pet Potential evapotranspiration mm.day−1 0.1◦ Singer et al. (2021)

spi1,spi3,...spi24 Standerdized Precipitation In-

dex

- 0.1◦ Monthly this study

spei1,spei3,...spei24 Standerdized Precipitation

Evaporation Index

- 0.1◦

Highlighted rows indicate that features were dropped from further analysis after conducting feature selection prior to model fitting.
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Feature Variables - Global vegetation dynamics are largely driven by terrestrial water and energy balances (Hawkins et al.,135

2003). Similarly, the responses of vegetation to drought are regulated, in part, by water and energy availability (Xu et al., 2010).

Consequently, a suite of data indicative of terrestrial water and energy balances were selected as potential input variables. These

variables are introduced below, and Table 1 provides an overview.

Meteorology - Hourly data for total precipitation (tp), two-meter temperature (t2m), volumetric soil moisture layer 1 (swvl1;

0-7cm), and soil temperature layer 1 (stl1; 0-7cm) were retrieved from the hourly ERA5-Land Reanalysis product by the Euro-140

pean Centre for Medium-Range Weather Forecasts (Muñoz-Sabater et al., 2021). In addition, potential daily evaporation (pet)

was acquired from Singer et al. (2021), pet is calculated following the Penman-Monteith formulation with ERA5-Land as the

input data.
::
pet

:::
was

:::::::
included

::
as

:
it
::
is
:::::::
directly

::::::::
correlated

::
to

::
air

::::::::::
temperature

::::
and

:::::::
radiation

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Thornthwaite, 1948; Monteith, 1965; Priestley and Taylor, 1972)

:::
and

:::
the

::::::::::::
photosynthesis

::::::::
potential

::
of

::::::
plants

:::
and

::::
thus

::::
can

::::::
account

:::
for

::
a
:::::
plural

::
of

:::::
other

::::::::
variables.

:
All meteorological data were

resampled to match the 8-day frequency of the evi data. Tp
:
tp was aggregated by taking the cumulative sum of the previous 8145

days, whereas the remainder of the variables were averaged over a previous 8 day window.

Drought Indices - Aside from short-term changes in water availability, it is also key to understand the long-term dynamics

to identify drought legacy effects on the current vegetation states (Schwalm et al., 2017). To this end, the Standardized Pre-

cipitation Index (spi) (McKee et al., 1993) and Standardized Precipitation Evapotranspiration Index (spei) (Vicente-Serrano

et al., 2010) were used to characterise these legacy effects. The spi and spei were calculated at the 1, 3, 6, 9, 12 and 24-month150

aggregation lengths. The different lengths of aggregation are related to types of drought: precipitation, soil moisture, and hy-

drological droughts. Precipitation and soil moisture droughts mostly correlate short-term deficits in soil water (1-3 months),

and are important for vegetation with shallow roots; hydrological drought (6-12 months) can be a good proxy for impacts

on shrubs, bushes and trees that have deeper roots and are likely to rely on local groundwater for water (12-24 months). In

addition, the inclusion of drought indices allows for the characterisation of past climate memory effects on current vegetation155

growth (Reichstein et al., 2019; Schwalm et al., 2017) associated with past climatic conditions. The equations and steps for

calculating spi and spei are detailed in Appendix A2.

Land cover Types and Topography - Land cover type is an important predictor of vegetation abundance and health

(Meza et al., 2020). Here, the Moderate Resolution Imaging Spectroradiometer Yearly Land cover Types (MCD12Q1.006)

were retrieved from the Google Earth Engine. In this product, land cover types are classified according to the International160

Geosphere-Biosphere Programme classification scheme. Barren land, deserts, permanent snow and water bodies were masked

in all further analyses. It is important to note that the RF was supplied with the remainder 15 unique land cover types; however,

these were collapsed into eight broader classifications for brevity and clarity in the results, discussion and visualisations.

:::::::::
Grasslands,

::::::::
wetlands,

:::::::::
croplands,

:::::
urban

:::
and

::::::
mixed

:::
did

::
not

:::::::
require

:::::::
grouping

:::
and

::::::::
represent

:::
the

::::::::::::
accompanying

::::
class

::
in

::::::::::
accordance

::::
with

:::
the

:::::::::::::::::
Geosphere-Biosphere

::::::::::
Programme

:::::::::::
classification

:::::::
scheme.

::::::
Forests

:::::
refers

::
to
:::
the

:::::::
grouped

:::::
class

:::::
which

:::::::
contains

:::::::::
evergreen165

:::::::::
needleleaf,

::::::::
evergreen

::::::::
broadleaf,

:::::::::
deciduous

:::::::::
needleleaf,

:::::::::
deciduous

:::::::
broadleaf

::::
and

:::::
mixed

::::::::
broadleaf

::::::
forests.

:::::::::
Shrubland

:::::
refers

::
to

:::
the

:::::::
grouped

::::
class

:::::::::
containing

::::::
closed

:::
and

::::
open

:::::::::
shrubland;

::::::::
whereas

:::::::
savannas

:::::
refer

::
to

:::
the

:::::::
grouped

::::
class

:::::::::
containing

::::::
woody

::::::::
savannas

:::
and

::::::::
savannas.

:
To capture the variations in water and energy availability attributable to topographic effects, elevation (elv) and

height from the nearest drainage basin (hand) were accessed from MERIT Hydro, a high-resolution global hydrography map
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(Yamazaki et al., 2019), also through Google Earth Engine. To enable for the assesment
:::::::::
assessment of gap-filling and down-170

scaling capabilities of the RF we downloaded one dataset at the 0.1◦ and another at the 0.01◦ resolution using the Google

Earth Engine’s python Application Program Interface (Gorelick et al., 2017) through the geemap package (Wu, 2020).The

two different resolution datsets
::::::
datasets

:
were acquired by relying on Google Earth Engines’ Image Pyramiding Policy. This

policy aggregates high resolution data to the required resolution using the mode for land cover data and mean for continous

:::::::::
continuous variables (i.e., evi and hand). Last, 0.1◦ and 0.01◦ slope and aspect was calculated from elv using the relevant175

functions in xarray-spatial (Hoyer and Hamman, 2017).

2.1.2 Random Forest Model

While an abundance of ML approaches has been used to predict vegetation status, here the Random Forests Regressor (RF)

was selected to link meteorology, land cover, topography, and drought inputs to vegetation health. RF is an ensemble method

that fits many decision trees on different subsets of data.180

Figure 1.
:::
The

:::
five

::::::::
sequential

::::
steps

:::::::
followed

::::::
during

::
the

::
RF

:::::
fitting

:::
and

::::::::
evaluation.

RF is advantageous given its relatively straight-forwarded implemen-

tation, ability to incorporate categorical features, ability to easily iden-

tify causal links and limited risk of overfitting. The general pipeline

used throughout consisted of five sequential steps (Fig. 1). Here, the RF

was implemented in Python 3.9 (Rossum and Drake, 2010) under the185

scikit_learn framework (Pedregosa et al., 2011).

The five sequential steps followed during the RF fitting and evaluation.

Feature Selection - In an attempt to include only relevant data in the

ML model, the list of potential variables described in Section 2.1.1 and

Table 1 was evaluated for their ability to provide meaningful information190

during model fitting. A pairwise Spearman rank correlation was calcu-

lated between all features to ensure that input data correlated with evi.

Those variables that exhibited strong correlations were retained in further

analysis, whereas variables that experienced weak correlations were ex-

cluded. Aspect did not exhibit strong correlations with evi (Fig. A1). Sim-195

ilarly, spi (at all aggregation times) did not correlate strongly with evi. In

addition, spi and were closely correlated with spei, spi was excluded in

favour of spei (Fig. A1). spi and aspect were excluded from further anal-

yses; features that were excluded are highlighted in Table 1. Soil moisture

and total precipitation exhibited some degree of cross-correlation in the200

global sense, yet these were retained to account for regions where soil

moisture is independent of precipitation such as wetlands and groundwa-

ter dependent ecosystems.

7



Pre-processing - Given that the RF algorithm accepts 2-dimensional numeric arrays as input, the 3-dimensional data was

processed so that each unique latitude and longitude was associated with a time series of each variable. The single categorical205

feature (lc) was converted to binary numeric. Each unique land cover type is assigned to a new feature, with 1 indicating

presence and 0 indicating absence.

Split Strategy and Hyper-parameter optimisation - To refine the number of estimators and maximum depth, a 3-fold

cross-validation approach using the HalvingRandomSearchCV was applied. This hyper-parameter optimisation provides

the optimal configuration for the RF so that the critical vegetation dynamics are captured while simultaneously reducing210

the RF complexity and preventing over-fitting. The hyper-parameter optimisation focused on two parameter settings, namely,

Maximum_depth and the number_of_estimators; the search space
:
.
:::
The

::::::::::::::::
Maximum_depth

::::::::
determines

:::
the

:::::::::
maximum

::::
depth

:::
of

:::
the

:::::::
decision

::::
tree

::::
and

:::
the

:::::::::::::::::::::::::
number_of_estimators

:::::::::
determines

:::
the

:::::::
number

::
of

::::::::
decision

::::
trees

:::::
used.

::::
The

::::::
search

::::
space

:::::
used

:::
for

:::
the

::::::::::::::::::::::::
number_of_estimators

:::
and

::::::::::::::::
Maximum_depth was 1-40 and 1-20

::::
1-25, respectively. Increasing the

:::
The

:::::
upper

:::::::
bounds

::
of

:::
the

::::::
search

:::::
space

::::
were

::::::
largely

::::::::::
determined

:::
by

::::::::::::
computational

::::::::::::
considerations,

:::::::::
increasing

:::
the

::::::
upper

:::::
limits215

::::::
beyond

:::
40

:::
for

::::::::::::::::::::::::
number_of_estimators

:::
and

:::
25

:::
for Maximum_depth

:::::
would

::::::
result

::
in

::::::::::
impractical

::::::::::
computation

::::::
times.

::::::::::
Nonetheless,

::::
even

::::
with

::::
this

:::::::::
constraint,

::::::::
increasing

:::
the

::::::::::::::::
Maximum_depth and number_of_estimators past 12 and 15

::
13,

respectively, yielded only marginal increases in test scores (Fig. 2a). Given that only the risk of overfitting
:::
and

::::::::::::
computational

::::
time increases with increasing Maximum_depth and number_of_estimators and

::::::::
combined

::::
with

:::
the

::::
fact

:::
that

:
only

marginal increases in test scores are observed past these points, 12 and 15
::
13

:::::
these

:::::
values

:
were identified as optimal

:::
for220

::::::::::::::::
Maximum_depth

:::
and

::::::::::::::::::::::::
number_of_estimators

::::::::::
respectively.

After determining optimal parameter settings, the data were split into training and validation sets. However, three-dimensional

data could conceivably be split along the temporal dimension where the model is trained on all locations with only a subset

of the temporal availability (i.e., temporal splitting), or the data can be split according to location where only a subset of the

grid pixels are selected for training but over the entire available period (i.e., spatial splitting). Given that previous research225

has highlighted that RF performance is sensitive to spatial vs temporal splitting, this is especially true for extreme events such

as droughts (Hauswirth et al., 2021). We conducted a cursory analysis to determine whether a temporal or spatial splitting

approach better balances trade-offs between computational complexity and learning rates. Learning curves for cursory RF

models using each splitting approach were quantified and compared. Each model was supplied with increasing training sizes,

and test scores were calculated and plotted to visualise learning curves. This cursory analysis revealed that spatial splitting230

yields faster learning curves than the temporal splitting approach (Fig. 2b); therefore, spatial splitting was identified as the

preferred approach.

Train - For the final RF model, a spatial split with a (0.06:0.94) (train: predict) ratio was used to train the final model. A

0.06:0.94 split was chosen, and there was very little increase in performance past training sixes of 6% (Fig. 2b). Maximum_depth

and number_of_estimators were set at 12 and 13, respectively. The parameters that were not subjected to hyper-235

parameter optimisation were set as follows: the squared_error criterion was used to measure the quality of the splits in

branches, the maximum number_of_features considered in each split was set at auto , and the minimum and maximum

samples_per_leaf_nodes
:::::
which

:::::::
instructs

:::
the

::::::::
algorithm

::
to

:::::::
consider

:::
all

:::::::
features

::::
when

::::::::::
considering

::
a

::::
split.

:::
The

:::::::::
minimum

8



Figure 2. (a) Evolution of RF performance during HalvingRandomSearchCV hyper-parameter optimization of: maximum_depth and

number_of_estimators. (b) RF performance following the incremental increase of train set size using a location based split approach

compared to a temporal based split approach.

:::::::::::::::::::::::::
samples_per_leaf_node

:
,
:::::
which

::::::::::
determines

:::
the

::::::::
minimum

:::::::
number

::
of

:::::::
samples

:::::::
required

::
in

::
a

:::
leaf

:::::
node,

:
was set at 1 and

::
the

::::::
default

:::::
value

::
of

::
1.
::::
The

::::::::
minimum

:::::::::::::::::::::
samples_per_split

:::
was

::::
also

::
set

::
at

:::
the

::::::
default

:::::
value

::
of

:
2, respectively

:::::
which

::::::
means240

:
a
::::
split

:::
will

:::::
only

::
be

:::::::::
considered

::
if

::::
each

::::::
branch

:::
left

:::
and

:::::
right

::
of

::
an

:::::::
internal

::::
node

:::
has

::
at
:::::
least

:::
two

:::::::
samples

::
in

::
it.

2.2 Gapfilling evi using Random Forests

As a test of the RF gap-filling capabilities, we predicted evi for the 94% of the grid cells that were not used during training. The

accuracy of these predictions was evaluated against the evi data obtained from MODIS. As a first-pass assessment of overall

performance, the model was scored using default coefficient of determination (R2) scorer in the RF implementation of scikit.245

The model predictions were further evaluated by calculating the root mean squared error (RMSE) and Pearson correlation

coefficients. These were calculated independently for each grid cell to provide information on the spatial variation of errors.

Last, to gain insight into which features were the most essential for predicting evi, global feature importance was calculated

using Shapley Additive exPlanations’ (SHAP) TreeExplainer (Lundberg et al., 2020).

2.3 Downscaling evi using Random Forests250

In this section, the focus shifted toward whether RF can be used to downscale global evi values, that is, whether a model

trained on 0.1◦ can accurately predict evi at a finer 0.01◦ scale. To this end, a 0.01◦ data set was compiled. In cases where data

were not at the 0.01◦ resolution (i.e., meteorology and drought indices data) the nearest neighbour interpolation scheme from

xarray (Hoyer and Hamman, 2017) was used to match the variables to the same spatial resolution. This data set was used as

new input data to the already trained RF model to predict evi at the 0.01◦ scale. The evaluation approach for the downscaled255

values remained much the same, the overall model accuracy was assessed using (R2) and (RMSE), and Pearson correlation

coefficients were calculated for each grid cell.
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2.4 Applicability of ML informed vegetation status products during periods of drought

One noticeable shortcoming of the RF is its relatively poor ability to predict extreme values depending on the training selection

(Hauswirth et al., 2021). To determine to what extent this may influence the generality of the two products mentioned above,260

we further investigated the accuracy of the predicted evi under low growing conditions by calculating the anomaly correlation

coefficient of evi (eviACC; Eq. 1), where eviACCi,j denotes evi anomaly for the month j in year i, ¯evi,j denotes the average

evi of month j over 2003-2013; σ stands for the standard deviation of evi during the period. We use this metric to assess the

applicability of the RF based 0.1◦ and 0.01◦ evi predictions against remotely sensed evi. We consider eviACC values greater

than 0 as capable of capturing anomalies beyond the seasonal cycle and values exceding
::::::::
exceeding 0.2 as good, given the265

strong seasonal cycle that is present in evi data.

eviACCi,j =
evii,j − ¯evij

σ
(1)

3 Results

The results here are presented in three parts. First, the results of the model trained on the 0.1◦ data are presented; here, the

focus is retained on the model’s performance and ability to predict the status of the vegetation at the spatial resolution it is not270

trained at and in such acting as a gap-filling tool. We also touch on which features are most important in predicting the status

of the vegetation. Subsequently, we present the model’s performance when used to downscale evi and predict 0.01◦ data. We

explore how this model can be used to gain insight into global vegetation dynamics by assessing the accuracy of both products

under drought conditions.

3.1 Gapfilling evi using Random Forests275

The model was able to reproduce global vegetation patterns by correctly predicting high vegetation density in tropical forests

and low vegetation density in arid and urban regions of the world (Fig. 3). SHapley Additive exPlanations values provided an

understanding of the relative importance of each feature in predicting evi. The most important features were those associated

with meteorology, land cover type and elevation; drought indices and slope proved to be less important (Fig. 4).
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Figure 3. Mean evi (2003 - 2013) for the (a) observed 0.01◦, (b) predicted 0.01◦ and (c) predicted 0.1◦ values by the RF. Barren land, deserts,

permanent snow, and water bodies were masked and represented by black.
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When trained on only 6% of the data (i.e., the point at which the use of additional data did not result in better predictions but280

increases the risk of overfitting), the RF was able to predict global evi accurately with a spatial resolution of 0.1◦ (R2 = 0.86;

Fig. 3, 5, 6 & 7a). Looking more closely at the distribution of errors, less than 1% of grid cells showed negative correlations

and more than 80% showed correlations higher than 0.5 (Fig. 7c) and RMSE ranged between 0.02 and 0.4 (mean: 0.05 ± 0.03;

Fig. 7d). However, it is important to note that the accuracy was neither spatially nor temporally uniform. Land cover types

were an important feature in determining predictive ability. The predictions of evi in areas dominated by urban, mixed and285

crop land cover types showed the highest degree of error (Fig. 6a). On the contrary, the most natural types of land cover, such

as forests and grasslands, were the most accurately represented by the model (Fig. 5a & 6a). For all types of land cover, the

periods of maximum and minimum evi were less accurately predicted than the intermediate periods (Fig. 6a). Predicted evi was

consistently overestimated by the model in urban land covers (Fig. 6a).

Figure 4. Feature importance for the RF based predicted evi at 0.1◦. The features are ordered by level of importance, with higher mean

SHAP values indicating higher importance.
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Figure 5. (a) RMSE for predicted evi using a RF model. Zoomed in inserts show Amazon Basin as representative of forest land cover, Great

Lakes as a representative of croplands and Western Europe representative of urban land cover over at the (b) 0.1◦ and (c) 0.01◦.
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3.2 Downscaling evi using Random Forests290

When the model trained on 0.1◦ data was used to predict evi at the 0.01◦ spatial resolution, there was a slight drop in accuracy

but the model was still able to capture spatial and temporal vegetation dynamics when supplied with 0.01◦ data (Fig. 5 & 7b).

The predictive capacity was still good but reduced compared to the 0.1◦ product, with a median R2 of 0.75 (Fig. 7b). The errors

also increased, 5% of grid cells displaying negative correlations (Fig. 7c) compared to less than 1% for the 0.1◦ product. RMSE

ranged between 0.04 and 0.6 (mean: 0.09 ± 0.07; Fig. 7d), with the majority of the grid cells exhibiting RMSE around 0.05.295

Accuracy was again dependent on the land cover, with urban, mixed and crops performing the worst (Fig. 6b). Noticeably, for

urban land cover types the model consistently overestimated evi.

Figure 6. Time series of average and predicted evi, per major land cover type at 0.1◦ and 0.01◦. F=Forest, Shr=Shrubland, Sav=Savanna,

G=Grassland, W=Wetlands, C=Crops, U=Urban, M=Mixed.

3.3 Accuracy under drought conditions

The anomaly correlation analysis revealed that the RF was still able to capture evi anomalies (Fig. 8), but to a lesser extent

compared to overall performance (Fig. 7c). The majority of grid cells showed positive correlations, with less than 10% dis-300

playing negative correlations; indicating that for that 90% of the locations where eviACC was positive, the RF can reproduce
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Figure 7. : (a) Scatter plot of observed and predicted evi at 0.1◦ and (b) 0.01◦; Cumulative distribution function for (c) Pearson Correlation

Coefficients for all grid points at 0.1◦ and 0.01◦, (d) violin plot of RMSE for all grid points at 0.1◦ and 0.01◦

anomalies from the average seasonal cycle and thus can be used to identify periods of negative or positive evi impacts resulting

from droughts or more favourable growing conditions. More than 50% of grid cells exhibited an eviACC of 0.25 for 0.1◦

compared to 45% when evi was predicted at 0.01◦ (Fig. 8).

15



Figure 8. Cumulative distribution curves of anomaly correlation coefficients for evi predicted by a RF at 0.1◦ and 0.01◦.

4 Discussion305

4.1 Gapfilling evi using Random Forests

The results here show that RF can accurately predict evi at unseen geographic locations when trained on relatively few data-
:
;

:::
here

:::::::
training

:::
the

:::
RF

:::
on only 6% in this case

:::::::
provides

:
a
::::::::::::
representative

::::::
sample

:::
of

:::::
global

::::::::::
distribution

::
of

:::
evi

:::::
values

:::
(see

:::::::
section

:::
4.4

::
for

::::::
further

:::::::::
discussion

:::
on

:::
the

:::::::
influence

:::
of

::::
data

:::::::::::::
representativity). Using RF as a gap-filling tool has previously been applied

remotely sensed vegetation indices (Roy, 2021; Sarafanov et al., 2020; Sun et al., 2023; Wang et al., 2021; Moreno-Martínez310

et al., 2018) albeit mostly at the more local scale. Although challenging to directly compare the errors of a global product

to other regional products; the errors and correlations reported here are comparable with the regional studies (R2 ≈ 0.9 and

RMSE:0.02 - 0.4). Two previous studies have however applied ML techniques to predict evi at the global. These studies relied

on Long Short-Term Memory (LSTM) networks, using only meteorological input data, to predict global 15 day and 8-day evi

at the 0.5◦ (Chen et al., 2021) and 250m (Xiong et al., 2023) resolution, respectively. This study, using a more simple ML315

model, reports similar rates of error (R2 ≈ 0.9 and RMSE:0.02 - 0.4) compared to the more sophisticated methods in Chen

et al. 2021 (RMSE=0.01) and Xiong et al. 2023 (R2 ≈ 0.9 and RMSE ≈ 0.07), which suggests that using multiple sources

of input data is beneficial. The use of multiple sources of earth data in conjunction with RF has also been used for predicting

global soil moisture (Zhang et al., 2021b). In addition to other ML based methods, this current work adds to the number of

already available tools (reviewed in Peng et al. 2017) that can be used for gap-filling and the production of global and spatially320

continuous evi datasets.

4.2 Downscaling evi using Random Forests

The RF accurately predicted evi at finer spatial scales than was trained, successfully predicting evi at a scale of 0.01◦ using high-

resolution auxiliary data. However, it should be noted that this resulted in a reduction in precision compared to the 0.1◦product.
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This is an expected result, given that evi at the 0.01◦ resolution will exhibit greater variances and more extreme values during325

periods of high and low growth. Scale-dependent drivers of vegetation dynamics may be another phenomenon that contributes

to decreased precision when predicting evi at the 0.01◦ using a model trained at a coarser resolution. Meteorology has been

shown to be tightly coupled to vegetation at the ecosystem scale but less so at finer scales, where biotic processes, such as

competition, herb ivory, disease, and fire, are more important (Franklin et al., 2020). When predicting evi, the relative increases

in error remained small. Downscaling vegetation indices using ML methods have previously been applied to downscale other330

remotely sensed variables such as precipitation (Park et al., 2022), evapotranspiration (Hobeichi et al., 2023) and gross-primary

productivity (Gensheimer et al., 2022).

4.3 Random Forests for predicting drought effects

The increase in error among extreme values is a known limitation of the RF (Hauswirth et al., 2021) and in accordance the RF

was less capable of capturing extreme values of evi compared to the overall performance of the model. During RF training,335

an evaluation metric, in this case squared_error, is used to minimize the error for the model as a whole. In this scenario,

optimal fits inevitably result in reduced errors for values close to the mean at the expense of inflated errors for the outliers

(Ribeiro and Moniz, 2020). In the current study, this means that evi during normal growth periods is prioritized over periods

of extremely low or high vegetation growth.
::::::::::
Nonetheless,

:::::
given

::::
that

:::
the

:::::::
majority

::
of

:::
the

::::
grid

::::
cells

::::::::
exhibited

:::::::
positive

::::::::
anomaly

::::::::::
correlations,

:::
the

:::::
ability

:::
to

::::::
predict

::::::::
vegetation

:::::
status

:::::
under

:::::::
drought

::
is

::::
still

:
a
:::::::
positive

:::::
result

::
in

:::::::::
accordance

::::
with

::::::::
previous

:::::::
research340

::::::::::::::::::::::::::::::::::::
(Prodhan et al., 2022; Hauswirth et al., 2021)

:
.
::::::::
Although,

::::::::
provided

::::
that

:::::
more

:::::::::::
sophisticated

:::::::
machine

::::::::
learning

::::::
models

::::
tend

:::
to

::::::
predict

:::::::
extreme

:::::
values

:::::
more

:::::::::
accurately

::::
than

:::
the

:::
RF

::::
used

::::
here

:::::
(e.g.,

:::::::::::::::::
Kladny et al. (2024))

::::::
future

::::::
studies

::::::
should

::::
aim

:::::::
evaluate

::::
their

::::::::
feasibility

::::
and

::::::::::
applicability

:::
to

::::::
predict

:::::::::
vegetation

:::::
status

:::::
under

:::::::
drought

:::::::::
conditions

::
at

:::
the

:::::
global

:::::
scale.

::::
Yet

::
in

::::::::::
comparison

::::
with

:::
RF,

:::
the

::::
more

:::::::
complex

:::::::::
algorithms

::::
have

:::::
larger

::::::::::::
computational

:::::::::::
requirements

::::::
during

::::::
training

::
of

:::
the

::::::
model

:::
and

:::
are

:::
less

:::::::
capable

::
of

::::::::
capturing

:::::::
potential

:::::::::::::
non-linearity’s.345

4.4 Importance of Land cover Types and Input Data

Varying error according to land cover type in the 0.1◦ and 0.01◦ is expected for at least three
:::
two

:
reasons. The first relates

to the inherent features of the RF algorithm itself, and the second to the environmental process that affects the dynamics of

evi. A limitation of the RF algorithm is that when data is imbalanced, underrepresented groups are less well explained by

the algorithm. Accordingly, accuracy varied according to a proportional abundance of land cover types (Jung et al., 2020).350

Dominant land cover types, such as forests and grasslands, displayed the least amount of error; in contrast, minority land cover

types regions that have undergone human modification (i.e., urban areas and croplands) were associated with the highest error.

Second, the features used in this study may not incorporate processes critical to vegetation status equally among land cover

types (Moussa Kourouma et al., 2021). Forests, grasslands, and other natural ecosystems are closely coupled to water avail-

ability determined by climatic variataions
::::::::
variations processes. However, croplands and urban areas may be less influenced by355

weather and more influenced by anthropogenic manipulations of water and energy balances (Zhang et al., 2004; Hawkins et al.,

2003; Tang et al., 2021). A potential solution to this problem is to rely on Extreme Gradient Boosted Decision Trees, which
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have been shown to provide more accurate predictions where data are imbalanced (Li et al., 2021b) or include information on

human-water management to better represent drought responses (Wanders and Wada, 2015).

Land cover-specific variations in the model’s ability to predict vegetation are an important outcome of this study. Apart360

from the statistical reasons detailed in the previous paragraph as potential mechanisms for this phenomenon, an additional,

and most likely compounding explanation is that the data used to predict evi may be more relevant for some land cover

types and levels of vegetation growth than others. For instance, vegetation status in urban areas and croplands shows weak

correlation or high errors (Fig. 5 & 6). The meteorological data used here to predict evi may not be the only factor driving

the vegetation dynamics in human-modified areas. It is possible that irrigation, harvesting, and water management influence365

vegetation. Indeed, vegetation in urban areas have been shown to grow more rapidly and have a longer growing season than

rural counterparts; this is thought to be driven by higher temperatures, high concentration of airborne phosphorous and other

aerosol pollutants (Sicard et al., 2018a, b; Pretzsch et al., 2017). In contrast, natural forests and grasslands show high levels

of accuracy and correlations, thus suggesting that the data used here is appropriate for the machine learning models to capture

vegetation dynamics. Similarly, poor accuracy in wetlands is not unexpected as wetland vegetation is primarily driven by370

water quality, salinity, and pH (Grieger et al., 2021). On the contrary, forests and grasslands show high accuracy when using

meteorological variables, since these are important drivers of vegetation growth in these areas. Although not directly related

to vegetation, Hauswirth et al. (2021) showed that by including water management practices in machine learning models, the

predictions of groundwater head and stream flow were more accurately predicted. It is important to note that the relevancy of

predictors in shaping evi does not only affect the accuracy between land cover types but also plays a role in determining the375

overall accuracy of the model. For instance, precipitation and soil moisture do not exhibit similar feature importance, whilst

soil temperature and two meter temperature does. The amount of precipitation retained in soils is dependent on a number of

factors, and these results suggest that soil water moisture is a more critical variable than precipitation in governing global evi

dynamics; this aligns with the observation of the residence time of precipitated water in soils that are often much longer than

the actual precipitation events (McColl et al., 2017). In addition, slope is known to be an important determinant of vegetation380

status at fine spatial resolutions (Chen et al., 2013). Yet, the relatively weak feature importance of slope suggests that the model

could not find much meaningful information regarding vegetation status and slope at the 0.1◦ during training and subsequently

would be unable to use this information when predicting evi at the 0.01◦ resolution.

One other possibility is that uncertainty in the input data prevents more accurate predictions by the model. The temperature

of ERA5-Land is known to show weaker correlations with the observed data in the tropics compared to more northern and385

southern latitudes (Muñoz-Sabater et al., 2021). In accordance to that, the errors evi predicted using the RF model largely

follow this pattern where errors are higher in the tropics compared to the temperate zones. The temperature from ERA5-Land

show relatively higher errors along the Andes, the northern reaches of the African rainforest, and the Sichuan Basin in China

and the errors in predicted evi mirror this uncertainty. Similarly, when comparing errors in soil water content from ERA5-Land;

Gabon forest’s, the Andes, Vietnam, New South Wales in Australia and the East African Rift Valley have relatively high errors390

(Lal et al., 2022). Again, the errors in predicted evi are also relatively high in these regions. When considering the quality

of land cover data used here, some inconsistencies may affect the ability of the RF to accurately predict evi. For example,
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when croplands are smaller than the pixel size used in MODIS, these croplands are incorrectly assigned as natural vegetation.

Furthermore, temperate evergreen needleleaf forests are misclassified as broadleaf evergreen forests, and some grassland areas

are classified as savannas. The relatively poor predictive performance in mixed land cover types further reiterates the need to395

provide models with appropriate input data sources where string signals are present. In addition, data that is more relevant

to vegetation dynamics could provide better results; for example the weak feature importance of slope and the various SPEI

metrics at their various aggregation times suggests that these variables do not play a relatively important role predicting evi

at the temporal and spatial scales here. For example at fine scales, slope and aspect are important for determining radiation

intensity experienced by plants but training the model at 0.1◦ means that this effect becomes less important and is not learnt400

by the model. Perhaps a better result would be acquired if more scalable variables would be included, specifically for the

downscaling component.

4.5 The use of ML in drought monitoring

This study shows that ML can be used for drought monitoring at high spatial and temporal resolutions, however there are

trade-offs when it comes to using machine learning for vegetation drought impact monitoring. ML based evi esimates can be405

used to assess the potential impact of droughts on vegetation, however this ML based estimates still require meteorological

input dataset. The ML model also needs to be trained on actual remotely sensed evi observations to identify the relationship

between these meteorological variables and vegetation drought impacts. This inherently makes the ML based estimates as good

as the remotely sensed product, and as long as no reliable alternative exists it will be difficult to fully replace remotely sensed

evi observations. However, there is an added benefit of having continues high resolution global coverage derived from a ML410

based evi estimate. Finally, the ML-based estimates also allow us to extrapolate the evi records to historical periods for which

meteorological data exist but satellite remotely sensing was not yet available or use as post-processing in hydrological model

simulations to directly estimate drought impacts.

5 Conclusions

The results of this study reveal that the RF is an appropriate method for predicting evi on the global scale, at the 0.1◦ and415

downscaled 0.01◦ resolution. In general, RF was capable of predicting evi dynamics with high accuracy; global patterns of

vegetation and temporal dynamics were well captured with land cover, and variables relating to energy and water balances

experienced by plants, baring the most significance. The model was able to capture annual vegetation growth cycles and dis-

tinguish between the main global biomes with high accuracy. However, it is essential to note that higher errors were associated

with under-represented land cover types and periods of extreme vegetation growth, such a drought periods. Lower accuracy420

for under-represented classes in unbalanced data sets and a hampered ability to predict extreme values is a common criticism

of the RF. In accordance with this study, land cover types that account for a smaller fractional cover of the earth’s surface, and

periods of extreme vegetation growth, were associated with the highest error. Predicting evi at a finer resolution resulted in
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increased errors. This is attributed to higher variances in the 0.01◦ product compared to 0.1◦ and it is important to note that the

relative increases remained small.425

The results here also highlight the use of RF for efficiently and accurately predicting missing data and downscaling, which

ultimately allows for the production of spatially continuous evi data at very high spatial and temporal resolutions. To this end,

this study produces spatially continuous evi product at 0.1◦ and 0.01◦ resolution, and therefore this approach could be used to

fill existing gaps in satellite observations or in conjunction with satellite data to improve the monitoring of drought impacts

on vegetation. For example, Landsat and Sentinel-2 satellites can produce high-resolution vegetation products; however, re-430

trievals are strongly affected by weather conditions, which results in data gaps. In addition, their relatively low orbiting altitude

means that the spatial coverage for each pass over is low. Using this approach on such data could produce globally continous

:::::::::
continuous vegetation products resolutions lower than 100m.

This study
:::::
shows

::::
that

:::
ML

::::
can

::
be

::::
used

:::
for

:::::::
drought

::::::::::
monitoring

::
at

::::
high

::::::
spatial

:::
and

::::::::
temporal

::::::::::
resolutions,

:::::::
however

:::::
there

:::
are

::::::::
trade-offs

:::::
when

:
it
::::::
comes

::
to

:::::
using

:::::::
machine

:::::::
learning

:::
for

:::::::::
vegetation

:::::::
drought

::::::
impact

::::::::::
monitoring.

:::
ML

:::::
based

:::
evi

:::::::
estimates

:::
can

:::
be435

::::
used

::
to

:::::
assess

:::
the

::::::::
potential

::::::
impact

:::
of

:::::::
droughts

:::
on

:::::::::
vegetation,

::::::::
however

:::
this

::::
ML

:::::
based

::::::::
estimates

::::
still

::::::
require

:::::::::::::
meteorological

::::
input

:::::::
dataset.

:::
The

::::
ML

::::::
model

::::
also

:::::
needs

::
to

::
be

::::::
trained

:::
on

:::::
actual

::::::::
remotely

::::::
sensed

:::
evi

::::::::::
observations

::
to

:::::::
identify

:::
the

::::::::::
relationship

:::::::
between

::::
these

:::::::::::::
meteorological

:::::::
variables

::::
and

::::::::
vegetation

:::::::
drought

:::::::
impacts.

::::
This

:::::::::
inherently

:::::
makes

:::
the

:::
ML

:::::
based

::::::::
estimates

::
as

:::::
good

::
as

:::
the

:::::::
remotely

::::::
sensed

:::::::
product,

::::
and

::
as

::::
long

::
as

:::
no

::::::
reliable

:::::::::
alternative

:::::
exists

::
it

:::
will

:::
be

:::::::
difficult

::
to

::::
fully

::::::
replace

::::::::
remotely

::::::
sensed

::
evi

::::::::::
observations.

:::::::::
However,

::::
there

::
is
:::
an

:::::
added

::::::
benefit

::
of

::::::
having

:::::::::
continues

::::
high

::::::::
resolution

::::::
global

::::::::
coverage

::::::
derived

:::::
from

:
a
::::
ML440

:::::
based

::
evi

:::::::
estimate.

:::::::
Finally,

:::
the

::::::::
ML-based

::::::::
estimates

::::
also

:::::
allow

::
us

::
to
::::::::::
extrapolate

:::
the

:::
evi

::::::
records

::
to

::::::::
historical

::::::
periods

:::
for

::::::
which

::::::::::::
meteorological

::::
data

::::
exist

:::
but

:::::::
satellite

::::::::
remotely

::::::
sensing

::::
was

:::
not

:::
yet

::::::::
available

::
or

:::
use

::
as

:::::::::::::
post-processing

:::
in

::::::::::
hydrological

::::::
model

:::::::::
simulations

::
to

:::::::
directly

:::::::
estimate

:::::::
drought

:::::::
impacts.

::::
This

::::
study

:
adds to previous research efforts that have successfully applied the RF in predicting vegetation status. Here the

RF was used to produce a global spatial and temporally continuous evi product at 0.1◦ and 0.01◦, with a median R2 of 0.86445

& 0.75, respectively. The approach outlined in this study could be applied to Landsat and Sentinel-2, to produce continuous

vegetation index data sets at the 30-10m spatial resolution. The RF algorithm is a powerful technique for predicting temporal

and spatial vegetation dynamics from remote sensor data and can be used for gap-filling and dowenscaling
:::::::::::
downscaling. The

novelty of this product, compared to previous studies, is that it has global coverage, high spatial and high temporal resolution.
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Appendix: A1. Feature Selection460

Figure A1. Correlation Matrix of pairwise Spearman rank correlation coefficients between all potential variables

Appendix: A2. Drought Indices Calculations

For the calculation of spi:

x=

m∑
i

tpi (A1)

where i is the month in question and m= i− scale.

For the calculation of spei:465

x=

m∑
i

Di (A2)

where: Di = tpi − peti and

xk
i,j =


∑12

l=13−k+j tpi−j,l +
∑j

l=1 tpi,l, if j < k∑j
l=j−k+1 tpi,l, if j ≥ k

(A3)

This time series is then fitted to a gamma distribution taken the following steps:

First α and β fitting parameters as calculated as:470
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α̂=
1

4A
(1+

√
1+

4A

3
) (A4)

Where A= ln(x̄)−
∑

ln(x)
n with n being number of observations.

β̂ =
x̄

α
(A5)

The gamma distribution probability density (Eq. A6) function with respect to x and including the calculated estimates for α

and β can be inserted to produce an equation for the cumulative probability of a value for (Eq. A7).475

g(x) =
1

βαΓ(α)
xα−1e

x
β (A6)

where α is the shape parameter and β is the scale parameter and Γ(a) =
∞∫
0

yα−1e−ydy

G(x) =
1

β̂α̂Γ(α̂)

x∫
0

xα̂e
−x

β̂ dx (A7)

then substituting t for x
β̂

results in the incomplete gamma distribution (Eq. A8)

G(x) =
1

Γ(α̂)

x∫
0

tα̂−1e−1dt (A8)480

Values of the incomplete gamma function can be computed using Eq. A9

H(x) = q+(1− q)G(x) (A9)

Finally, values computed from Eq. A9 are transformed into the standard normal distribution to yield the spi and spei at the

relevant time scales. These calculations were completed using the relevant algorithms in the climate_indices python

package (Adams, 2021) using tp, pet, and t2m detailed in Section 2.1.2.485
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