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Abstract  11 

 12 

Climate change is modifying river temperature regimes across the world. To apply management interventions in an 13 

effective and efficient fashion, it is critical to both understand the underlying processes causing stream warming and 14 

identify the streams most and least sensitive to environmental change. Empirical stream thermal sensitivity, defined 15 

as the change in water temperature with a single degree change in air temperature, is a useful tool to characterize 16 

historical stream temperature conditions and to predict how streams might respond to future climate warming. We 17 

measured air and stream temperature across the Snoqualmie and Wenatchee basins, Washington during hydrologic 18 

years 2015-2021. We used ordinary least squares regression to calculate seasonal summary metrics of thermal 19 

sensitivity and time-varying coefficient models to derive continuous estimates of thermal sensitivity for each site. We 20 

then applied classification approaches to determine unique thermal sensitivity regimes and, further, to establish a link 21 

between environmental covariates and thermal sensitivity regime. We found a diversity of thermal sensitivity 22 

responses across our basins that differed in both timing and magnitude of sensitivity. We also found that covariates 23 

describing underlying geology and snowmelt were the most important in differentiating clusters. Our findings can be 24 

used to inform strategies for river basin restoration and conservation in the context of climate change, such as 25 

identifying climate insensitive areas of the basin that should be preserved and protected. 26 

1 Introduction 27 

Globally, river temperature regimes are shifting in response to a changing climate. As water temperature is a critical 28 

component of aquatic ecosystems, these changes will alter an essential element of the habitat of many lotic organisms 29 

(Daufresne and Boët 2007). To apply management interventions in an effective and efficient fashion, it is critical to 30 

both understand the underlying processes causing stream warming (Arismendi et al. 2014, Steel et al. 2017) and 31 

identify the streams most and least sensitive to environmental change (Parkinson et al. 2016, Pyne and Poff 2017, 32 

Jackson et al. 2018).   33 
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 Both deterministic and statistical models have been used to study water temperature (Caissie 2006, Dugdale 36 

et al. 2017, Ouellet et al. 2020). Physical process-based models balance energy (heat) and mass (flow) fluxes in a 37 

water body (Glose et al. 2017). Process-based approaches allow the identification of the most important drivers in the 38 

heat budget of streams across timescales, improving the resolution and accuracy of stream temperature predictions 39 

(Stefan and Sinokrot 1993, van Beek et al. 2012, Wondzell et al. 2019). Issues exist with process-based modelling, 40 

however, including intensive data and computational needs (e.g., spatially distributed land use and soil characteristics, 41 

meteorological and discharge data, etc.), limited ability to generalize across basins, and difficulty representing 42 

groundwater and subsurface flow paths (Safeeq et al. 2014). Statistical models are computationally simpler with 43 

potentially minimal data requirements (Benyahya et al. 2007) facilitating prediction at ecologically relevant spatial 44 

grains and extents. These models are appealing because of their simplicity and limited requirement of meteorological 45 

and hydraulic data, while still being characterized by high levels of explained variance in some basins. However, it 46 

can be difficult to derive insights about river response to perturbations from statistical models as statistical approaches 47 

rely on historical relationships that may not extrapolate well to future conditions. For example, relationships may 48 

change between water temperature and covariates such as discharge or the composition and coverage of riparian 49 

vegetation and land use. Statistical models would therefore benefit from a clearer understanding of the relationships 50 

between derived model coefficients and important watershed processes.  51 

Empirical stream thermal sensitivity, defined as the change in water temperature with a single degree change 52 

in air temperature, or the slope of the statistical relationship between air temperature and water temperature, has been 53 

widely used to characterize historical stream temperature conditions and to predict how streams might respond to 54 

future climate warming (Mohseni et al. 2003, Mantua et al. 2010). Thermal sensitivities reflect the combined influence 55 

of both spatially and temporally varying meteorological and hydrological factors. Variation in solar radiation is the 56 

most important driver of both air and river temperature, and as a result, air and river temperatures are typically 57 

correlated (Johnson 2003). Stream temperature is also influenced by discharge through changes to thermal inertia and 58 

residence time (Meier et al. 2003) and runoff composition where snowmelt, surface runoff, or groundwater inflow 59 

entering the stream have different temperature signatures than the stream itself (Webb and Zhang 1997, Mohseni and 60 

Stefan 1999). Inputs from water sources such as snowmelt and groundwater upwelling decouple air and water 61 

temperatures and result in a decreased thermal sensitivity of water temperature to air temperature (Tague et al. 2007, 62 

Mayer 2012, Johnson et al. 2014). As a result, the relationship between air and water temperature can also be a useful 63 
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diagnostic tool for hydrological processes. Thermal sensitivity has been used in the past to estimate areas of shallow 64 

and deep groundwater influence (Snyder et al. 2015, Briggs et al. 2018) and understand the role of snowmelt in 65 

modulating river temperature (Lisi et al. 2015, Winfree et al. 2018). 66 

 Generally, larger thermal sensitivities indicate that water temperatures are more likely to track changes in air 67 

temperature (Isaak et al. 2016, Mauger et al. 2017, Isaak et al. 2018b); however, there are concerns about employing 68 

this approach to predict future stream temperatures. Past studies have found that using empirical relationships for 69 

extrapolating to future climate scenarios without accounting for underlying processes such as snowmelt, groundwater, 70 

and annual hysteresis may provide inaccurate predictions of future stream temperatures (Leach and Moore 2019, Steel 71 

et al. 2019). Under changing climatic conditions, the interrelations between air temperature and other processes 72 

controlling stream temperature may not remain stable (Arismendi et al. 2014). Additionally, stream networks can 73 

exhibit patchy thermal conditions due to spatially heterogeneous landscape attributes such as riparian shading, valley 74 

form and aspect, and geology (Bogan et al. 2003, Benyahya et al. 2010). Large-scale models that do not incorporate 75 

fine-scale variation in thermal sensitivity may not accurately predict thermal habitat at ecologically relevant scales. 76 

Despite these shortcomings, thermal sensitivity remains a commonly used and straightforward tool that allows for 77 

comparison between locations within rivers and has the potential to guide management.   78 

 There is a need to better understand how thermal sensitives evolve throughout the year and along river 79 

networks. A clearer vision of how thermal sensitivities vary will allow managers to understand what a single snapshot 80 

in time or space represents and could provide insight into how river thermal sensitivity may evolve under nonstationary 81 

air temperature and precipitation regimes. Identification of groups of streams that share similar patterns of thermal 82 

sensitivity will also have management relevance. Groups of streams with similar thermal sensitivities will likely also 83 

share similar risk profiles; managers may therefore tailor investment in streams within groups based on watershed 84 

specific influences (Mayer 2012). This study aims to answer three questions across two Pacific Northwest river basins: 85 

1) What is the spatial and temporal distribution of commonly used air-water temperature metrics across each basin? 86 

2) What are the representative regimes of air-water temperature correlations, how do they cluster on the landscape, 87 

and how do these clusters differ from clusters based solely on air and water temperature? and 3) What are the landscape 88 

or climate factors that best predict cluster membership? 89 

Deleted: predictive 90 

Deleted: thermal memory91 

Deleted: ¶92 
!Both deterministic and statistical models have been used to study 93 
the relationship between air and water temperature (Caissie 2006, 94 
Dugdale et al. 2017, Ouellet et al. 2020). Physical process-based 95 
models balance energy (heat) and mass (flow) fluxes in a water body 96 
(Glose et al. 2017). Process-based approaches allow the 97 
identification of the most important drivers in the heat budget of 98 
streams across timescales, improving the resolution and accuracy of 99 
stream temperature predictions (Stefan and Sinokrot 1993, van Beek 100 
et al. 2012, Wondzell et al. 2019). Issues exist with process-based 101 
modeling, including intensive data and computational needs, limited 102 
ability to generalize across basins, and difficulty representing 103 
groundwater and subsurface flow paths(Safeeq et al. 2014). 104 
Statistical models are computationally simpler with potentially 105 
minimal data requirements (Benyahya et al. 2007) facilitating 106 
prediction at ecologically relevant spatial grains and extents. These 107 
models are appealing because of their simplicity and limited 108 
requirement of meteorological and hydraulic data, while still being 109 
characterized by high levels of explained variance in some basins. 110 
However, it can be difficult to derive insights about river response to 111 
perturbations from statistical models as statistical approaches rely on 112 
relationships that may not extrapolate well to future conditions (e.g., 113 
relationships may change between water temperature and covariates 114 
such as flow or the composition and coverage of riparian vegetation 115 
and land use). Statistical models would benefit from a clearer 116 
understanding of the relationships between derived model 117 
coefficients and important watershed processes, potentially limiting 118 
their utility. !119 
Deleted: on 120 
Deleted: Clusters 121 
Deleted: ing122 
Deleted: Examining whether these clusters are stable through time 123 
and season can provide insight into how river thermal sensitivity 124 
may evolve under nonstationary air temperature and precipitation 125 
regimes. …126 
Deleted: characteristic 127 
Deleted:  and 128 
Deleted: drive the decoupling between air and water temperature 129 
across each basin130 



 4 

2 Methods 131 

2.1 Study Area 132 

The Snoqualmie River begins as three distinct forks in the Mt. Baker Snoqualmie National Forest and drains a 1,813 133 

km2 watershed on the west side of the Cascade Range, Washington (Figure 1). The three forks originate in forested 134 

public land before converging and flowing through a mix of agricultural, residential, and commercial land use. On 135 

one major tributary, the Tolt River, a dam and a large reservoir provide drinking water for the City of Seattle (Figure 136 

S4. The Wenatchee River drains 3,440 km2 of the eastern Cascades before flowing into the Columbia River (Figure 137 

S5). Although land use is similar to the Snoqualmie basin, wherein the headwaters originate in forested public lands 138 

before flowing through a mix of agricultural, residential, and commercial land use, forest density is generally lower 139 

in the eastern Cascades.  140 

Both the Snoqualmie and Wenatchee basins have a Mediterranean climate with dry summers and wet, mild 141 

winters influenced by proximity to the Pacific Ocean. The climate on the east side of the Cascades is drier than that 142 

of the west side; however, the prevailing westerly winds, which cross the Cascades, create temperature and 143 

precipitation gradients that vary widely across the Wenatchee basin. Precipitation occurs predominately from October 144 

to March. The coldest month is typically January, whereas the warmest is July. Rivers have a mixed rain-snow 145 

hydrology with substantial winter rain and spring snowmelt, although the Wenatchee basin receives a greater 146 

proportion of winter precipitation as snow. Peak flow generally occurs during winter in the Snoqualmie River and 147 

spring in the Wenatchee River (Figure 2). The Snoqualmie and Wenatchee basins both have reaches where water 148 

temperature exceeds regulatory thresholds established for salmonids that are protected by the U.S. Endangered Species 149 

Act (ESA). Both basins support ESA-listed Chinook Salmon (Oncorhynchus tshawytscha) and Steelhead Trout 150 

(Oncorhynchus mykiss) and the Wenatchee basin additionally supports populations of Bull Trout (Salvelinus 151 

confluentus) and Sockeye Salmon (Oncorhynchus nerka).  152 

Water temperature loggers (NSnoqualmie=42, NWenatchee=31) were installed throughout the mainstems, on major 153 

tributaries and on a selection of minor tributaries for both the Snoqualmie and Wenatchee rivers (Figure 1). Practical 154 

limitations forced sites to be publicly accessible, or on private property with landowner permission, and within 1 km 155 

of a road. For this study, water temperature was recorded using HOBO TidbiT v2 (UTBI-001) loggers every hour 156 

from October 1, 2014 through September 30, 2021 in both basins. We hereafter use North American hydrologic years 157 

(1 October – 30 September) instead of calendar years with the year of summer data as the year of reference. Air 158 
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temperature data was recorded using HOBO Pendant (UA-002-64) loggers at all water temperature monitoring sites. 164 

Air temperature was logged for subset of 11 (6) sites in the Snoqualmie (Wenatchee) basin beginning October 1, 2014, 165 

and for all sites beginning October 1, 2016 (October 1, 2018). Air loggers were placed on trees along the stream bank, 166 

as close to the stream temperature loggers as possible. The air temperature loggers were secured at approximately 167 

breast height on the north side of the trees. Solar shields were fashioned to house both water and air temperature 168 

loggers.  169 

2.2 Exploratory analysis of air-water correlation summary metrics 170 

We calculated two summary metrics to characterize the relationship between air temperature and water temperature. 171 

For each site, summary metrics were derived from linear regressions between mean daily values of air and water 172 

temperature. The slope of this relationship, the thermal sensitivity, indicates the average difference in water 173 

temperature when comparing time periods with a one-degree difference in air temperature. For example, a thermal 174 

sensitivity of 0.5 would indicate that, based on historical data, when air temperature at a site differs by 1°C, water 175 

temperature differs on average by 0.5°C (Leach and Moore 2019). The strength of this relationship (R2) is an indicator 176 

of how well water temperature can be approximated by air temperature and is calculated as the Pearson correlation 177 

value between air and water temperature. Summary metrics were calculated separately for each season. Seasons were 178 

defined as fall (October, November, December), winter (January, February, March), spring (April, May, June), and 179 

summer (July, August, September).  180 

A large body of literature examines landscape-level drivers of air and water temperature correlations within 181 

rivers. Therefore, we first summarized hypothesized drivers of thermal sensitivity based on previous literature and 182 

their covarying landscape variables within our basins. We then conducted an exploratory analysis of the relationship 183 

between landscape covariates and thermal sensitivity to better understand patterns in our data and set up future 184 

hypothesis testing. Due to the correlated nature of our dataset, no formal statistical tests were conducted. We plotted 185 

summer thermal sensitivity against hypothesized drivers, including mean watershed elevation (MWE), watershed 186 

slope, distance upstream, percent riparian forest cover, and substrate hydraulic conductivity. Loess curves were plotted 187 

to aid in data visualization, and correlation coefficients between thermal sensitivity and each landscape covariate were 188 

used to quantify the strength of the linear relationship. Covariate descriptions and sources are found in Table 1.  189 

We also explored the relationship between spring thermal sensitivity and snowmelt, defined as the change in 190 

Snow Water Equivalent (SWE) for a given season, and between summer thermal sensitivity and mean air temperature 191 
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and total precipitation. Climatic variables were obtained from gridded DAYMET data products (Thornton, M.M. et 206 

al. 2020) and calculated for the upstream catchment of each monitoring station.  207 

2.3 Spatially weighted clustering of thermal sensitivity, water temperature, and air temperature 208 

To identify representative regimes of air-water temperature correlations, we employed a varying-coefficient linear 209 

model to obtain continuous, daily estimates of thermal sensitivity. We then defined a spatially weighted dissimilarity 210 

matrix for use in clustering, which quantifies the spatial correlation in thermal sensitivity time series while accounting 211 

for the directed river network structure. We used this spatially weighted dissimilarity matrix with agglomerative 212 

hierarchical clustering to identify groups of sites exhibiting similar patterns in thermal sensitivity over time and 213 

compared these clusters to those generated using only water or air temperature. Details of each step are provided in 214 

the following sections.   215 

2.3.1 Varying coefficient linear model for air-water relationship 216 

To derive a continuous thermal sensitivity metric, we fit a time-varying coefficient model (TVCM) to air and water 217 

temperature data. The TVCM is an effective tool for exploring dynamic features of the sensitivity of water temperature 218 

with changes in air temperature and uses a parametric linear model but with time-varying coefficients (Li et al. 2014, 219 

2016). For a given site, we described the varying coefficient model for the air–water temperature relationship as:  220 

𝑦! = 𝛽",! +	𝑥!𝛽$,! + 	𝜖! , 𝑡 = 1,… , 𝑇	 (1) 221 

Where 𝛽",! and 𝛽$,!are varying intercept and slope coefficients. To estimate the time-varying coefficients, we adopted 222 

an ordinary least squares kernel regression with the Nadaraya–Watson estimator, where we fit a set of weighted local 223 

regressions with an optimally chosen window size defined by the bandwidth, b, and the weights given by the kernel 224 

function (Hoover 1998, Casas and Fernandez-Casal 2019). The kernel and its bandwidth control the level of smoothing 225 

by adjusting the weight that the neighbouring time points have on estimates at t. The bandwidth was set to 0.2 a priori 226 

to ensure consistency across time series. We used the Gaussian kernel that is of the form 𝑘(𝑥) =
$
%
𝜋	e&

!"
" . The varying 227 

intercept term represents the mean water temperature at time t and the varying slope term represents the local 228 

sensitivity of water temperature to changes in air temperature at time t. We used the R package tvReg (Casas and 229 

Fernandez-Casal 2021) for implementing the model.  230 

We filtered resultant time series for site-years with > 218 days (60% of the year) and gaps of £ 7 days, 231 

yielding 250 site-years from 74 sites across both the Snoqualmie and Wenatchee basins. To capture the typical range 232 
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and timing of thermal sensitivity at each site, we created a single representative time series of thermal sensitivity at 257 

each site by calculating the mean daily thermal sensitivity for each day of the year across all years of filtered data. We 258 

use this average annual time series for subsequent clustering analyses. To ensure that using an average annual time 259 

series of thermal sensitivity was an appropriate choice given the structure of our data, we conducted a supplementary 260 

analysis to assess cluster sensitivity to interannual variability (Appendix A).  261 

2.3.2 Estimating a spatially weighted dissimilarity matrix  262 

To quantify spatial correlation while accounting for the directed river network structure, we developed a dissimilarity 263 

measure for time series of thermal sensitivity, water temperature, and air temperature that incorporated spatial 264 

correlation between sites (Haggarty et al. 2015). The general form of the proposed dissimilarity measure between sites 265 

x and y can be written as:   266 

𝑑'() = 𝑑'(𝑐𝑜𝑣6 (ℎ*) (2) 267 

where 𝑑'() is the spatially weighted dissimilarity matrix, 𝑑'(is the Canberra distance (Lance and Williams 1967), and 268 

𝑐𝑜𝑣6 (ℎ*) is a valid stream distance-based covariance matrix.  269 

To estimate 𝑐𝑜𝑣6 (ℎ*), we used the tail-down model that was introduced by Ver Hoef and Peterson (2010). 270 

Due to the complex structure of the tail-down model, it is necessary to model spatial correlation on a river network 271 

with a covariogram. We first estimated the covariance between time series at each site using a classic formula from 272 

Cressie (1993), which states that the estimated covariance between sites x and y is given by  273 

𝑐𝑜𝑣6 (𝑥, 𝑦) = 	9
{𝑥! − �̅�}{𝑦! − 𝑦>}

𝑇

+

!,$

		 (3) 274 

where xt and yt are the values of the variable (thermal sensitivity, water temperature, or air temperature) at sites x and 275 

y at time t and T is the total number of discrete times. This results in a single value which summarizes the covariance 276 

between the time series at the two sites over the period of interest. We then plotted these point summaries of the 277 

covariance between pairs of curves against lags (measured as stream distance) to obtain an empirical stream distance-278 

based covariogram. We fit an exponential covariance function to this empirical covariogram and evaluated the model 279 

at relevant distances to obtain an estimated stream distance-based covariance matrix 𝑐𝑜𝑣6 (ℎ*). We used this new 280 

covariance matrix to weight the Canberra distance matrix as shown in Equation 2. The final spatially weighted 281 

dissimilarity matrix, 𝑑'() , was then used in clustering analyses.  282 
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2.3.3 Agglomerative hierarchical clustering  299 

We used agglomerative hierarchical clustering (AHC) to identify groups of sites where the patterns in thermal 300 

sensitivity, water temperature, and air temperature were similar over time using the hclust function in R (R Core Team 301 

2020). AHC is a common clustering method (Olden et al. 2012, Maheu et al. 2016, Savoy et al. 2019, Isaak et al. 302 

2020) where each time series starts in its own cluster, and the hierarchy is built by repeatedly merging pairs of similar 303 

clusters separated by the shortest distance (i.e., measured as the similarity between individual times series) until all 304 

points are contained in a single cluster. To decide which clusters are merged in every iteration, AHC uses a dissimilarly 305 

metric (𝑑'() , derived in Equation 2) and a linkage criterion. We used Ward’s minimum variance linkage method for 306 

clustering, where the distance between two clusters is computed as the increase in the sum of squared differences after 307 

combining two clusters into a single cluster. The shortest of these links (minimum increase in the sum of squared 308 

differences) that remains at any step causes the fusion of the two clusters whose elements are involved.  309 

A difficulty associated with cluster analysis is determining the most appropriate number of clusters given the 310 

data because no a priori optimal number of clusters exists. Clusters resulting from alternative choices can be evaluated 311 

through internal cluster validity indices (CVI); there are a variety of CVIs, most of which combine within cluster 312 

cohesion (intra-cluster variance) or between cluster separation (inter-cluster variance) to compute a quality measure. 313 

There is no universally best CVI (Arbelaitz et al. 2013), therefore we calculated a suite of five CVIs, including the 314 

Silhouette, Gap, Davies–Bouldin, Calinski–Harabasz, and generalized Dunn indices, using the NbClust R package 315 

(Charrad et al. 2014). A final number of clusters was determined by a majority rules approach based on the optimal 316 

number of clusters suggested by each index (Table S2).   317 

To determine whether clusters assignment were stable, or preserved under a perturbed dataset similar to the 318 

original and therefore likely reflective of real differences,  we conducted a bootstrapping approach where sites were 319 

sampled with replacement and then AHC was performed on the resampled data using the fpc R package (Hennig 320 

2020). For each bootstrapped cluster, we assessed the similarity between each new cluster and the most similar original 321 

cluster with the Jaccard index. The Jaccard coefficient ranges from 0 to 1. Clusters with a coefficient larger than 0.75 322 

were considered stable and clusters with a mean Jaccard coefficient of less than 0.5 were considered unstable and may 323 

not reflect a true pattern in the data (Maheu et al. 2016, Savoy et al. 2019). We repeated the bootstrapping procedure 324 

10,000 times; the mean Jaccard coefficient for each cluster is reported in Table 4.   325 
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2.3.4 Identification of environmental drivers in thermal sensitivity  331 

We used classification and regression trees (CART; Breiman et al. 1984) to investigate the relative importance of 332 

climatic, landscape, and physical drainage basin attributes for predicting each site’s membership to a thermal 333 

sensitivity cluster. CART is typically used to attempt to predict membership to clusters using environmental attributes, 334 

and it allows the modelling of nonlinear relationships among mixed variable types and facilitates the examination of 335 

intercorrelated variables in the final model (De’ath and Fabricius 2000, Olden et al. 2008). We took an exploratory 336 

approach to this analysis due to our relatively small sample size (NSnoqualmie = 42, NWenatchee = 31), which limited our 337 

ability to conduct statistical tests. Therefore, we calculated variable relative importance, defined as the sum of squared 338 

improvements at all splits determined by the predictor. These values are scaled to sum to 100 (rounded). We used the 339 

R package rpart (Therneau and Atkinson 2019) for implementing the CART model. Covariates examined are described 340 

in Table 1.  341 

3 Results 342 

3.1 General patterns in temperature, precipitation, and thermal sensitivity 343 

This analysis included data from seven hydrologic years, each with differing temperature and precipitation patterns. 344 

Generally, the years spanned by our dataset were warmer than the historical average, with wetter than average winter 345 

and fall months and drier spring and summer months (Figure S1). The long-term average annual precipitation was 346 

1874 mm (939 mm) for the western (eastern) Cascades time series. For the western (eastern) Cascades, all years (2015-347 

2021) have average annual temperatures higher than the long-term average of 8.6 °C (3 °C), although individual 348 

seasons were slightly cooler than average. The year 2015 stood out as a year with an exceptionally warm winter, low 349 

snowpack, and dry spring. Temperature and precipitation patterns in the western and eastern Cascades were generally 350 

similar, however, precipitation anomalies were typically smaller in the eastern Cascades due to the overall lower 351 

precipitation in this region (Figure 2; Figure S1).  352 

Summary metrics describing air-water temperature relationships exhibited substantial variation across time 353 

(season and year) and space. Across all season-year combinations, thermal sensitivities ranged from 0.05 to 0.97 354 

(mean = 0.54) in the Snoqualmie basin and from 0.06 to 0.74 (mean = 0.42) in the Wenatchee basin (Table 2). Seasonal 355 

distributions of thermal sensitivities differed. For example, fall thermal sensitivities were relatively homogeneous, 356 

with 90% of values falling between 0.47 and 0.70, whereas spring and summer thermal sensitivities exhibited a broader 357 
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range of values, with 90% of values falling between 0.30 and 0.84 in spring and 0.25 and 0.78 in summer.  Air 374 

temperature was generally a good predictor of water temperature, as evidenced by R2 values that ranged from 0.20 to 375 

0.99 (mean = 0.88) in the Snoqualmie basin and from 0.08 to 0.98 (mean = 0.85) in the Wenatchee basin (Table 2).  376 

Overall, weak and inconsistent patterns emerge in summer between thermal sensitivity and landscape and 377 

climate variables (Figure 3; Table 3). For climate variables, only SWE appeared to have a linear relationship with 378 

thermal sensitivity (Figure 3). The relationship between SWE and thermal sensitivity was negative and non-linear, 379 

displaying a wedge-shaped pattern wherein large snowmelt events did not reduce thermal sensitivities below 0.25 380 

(Figure 3). For landscape variables, correlation coefficients were overall small (|ρ| < 0.3), indicating weak to non-381 

existent linear relationships between landscape covariates and observed thermal sensitivity (Table 3).	A weakly 382 

negative relationship between thermal sensitivity and distance upstream was observed for both basins. Percent riparian 383 

forests and thermal sensitivity showed no relationship for either basin. The relationship between hydraulic 384 

conductivity and thermal sensitivity was weakly positive and parabolic in the Snoqualmie basin.  385 

3.2 Patterns of clustering for water temperatures, air temperatures, and thermal sensitivities 386 

Time-varying thermal sensitivities displayed periods of both high and low values within a season, which was not 387 

necessarily represented when looking only at seasonal summary metrics (Figure 4 and Figure 5). Thermal sensitivity 388 

varied alongside water and air temperature within the Snoqualmie and Wenatchee basins. Generally, thermal 389 

sensitivity rose sharply in late spring, was highest in late summer, declined slowly throughout the fall, and remained 390 

depressed through winter and early spring.  391 

Spatially weighted AHC yielded four clusters for thermal sensitivity, with a cluster validity index (CVI) 392 

range of 2-4, and two clusters each for air (CVI range of 2-5) and water (CVI range of 2-4) temperature in the 393 

Snoqualmie basin, and five clusters for thermal sensitivity (CVI range 2-5) and two clusters each for air (CVI range 394 

of 2-3) and water (CVI range of 2-5) temperature in the Wenatchee basin (Figure 4; Figure 5; Table S2). For both 395 

basins, clusters of air and water temperature correspond closely with elevational gradients (Figure S4; Figure S5). 396 

Higher elevation sites exhibited generally lower magnitudes but similar patterns in air and water temperatures (Table 397 

4). For example, within both basins seasonal water temperatures were synchronized, with the cluster minimum and 398 

maximum water temperatures occurring within a day of each other (Table 4). In the Snoqualmie basin, air temperature 399 

clusters were stable, with a mean Jaccard index of 0.91 for high elevation sites (Cluster 2) and 0.73 for low elevation 400 

sites (Cluster 1). Water temperature clusters were slightly less stable, with a mean Jaccard index of 0.65 for high 401 
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elevation sites (Cluster 2) and 0.89 for low elevation sites (Cluster 1). Air and water temperature clusters in the 442 

Wenatchee basin were more stable than the Snoqualmie clusters. In the Wenatchee basin, air (water) temperature 443 

clusters had a mean Jaccard index of 0.85 (0.86) for high elevation sites (Cluster 2) and 0.95 (0.73) for low elevation 444 

sites (Cluster 1).  445 

Clustering patterns for thermal sensitivity were more complex and less stable than air and water temperature 446 

clusters, particularly for the Snoqualmie basin (Figure 4; Figure 5; Table 4). In the Snoqualmie basin, Cluster 1 447 

consisted primarily of low elevation tributaries that exhibited stable thermal sensitivities throughout the year, 448 

producing a cluster-average range of only 0.15 (Figure 4; Table 4). Cluster 2 was small (n=5), and the distribution of 449 

sites within this cluster included three mainstem sites and two high elevation tributaries. Despite the large geographic 450 

distances separating sites, this cluster was highly stable with a mean Jaccard index of 0.88. Cluster 2 was characterized 451 

by a mean thermal sensitivity of 0.52 and the highest annual variability, with a cluster-average range of 0.45. Cluster 452 

3 was large (n=15) and contained sites located within the upper regions of the Snoqualmie River. Cluster 3 had the 453 

lowest mean thermal sensitivity (mean=0.40). Lastly, Cluster 4 exhibited the lowest stability of any cluster in the 454 

Snoqualmie basin, with a mean Jaccard index of 0.55. Sites in this cluster were mainly situated on the mainstem 455 

Snoqualmie and its major tributaries. This cluster was distinguished by the highest mean thermal sensitivity 456 

(mean=0.65). In the Wenatchee basin, all five thermal sensitivity clusters were relatively stable. Clusters 1, 4, and 5 457 

demonstrated similar seasonal patterns in thermal sensitivities, with minimum values occurring in late Spring (water 458 

days 216, 207, 214) and maximum values occurring in late summer (water days 324, 331, 330). These clusters also 459 

showed moderate to high stability (mean Jaccard indices of 0.79, 0.86, and 0.79). Cluster 3 exhibited the highest mean 460 

thermal sensitivity (mean=0.40) and encompassed primarily low elevation tributaries (Peshastin and Mission Creek; 461 

Figure S5). Cluster 2 was unique in that it consisted of a single site (Chumstick Creek) that was nearly always assigned 462 

to a unique cluster when included in the bootstrapping procedure. The thermal sensitivity for this site was low 463 

(mean=0.29) and virtually flat throughout the year (range = 0.07).  464 

 CART analysis indicated that basin topography and hydrogeology were the principal discriminators of 465 

thermal sensitivity clusters. The top predictors of cluster membership (i.e., predictors with a greater than 10% increase 466 

in mean standard error if removed from the model) were MWE and baseflow index in the Wenatchee basin and 467 

watershed slope, MWE, and soil depth in the Snoqualmie basin (Figure 6). Variable importance distributions differed 468 

between the Wenatchee and Snoqualmie basins, although in both basins several covariates had similar relative 469 
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importance values. Covariate distributions also varied across clusters within a basin. In the Snoqualmie basin, Cluster 523 

1 sites were generally below a MWE of 600 meters, whereas Cluster 3 sites were generally mid-sized and high 524 

elevation with a low baseflow index. In the Wenatchee basin, Cluster 1, 4, and 5 sites were predominately located at 525 

high elevations with steep slopes. Cluster 4 sites exhibited a large proportion of precipitation falling as rain. Sites in 526 

Clusters 2 and 3 were generally low elevation sites with a high baseflow index and soil depth.  527 

4 Discussion 528 

Thermal sensitivity varies throughout the year and reflects hydrologic conditions at a given time and place within a 529 

watershed; therefore, it should not be conceptualized as a static value. Although summary metrics of thermal 530 

sensitivity, such as average values over the summer, can still prove useful and informative, it is essential to 531 

acknowledge the non-stationarity of the relationship between air and water temperature to obtain an accurate 532 

understanding of how river temperature responds to changing conditions. Underlying geology and climate are 533 

important controls on thermal sensitivity across two Pacific Northwest river basins and reflect aspects of river 534 

dynamics not redundant with water and air temperature. Overall, this study provides a framework for using thermal 535 

sensitivity regimes to improve understanding of factors contributing to stream temperatures and will enable managers 536 

to target mitigation and adaptation activities to work best with local conditions within a watershed.  537 

4.1 Patterns of thermal sensitivity clustering 538 

Our analysis of stream air and water temperatures supports the presence of distinct thermal sensitivity regimes, 539 

providing an organizing framework for river research and management by identifying sites with similarities across the 540 

network. We found that thermal sensitivity regimes reflected non-redundant aspects of river dynamics relative to air 541 

and water temperature alone. Air temperature and water temperature clusters closely corresponded to one another and 542 

were almost entirely determined by elevation of the temperature loggers, whereas thermal sensitivity clusters showed 543 

more variability in annual patterns and were intermixed spatially (Figure 4; Figure 5). Previous studies within the 544 

Pacific Northwest found that, generally, colder streams are less sensitive to air temperature fluctuations than warmer 545 

streams (Luce et al. 2014). Air and water clustering results are consistent with previous studies that observed broad 546 

temporal correspondence of air and river temperature dynamics with differing magnitudes of response (Bower et al. 547 

2004, Chu et al. 2010, Garner et al. 2014, Isaak et al. 2018a). More locally, Isaak et al. (2020) found that across 548 
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western rivers, much of the information in stream temperature records could be summarized by a relatively limited 585 

number of distinct regime components primarily driven by differences in elevation and latitude. 586 

Viewing thermal sensitivity as a continuous parameter adds novel insights to our understanding of river basin 587 

functioning. Studies have highlighted the importance of annual shifts in the processes that drive heat budgets as well 588 

as the non-stationarity of the resulting statistical relationships (Arismendi et al. 2014, Boyer et al. 2021). Our clustering 589 

analysis overcomes these issues by using a varying coefficient model that treats thermal sensitivity as a continuous 590 

function through time, rather than a series of discrete summary metrics, and allows clustering based on the entirety of 591 

average annual patterns. The observed complexity in thermal sensitivity response hints at the diversity of physical 592 

processes controlling stream temperature response and the large, clear shifts in thermal sensitivity magnitude across 593 

the year calls into question the common practice of summarizing a river’s sensitivity as a static value.  The ability to 594 

directly observe shifts in the air-water temperature relationships also opens the possibility of using thermal sensitivity 595 

as a diagnostic tool to examine gradual changes in the importance of drivers of water temperature, such as dynamic 596 

changes in riparian shading or snowmelt.  597 

4.2 Climate controls on thermal sensitivity  598 

Seasonal variability of thermal sensitivity metrics was evident for our basins. Within both the Snoqualmie and 599 

Wenatchee basins, winter thermal sensitivities were low and varied strongly with MWE (Figure 1). Observed low 600 

thermal sensitivities in winter were likely due to the non-linear relationship between air and stream temperature at 601 

cold temperatures when air temperatures can dip below the water temperature-freezing limit (Mohseni et al. 1998, 602 

1999). Air temperature covaries strongly with elevation in Pacific Northwest basins, and sites that are high in the 603 

watershed will experience a greater number of sub-freezing days, and therefore greater decoupling between air and 604 

water temperatures. Fall thermal sensitivities were relatively homogeneous whereas spring and summer thermal 605 

sensitivities exhibited a broader range of values. We expect thermal sensitivities to be similar during periods of heavy 606 

precipitation, when water sources with thermal characteristics distinct from air temperature, such as groundwater and 607 

snowmelt, contribute relatively less flow. The greater variability of responses in spring and summer indicates that the 608 

processes controlling river temperatures are more diverse than in fall or winter (Hrachowitz et al. 2010). 609 

Snowmelt likely contributed to observed differences in thermal sensitivity across sites in spring and early 610 

summer. For summary metrics, the relationship between snowmelt and spring thermal sensitivity formed a wedge-611 

shaped pattern, wherein sites with limited snowmelt displayed both high and low thermal sensitivity, but sites with 612 
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extensive snowmelt always display low thermal sensitivity (Figure 3). For the clustering analysis, although the 616 

proportion of precipitation falling as snow showed limited variable importance, MWE and slope covaried closely with 617 

snow accumulation and were among the most important predictors of cluster membership, perhaps masking a 618 

statistical signal of snowfall (Figure 6). In both the Snoqualmie and Wenatchee basins, clusters with higher elevation, 619 

steeper slope, and greater snowmelt within the catchment had thermal regimes that were less sensitive to changes in 620 

air temperature during spring and early summer. Importantly, snowmelt buffering, the process wherein snowmelt-621 

influenced streams have lower thermal sensitivity due to a direct input of cold water and a corresponding increase in 622 

flow rates and water depths (van Vliet et al. 2011, Siegel et al. 2022), diminishes throughout the summer. By late 623 

summer, high elevation, snowmelt influenced sites were often more sensitive to air temperatures than their low 624 

elevation counterparts (Figure 4; Figure 5). Sites within Cluster 4 in the Wenatchee basin were an exception to this 625 

pattern and maintained summer thermal sensitivities that were substantially depressed relative to adjacent locations 626 

(e.g., Clusters 1 and 5). This is likely due to glacial inputs within these catchments, and points to the importance of 627 

high elevation glacial and late-summer snowpack melt as a significant source of summer baseflow and control on 628 

water temperatures during the months of greatest heating within these watersheds.   629 

 Numerous studies have examined the buffering impact of snowmelt on water temperature due to advective 630 

flux from cooler meltwater entering the river. Studies in Alaskan rivers found a linear, negative relationship between 631 

summer thermal sensitivity and snowmelt (Lisi et al. 2015, Cline et al. 2020) and a recent study in the Snoqualmie 632 

basin found that snowmelt can reduce basin-wide peak summer temperatures, particularly at high elevation tributaries, 633 

and the thermal impacts of melt water can persist through the summer (Yan et al. 2021). Our results suggest that 634 

snowpack offers substantial buffering to changes in air temperature across mountain river basins, but that the largest 635 

impacts are localized across space and time. Climate change is expected to shift snowmelt earlier and reduce snow 636 

water resources (Barnett et al. 2005, Musselman et al. 2021). The loss of snow may result in warming in snow-637 

influenced systems and the subsequent homogenization of thermal conditions across basins (Winfree et al. 2018). 638 

Homogenization of thermal conditions likely leads to important changes in ecological functions and ecosystem 639 

services supported by lost thermal heterogeneity, such as a loss of cold-water patches for Pacific salmon (Brennan et 640 

al. 2019).  641 
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4.3 Geologic controls on thermal sensitivity  657 

Geologic characteristics shaped the relationship between air and water temperatures across the Wenatchee and 658 

Snoqualmie basins. The inclusion of baseflow index, hydraulic conductivity, and soil depth in determining cluster 659 

membership (Figure 6) implies the importance, and detectability, of groundwater as a key mediator of thermal 660 

sensitivity regimes in Pacific Northwest basins. Clusters with high baseflow index, hydraulic conductivity, and soil 661 

depth values generally had lower summer and less variable thermal sensitivities (Figure 4; Figure 5; Figure 6), 662 

implying greater groundwater influence (Kelleher et al. 2012). Interestingly, despite the clear importance of 663 

groundwater metrics in the clustering analysis, results from summary metric exploratory analysis were mixed and, in 664 

the Snoqualmie basin, did not align with expectations of a negative relationship between thermal sensitivity and 665 

groundwater influence (Table 3). Although it is possible to infer broad patterns in surface-groundwater connectivity 666 

using datasets of interpolated hydrogeologic properties (i.e., hydraulic conductivity, soil depth) or water source (i.e., 667 

baseflow index), individual hydrogeologic metrics often have substantial uncertainty, do not covary perfectly, and 668 

may be particularly unconstrained for mountain headwater streams (Wolock et al. 2004, Patton et al. 2018, Briggs et 669 

al. 2022). Additionally, the influence of these processes can be localized and variable across space (Johnson et al. 670 

2017) and substantially impacted by human modification. The ability to use thermal sensitivity as an empirical 671 

measure of groundwater influence, therefore, shows great promise for understanding catchment processes and 672 

informing management and restoration actions at ecologically relevant scales (Snyder et al. 2015).   673 

An investigation of the underlying geology across the Snoqualmie and Wenatchee basins supports our 674 

conclusion that low thermal sensitivities are indicative of groundwater inputs. The lowland portion of the Snoqualmie 675 

watershed contains a deep, permeable, productive glacial aquifer that is presumed to be the source of summer baseflow 676 

to much of the river (Bethel 2004, McGill et al. 2021, Turney et al. 1995). Glacial and interglacial deposits in the 677 

valley contain several geohydrologic units with differing aquifer potential (Bethel 2004); however, most deposits can 678 

form small but useable aquifers that could be helping to sustain baseflow in summer months (Turney et al. 1995, 679 

Soulsby et al. 2004, Blumstock et al. 2015). Soil depth, hydraulic conductivity, and baseflow index were 680 

correspondingly high in streams that overlay the lower portion of the watershed (Figure 6). Thermal sensitivities 681 

reflected this pattern, wherein generally sites draining low elevation tributaries (Cluster 1) had relatively constant 682 

thermal sensitivities throughout the year (Figure 4). Conversely, the upper portion of the Snoqualmie basin is covered 683 

by thin soil over impermeable bedrock lacking extensive fracture networks, meaning that rain and snowmelt are not 684 
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retained in the mountains but are rapidly transmitted to the stream system (Debose and Klungland 1964, Nelson 1971, 691 

Goldin 1973, 1992). Sites with catchments predominantly within this upland area tended to belong to Clusters 2 and 692 

3 and displayed high summer thermal sensitivities, perhaps indicating limited groundwater influence.   693 

In the Wenatchee basin, two major aquifers exist: an aquifer within the sedimentary bedrock of the central 694 

and lowland areas and an overlying unconsolidated alluvial and outwash aquifer located primarily in river valley 695 

bottoms across the basin (Montgomery Water Group 2003). The bedrock aquifer consists of sandstones and shales, 696 

which tend to have moderately low permeability. Folding and faulting have caused the shale to break up or fracture 697 

and groundwater moves preferentially within these zones of higher secondary permeability. The alluvial and outwash 698 

aquifers, on the other hand, exhibit relatively high permeability where groundwater can move easily and are considered 699 

the primary groundwater source (Wildrick 1979, Montgomery Water Group 2003). Cluster 2 in the Wenatchee basin, 700 

consisting of a single site located at the mouth of Chumstick Creek (Figure S5), stands out for having a unique, nearly 701 

flat thermal sensitivity compared to patterns at other sites (Figure 5). Covariate distributions for the clustering results 702 

showed that Chumstick Creek has a relatively high hydraulic conductivity and baseflow index (Figure 6; Figure S7). 703 

A transition from low to high permeability glacial material occurs near the mouth of Chumstick Creek (Montgomery 704 

Water Group 2003), and it is possible that substantial groundwater discharge occurs near this discontinuity (Neff et 705 

al. 2019). Similarly, sites within Cluster 3 showed low variability in thermal sensitivity and had high soil depth and 706 

baseflow index values. Streams within this cluster are situated on top of predominantly sandstone bedrock (Frizzell 707 

1979, Gendaszek et al. 2014).  708 

Overall, the importance of groundwater is consistent with previous studies, which find that thermal sensitivity 709 

decreased with increasing groundwater contribution (O’Driscoll and DeWalle 2006, Chang and Psaris 2013, Beaufort 710 

et al. 2020, Georges et al. 2021). The degree to which groundwater decouples trends in stream and air temperature 711 

depends on stream volume, the rate of groundwater inflow, and the depth of groundwater source. Although not 712 

examined in this study, aquifer source and groundwater depth likely influence thermal sensitivity estimates, with 713 

runoff sourced from deep groundwater being less variable and less sensitive in comparison to groundwater sourced 714 

from shallow sub-surface flows (Tague et al. 2007, Johnson et al. 2021, Hare et al. 2021). Shallow groundwater 715 

temperatures are already responding to climate change (Menberg et al. 2014). As warming continues, the summer 716 

cooling capacity of groundwater may be reduced, limiting the availability of cold-water refugia patches sourced by 717 

groundwater (Brewer 2013, Briggs et al. 2013).  718 
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4.4 Landscape controls on thermal sensitivity  724 

Variable relationships between thermal sensitivities and landscape covariates highlight complexities in stream thermal 725 

regimes. For example, mean channel slope was an important predictor of cluster membership for both the Snoqualmie 726 

and Wenatchee basins, but showed a weak-to-non-existent relationship with summer thermal sensitivity summary 727 

metrics. Steeper channel slopes and greater stream velocities limit warming in streams by decreasing the time for 728 

equilibration with local heating conditions (Donato 2002, Webb et al. 2008, Isaak et al. 2012) and topographic shading 729 

associated with steep watersheds can suppresses stream temperature by reducing exposure to solar radiation (Webb 730 

and Zhang 1997). In the Wenatchee basin, the Cluster 3 site, Chumstick Creek, drains a steep canyon. This may 731 

contribute to observed low, stable thermal sensitivities throughout the year. Additionally, watershed size and distance 732 

upstream covary closely and displayed relatively consistent relationships with summer thermal sensitivity summary 733 

metrics despite ranking moderately in variable importance. We expected thermal sensitivity to increase with river size; 734 

groundwater influence should be more visible on smaller streams because the volume of water is small and the travel 735 

time of the water from the source is short and not sufficient to equilibrate water temperature with the atmosphere 736 

(Mohseni and Stefan 1999, Tague et al. 2007, Beaufort et al. 2016). Reduced sensitivity of headwater streams to air 737 

temperature was observed in the Aberdeenshire Dee, Scotland (Hrachowitz et al. 2010), and River Danube, Austria 738 

(Webb and Nobilis 2007), and small Pennsylvanian streams were shown to be less sensitive to changes in air 739 

temperature than larger streams (Kelleher et al. 2012). However, Hilderbrand et al. (2014) found no relationship 740 

between thermal sensitivity and watershed size in Maryland streams. 741 

 We expected landscape covariates to be important predictors of thermal sensitivity regimes, however, these 742 

covariates were of limited importance and showed no relationship with summary metrics (Table 3; Figure 6). Several 743 

factors may account for this. Inherent covariation in river basins can hinder statistical efforts to identify mechanistic 744 

links between landscape gradients and features of aquatic ecosystems (Lucero et al. 2011); land cover characteristics 745 

may have a small impact that went undetected due to noisy observations or limited variability within our study region. 746 

It is also possible that land cover metrics may not adequately describe the intended process. For example, the relative 747 

unimportance of riparian shading may be due in part to our metric of shade, which was limited to riparian forest cover 748 

and ignored topographic shading and vegetation height. Lastly, human modifications to the river that are not captured 749 

by land cover statistics, such as channelization or the presence of dams and reservoirs, may alter thermal sensitivity 750 

and obscure natural gradients. For example, areas of the river that are degraded and subsequently disconnected from 751 
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their floodplain may have artificially high thermal sensitivities, and the release of water from dams and reservoirs has 765 

the potential to either warm or cool downstream temperatures, depending on dynamics of where and how impounded 766 

water is released (Ahmad et al. 2021, Cheng et al. 2022). Future research could include covariates sinuosity or variance 767 

of thalweg depth to better capture these effects. Untangling exact controls will require additional research. 768 

4.5 Caveats and limitations 769 

Due to the realities of data collection in dynamic systems, time series of both air and water temperature used in this 770 

analysis have periods of missing values that span weeks to months. Classical clustering techniques require complete 771 

datasets, limiting analyses to time series without gaps. To overcome this issue, we calculated a single representative 772 

time series at each site that captures the typical range and timing of thermal sensitivity. Alternative options for dealing 773 

with missing values include removing data points that do not cover the target time period or imputing missing values 774 

by means of statistical procedures or summary metrics (e.g., Savoy et al. 2019, Beaufort et al. 2020). However, we 775 

chose not to use these approaches in our study due to the long and inconsistent periods of missing values across sites. 776 

We acknowledge that interannual variability in precipitation and temperature impacts river thermal sensitivity, and 777 

average time series calculated from differing years may exhibit differences in shape and timing for reasons outside of 778 

inherent characteristics (Appendix A). Future studies could use novel clustering methods capable of dealing with 779 

sparse datasets, which would provide more detailed information on clusters generated from time periods with robust 780 

values versus data scarcity (Carro-Calvo et al. 2021).  Alternatively, recent advances in space-time imputation for 781 

river basins may prove a fruitful direction (Li et al. 2017).  782 

 Our calculation of time-varying thermal sensitives also necessitated decisions regarding what features of the 783 

time series to preserve. Selection of the bandwidth parameter and kernel function for the time varying model will 784 

impact estimation of thermal sensitivity and intercept. Generally, with larger bandwidth estimates or averaging periods 785 

(e.g., daily, weekly, monthly), intercept estimates increase and thermal sensitivity estimates decrease. Decisions of 786 

this nature should be approached carefully and with a clear question in mind. For this study, we were interested in 787 

seasonal to annual patterns in thermal sensitivity, and thus chose a bandwidth of 0.2, resulting in a smooth seasonal 788 

time series. Previous studies have also used regression splines to estimate the time varying relationship between air 789 

and water temperatures (Haggarty et al. 2015). This approach smooths data and can account for missing data but may 790 

not preserve small-scale features of interest. We chose to use absolute values of our thermal sensitivity time series, as 791 
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we cared about differences in mean thermal sensitivity as well as correlated variability. Future work could normalize 793 

thermal sensitivity time series first to examine only patterns.  794 

4.6 Implications for management and future directions  795 

Classifying rivers based on thermal sensitivity could be a powerful tool when planning for global change. Our results 796 

show that annual patterns in thermal sensitivity are diverse and mediated by underlying geology and climate across 797 

two Pacific Northwest river basins. Climate change is decreasing snowpack in the region, resulting in earlier runoff 798 

and extended summer baseflow (Elsner et al. 2010, Wu et al. 2012), and may decrease groundwater discharge 799 

depending on sources and timing of recharge (Brooks et al. 2012, McGill et al. 2021). For many of our study sites, 800 

thermal sensitives were highest in late summer during the hottest, lowest flow portion of the year. Previous studies 801 

have found that the impact of fluctuations in discharge generally increases during dry, warm periods, when rivers have 802 

a lower thermal capacity and are more sensitive to atmospheric warming (van Vliet et al. 2013). High thermal 803 

sensitivity in late summer and in high elevation streams, which are typically thought to be climate refuges, is therefore 804 

troubling for the conservation of native coldwater species such as Pacific salmon (Mantua et al. 2010; Isaak et al. 805 

2016). Climate change will likely decrease juvenile rearing and spawning habitat quantity and quality, although it is 806 

important to note that streams with high thermal sensitivity may still provide adequate habitat in select portions of the 807 

year if stress-related thresholds are not exceeded (Armstrong et al. 2021).  808 

Examining thermal sensitivity regimes improves understanding of factors contributing to stream 809 

temperatures and may enable managers to target mitigation and adaptation activities to work best with local conditions, 810 

thus maximizing benefits given limited resources. For example, given the importance of subsurface geology within 811 

the Wenatchee and Snoqualmie basins, targeted actions to restore floodplain functions that recharge aquifers through 812 

actions such as placing engineered logjams or reintroducing beavers could be prioritized (Abbe and Brooks 2013, 813 

Pollock et al. 2014, Jordan and Fairfax 2022). Additionally, identification of particularly insensitive portions of the 814 

river could help to better constrain areas where coldwater patches exist that may be used as refuges for coldwater fish 815 

(Snyder et al. 2020). This process-based approach will be particularly important as non-stationary relationships caused 816 

by climate change make it unreliable to use past regressions built under historical climate conditions (Boyer et al. 817 

2021). Furthermore, as longer, more spatially extensive air and water temperature time series become available (Isaak 818 

et al. 2017), we can begin to ask questions about 1) the spatial extent of different thermal sensitivity regimes, 2) how 819 

interannual variability shifts with climate conditions and geographic context, and 3) detect changes in the external 820 
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drivers of thermal sensitivities. Such insights will improve our understanding of river ecosystems while offering a 828 

suite of new tools for monitoring the impact of management decisions and climate change.  829 
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Figure 1. A map of the Snoqualmie (A) and Wenatchee (B) basins water and air temperature monitoring sites and 
the most downstream USGS gage for each basin.  Thermal sensitivity, defined as the change in water temperature 
with a single degree change in air temperature, versus MWE for each site-year combination (C).  

 1130 

  1131 
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Figure 2. Average annual discharge, SWE, and total precipitation for the Snoqualmie and Wenatchee basins 

across the sampling timeframe (black dashed lines) and interannual variability across the seven water years included 

in this analysis (gray lines).  
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 1133 

 1134 

  
Figure 3. Summer thermal sensitivity values for all site-year combinations in the Snoqualmie and Wenatchee basins 
versus air temperature (A), and precipitation (B). Spring thermal sensitivity values for all site-year combinations 
versus total SWE (C) from gridded DAYMET data for each sampling point. Points are colored by basin. Basins 
that have no snowmelt in a given year are not shown on graph (C). 
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Figure 4. Average time series (A) and spatial clustering results (columns/colors indicate unique clusters) for 
average annual air temperature (B), water temperature (C), and thermal sensitivity (D) in the Snoqualmie basin. 
The spatial distribution for colored lines indicates mean average annual values for each cluster, and gray lines 
denote average annual values for each site within a given cluster. 
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Figure 5.  Average time series (A) and spatial clustering results (columns/colors indicate unique clusters) for 
average annual air temperature (B), water temperature (C), and thermal sensitivity (D) in the Wenatchee basin. The 
spatial distribution for colored lines indicates mean average annual values for each cluster, and gray lines denote 
average annual values for each site within a given cluster. 
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Figure 6. Relative variable importance for all covariates in the Snoqualmie (A) Wenatchee (B) basins, and the 
distributions of variables for the four most important variables (C) in the Snoqualmie basin (Mean Slope, Elevation, 
Soil Depth, and Baseflow Index) and in the Wenatchee basin (Elevation, Baseflow Index, Mean Slope, and 
Hydraulic Conductivity). Boxes are grouped and colored by cluster membership. See Figure S7 for plots of the 
remaining relative variable importances. 
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Table 1. Physical environmental data and basin characteristics used to predict air-water clusters.  

 

Variable Category  Units Data Source 

Watershed area   Basin Topography km2 Hill et al. 2016 

Mean watershed elevation Basin Topography m Hill et al. 2016 

Avg. stream slope Basin Topography mm-1 Hill et al. 2016 

Distance upstream Basin Topography km Hill et al. 2016 

% Watershed forest Land Use % Hill et al. 2016; Dewitz et al. 2019 

% Riparian forest Land Use % Hill et al. 2016; Dewitz et al. 2019 

% Lake area Land Use % Hill et al. 2016; Dewitz et al. 2019 

Avg. Temperature Climate C Hart and Bell 2015 

Avg. Precipitation Climate mm Hart and Bell 2015 

Avg. % precip as snow Climate %  Hart and Bell 2015 

Baseflow index Hydrogeologic % Hill et al. 2016; Wolock 2003 

Hydraulic conductivity Hydrogeologic % Hill et al. 2016; Olson and 

Hawkins 2014 

Soil depth to bedrock Hydrogeologic cm Hill et al. 2016; Carlisle et al. 2009 
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Table 2. Air water correlation summary metrics by basin and season.  

 10 

 

  Thermal Sensitivity  R2 

  Min Mean Max  Min Mean Max 

Snoqualmie Fall 0.22 0.59 0.79  0.58 0.92 0.99 

 Winter 0.05 0.40 0.71  0.20 0.86 0.96 

 Spring 0.26 0.60 0.97  0.67 0.89 0.98 

 Summer 0.19 0.56 0.95  0.41 0.85 0.97 

Wenatchee Fall 0.40 0.57 0.74  0.74 0.94 0.98 

 Winter 0.05 0.28 0.47  0.44 0.84 0.95 

 Spring 0.14 0.42 0.72  0.59 0.88 0.98 

 Summer 0.06 0.41 0.66  0.08 0.77 0.96 
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Table 3. Hypothesized relationships between landscape covariates and thermal sensitivity based on previous 
literature (A) and the observed relationship between landscape variables and thermal sensitivities within our study 30 
basins in summer (B). Loess curves are shown to aid in visualization and correlation coefficients quantify the 
strength of the linear relationship. See Figure S6 for a detailed description of how river attributes covary with one 
another. 
 

A. Hypothesized Drivers B. Observed Relationship 
Stream or 

watershed 

attribute 

(covarying 

variables) 

Theoretical 

relationship 

with 

thermal 

sensitivity 

Explanation               Observed Relationship in Summer 

Mean watershed 

slope 

  +elevation 

  +dist upstream 

  – soil depth 

Negative • Increased snowmelt and cooling 
due to faster velocity water 
movement and shorter water 
residence time (Winfree et al. 
2018). 

• Topographic shading associated 
with steep watersheds suppresses 
stream temperature by reducing 
exposure to solar radiation (Webb 
and Zhang 1997). 

 

Mean watershed 

elevation  

  +slope  

  +dist upstream 

  +% lake area 

  – soil depth 

Negative • Higher elevations have higher 
snowmelt accumulation and 
greater proportion of snowmelt in 
spring.  

• The impact of elevation on spring 
and early summer stream 
temperature is diminished in years 
with low winter snow 
accumulation.   

Distance 

upstream  

  – watershed size 

  +slope  

  +elevation  

 

Negative • Duration of surface water’s 
exposure to solar radiation and 
atmospheric energy flux is higher 
in low gradient watersheds with 
slower streamflow velocities 
(Poole and Berman 2001). 

 

Percent riparian 

forest cover  

  +% forest cover 

   – watershed size 

Negative • Riparian vegetation provides 
shading to streams, reducing 
exposure to solar radiation (Webb 
and Zhang 1997), particularly 
during summer base flows.  

• Forest canopy can influence snow 
accumulation within a watershed 
and snowmelt contribution to 
streams. Low density forests 
accumulate more snow relative to 
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high density forests (Varhola et al 
2010). 

• Conversion of forested land area 
can accelerate runoff and reduce 
infiltration, warming surface flows 
before they reach stream channels 
(Naiman et al. 2005; Nelson and 
Palmer 2007).    

Hydraulic 

Conductivity 

   +baseflow 

index 

Positive • Hydraulic conductivity refers to 
the ability of a geologic material to 
transmit water.  

• Relatively high hydraulic 
conductivity material would be 
represented by something like 
unconsolidated alluvial sands and 
gravels.  

• High hydraulic conductivity is 
typically associated with areas of 
greater groundwater activity and 
lower, more stable thermal 
sensitivity values.   
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Table 4. Averaged metrics for all sites within each cluster determined with the spatially weighted agglomerative 

hierarchical clustering. For timing metrics, days are reported as hydrologic day, where a value of 1 indicates October 45 

1st and a value of 365 indicates September 30th.  

 

   

 

 50 

Metric Basin Cluster # 

Sites 

Mean  Minimum (timing) Maximum 

(timing) 

Cluster 

Stability 

Thermal 

Sensitivity 

Snoqualmie 1 11 0.50 0.41 (224) 0.56 (308) 0.68 

  2 5 0.52 0.36 (181) 0.81 (315) 0.88 

  3 15 0.40 0.27 (201) 0.64 (316) 0.67 

  4 11 0.65 0.52 (199) 0.84 (316) 0.55 

 Wenatchee 1 7 0.39 0.20 (216) 0.65 (324) 0.79 

  2 1 0.27 0.23 (28) 0.30 (101) 0.62 

  3 7 0.40 0.27 (131) 0.54 (11) 0.94 

  4 8 0.29  0.14 (207) 0.48 (331) 0.86 

  5 8 0.35 0.15 (214) 0.66 (330) 0.69 

Air Snoqualmie 1 31 10.2 1.01 (94) 19.7 (305) 0.91 

  2 11 8.02 -0.42 (145) 18.9 (304) 0.73 

 Wenatchee 1 6 9.68 -4.52 (95) 25.0 (304) 0.95 

  2 25 6.48 -7.88 (107) 21.3 (310) 0.85 

Water Snoqualmie 1 25 10.1 3.91 (94) 17.8 (304) 0.65 

  2 17 7.99 2.94 (94) 15.6 (304) 0.89 

 Wenatchee 1 8 8.39 1.95 (108) 18.5 (310) 0.73 

  2 23 5.74 0.37 (107) 14.5 (310) 0.86 
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