
Dear reviewer, 

 

Thank you for your comments, the following are our responses. Comments are highlighted in 

boldface and our responses are in normal text. 

(‘Equation’ refers to the equations in manuscript, while ‘Eq’ refers to the equations in this document.) 

 

The paper has some interesting aspects. A fully coupled isotope transport model in the soil-plant-

atmosphere continuum needs to be improved in the recent literature. Some approximations have 

been made to simulate isotope transport in soil using HYDRUS for example, but the results could 

be better. This is an intricate problem that must consider water content and movement influences 

water temperature, and both influence isotope transport and fractionation, and temperature may 

also affect water movement. 

The paper claims to solve the transport equations simultaneously. I would like to see the numeric 

scheme that shows this back-forward process. And yet more information about it is needed. 

Unfortunately, numerical implementation has only one paragraph. 

 

Thank you for your comments. Indeed, we did not introduce how to solve soil water, heat, and 

isotope transport equations simultaneously, and the solvers we used in detail. We will provide this 

information as appendix in the revised version of manuscript. 

 

The transport equations of soil water, heat, and isotopes are: 
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where θ  and θv  are the soil water content and equivalent liquid water content (m3 m-3), 

respectively; q is the water flux (m s-1); S is the sink term (s-1); Csoil is the soil heat capacity (J m-3 

K); T is the temperature; λE is the latent heat of vaporization (J kg-1); ρ is the water density (kg 

m-3); q
T
 is the heat flux (J m-2 s-1); Cil is the isotopic concentration of soil water (kg m-3); α is 

the equilibrium fractionation coefficient (α* in the manuscript); q
i
 is the isotopic flux (kg m-2 s-1). 

Detailed description of Eq. (2) can be referred to Appendix A. 

 

The equivalent liquid water content θv (m
liquid water

3  msoil
-3 ) can be expressed by pore space within soil 

θs-θ  (mair
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where θs  is the saturated soil water content (m3 m-3); mliquid water
3   and mair

3   are the volume of 

liquid water (m3) and air (m3) within soil pore space; massliquid water and massair are the mass of 

liquid water (kg) and mass of air (kg) in the soil pore space; ρ
liquid water

 and ρ
air

 are the density of 

liquid water (kg m-3) and air (kg m-3), respectively; massvapor is the mass of vapor (kg) within soil 



pore space. 

 

Then, the ideal gas law can be incorporated into Eq. (4): 
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where Pvaporsat
 and Pair are the saturated vapor pressure (kpa) and air pressure (kpa), respectively; 

Mwater and Mair are the mole weight of water (kg mol-1) and air (kg mol-1), respectively. 

 

Eq. (5) can be further simplified by applying the ideal gas law again on Pair: 
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where R is the ideal gas constant (J mol-1 K-1). Similarly, the unsaturated vapor concentration in soil 

pore space in terms of equivalent liquid water content, Cv, is given by: 
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Saturated vapor pressure, Pvaporsat
, can be calculated by Tetens formula (Ham, 2015). Then, Cvsat 

is written as: 
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Considering the influence of variation of both soil water content and temperature on the relative 

humidity, hr is given by (Philip, 1957): 
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Besides, according to the definition of hr: 

hr=
Pvapor

Pvaporsat

                                                                   (10) 

which can be rewritten by combining Eqs. (6) and (7): 
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Therefore, the equivalent water content of the volumetric water vapor content, θv, can be written 

as: 

θv=(θs-θ)Cvsathr                                                              (12) 

 

Introducing Eq. (12) to Eqs. (1) - (3): 
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Note that the head-based Richards’ equation is used in our model, 
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solve Eq. (13), (14), and (15) for h, T, and Cil at each time step simultaneously. Since Cvsat is the 

function of T (Eq. (8)), hr is the function of h and T (Eq. (9)), and α is the function of T  (Equation. 
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with coefficients A to E: 
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Eqs. (13), (14), and (15) were transformed into a system of coupled ordinary differential equations 

by Eqs. (16)-(24). This system is solved by MATLAB solvers (ode113/ode23tb) simultaneously. 

The derivative vector (
∂h

∂t
 , 

∂T

∂t
 , and 

∂Cil

∂t
 ), having a length of the number of spatial discretization 

multiplied by three. 

 

To construct the derivative vector, values from Eq. (17) were calculated firstly because they were 

also used in Eq. (16). Eq. (17) shows that temporal variation of temperature was influenced by q, 

qT, θ, and other parameters from coefficients A-D. Reversely, T influences hr and Cvsat (Eqs. (19)-

(22)) and further affect the water transport within soil (Eq. (16)).  

 

Eq. (16) showed that temporal variation of h was closely related to T because 
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Eq. (16) is 
∂T
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 (Eq. (17)). Besides, soil heat properties, such as soil heat capacity and latent heat of 



vaporization (included in coefficients A and B), were also involved in soil water (vapor) movement.  

 

Eq. (24) shows that isotope transport was influenced by all the parameters coupled. Specifically, 

water transport (Eq. (16)) affects isotopic fluxes since isotopes were treated as solutes, while heat 

transport (Eq. (17)) had an influence on equilibrium fractionation coefficients and further on the 

isotopic concentration in soil water. Both water and heat transport affected hr and Cvsat in soil. 

Therefore, values for derivative vector construction from Eq. (18) were calculated based on Eqs. 

(16), (17), (23), and (24).  

 

Finally, the derivative vector, along with the initial conditions and the time span were passed to the 

solvers. The solver then computed the solution of this system over the specified time span 

numerically. Numerical schemes of solvers are described below. 

 

Numerical scheme of ode113 

The ode113 solver uses an adaptive, variable-order, variable-step-size (VOVS) method. This is 

implemented with a variable order Adams-Bashforth-Moulton (ABM) method (ode113, 2023), 

which is a combination of an explicit types of the Adams-Bashforth (AB) and an implicit type of 

Adams-Moulton (AM) methods. Specifically, the AB method is used to estimate the solution at the 

new time step by taking multiple previous time steps into account, while the AM method is used to 

make corrections. 

 

The ode113 can select automatically between the 1st and 13th order approximation (the highest order 

used appears to be 12) during the computation based on the estimation errors. This is helpful for 

minimizing the estimated errors and for achieving high efficiency in time. Moreover, the time step 

size is adjusted according to the estimation error. In this way, ode113 can handle a wide range of 

ODE problems with high accuracy and efficiency.  

 

Therefore, ode113 can do a good job when the transport media is relatively uniform. However, 

ode113 is susceptible to numerical oscillation when hydraulic conductivities between layers differed 

greatly because of the adopted explicit scheme.  

 

Numerical schemes of ode23tb 

Ode23tb is a solver specifically designed for solving ODEs with highly oscillatory solutions 

(ode23tb, 2023), such as those arising from heterogeneity in hydraulic conductivities between soil 

layers. The 'tb' stands for that the solver combines a trapezoidal rule (sometimes referred as the 

second-order AM method (Adams methods, 2023)) with a 2nd order backward differentiation 

formula (BDF). Because of this, ode23tb is an efficient and accurate solver for stiff ODE systems, 

making it less susceptible to numerical instability. 

 

Like ode113, ode23tb can adjust the step size automatically based on the estimated error and the 

oscillatory behavior of the solution. However, ode23tb is an implicit solver, making it more 

computationally expensive than other solvers. But because it adopts the trapezoidal BDF method, it 

is more efficient and accurate than other types of implicit methods, such as the fully implicit Euler 

method or the backward Euler method (Time integration, 2023). Therefore, ode23tb may work 



better than ode113 when the soil physical properties are greatly differed between layers. 

 

 

Another question is, how do equations 41 and 42 take isotope fractionation from temperature 

variation into account? 

 

Thank you for your comments. Equation (41) and (42) in the manuscript are ‘thought’ experiment. 

They were used to illustrate the error difference between segregated and coupled methods. The 

segregated method may introduce more errors than coupled method because more errors could be 

accumulated as compared to the coupled method. The coupled method, however, can reduce the 

error accumulation by solving a set of equations simultaneously. In our manuscript, Equation (41) 

and (42) were used as an example for understanding the error difference between segregated and 

coupled method. 

  



Appendix A:  

The heat transport equation within soil is written as: 
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Eq. (A1) can be rewritten by the chains rule: 
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Then: 
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where Cwq
l
+Cvhq

v
 and CvhT+ρλE can be treated as constants within each layer, and Eq. (A3) is 

written as: 
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where Constant1=Cwq
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Eq. (A5) is the same as Eq. (2). 
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