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Abstract. Hydrological models often have issues in simulating streamflow (Q) during droughts, because of hard-to-capture

feedback mechanisms across precipitation deficit, actual evapotranspiration (ET), and terrestrial water storage anomalies

(TWSA). To gain more insights into these performance drops and move toward more robust hydrological models in the an-

thropogenic era, we evaluated Q, ET, and TWSA simulations during droughts of different severity and their sensitivity to the

climatic conditions of the calibration period. We used the distributed hydrological model Continuum over the heavily human-5

affected Po river basin (northern Italy, period 2010 - 2022) and independent ground- and remote sensing-based datasets of Q,

ET, and TWSA as benchmarks. Across the 38 study sub-catchments, Continuum simulated Q comparably well during wet years

(2014 and 2020) and moderate droughts (2012 and 2017) with mean KGE = 0.59±0.32 during wet years and = 0.55±0.25 dur-

ing moderate droughts. The model simulated well Q for the outlet section of the basin also for the severe 2022 drought (KGE =

0.82). However, performances for 2022 declined across the other sub-catchments (mean KGE = 0.18±0.69, meaning the model10

still preserved some skill over a climatological mean). The model properly represented seasonality of Q, ET, and TWSA over

the basin, as well as a declining trend in TWSA. We explained the performance drops in 2022 with an increased uncertainty in

ET anomalies, in particular in human-affected croplands. Calibrating during a moderate drought (2017) did not improve model

performances during the severe 2022 drought (mean KGE = 0.18±0.63), pointing to the fairly unique conditions of this period

in terms of hydrological processes and human interference on the hydrological cycle. By highlighting increased uncertainty of15

hydrological models specifically during severe droughts which are expected to increase in frequency, these findings provide

relevant guidelines for assessments of model robustness in a changing climate and so for informing water management, disaster

risk reduction, and climate change adaptation strategies.

1 Introduction

Droughts affect all components of hydrological systems (Van Loon, 2015) and can have severe and multifaceted impacts (Erian20

et al., 2021). A warming climate may lead to an increase in drought impacts (Naumann et al., 2021). Robust modelling of water

availability throughout the whole hydrological cycle during droughts is essential to inform water management, disaster risk

reduction, and climate change adaptation strategies.
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Distributed process-based hydrological models allow spatial estimates of hydrological fluxes and states (Fatichi et al., 2016),

even at large scales and hyper-resolutions (< 1 km, Bierkens et al. (2015)). Such models are increasingly being used for25

assessments of climate change impacts on droughts (Van Huijgevoort et al., 2014; Cammalleri et al., 2020b; Dembélé et al.,

2022), drought monitoring (Cammalleri et al., 2017, 2020a; Saha et al., 2021), forecasting (Trambauer et al., 2015; Van Hateren

et al., 2019; Sutanto et al., 2020), and drought studies in general (Mastrotheodoros et al., 2020; Yang et al., 2021; Rakovec

et al., 2022). However, some studies revealed reduced model performances when simulating streamflow droughts (Kumar

et al., 2022) and their generating processes (Van Loon et al., 2012; Avanzi et al., 2020). Further, human activities can heavily30

modify the hydrological cycle (Abbott et al., 2019) and streamflow droughts (Van Loon et al., 2022), but their representation

in hydrological models remains challenging (Wada et al., 2017).

More broadly, many widely used hydrological models have drops in streamflow (Q) modelling skills when simulating periods

with climatic conditions that differ from those of the calibration period (Klemeš, 1986; Li et al., 2012; Duethmann et al., 2020).

Such issues in the transferability of model parameterizations (hereinafter model transferability) can pose challenges in correctly35

simulating Q during droughts (Saft et al., 2016). Some studies suggested that including dry periods in the calibration improves

Q simulation during droughts (Li et al., 2012; Yang et al., 2021), but results in this regard are still inconclusive (Avanzi et al.,

2020). Further, previous studies revealed that model deterioration in Q simulation during droughts may be related to poor

simulation of actual evapotranspiration (ET, Avanzi et al. (2020)) or Terrestrial Water Storage Anomalies (TWSA, Westra

et al. (2014); Fowler et al. (2020)). For instance, Avanzi et al. (2020) showed that a semi-distributed hydrological model had40

statistically significant drops in Q and ET performances during the 2012-2016 drought over a Californian river basin, while

not in the simulation of subsurface storage; thus, they argued that the poor representation of ET, and its climate elasticity in

particular, drove the deterioration in Q modelling skills. Further, Fowler et al. (2020) found that in catchments where Q was

poorly simulated by common lumped conceptual models during the Millennium drought in south-east Australia, the models

also failed in reproducing long-term decline in storage. This highlights that evaluating hydrological models against multiple45

hydrological fluxes and states may represent a way to analyse causes of poor model transferability, verify model internal

consistency and so move towards more robust modelling (Guo et al., 2017). Today ET and TWSA remote sensing-based

products can be particularly useful for model evaluation, especially for distributed models (Rakovec et al., 2016b; Hulsman

et al., 2021; Bolaños Chavarría et al., 2022) as they allow to check also their spatial representativeness. Nonetheless, assessment

of model transferability to severe droughts using independent and spatially distributed ET and TWSA remote sensing-based50

products is still rare.

To contribute to fill this research gap, the questions we aimed to answer here are: (i) is the expected drop in performance

of distributed hydrological modelling for Q simulation sensitive to drought severity?; (ii) is model deterioration more related

to ET or to TWSA simulation?; (iii) does including a drought in the calibration period improve model transferability to severe

droughts?55

For this purpose, we analysed the performance of the distributed hydrological model Continuum (Silvestro et al., 2013) over

the Po river basin in northern Italy and the flood- and drought-rich period September 2009 – August 2022. We calibrated the

model against Q data and we evaluated the modelling capabilities in reproducing the temporal and spatial variability of Q,
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ET, and TWSA for the whole river basin and 38 sub-catchments during wet years and (moderate and severe) droughts, using

independent ground- and remote sensing-based datasets as benchmarks.60

2 Data and methods

2.1 Study area

For this study, we selected the Po river basin, as a drought-prone area (Masante et al., 2017; Marchina et al., 2019; Toreti et al.,

2022b, a), and major Italian catchment regarding drainage area (around 74000 km2) and socio-economic relevance with the

27% of population, the 35% of agricultural production, and the 37% of industrial production of the whole country (Authority,65

2006).

The Po river basin is located in the northern part of Italy and part of the Swiss Canton Ticino region (Figure 1). The basin

is bounded by the Alps in the west and north, and the Apennines in the south, while the central part is characterized by the Po

plain. Consequently, it shows a steep orographic gradient and elevations range from sea level to about 4800 m a.s.l. (Verdin,

2017) (Figure 1a).70

The climate in the region shows a transition from alpine and cold, with a bimodal precipitation annual cycle and peaks in

autumn and spring, to temperate with a dry season and most of the precipitation falling in winter (Beck et al., 2018; Crespi et al.,

2018) (Figure 1b). Snow contribution to streamflow generation can be relevant, especially at high elevations in the northern and

western part of the catchment, where the mean annual ratio between peak snow water equivalent and the annual cumulative Q

can exceed 60% (Avanzi et al., 2022). Subsequently, Q usually has two peaks, one in autumn caused by heavy rainfall events75

and one in spring caused by rainfall events and snowmelt, with a low-flow period during summer.

As a result of topographic and climatic characteristics, a variety of land cover types can be found in the basin (Figure 1c):

transitions between bare soil, grassland, and forests following the elevational gradient in the mountainous parts, shrubland in

the temperate and dry areas in the southwestern part, and cultivated and urban areas in the central lowlands (ESA, 2017). In

addition to three major lakes (Como, Maggiore, and Garda), the hydrographic system in the basin is influenced by around 18080

multi-purpose reservoirs (Authority, 2006). Further, the hydrological cycle in the area is heavily affected by anthropogenic

water withdrawals for irrigation, industrial, and drinking water uses. Irrigation accounts most among the water uses. Water

withdrawals for irrigation are estimated at around 17*109 m3/year (i.e., around the 5% of mean annual precipitation) and they

further increase by up a 15% during droughts (Authority, 2006).

2.2 Hydrological modelling85

The hydrological model Continuum (Silvestro et al., 2013) is a continuous grid-based hydrological model. It simulates the main

hydrological processes in a process-oriented but parsimonious way, with only few calibration parameters, by solving both the

mass and energy balances (Silvestro et al., 2013). The model includes optional modules to simulate lakes, dams, and hydraulic
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infrastructures such as point water withdrawals and releases. Model code together with pre-processing tools is available here

https://github.com/c-hydro.90

The model setup used here consisted of six modules (namely, the snow, vegetation, energy balance, soil, groundwater, and

surface water modules) to simulate snow dynamics, vegetation interception, energy fluxes, evaporation from canopy layer,

evapotranspiration, soil moisture and groundwater dynamics, and streamflow generation (Figure S1). Further, we simulated

major lakes and dams in the region (Alfieri et al., 2022). We refer the reader to Silvestro et al. (2013) for a description of the

model, Silvestro et al. (2015) for specifics on the snow module, and Silvestro et al. (2021) for specifics on the surface flow95

routing scheme. In Figure S1 we provided a scheme of the model configuration, along with model output and states.

In this work, we run Continuum at a 0.009° (around 1 km) spatial resolution and 1 hour temporal resolution (Alfieri et al.,

2022) over the hydrological years (h.y.) 2009 - 2022, with the first h.y. as warm-up period. Please note that throughout the

manuscript we referred to hydrological year rather than calendar year and we considered it spanning from September to

August.100

2.3 Data

2.3.1 Model input data

In this work, we used the model setup and the required datasets, regarding topography, soil properties, land cover, dams, lakes,

and glacier cover, presented in Alfieri et al. (2022). We summarized the input data in Table S1 and we refer the reader to Alfieri

et al. (2022) for a detailed description of them.105

Further, dynamic maps of meteorological data - including precipitation (P), air temperature, relative humidity, wind speed,

and shortwave solar radiation - are needed as model input data. For precipitation we used interpolated maps from ground-

and radar-based P data from the Italian Civil Protection Department (in the following DPC), computed with the Modified

Conditional Merging algorithm (Bruno et al., 2021). For other meteorological variables we used interpolated maps based on

ground-based data provided by DPC (see Alfieri et al. (2022) for details).110

2.3.2 Data for model calibration and evaluation

For model calibration and evaluation, we exploited a set of independent ground- and remote sensing-based datasets (Table

S1). As Q dataset, we used quality-checked daily mean Q time series for 38 sub-catchments in the Po river basin (Figure

1) from DPC and Italian regional hydrometeorological offices. We selected the study sub-catchments according to Q data

availability (maximum 6 months of missing data). These sub-catchments reflect the variety of topographic, climatic, and land115

cover characteristics in the study area (Table S2).

For ET, we exploited the METv2 product by the Land Surface Analysis of the EUMETSAT Satellite Application Facility, in

the following LSASAF product (Ghilain et al., 2011; EUM, 2016). The LSASAF product provides gridded ET estimates at a

resolution of around 5 km over Europe and at a temporal resolution of 1 hour. The ET estimates are derived through a surface

energy model fed by remote-sensed data. This product showed reasonable agreement with alternative gridded ET products120
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and eddy-covariance data over Italy (Bruno et al., 2022). We used the LSASAF product as benchmark of simulated ET for

both catchment-scale and spatial patterns analyses. Finally, we employed TWSA data from the Gravity Recovery And Climate

Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions (henceforth GRACE data). GRACE was launched in

April 2002 and dismissed in Jun 2017, whereas GRACE-FO is operational since May 2018. These satellite missions consist of

two twin satellites measuring variations in distance between them and, thus, in the Earth’s gravity field. Consequently, GRACE125

data provide estimates of changes in mass over a certain area that can be mainly attributed to variations in Terrestrial Water

Storage (TWS), i.e., in the groundwater, soil moisture, surface water bodies, snow, and ice storages. As GRACE data, we

used the recently developed mass concentration (MASCON) solution, as it is particularly suited for hydrological applications

compared to the traditional spherical harmonics solution (Scanlon et al., 2016). MASCON does not require any significant

postprocessing, while minimizing errors due to the leakage of the signal from land to oceans. We processed the latest products130

of GRACE MASCONS (release 06) provided by the Center for Space Research at the University of Texas (CSR) (Save et al.,

2016; Save, 2020), the NASA Jet Propulsion Laboratory (JPL) (Watkins et al., 2015; Wiese et al., 2019), and the NASA

Geodesy and Geophysics Research Laboratory (GSFC) (Loomis et al., 2019) at monthly temporal resolution, and spatial

resolutions of 1° for CSR and GSFC products and 0.5° for the JPL product. We regridded the three products to a common

grid of 0.5° spatial resolution and then considered the mean among them to reduce the uncertainties associated with specific135

GRACE products (Scanlon et al., 2019). GRACE data are provided as anomalies regarding the period 2004 – 2009, therefore

we converted them to anomalies about the study period by subtracting their long-term means (Scanlon et al., 2019). Due to the

coarse spatial resolution of GRACE data and the relatively small drainage area for most of the study sub-catchments (Table

S2), we used GRACE data only for catchment-scale analysis and at the outlet section of the basin (drainage area = 72545 km2).

2.4 Analyses140

2.4.1 Experimental design

We performed two calibration experiments differing in the calibration period; we then evaluated the model performances

during two other intervals of the study period with contrasting climatic characteristics to evaluate the sensitivity of model

performances to the climatic conditions either in the evaluation and calibration periods.

Specifically, we calibrated the model during “normal” years (2018 and 2019, mean annual P standardized anomaly according145

to Equation 2 for 2019 = 0.34±0.42 across the study sub-catchments, Figure 2) and during a moderate drought (2016 and 2017,

mean annual P standardized anomaly = -0.85±0.61 for 2017, Figure 2). Then, we evaluated model performances in independent

wet years (2014 and 2020, with mean annual P standardized anomaly across the study sub-catchments = 1.14±0.65 in 2014

and equal to 1.48±0.34 in 2020, Figure 2), moderate droughts (2012 and 2017, with mean annual P standardized anomaly

across the study sub- catchments = -0.8±0.39 in 2012 and equal to -0.85±0.61 in 2017, Figure 2), and a severe drought (2022,150

with mean annual P standardized anomaly across the study sub-catchments = -1.68±0.43, Figure 2).
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2.4.2 Model calibration

We used a multi-site calibration procedure to calibrate the model against Q data at 18 sub-catchments over a 2-year period (first

six months as model warm-up) following the approach of Alfieri et al. (2022). We calibrated four model parameters (Figure

S1): the Curve Number (CN), the field capacity (ct), the infiltration velocity at saturation (cf ), and a parameter regulating155

the baseflow from the groundwater storage (ws). CN, ct, and cf are spatially distributed parameters obtained by rescaling

global maps of soil characteristics (Poggio et al., 2021) and land cover (ESA, 2017), while ws is lumped for the whole model

domain. As calibration procedure, we used a parallel search algorithm that iteratively explores the 4D parameter space until

convergence (improvement in the cost function < 1% compared to previous iteration). In the cost function we used the Kling-

Gupta Efficiency (KGE, Kling et al. (2012)) on daily Q. The KGE is an aggregated measure of agreement in the timing,160

magnitude, and variability between simulations and observations, according to Equation 1:

KGE = 1−
√

(r− 1)2 + (β− 1)2 + (γ− 1)2 (1)

where r is the Pearson’s correlation coefficient, β is the ratio between simulated and observed mean, and γ is the ratio

between the simulated and observed coefficient of variation (KGE ∈ (-∞, 1], optimal value = 1, no-skill threshold over mean

flow as predictor = -0.41 as per Knoben et al. (2019)). Further, we weighted the KGE with the logarithm of the drainage area165

to give more emphasis to downstream sub-catchments Alfieri et al. (2022). We reported the KGE from the two calibration

experiments in Table S2.

2.4.3 Model evaluation

We evaluated model performances in reproducing Q, ET, and TWSA temporal (and spatial) variability at monthly time scale, as

this is the temporal resolution of GRACE data. To evaluate model skills for TWSA, we reconstructed the simulated TWS from170

model storages states, i.e., from the water volumes in the snow (Ssnow), vegetation (Sveg), surface water (Ssw), soil (Ssoil), and

groundwater (Sgw) storages (Figure S1). We then converted it to TWSA, i.e., deviations from the long-term TWS mean for the

simulation period. For the catchment-scale analysis of both ET and TWSA we used catchment-average time series. Further,

because of high seasonality in hydrological processes in the region, we evaluated model capabilities in simulating seasonality

(i.e., monthly mean values), deviations from it (i.e., monthly standardized anomalies), and long-term changes. We evaluated175

the model capabilities in simulating long-term changes only qualitatively, as we considered the study period too short for trend

detection.

We computed the monthly standardized anomalies, zanom (hereafter anomalies for brevity) according to Equation 2:

zanom(ti) =
z(ti)− zi

σzi

(2)

where z is the value at each time step, and zi and σzi are the long-term mean and standard deviation for month i.180
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As performance metrics for model evaluation, we used the KGE (Section 2.4.2), the Pearson’s correlation coefficient (r, with

r ∈ [-1, 1] and 1 as optimal value), and the normalized Root Mean Square Error (nRMSE, with nRMSE ∈ [0, +∞) and 0 as

optimal value Moriasi et al. (2007)), according to Equation 3:

nRMSE =

√
1
N

∑N
i=1(Xsim,i−Xobs,i)2

σXobs

(3)

where Xsim,i is the simulated variable at time step i, Xobs,i the observed, σXobs
the observed standard deviation, and N185

the number of time steps. r is a measure of the agreement in timing, while nRMSE measures the general agreement between

simulations and benchmark. We normalized the RMSE to allow comparison among sub-catchments/grid cells. For all the

normalizations we used the standard deviation rather than the widely used mean to avoid numerical issues when the mean is

close to zero as in the case of TWSA.

3 Results190

3.1 Hydroclimatological conditions during droughts

Three droughts occurred in the region during the study period, namely in 2012, 2017, and 2022 - ongoing - as reported by

Masante et al. (2017); Marchina et al. (2019); Toreti et al. (2022b, a). These three events were all characterized by a winter P

deficit (Figure 3a). However, duration and severity of P deficits differed among the events. P deficits were moderate in 2012 and

2017, and severe in 2022 (Section 2.4.1, Figure 2). Furthermore, during the three events P deficits propagated rather differently195

through the hydrological cycle as revealed by Q, ET, and TWSA data for the basin outlet (Figure 3). For 2012 and 2017, the

LSASAF product showed positive ET anomalies during spring (Figure 3b), but negative anomalies during summer (August

ET = 52 mm month−1 in 2012 and 46 mm month−1 in 2017 compared to a climatology of 71±15 mm month−1 over the

study period 2010-2022). On the contrary, the ET product showed positive ET anomalies during summer for the 2022 event

(Figure 3b, July ET = 124 mm month−1 compared to a climatology of 87±18 mm month−1). The 2022 drought was indeed200

associated with a summer heatwave (Toreti et al., 2022a) that may have contributed to positive ET anomalies over the study

region. Further, in 2012 and 2017 TWSA was within the climatology for the whole hydrological year, whereas it was already

low at the beginning of the 2022 h.y. (Figure 3c, September TWSA = -92 mm compared to a climatology of -58±37 mm)

and it reached an historical minimum value during summer (August TWSA = -158 mm compared to a climatology of-54±56

mm, Figure 3c). As a results, Q showed mild negative anomalies throughout the hydrological years 2012 and 2017 (Figure 3d,205

July Q = 18 mm in 2012 and 25 mm in 2017, compared to a climatology of 30±13 mm), while it experienced strong negative

anomalies during most of 2022 (Figure 3d, July Q = 9 mm in 2022).
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3.2 Model evaluation for streamflow during droughts of different severity

The model simulated Q comparably well during wet years and moderate droughts, with mean KGE values for monthly Q

across the study sub-catchments equal to 0.59 during 2014 and 2020, and equal to 0.55 during 2012 and 2017 (non-significant210

difference according to a t-test for the mean, pvalue > 0.01, Figure 4a, b, and d). Q simulation was skilful even during the severe

2022 drought when considering the basin outlet, which was assigned the highest weight in calibration (KGE = 0.82). At the

basin outlet, the model properly represented the slight decline in Q since autumn 2019 (24-month running means in Figure 5a)

and Q seasonality, with r = 0.91 and nRMSE = 0.48 for monthly mean Q (Figure 5b). Nonetheless, for 2022 the model had a

drop in performances across all other sub-catchments (mean KGE = 0.18±0.69, statistically different mean KGE compared to215

those for wet years and moderate droughts according to a two-sample t-test, pvalue < 0.01), even though the model preserved

some skills over a climatological mean (Knoben et al., 2019). Modelling skills were low especially in western catchments,

which experienced negative P anomalies already in 2021 and the strongest negative P anomalies across the basin in 2022

(Figure 1). In other words, the drop during the severe 2022 drought was larger in those sub-catchments where the 2022 drought

was especially severe and prolonged. In the following we investigated and discussed possible causes for the deterioration of220

Q simulation in those catchments during 2022, i.e., ET and TWSA simulation (Section 3.3) and the human disturbance on Q

during severe droughts (Section 4.2).

3.3 Model evaluation for evapotranspiration and terrestrial water storage anomalies

To identify possible causes for the drop in Q modelling skills during the severe 2022 drought across most of the sub-catchments

(Section 3.2), we evaluated model skills for ET and TWSA.225

Integrated over the entire basin, the model properly simulated both ET monthly values (Figure 5d) with r = 0.94 and nRMSE

= 0.36, and ET seasonality (Figure 5e), with r = 0.99 and nRMSE = 0.18 for monthly mean ET. However, the model slightly

overestimated ET during winter and spring, and it simulated an earlier ET peak in summer (Figure 5e). Moreover, the model

had rather low performances in simulating ET deviations from seasonality, with r = 0.52 and nRMSE = 0.98 for monthly ET

anomalies (Figure 5f), which further deteriorated during the severe drought (r = 0.07 and nRMSE = 1.69 for 2022) compared230

to moderate droughts (r = 0.89 and nRMSE = 0.5 for 2012 and 2017).

Regarding TWSA over the entire basin, the model properly simulated the declining trend since about autumn 2019 (visu-

alized by the 24-month running means in Figure 5g) and TWSA seasonality (r = 0.91 and nRMSE = 0.41, Figure 5h). Model

skills in reproducing TWSA monthly values are comparatively lower than those in simulating Q and ET, with r = 0.76 and

nRMSE = 0.68 (Figure 5g). The model had comparatively poor performances in simulating TWSA deviations from seasonal-235

ity, with r = 0.66 and nRMSE = 0.81 for monthly TWSA anomalies (Figure 5i). Yet, model performances in simulating TWSA

anomalies were comparable during moderate and severe droughts, with r = 0.41 and nRMSE = 1.41 during 2012 and 2017,

and r = 0.67 and nRMSE = 1.73 during 2022 (Figure 5i). Therefore, we argue that the drop in Q modelling skills for most

sub-catchments in 2022 was related to the representation of ET – and to ET anomalies in particular – rather than TWSA.
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Indeed, the simulation of ET anomalies across the study sub-catchments was skillful during moderate droughts (mean r =240

0.81 and mean nRMSE = 0.68, Figure 6a and d), but for most of the sub-catchments it deteriorated significantly during the

severe drought (mean r = 0.05 and mean nRMSE = 1.61, Figure 6b and e), with statistically different mean compared to those

during moderate droughts according to a two-sample t-test (pvalue < 0.01, Figure 6c and f).

Performance drops for ET anomalies during the severe drought were not uniform throughout the model domain. They were

particularly pronounced in the central part of the model domain (Figure 7a, b, d, and e) and showed a clear pattern with land245

cover. Model deterioration was particularly strong for croplands, which are mostly situated in the central part of the model

domain (Figure 1c), with mean r = 0.58 and mean nRMSE = 0.97 across the model cells classified as crop during moderate

droughts, compared to r = -0.03 and mean nRMSE = 1.8 during the severe drought (Figure 7c and f).

3.4 Impact of calibration period on model transferability

Including a moderate drought (the 2017 event) in the calibration period did not lead to an improvement in modelling skills250

during the severe drought (2022). Model performance during calibration was similar during both calibration experiments –

with a mean KGE across the calibrated sub-catchments = 0.58 for the “normal” calibration period and a mean KGE = 0.44 for

the calibration period including a moderate drought (not statistically different mean according to a two-sample t-test, pvalue >

0.01, Table S2). Also for the model calibrated during a drought model performances in simulating monthly Q across the study

sub-catchments deteriorated for the severe 2022 drought compared to model skills during moderate droughts (mean KGE =255

0.5 during moderate droughts and mean KGE = 0.18 during the severe drought, statistically different according to two-sample

t-test with pvalue < 0.01, Figure 8c).

The model calibrated during a moderate drought showed similar issues in simulating ET anomalies in the croplands during

a severe drought as the model calibrated during “normal” years (for croplands mean r = 0.59 during moderate droughts and

mean r = -0.11 during the severe drought, Figure 8f, while mean nRMSE = 0.97 during moderate droughts and mean nRMSE260

= 1.85 during the severe drought, Figure 8i).

4 Discussion

4.1 Main findings and implications

We investigated Q modelling skills during moderate and severe droughts for a distributed process-based hydrological model,

we explored ET and TWSA simulation as a possible cause for the expected drop in model performances, and we evaluated the265

benefit of including a moderate drought in the calibration. Our findings in this regard were three.

First, Continuum represented reasonably well Q also during moderate droughts such as the 2012 and 2017 events over the

Po River basin in Italy (KGE = 0.55±0.25 across the 38 study sub-catchments in the basin and KGE = 0.77 integrated over the

entire basin). However, we also found that a severe drought like the 2022 event could challenge Q simulation, with a decrease

in model performances across the study sub-catchments (KGE = 0.18±0.69), even though the model reliably simulated Q270
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integrated over the entire basin also in 2022 (KGE = 0.82). Deb and Kiem (2020) tested the ability of three hydrological

models (lumped, semi-distributed, and distributed) to simulate Q outside the climatic conditions of the calibration period for

two catchments in South-eastern Australia and they found better performances for most of the hydro-climatic conditions from

the distributed model. However, a wide number of studies reported drops in Q modelling skills when simulating prolonged dry

periods and particularly severe Q deficits, such as the Millennium Drought in Australia (Saft et al., 2016) and the Californian275

multi-year drought between 2012 and 2016 (Avanzi et al., 2020). Therefore, our results showed, on one hand, the ability of the

Continuum hydrological model in simulating Q even during moderate droughts and, on the other hand, the need for research

investigating the causes for drops in Q modelling capabilities during severe droughts.

Second, we argued that the drop in Q modelling performances during the severe 2022 drought event can be related to the mis-

representation of ET anomalies, among other factors (discussed in Section 4.2). Here, the model properly represented ET and280

TWSA seasonality and long-term variability, while model performances slightly decreased for their deviations from seasonal-

ity, coherently with previous literature. Bolaños Chavarría et al. (2022) for instance showed that a set of global hydrological

and land surface models well represented TWSA seasonality and long-term variability in a tropical river basin in Colombia,

but not the TWSA monthly time series that account for the deviations from seasonality. However, model capabilities in sim-

ulating TWSA anomalies were comparable during moderate droughts and a severe drought. On the contrary, we showed here285

that model capabilities in simulating spatial and temporal variability of ET anomalies decreased significantly during a severe

drought, especially in the croplands, compared to moderate droughts. Previous studies have shown that Q simulation during

droughts can be hampered by a poor simulation of ET (Avanzi et al., 2020) that can have a prominent role during severe and

prolonged drought events (Brunner et al., 2022; Massari et al., 2022).

Third, including a moderate drought (the 2017 event) in the calibration did not lead to an improvement in Q and ET simu-290

lation during a severe drought (the 2022 event), with mean KGE = 0.18 for Q across the study sub-catchments, and mean r =

-0.11 and nRMSE = 1.85 for ET across the croplands during 2022. Yang et al. (2021) reported that an ecohydrological model

better simulated Q in an experimental German catchment during the 2018-2019 drought when including it in the calibration

period. However, here we proved that calibrating during a moderate drought was not sufficient to improve model transferability

to a different and more severe drought.295

While we demonstrated the ability of a distributed and process-oriented hydrological model in simulating Q, ET, and TWSA

during moderate droughts, our results pointed to a broader need for better representing drought and human processes in hydro-

logical models to achieve robust simulation also during severe droughts. Recent literature revealed that a changing climate may

exacerbate the occurrence of severe and prolonged drought events (Rakovec et al., 2022). Thus, comprehensive evaluations

of simulated hydrological fluxes and states, and testing alternative strategies to enhance the simulation of the hydrological300

cycle during severe droughts are warranted whenever a hydrological model is used with specific focus on droughts, such as in

drought studies, drought monitoring and forecasting systems, and impact assessments of a drying climate.
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4.2 Future work

Our study area encompassed a variety of climates and land cover types (Figure 1) and our study period included moderate and

severe droughts (Figure 3). However, our results referred to a particular region and specific drought events. Hence, studies over305

different areas and droughts would be helpful to generalize our conclusions.

In this work, we showed the value of remote sensing-based products to benchmark simulated ET and TWSA, especially for

spatial patterns analyses. However, ET and TWSA retrieval through remote sensing still presents challenges, as ET cannot be

directly measured and TWSA can be derived only at large scales. For TWSA, we based on the latest GRACE products (Section

2.3.2) and we used the mean from three products to take into account their uncertainty (Scanlon et al., 2019). As ET dataset,310

we exploited the LSASAF product which showed skilful performances over the study region, even during droughts (Bruno

et al., 2022). Benchmarking the model against additional remote sensing-based datasets, for ET or additional variables such as

soil moisture, would be beneficial to further verify model internal consistency during droughts.

Multivariable calibration may be helpful to improve model internal consistency (Dembélé et al., 2020; Duethmann et al.,

2022), also during low-flow periods (Rakovec et al., 2016a) and droughts (Yang et al., 2021). Yang et al. (2021) for example315

showed that including tracer data in the calibration of an ecohydrological model increased model internal consistency dur-

ing the 2018-2019 drought in Central Europe. Here we calibrated the model against Q data only (Section 2.4.2). Given the

satisfactory performances we achieved for ET during moderate droughts, we argue that a multi-variable calibration approach

would not significantly enhance model transferability to a severe drought. Further, Hartmann and Bárdossy (2005) showed that

a multi-objective calibration with Q data aggregated at different time scales improved Q transferability outside the calibration320

conditions for a distributed model in a German medium-sized basin. A similar approach could be tested in future work.

The hydrological cycle in our study area is heavily affected by human interference, both in terms of water withdrawals and

irrigation (Section 2.1). Here, the Continuum hydrological model included reservoirs - although their management was not

known -, but not irrigation and water withdrawals that can be especially relevant during droughts rather than during wet pe-

riods. By calibrating the model against observed Q data, we partly considered human interference in model parameterization.325

However, irrigation – which can strongly increase water availability for ET - might be one of the reasons for the mismatch

between simulated and remote sensing-based ET spatial variability we detected during the severe 2022 drought. Therefore, an

enhanced representation of human interference, in terms of either data assimilation or model structure, could improve hydro-

logical modelling during severe droughts. For instance, Rameshwaran et al. (2022) achieved a median 10.6% improvement in

low-flows simulation by including monthly actual abstraction and discharge data in a distributed hydrological model for 605330

English catchments. Further, Mocko et al. (2021) showed that assimilating vegetation variables into a land surface model leads

to an improved simulation of agricultural droughts and Dari et al. (2022) proposed effective techniques for estimating irriga-

tion over large areas through satellite data that can be incorporated into distributed hydrological modelling. Further research is

needed to investigate the benefits of data assimilation in the general representation of the hydrological cycle including human

interference during severe droughts.335
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5 Conclusions

In this work, we comprehensively evaluated model capabilities in reproducing Q, ET, and TWSA during droughts of different

severity for the distributed hydrological model Continuum over 38 sub-catchments of the Po River basin in northern Italy,

basing on ground- and remote sensing-based datasets as independent benchmarks. Further, we tested the value of calibrating

during a moderate drought as possible strategy to improve model performances during a severe drought. We found that the340

distributed hydrological model represented well Q during moderate droughts (i.e., the 2012 and 2017 events) even in a highly

human-affected area, but not during a severe drought like the 2022 event for many of the study sub-catchments (Figure 4).

We linked this drop in modelling performances to a misrepresentation of ET anomalies in the irrigated croplands during such

period (Figure 7). Further, we demonstrated that issues in properly representing Q and ET during a severe drought were not

sensitive to the climatic conditions in the period used for calibration (Figure 8). Thus, holistic model evaluations for the different345

components of the hydrological cycle and possibly model developments to enhance the representation of human interference,

also through the inclusion of new data, are needed to increase model robustness during severe droughts. This is highly relevant

in a changing climate and the anthropogenic era to properly predict water availability throughout the hydrological cycle, and

inform water management, disaster risk reduction, and climate change adaptation measures.
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Figure 1. Maps with (a) elevation, (b) climates, (c) land cover types, and (d) location of the model domain, modelled river network (black

line), and study catchments (grey dots and black edge if calibrated). For data sources please refer to Table S1.
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Figure 2. Annual P standardized anomalies for each study sub-catchment (west to east ordered, from the left to the right end side) over the

study period. We computed standardized anomalies according to Equation 2.
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Figure 3. P (a), ET (b), TWSA (c), and Q (d) observed monthly climatology (mean and standard deviations over 2010-2022) and monthly

values during drought years, for the basin outlet.

19

https://doi.org/10.5194/hess-2022-416
Preprint. Discussion started: 19 December 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 4. KGE on monthly Q during wet years (a), moderate droughts (b), and the severe drought (c) for each study sub-catchment, and

KGE distributions as boxplots (d).
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Figure 5. Time series of observed (red) and simulated (blue) Q (first row), ET (second row), and TWSA (third row) monthly values with

24-month rolling means (first column), monthly means (second column), and monthly standardized anomalies (third column) for the basin

outlet. Shading in panels b, e, and h corresponds to ± 1 standard deviation.
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Figure 6. r and nRMSE on monthly ET anomalies over moderate droughts (a and d) and a severe drought (b and e) for each study sub-

catchment, and errors distributions as boxplots (c and f).
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Figure 7. Maps of pixel-wise r and nRMSE on monthly ET anomalies over moderate droughts (a and d) and the severe drought (b and e), and

errors distributions as boxplots per each land cover type in the model domain (c and f). Water bodies were excluded from the comparison.

Model outputs were rescaled by bilinear interpolation to the resolution of the LSASAF product for comparison.

23

https://doi.org/10.5194/hess-2022-416
Preprint. Discussion started: 19 December 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 8. KGE on monthly Q over moderate droughts (a) and the severe drought (b) for each study sub-catchment, and KGE distributions as

boxplots (c) from the model calibrated during a drought. Maps of r and nRMSE on monthly ET anomalies over moderate droughts (d and g)

and the severe drought (e and h), and errors distributions as boxplots per each land cover types in the model domain (f and i) from the model

calibrated during a drought.
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