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Abstract 17 

The Approximate Bayesian computation (ABC) methods provide a powerful tool for 18 

sampling from Bayesian posteriors for cases where we can simulate samples, but we 19 

have no access to an explicit expression of the likelihood function. The Simulated 20 

Annealing ABC (SABC) algorithm has been proposed to achieve a fast convergence to 21 

an unbiased approximation to the posterior by adaptively decreasing an initially coarse 22 

tolerance value. However, this algorithm uses a rather simplistic random walk 23 

Metropolis (RWM) sampler to generate trial moves in a Markov chain and always 24 

requires an excessive number of model evaluations for approximating the posterior, 25 

which inevitably lowers the sampling efficiency and limits its applications in more 26 

complex hydrologic modelling practices. Inspired by the advances made in Markov 27 

Chain Monte Carlo (MCMC) methods, we incorporated an adaptive Differential 28 

Evolution scheme to enhance the efficiency of SABC sampling. This scheme has its 29 

roots within Differential Evolution Markov Chains (DE-MC), and additionally utilizes 30 

a self-adaptive randomized subspace sampling strategy to optimally select the 31 

dimensions of parameters to be updated each time a proposal is generated. The 32 

superiority of the modified SABC (mSABC) over the original SABC algorithm was 33 

demonstrated through a SAC-SMA application to the Danjiangkou Reservoir region 34 

(DRR). The case study results showed that mSABC was far more efficient with lower 35 

computation costs and higher acceptance rates, and achieved higher numerical accuracy 36 

than the original SABC algorithm. mSABC also resulted in a better overall prediction 37 
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of streamflow time series and signatures. The introduction of more advanced MCMC 38 

sampler into SABC helps to speed up convergence to the approximate posterior while 39 

achieving better model performance, which significantly widens the applicability of 40 

SABC to complex posterior exploration problems. 41 

 42 
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1 Introduction 45 

The Bayesian methods provide a statistically convenient vehicle for probabilistic 46 

uncertainty quantification of hydrological models (Evin et al., 2014; Mcinerney et al., 47 

2017; Schoups and Vrugt, 2010). According to Bayes’ theorem, the posterior 48 

distribution of the parameters of a model can be derived from the prior distribution of 49 

estimated parameters θ and measurements of observed system behavior Y  as 50 

 ( ) ( ) ( )p p L∝θ Y θ Y θ   (1) 51 

where ( )p θ   and ( )p θ Y   signify the prior and posterior parameter distribution, 52 

respectively, and ( )L Y θ   denotes the likelihood function of the model, i.e., the 53 

probability density of model outputs for given parameters θ evaluated at the 54 

measurements Y  . Challenges lie in the formulation of an appropriate likelihood 55 

function. If the statistical assumptions for formulating the likelihood are violated, the 56 

results of Bayesian methods are unreliable (Beven and Binley, 2014). Simple likelihood 57 

functions that assume independent identically distributed Gaussian error residuals are 58 

statistically convenient, but this oversimplified assumption cannot be justified in real-59 

world applications. The presence of the observational data errors (Mcmillan et al., 2012) 60 

and model inadequacies (Gupta et al., 2012) introduces complex error residual structure 61 

whose probabilistic properties are difficult to characterize precisely with classical 62 

likelihood functions (Sadegh and Vrugt, 2013). The residuals might depend on the 63 

catchment and in most cases, they might be correlated in both time and space (Engeland 64 
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and Gottschalk, 2002). Gupta et al. (1998) also stated that no objective, statistically 65 

correct likelihood function that takes into account all these aspects might exist. This 66 

therefore has been the focus of ongoing debate in hydrology literature (Beven and 67 

Binley, 2014). 68 

In contrast, sampling from Bayesian posteriors is relatively straightforward 69 

(Kavetski et al., 2018). Likelihood-free inference has been suggested that simulates 70 

samples by sampling model outputs from an approximation to the posterior and 71 

compares them with the observational data without evaluating the likelihood function, 72 

which is nowadays referred to as Approximate Bayesian Computation (ABC) (e.g., 73 

Beaumont et al., 2002; Tavare et al., 1997). ABC methods originate in the statistical 74 

literature (Diggle and Gratton, 1984), and are especially useful for cases where we can 75 

generate samples, but do not have access to an explicit expression for the actual 76 

likelihood. The first application of ABC in the hydrological literature was found in Nott 77 

et al. (2012), where the theoretical correspondence between ABC and a variant of 78 

Bayesian methods known as the Generalized Likelihood Uncertainty Estimation 79 

(GLUE) (Beven and Binley, 1992) is clarified. ABC inference was then introduced as 80 

a possible vehicle for hydrologic modelling and uncertainty quantification by Vrugt and 81 

Sadegh (2013). More recent research into ABC generalized as a class of numerical 82 

algorithms for sampling from conditional distributions such as Bayesian posteriors was 83 

provided by Kavetski et al. (2018) and Fenicia et al. (2018). A thorough review of ABC 84 

methods is given by Beaumont (2019). 85 
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The basic ABC algorithm replaces the outputs of a probability model with one or 86 

multiple summary statistics and introduces some prespecified tolerance value for its 87 

distance from the observed summary statistics (Tavare et al., 1997; Weiss and Von 88 

Haeseler, 1998). This method adopts a rather simplistic rejection sampling technique to 89 

simulate samples from an approximate posterior. Implementation of the rejection 90 

sampler is straightforward and very easy, but is not likely to result in robust estimates 91 

of posterior parameter distribution for complex inference problems (Sadegh and Vrugt, 92 

2014). When the prior parameter distribution is just a poor approximation to the 93 

(unknown) actual posterior, which is always the case in realistic case studies, it requires 94 

excessive number of model evaluations and CPU times to acquire an adequate number 95 

of acceptable samples. To compensate for this inefficiency, a group of population Monte 96 

Carlo (PMC) algorithms based on sequential importance sampling is developed 97 

(Beaumont et al., 2009; Sisson et al., 2007; Turner and Van Zandt, 2012; Toni et al., 98 

2009). The rationale of the ABC-PMC sampler is to use a sequence of monotonically 99 

decreasing tolerance values and iteratively evolve an ensemble of constant size towards 100 

an approximate posterior based on the accepted proposals (Beaumont, 2019). Each 101 

iteration consists of drawing a new particle from the old one with weights and 102 

resampling. A sequence of multi-normal proposal distributions derived from the 103 

adapted particle is used to successively search the parameter-output space and 104 

approximate the posterior. This algorithm has been demonstrated to have a significantly 105 

higher sampling efficiency than the basic ABC-REJ sampler for situations in which an 106 
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uninformative flat prior extending far beyond the posterior distribution is chosen 107 

(Sadegh and Vrugt, 2014). The ABC-PMC sampler of Beaumont et al. (2009) and 108 

Turner and Van Zandt (2012) requires that the sequence of tolerance values be specified 109 

a priori by the users. A poor selection of the tolerance values can lead to premature 110 

convergence and provide misleading results. Inspired by Simulated Annealing, Albert 111 

et al. (2015) presented an adaptive scheme that decreases the tolerance according to the 112 

particles' distance from the target. The key question of how fast the tolerance should be 113 

reduced in pursuit of a fast convergence speed to the correct posterior is pleasantly 114 

answered by interpreting the tolerance parameter as the temperature of the environment 115 

using non-equilibrium thermodynamics. The tolerance is adapted in such a way that the 116 

entropy production is minimized (Albert et al., 2015). This class of particle algorithms 117 

for ABC is known collectively as Simulated Annealing ABC, or SABC. Previous work 118 

(Fenicia et al., 2018; Kavetski et al., 2018) has demonstrated the effectiveness and 119 

efficiency of SABC for probabilistic uncertainty quantification in a few lumped 120 

modelling practices. 121 

Another algorithmic enhancement embedded in the SABC algorithm is that it uses 122 

the Markov Chain Monte Carlo (MCMC) scheme to simulate samples from an 123 

approximation to the posterior (Marjoram et al., 2003). The building block of this 124 

method is a Markov Chain, which generates a random walk through the parameter space 125 

and trial jumps from the current state of the chain to a new state. The most common 126 

MCMC method is the random walk Metropolis (RWM) sampler. It works with a single 127 
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trajectory (chain), and a symmetric normal jump distribution ( )0,dN Σ   whose 128 

covariance Σ is adapted using the accepted proposals of the chain according to 129 

dsβΣ = Σ + I  . Here, s is a small constant preventing the covariance matrix from 130 

degenerating, and β is a scaling factor that depends only on the parameter dimension d. 131 

This method may be adequate for simple inference problems involving just a handful 132 

of parameters, but is not likely to achieve an adequate sampling efficiency and provide 133 

accurate posterior estimates when ( )p θ Y   is high-dimensional with complex 134 

posterior surfaces that contain numerous local optima and multiple regions of attraction 135 

(Laloy and Vrugt, 2012; Ter Braak, 2006; Ter Braak and Vrugt, 2008; Vrugt, 2016; 136 

Vrugt et al., 2008; Vrugt et al., 2009). Consequently, it always requires an excessive 137 

number of model evaluations to sample from the approximate posteriors, which limits 138 

its use in hydrological models with high computation costs (Shafii and Tolson, 2015). 139 

In a separate line of research, variants of the MCMC methods have been developed 140 

for exploring the posteriors. To improve efficiency for high-dimensional problems, Ter 141 

Braak and Vrugt (2008) has proposed an adaptive RWM method entitled Differential 142 

Evolution Markov Chain (DE-MC). It uses multiple different chains running 143 

sequentially or in parallel for sampling from the posterior distribution. DE-MC directly 144 

utilizes the current states of the chains to generate the proposals to allow for direct 145 

jumps between disconnected modes of complex posterior surfaces. This is a significant 146 

strength of DE-MC acting as a multi-chain method compared to single chain methods 147 

(Vrugt, 2016). Previous work (Vrugt et al., 2008; Vrugt et al., 2009) has shown that the 148 
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efficiency of DE-MC can be further enhanced by combining self-adaptive randomized 149 

subspace sampling. For high-dimensional problems it is rather inefficient to update all 150 

d dimensions of parameters simultaneously (Haario et al., 2005), especially when 151 

parameters have vastly different scales. Subspace sampling is implemented by only 152 

updating randomly selected dimensions of parameters each time a candidate point is 153 

generated. By "self-adaptive" we mean that the dimensions of parameters that 154 

participate in the candidate generation are tuned adaptively during burn-in by favoring 155 

large jumps over small ones in each of the chains (Vrugt et al., 2009). In addition, this 156 

method includes higher-order chain pairs for candidate generation to increase diversity 157 

in the candidates, and outlier chain correction techniques to speed up convergence. This 158 

method, entitled DiffeRential Evolution Adaptive Metropolis (DREAM), maintains 159 

detailed balance and overall ergodicity of the Markov chains (Vrugt, 2016). 160 

In this paper, we examine the use of an adaptive MCMC sampling within the 161 

SABC algorithm to improve the sampling efficiency and accelerate the chain 162 

convergence. The adopted MCMC sampler is part of the DREAM algorithm and 163 

intentionally ignores the outlier chain correction module as it destroys detailed balance 164 

of the Markov chains and can only be used during burn-in (Vrugt et al., 2009). A few 165 

papers do investigate the use of MCMC simulation in ABC to enhance the ABC 166 

sampling efficiency (Sadegh and Vrugt, 2014), but this approach uses a static tolerance 167 

value for guiding the search in the parameter space, which is a significant difference 168 

from SABC. The concept of the present paper is to generate a proposal using the 169 
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adaptive MCMC sampler and derive the associated probabilistic predictions using the 170 

SABC method. For convenience we refer to the modified SABC algorithm based on 171 

the adaptive MCMC sampler as mSABC, in contrast to the original SABC algorithm 172 

implementing the simple RWM sampler. The superiority of mSABC over the original 173 

SABC is to be demonstrated using a calibration of the SAC-SMA model, which has 174 

been suggested to be a challenging task due to complex posterior surfaces (Duan et al., 175 

1992) and thus frequently utilized as a benchmark hydrologic modelling experiment for 176 

validation of algorithmic enhancements (e.g., Laloy and Vrugt, 2012; Sadegh and Vrugt, 177 

2014; Vrugt et al., 2009). 178 

2 Methodology 179 

2.1 Approximate Bayesian Computation 180 

The Approximate Bayesian Computation (ABC) approaches provide an attractive 181 

solution to a Bayesian inference of a hydrological model where the likelihood function 182 

is impossible to formulate, or computationally expensive to evaluate. The conceptual 183 

basis of ABC is that we can always approximate the probability density function (pdf) 184 

of a probabilistic model by sampling from this probabilistic model (Kavetski et al., 185 

2018). Given the observed streamflow data Y   and a sample from a probabilistic 186 

model ( )Y θ , as the distance between the observed and simulated data  ( )( ),ρ Y Y θ  187 

is lower than some tolerance value τ ( 0τ →  ), θ   should be a sample from an 188 

approximation of the correct posterior (Marjoram et al., 2003; Sisson et al., 2007). For 189 
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high-dimensional datasets, it is computationally efficient to consider the criterion 190 

( ) ( )( )( ),ρ s Y s Y θ  to determine whether to accept the candidate sample or not, where 191 

( )⋅s  is a vector of summary statistics (hydrological signatures) computed from the data. 192 

Typical signatures include the flow duration curve (FDC), baseflow index, and other 193 

streamflow characteristics (e.g., Addor et al., 2018; Clausen and Biggs, 2000; Olden 194 

and Poff, 2003; Westerberg and Mcmillan, 2015; Yadav et al., 2007). 195 

Implementation of ABC using simple reject sampling scheme (ABC-REJ) consists 196 

of the following steps: 197 

(1) Draw a sample 0θ  from the prior ( )p θ ; 198 

(2) Generate simulated data ( )0Y θ   from the probability model ( )Y θ   using 199 

0θ ; 200 

(3) Accept the candidate 0θ   if the distance ( ) ( )( )( )0,ρ s Y s Y θ   is lower than 201 

some prespecified tolerance value τ ; 202 

(4) Repeat steps (1-3) until an adequate number of accepted samples is obtained. 203 

Additional algorithmic advances have been proposed to enhance the sampling 204 

efficiency of the basic ABC-REJ algorithm. One common approach is to adaptively 205 

tighten an initially coarse tolerance as the sampling progresses (Toni et al., 2009). This 206 

allows for a sufficiently low final value of τ   and high numerical accuracy in 207 

approximating the posterior ( )p θ Y  . The SABC algorithm of Albert et al. (2015) 208 

presents an adaptive annealing schedule that attempts a fast convergence to an unbiased 209 
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result. SABC starts with an ensemble of particles ( )( );θ Y θ  drawn from the prior in 210 

the parameter-output space which evolves according to a family of Metropolis kernels 211 

defined as ( ) ( ) ( ) ( ) ( )( )( )( )1 exp ,Z p Lτ ρ τ− −θ Y θ s Y s Y θ   for a decreasing 212 

sequence of tolerances. The adaptive schedule of τ  stems from the non-equilibrium 213 

thermodynamics. The tolerance ( )tτ  is interpreted as the temperature of a gas (system) 214 

at time t, which is in connection with a heat bath (environment) whose temperature 215 

( )e tτ   can be controlled. The cooling of the system is pursued by lowering the 216 

temperature of the environment. The cooling schedule ( )e tτ  is tuned according to the 217 

mean distance ( )U t   of the particles from the data Y   using non-equilibrium 218 

thermodynamics of entropy production to minimize the required simulations from the 219 

likelihood (Albert et al., 2015). The SABC algorithm has been successfully applied to 220 

probabilistic uncertainty quantification of hydrological models (Fenicia et al., 2018; 221 

Kavetski et al., 2018). 222 

The SABC algorithm is run in a sequence of steps. In the “Initialization” step, we 223 

construct the prior ensemble E according to an initial value of τ . An initial value of 224 

the optimal annealing schedule eτ  is estimated as a function of mean fields U of the 225 

prior ensemble. In the “Iteration” step, we update the ensemble E according to a 226 

sequence of Metropolis kernels where the proposal is generated using a random walk 227 

Metropolis (RWM) sampler. The value of eτ  is adaptively lowered as the iteration 228 

proceeds. A schematic description of the SABC algorithm is presented in Fig. 1. 229 

 230 
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 231 

Fig. 1 Schematic overview of the original SABC and mSABC algorithms. The original 232 
SABC algorithm utilizes a simple random walk Metropolis (RWM) sampler for 233 
proposal generation, while mSABC implements more advanced DREAM-Core sampler 234 
to generate a proposal during the “Iteration” process. 235 

 236 
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The original SABC algorithm utilizes a simple RWM sampler to generate a 237 

proposal in the “Iteration” process. It also allows for adaptively updating the covariance 238 

matrix of a multivariate proposal distribution using all previously accepted samples of 239 

the Markov Chain to improve the sampling efficiency of the algorithm (Albert et al., 240 

2015). This scheme works well for simple unimodal inference problems, but becomes 241 

inefficient when confronted with complex posterior surface with multiple different 242 

regions of attraction and numerous local optima (Ter Braak and Vrugt, 2008; Ter Braak, 243 

2006; Vrugt et al., 2008; Vrugt et al., 2009; Vrugt, 2016). Besides, simultaneous 244 

updating of all parameter dimensions results in low acceptance probability for high-245 

dimensional problems (Vrugt, 2016; Sadegh and Vrugt, 2014; Vrugt et al., 2009). These 246 

issues inevitably reduces the efficiency and numerical accuracy of SABC in an 247 

approximation to the correct posterior.  248 

2.2 Adaptive Markov Chain Monte Carlo sampling 249 

The modified SABC (mSABC) algorithm we propose is motivated from the 250 

development of DREAM(ABC) algorithm which uses the DiffeRential Evolution 251 

Adaptive Metropolis (DREAM) method to speed up the sampling of ABC posterior 252 

distributions (Sadegh and Vrugt, 2014). The mSABC algorithm replaces the simple 253 

RWM sampling in the original SABC algorithm with an adaptive MCMC simulation in 254 

pursuit of higher sampling efficiency. The proposed MCMC sampler constitutes the 255 

core of a family of DREAM algorithms (Vrugt, 2016; Vrugt and Beven, 2018); We here 256 

refer to it as DREAM-Core sampling. DREAM-Core stems from DE-MC (Ter Braak, 257 
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2006), and introduces a self-adaptive randomized subspace sampling strategy to 258 

accelerate convergence to the posterior (Vrugt et al., 2009; Sadegh and Vrugt, 2014).  259 

Compared to RWM within SABC where a particle is randomly selected from the 260 

ensemble each time a candidate point is generated, mSABC selects N random particles 261 

simultaneously, each serving as the starting point of one independent chain in DREAM-262 

Core (Fig. 1). It utilized the information about the scale and orientation of the proposal 263 

distribution contained in the remaining N-1 chains to generate a candidate in the current 264 

chain (Vrugt et al., 2009). Let ix   be the current state of chain { }1,2, ,i N=   , a 265 

candidate point in chain i, iz  is given by (Storn and Price, 1997) 266 

 ( ) ( ) ( )* * *
*

1
, j ji i

A Ad d d
j

d x x
δ

γ δ
=

= + + − +∑ a bz x 1 λ ε   (2) 267 

where *2.38 2 dγ δ=   is the jump rate, δ is the number of chain pairs used to 268 

generate the jump, and d* is the number of dimensions to be updated jointly, stretching 269 

the parameter subspace A. ja   and jb   are vectors with δ integers drawn without 270 

replacement from { }1, , 1, 1, ,i i N− +  . The value of N should at least be equivalent 271 

to 2δ+1, or N = 3 for the default of δ = 1 (Vrugt, 2016). The values of λ and ε are drawn 272 

from [ ]* ,
d

U c c−  and ( )* *0,
d

N c , with c = 0.1 and *c  small compared to the width of 273 

the target distribution, 12
* 10c −=   say. we set γ = 1 at every 5th generation, or 274 

( )1 0.2p γ = =  to enable jumping between disconnected modes of the posterior (Ter 275 

Braak, 2006). 276 
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The subspace A spanned by randomly selected *d   dimensions of ix   is 277 

constructed in DREAM-Core using a geometric sequence of crossover values 278 

CR CR

1 2, , ,1
n n

 
 
 

   with selection probabilities CRp  . A good choice of nCR = 3 has 279 

shown to work well in practice (Sadegh and Vrugt, 2014). To speed up the sampling of 280 

the ABC posteriors, the selection probabilities CRp  are tuned adaptively during burn-281 

in by maximizing the jumping distance in each of the N chains. This procedure is 282 

described in detail in Vrugt et al. (2009). 283 

A schematic description of the proposed mSABC algorithm is presented in Fig. 1. 284 

The chain evolution of mSABC differs from classical Markov Chain methods. Each 285 

time a proposal is generated, mSABC accepts randomly selected N particles from the 286 

ensemble E as the starting points of chain evolution for next iteration. The aim of the 287 

proposal generation in mSABC is to evolve the prior ensemble, instead of acquiring an 288 

entire sequence of the Markov Chains in pursuit of convergence to the posterior. 289 

2.3 Criteria for the comparison 290 

Several frequently used uncertainty evaluation measures are used to 291 

comprehensively quantify the predictive performance obtained with SABC and 292 

mSABC respectively. The indices for assessing the 95% prediction limits include the 293 

containing ratio (CR), average relative band-width (RB) and average relative deviation 294 

amplitude (RD) (Xiong et al., 2009). All three metrics represent desirable characteristics 295 

for the prediction limits. CR is computed as the ratio of the number of the observations 296 
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enveloped by the 95% prediction bound across all time steps. RB is used to quantify the 297 

average relative band width of the predictions. RD is used to quantify the actual 298 

discrepancy between the trajectory consisting of the middle points of the prediction 299 

bound and the observations. A higher value of CR and lower values of RB and RD 300 

indicate better predictive performance. The RB and RD are calculated as 301 

 
1

1 tN u l
i i

it i

q qRB
N Q=

−
= ∑  (3) 302 

 
1

1
2

tN u l
i i

i
it

q qRD Q
N =

+
= −∑  (4) 303 

where iQ  is the observed flow at time i, u
iq  and l

iq  are the upper and lower limits 304 

of the 95% prediction band respectively, and tN  is the number of time steps. 305 

In addition, the reliability of probabilistic predictions is graphically evaluated 306 

using the predictive quantile-quantile (PQQ) plot. A deviation from the diagonal line 307 

(1:1 line) indicates the inconsistencies between the measurements and the model 308 

predictions (Laio and Tamea, 2007; Thyer et al., 2009). 309 

We also compared the performance of the trajectory consisting of the middle points 310 

of the 95% prediction limits against the observed hydrograph. These performance 311 

metrics include the root mean squared error (RMSE), correlation coefficient (CC), and 312 

percent bias (PBIAS). The equations for computing RMSE, CC and PBIAS are presented 313 

as follows: 314 
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 ( )2

1

1 tN
m

i i
it

RMSE Q q
N =

= −∑  (5) 315 

 
( )( )

( ) ( )
1

22

1 1

t

t t

N
m m

i i
i

N N
m m

i i
i i

Q Q q q
CC

Q Q q q

=

= =

− −
=

− −

∑

∑ ∑
 (6) 316 

 ( )
1 1

100
t tN N

m
i i i

i i
PBIAS Q q Q

= =

= − ×∑ ∑  (7) 317 

where m
iq  is the middle points of the 95% prediction limits at time i. Q  and mq  are 318 

the average of the observed flows and the middle points of the 95% prediction limits 319 

respectively. Lower values of RMSE and absolute PBIAS and a higher value of CC 320 

correspond to better model performance. 321 

3 Case study 322 

A realistic case study is used to illustrate the advantages of mSABC over the 323 

original SABC algorithm in hydrologic modelling practice. We consider simulation of 324 

the rainfall-runoff relationship in the Danjiangkou Reservoir region (DRR) of China 325 

using the SAC-SMA hydrological model. The SAC-SMA model is a continuous 326 

conceptual rainfall-runoff model with spatially lumped parameters that represents the 327 

soil column as thin upper and thicker lower layers of multiple storages (Burnash et al., 328 

1973), and has been extensively used for modelling of the rainfall-runoff process in 329 

literature (e.g., Gupta et al., 1998; Sadegh and Vrugt, 2014; Vrugt et al., 2009). The 330 

estimated daily reservoir inflows from 1998 to 2007 are collected for model calibration 331 
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and validation. The first two years of data are used as burn-in to acquire stable and 332 

reliable estimates of initial states. Five years of daily hydrologic data (2000-2004) are 333 

used for calibration, and three more years (2005-2007) as the validation period. SAC-334 

SMA is here applied at a 6-hourly time step with 14 parameters to be inferred during 335 

calibration (Table 1). Details on the case study area and model used in the present 336 

experiment are described in Liu et al. (2022b). 337 
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The probabilistic model ( )Y θ  is specified in transformed space where the output 340 

of the SAC-SMA hydrological model ( )h ⋅  is corrupted with a random residual error 341 

term ( )ε ⋅ . Specifically, the truncated Gaussian AR1 process given in Eq. (8) is used:  342 

 ( ) ( ) ( )1 ; ;hz z h ελ ε λ−  = +   Y θ θ θ  (8) 343 

where ( ) ( ); 1z q qλλ λ= −  is the Box-Cox transformation with fixed parameter λ = 344 

0.2 (Mcinerney et al., 2017). The residual error model ( )ε ⋅  is characterized by a first-345 

order autoregressive (AR1) process, 1t t tε αε ξ+ = +   with truncated Gaussian 346 

innovations ( )20,t TNξ σ   (Fenicia et al., 2018). The SAC-SMA parameters hθ  347 

and residual error model parameter { },ε α σ=θ   constitute the parameters θ   to be 348 

jointly inferred.  349 

We select a vector of hydrological signatures as summary statistics of the ABC 350 

sampling algorithms. A detailed description of each signature is provided in Appendix 351 

A. The distance metric in ABC is then computed as the average (by magnitude) relative 352 

error across all sN  signatures ( 8sN =  in this case study):  353 

 ( ) ( )( )( )
( ) ( )( )

( )1

1,
sN j j

js j
N

ρ
=

−
= ∑

s Y s Y θ
s Y s Y θ

s Y
 (9) 354 

This is different from the settings of Kavetski et al. (2018) and also Fenicia et al. 355 

(2018). However, as a sufficient number of iterations is implemented, the choice of the 356 

distance metric and its tolerance (here, with an initial value of 0.3) has no significant 357 

impact on fair comparison of SABC and mSABC. 358 
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In our case study, following the practice of Fenicia et al. (2018), the original SABC 359 

algorithm is configured to return 5000 posterior samples from a total of 2×106 iterations. 360 

The number of iterations needed by mSABC to achieve the computational convergence 361 

of Markov Chains is determined by plotting the posterior parameter distributions as a 362 

function of the number of iterations (see Sect. 4.1). The size of acceptable solutions by 363 

mSABC is set identical to that of SABC. The DREAM-Core sampler is executed using 364 

the default settings of the algorithmic variables specified previously. To preserve 365 

detailed balance and reversibility of the Markov Chains (Ter Braak and Vrugt, 2008; 366 

Vrugt et al., 2009), the N = 3 independent chains are run sequentially. 367 

4 Results and discussion 368 

4.1 Computational convergence 369 

We used boxplots of the marginal posterior parameter distributions to examine the 370 

convergence of mSABC over the course of 7×105 iterations. Figure 2 presented how 371 

the posterior parameter distributions derived with mSABC changed as a function of the 372 

number of iterations. We displayed the results of a representative set of five SAC-SMA 373 

parameters, i.e., PCTIM, ADIMP, LZFSM, LZFPM, and LZPK, and two residual error 374 

model parameters (α and σ). For comparison, the posterior parameter distributions 375 

derived with the original SABC were plotted as a benchmark. The posteriors derived 376 

with mSABC showed a converging pattern and stabilized after approximately 5×105 377 

iterations. Therefore, in the present case study, a total number of 5×105 iterations is 378 

deemed as sufficient for mSABC to converge to the correct posterior.  379 

We believe that in the absence of a formal convergence proof of the mSABC 380 

algorithm theoretically, the computational convergence of mSABC needs to be 381 

benchmarked on the original SABC algorithm which has already been proved to 382 
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converge to the correct target distribution in previous applications (Fenicia et al., 2018). 383 

The converging pattern of the posteriors derived with mSABC implies that replacement 384 

of a simplistic RWM sampler with DREAM-Core sampling in SABC exerts no 385 

significant impact on the convergence to the correct posterior. The posteriors derived 386 

with mSABC, after approximately 2×105 iterations, achieve almost identical results to 387 

those derived with the original SABC algorithm. For parameters like LZPK and σ, there 388 

is a remarkable distinction between the posteriors derived with mSABC after 5×105 389 

iterations and SABC, respectively. In the current calibration problem involving 390 

excessive number of parameters, the SABC algorithm implemented using a simplistic 391 

RWM sampler introduces additional bias to the posterior parameter distributions and 392 

fails to correctly infer the target distribution.  393 
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 394 

Fig. 2 Evolution of the posterior parameter distributions derived with mSABC as a 395 
function of iterations. The posteriors derived with the original SABC algorithm are 396 
provided as a benchmark.  397 
 398 
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4.2 Sampling efficiency and cost comparison 399 

The sampling efficiency of SABC and mSABC was compared in terms of the final 400 

value of τ ( eτ  ), acceptance rate, AR (%) and number of function evaluations, FEs 401 

needed for posterior exploration (Table 2). The number of FEs is calculated as: FEs = 402 

Tinit + Titer*N, where N is the number of Markov Chains ( 1N =  for SABC, and 3N =  403 

for mSABC), Tinit and Titer are the number of iterations used for the “Initialization” and 404 

“Iteration” step, respectively. The SABC algorithm has an AR value of 0.96%, and 405 

requires around 2 million FEs to generate 5000 posterior samples. The mSABC 406 

algorithm is far more efficient (AR = 7.26%), and needs about 70% of SABC FEs to 407 

obtain identical number of posterior samples. This constitutes a more than 7.5 times 408 

difference in sampling efficiency, and favors the use of mSABC for uncertainty 409 

quantification of complex, computationally expensive models. This finding confirms 410 

the superiority of DREAM over the optimal RWM sampler in previous work (Vrugt et 411 

al., 2009; Laloy and Vrugt, 2012). The advantage of DREAM-Core over RWM in 412 

enhancing the sampling efficiency still holds when incorporated into proposal 413 

generation in the SABC algorithms. 414 

The final value of ( )e tτ  provides valuable information about the bias from an 415 

approximation to the posterior (Albert et al., 2015). Given an identical initial value of 416 

( )e tτ  (τ = 0.3), mSABC obtained a final value of ( )e tτ  close to zero, significantly 417 

lower than that of SABC. Therefore, mSABC achieved higher numerical accuracy in 418 

approximating the posterior. A vivid description of how fast ( )e tτ  was decreased in 419 

the “Iteration” step was presented in Fig. 3, where the value of ( )e tτ  was plotted as a 420 

function of the number of iterations and FEs, respectively. mSABC showed a fast 421 

convergence to an approximation of the posterior. However, SABC maintained a slow 422 
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convergence speed throughout the “Iteration” step. A total number of approximately 423 

1.5×105 iterations or 3.5×105 FEs for mSABC leads to a more relaxed final value of 424 

( )e tτ  = 0.035, close to that achieved by the original SABC algorithm. This agrees with 425 

the findings of Fig. 2, where mSABC acquired almost identical posteriors to SABC 426 

after around 2×105 iterations. We concluded that mSABC helped to accelerate 427 

convergence to an approximate of the posterior at the same time not introduce additional 428 

bias with lower computational costs.  429 

 430 

Table 2 Comparison of the sampling efficiency of SABC and mSABC in terms of the 431 
final value of ( )e tτ , acceptance rate, AR (%) and number of function evaluations, FEs 432 
needed for posterior exploration. 433 
Algorithm Initial 

( )tτ  
Initial 

( )e tτ  
Final 

( )e tτ  
AR (%) FEs 

SABC 0.3 0.126 0.035 0.96 2.0×106 
mSABC 0.3 0.126 0.00054 7.26 1.4×106 

 434 
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 435 

Fig. 3 Evolution of the tolerance value ( )e tτ   as a function of (a) the number of 436 
iterations and (b) the number of function evaluations (FEs) throughout the “Iteration” 437 
step of SABC and mSABC.  438 
 439 

4.3 Parameter inference 440 

Figure 4 presented histograms of the posterior parameter distributions derived with 441 

SABC and mSABC respectively. We displayed the results of a representative set of five 442 

SAC-SMA parameters, i.e., PCTIM, ADIMP, LZFSM, LZFPM, and LZPK, and two 443 

residual error model parameters (α and σ). For most parameters, mSABC exhibited 444 

sharper functional shapes and lower parameter uncertainties than the original SABC 445 
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algorithm. The use of adaptive MCMC sampler (i.e., DREAM-Core sampling) in 446 

SABC helped to locate the high probability density region of the parameter space 447 

efficiently, which confirmed the findings of previous studies (Blasone et al., 2008). Not 448 

Surprisingly, most histograms extended a large part of the prior parameter ranges. For 449 

parameters like PCTIM and α, the posteriors showed no evident differences from the 450 

uniform priors. The parameters were poorly defined by both SABC and mSABC 451 

algorithms implementing using a vector of subjectively chosen signature indices. It is 452 

likely that these summary metrics are not sufficient, at least for the present case study. 453 

Ideally, the summary statistics of ABC should contain as much information as the 454 

original calibration dataset (Sadegh and Vrugt, 2013; Sadegh and Vrugt, 2014). These 455 

eight metrics are expected to extract only a limited portion of available information in 456 

the discharge time series. This has direct impact on constraining the parameter space, 457 

resulting in poor parameter inference. Unfortunately, there is still no common practice 458 

in identifying a set of (approximately) sufficient summary statistics in ABC applications 459 

(Liu et al., 2022a). The sufficiency issue of ABC is beyond the scope and aim of our 460 

study, and a further discussion on this topic is provided in literature (Fenicia et al., 2018; 461 

Kavetski et al., 2018). 462 

 463 
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 464 

Fig. 4 Comparison of probability density function (pdf) of the posterior parameter 465 
distributions derived with SABC and mSABC. We presented the results of a variety of 466 
five SAC-SMA parameters (a-e) and two residual error model parameters (f-g). 467 
 468 

4.4 Signature predictions 469 

We compared the predictive distributions of signatures derived with the original 470 

SABC and mSABC algorithm over the validation period (Fig. 5). The performance of 471 

signature predictions was reported in a relative error sense. The marginal distributions 472 
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of predicted signatures generally center around zero with the exception of the heavily 473 

skewed predictive distributions of RR, RLD and ACF obtained by both SABC and 474 

mSABC. The systematic errors in RR suggest potential model deficiencies and 475 

measurement errors, yet this requires more detailed analysis. The overestimation of 476 

ACF is largely attributed to the introduction of AR1 process, which over-conditions the 477 

autocorrelation structure. Overall, both algorithms suggested to provide an acceptable 478 

reproduction of signatures, increasing the confidence in the application of these two 479 

algorithms to the present case study. 480 

Compared to SABC, mSABC achieved a generally better capture of the signatures, 481 

with a median value close to zero and thinner upper and lower tails. Examples were 482 

illustrated for Q10 and HPC, where a narrower predictive distribution centered on the 483 

zero level was obtained. But counterexample signatures do exist. For example, with 484 

respect to BFI, SABC generated better signature predictions in terms of the median of 485 

the predictive distribution. A significantly larger deviation from the observed BFI was 486 

achieved by mSABC. This finding was perhaps not surprising, since the ABC distance 487 

metric to be minimized was formulated as the average of signature deviations for all 488 

eight signatures (see Eq. (9)). The conflict between the predictive performances of Q10, 489 

HPC and BFI could be possibly attributed to the difference in the specific features of 490 

hydrological behavior these signatures aim to characterize. Previous work (Shafii et al., 491 

2015) has shown that there exists a clear, strong tradeoff between the reproduction of 492 

high-flow regime (here, represented by Q10 and HPC) and low-flow regime (here, 493 

represented by BFI) simultaneously. The improvement in the reproduction of Q10 and 494 

HPC was achieved at the sacrifice of the accuracy in reproducing BFI.  495 

We also conducted a comparison of the distribution of the ABC distances 496 

associated with the 5000 posterior samples over the validation period. The distance 497 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



31 
 

metric reflects the average relative error across all signatures. Compared to SABC, 498 

mSABC achieved higher numerical accuracy with a thinner upper tail of the predictive 499 

distribution. The median also decreased from 0.24 for SABC to 0.16 for mSABC. The 500 

skewness of the distance distributions confirmed the findings of Kavetski et al. (2018) 501 

and Fenicia et al. (2018), where the convergence of SABC (mSABC) to the approximate 502 

posterior does not necessarily imply that the achieved ABC distances are negligible for 503 

all posterior samples. For example, the mSABC distances fell in the narrow range from 504 

0.06 to 0.74, whereas the SABC distances ranged from as low as 0.07 to as high as 1.43. 505 

These discrepancies primarily relate to the difficulties in matching all signatures 506 

simultaneously, especially in the presence of strong conflicts among them. 507 

Both SABC and mSABC algorithms require a series of decreasing tolerance values 508 

for the ABC acceptance test. In the early process of lowering the tolerance, the model 509 

with a larger ABC distance has greater chance to be pooled in the acceptable models. 510 

This explains why there exist a small portion of “ill-posed” solutions in the last 5000 511 

samples, suggested by heavy upper and lower tails in signature predictions. Compared 512 

to the original SABC algorithm, mSABC achieved a faster speed of lowering the 513 

tolerance (see Fig. 3), which resulted in a lower tolerance value and stricter acceptance 514 

criteria for signature deviations. The portion of unrealistic signature predictions was 515 

significantly reduced by mSABC. 516 

 517 
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 518 

Fig. 5 Predictions of streamflow signatures over the validation period. The distribution 519 
of the ABC distance, computed as the average of the absolute relative errors for all 520 
signatures, is also provided in the “Overall” plot. 521 
 522 

4.5 Streamflow predictions 523 

A comparison of daily streamflow predictions during the validation period 524 

obtained by the original SABC and mSABC algorithm respectively was presented in 525 

Fig. 6, where the 95% prediction limits and predictive quantile-quantile (PQQ) plots 526 
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were compared. Both algorithms achieved a generally satisfying capture of streamflow 527 

time series over the validation period. mSABC produced a narrower uncertainty band 528 

at the cost of underestimating the peak flows across the high-flow period. This was 529 

suggested by a significantly lower RB value and also a reduction of CR. This can be 530 

largely attributed to (i) inaccurate observational datasets and (ii) the choice of 531 

hydrological signatures.  532 

The former reason is inherent in almost all lumped hydrological models including 533 

SAC-SMA which only accept mean areal estimates as model drivers. The information 534 

contained in local measurements of uncommon large rainstorms is valuable for 535 

simulation of the highest flows, but is inevitably lost when averaged across the whole 536 

catchment. Besides, the estimated reservoir inflows used for model calibration and 537 

validation introduces additional errors into the model predictions. The data-related 538 

uncertainties contribute to the discrepancies between the observed and predicted flows 539 

regardless of the ABC sampling algorithms used.  540 

For the latter reason, we intentionally use Q10, the 10% flow exceedance values of 541 

streamflow to extract relevant information about high-flow regime in the DRR, 542 

although signatures such as the maximum (peak) flows can clearly improve the 543 

predictions in terms of the highest flows. However, they are more likely to be influenced 544 

by the flow errors (Westerberg and Mcmillan, 2015), resulting in a biased prediction. 545 

According to the findings of signature predictions in Fig. 5, mSABC decreased the 546 

proportion of solutions with large overestimation of high flows in the final set of 547 

posterior samples. This directly lowers the upper limits of uncertainty band. In this 548 

context, a larger number of high-flow records enveloped by SABC is merely the 549 

consequence of unrealistic wide uncertainty bands but not the benefit of SABC itself. 550 
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This can also be confirmed by better performance of PQQ plots with smaller deviation 551 

from the 1:1 line and better reliability of probabilistic predictions acquired by mSABC. 552 

Figure 6 also provided a quantitative assessment of 95% prediction limits over the 553 

validation period. Higher values of CR and lower values of RB and RD correspond to 554 

better model predictions. Compared to the original SABC algorithm, mSABC achieved 555 

lower values of RB and RD, accompanied by undesirable decrease of CR. On the whole, 556 

mSABC suggested a better overall performance in predicting streamflow time series. 557 

We have noticed that a clear, strong tradeoff exists between the performances of 558 

CR and RB (RD). A high containing ratio, a narrow uncertainty band, and a small 559 

deviation from the observed hydrograph, which represent three competing yet desirable 560 

characteristics for the prediction limits, cannot be realized simultaneously (Xiong et al., 561 

2009). This phenomenon is prevalent in the hydrological literature (Xiong et al., 2009; 562 

Sadegh and Vrugt, 2014; Zhou et al., 2016), which complicates direct comparison of 563 

these techniques.  564 

 565 
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566 

 567 

Fig. 6 Predictions of daily streamflow time series over the validation period obtained 568 
using (a) the original SABC algorithm and (b) mSABC algorithm. We display the 569 
results of 95% prediction limits (left) and Predictive Quantile-Quantile (PQQ) plots 570 
(right). The performance metrics of 95% prediction limits include the Containing Ratio 571 
(CR), Relative Band-width (RB), and Relative Deviation amplitude (RD). 572 
 573 

We also assessed the performance of the trajectory consisting of the middle points 574 

of the 95% prediction limits against the observed hydrograph (Table 3). The 575 

performance metrics include the RMSE, correlation coefficient, CC and percent bias, 576 

PBIAS. Lower values of RMSE and PBIAS in the absolute sense and a higher value of 577 

CC indicate better model performance. Compared to SABC, the mSABC algorithm 578 

acquired a worse performance of RMSE, a slight decline of CC, and better performance 579 

of PBIAS. A negative PBIAS value for SABC suggested an overestimation of the 580 

observed hydrograph, which confirmed the finding that the 95% prediction limits 581 

derived with SABC was unrealistic wide in Fig. 6. The prediction produced by mSABC, 582 
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on the contrary, suggested an underestimation of the observation, but with smaller 583 

magnitude of error in the absolute sense. On the whole, mSABC does not significantly 584 

deteriorate jeopardize the model performance with respect to the middle points of the 585 

95% prediction limits. 586 

 587 

Table 3 Evaluation of the middle points of the prediction limits over the validation 588 
period. RMSE – Root Mean Squared Error (mm/day); CC – Correlation Coefficient; 589 
PBIAS – Percent Bias (%). 590 
Algorithm RMSE (mm/day) CC PBIAS (%) 
SABC 0.89 0.86 -5.23 
mSABC 0.97 0.85 4.07 

 591 

5 Conclusions 592 

The original SABC algorithm implements a rather simplistic RWM sampler to 593 

generate a proposal from a single Markov Chain in the process of adaptively tightening 594 

an initial loose tolerance value (Albert et al., 2015). This scheme may be adequate for 595 

relatively simple low-dimensional inference problems, but is not likely to achieve a fast 596 

convergence and high numerical accuracy for more complex posterior exploration 597 

problems (Ter Braak, 2006; Ter Braak and Vrugt, 2008; Vrugt et al., 2008; Vrugt et al., 598 

2009; Laloy and Vrugt, 2012). In this paper, we have demonstrated the potential of 599 

improving the original SABC algorithm by implementing an adaptive Differential 600 

Evolution algorithm with self-adaptive randomized subspace sampling (Vrugt et al., 601 

2009), here referred to as DREAM-Core for speeding up convergence to an 602 

approximation to the posterior while maintaining equivalent or better predictive 603 

abilities. Through a comparison of the inference results using RWM and DREAM-Core 604 

for proposal generation, we demonstrated the following conclusions: 605 
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(1) The use of DREAM-Core sampling in mSABC has little impact on the 606 

computational convergence of the sampled Markov Chains. It requires around 607 

5×105 iterations for mSABC to converge to an approximation of the correct 608 

posterior by benchmarking it against the original SABC algorithm. 609 

(2) The modified SABC (mSABC) algorithm is far more efficient with higher 610 

acceptance probability, and requires a lower number of function evaluations 611 

(FEs) to achieve a much lower final tolerance value.  612 

(3) The mSABC algorithm acquires sharper functional shapes of the posterior 613 

parameter distributions, and helps to locate the high probability density region 614 

of the parameter space efficiently. 615 

(4) The mSABC algorithm achieves a generally better capture of signature 616 

predictions over the validation period. The ABC distances associated with 617 

posterior samples are largely reduced in terms of both median values and 618 

overall distributions. 619 

(5) The mSABC algorithm achieves a better overall prediction of streamflow time 620 

series over the validation period. A quantitative assessment of streamflow 621 

predictions favors mSABC for reliable probabilistic predictions and tighter 622 

uncertainty band with an undesirable decrease of the Containing Ratio (CR). 623 

Future work is to further investigate its comparison with other state-of-the-art ABC 624 

sampling algorithm, e.g., DREAM(ABC) algorithm (Sadegh and Vrugt, 2014), in terms 625 

of numerical accuracy and efficiency in real-world applications. 626 

Appendix A: Description of Hydrological Signatures 627 

Table A1 in this appendix presents a description of a vector of eight hydrological 628 

signatures employed in the case study.  629 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



38
 

 Ta
bl

e 
A

1 
H

yd
ro

lo
gi

ca
l s

ig
na

tu
re

s e
m

pl
oy

ed
 in

 th
e 

ca
se

 st
ud

y.
 

63
0 

G
ro

up
 

Si
gn

at
ur

e 
N

am
e 

D
es

cr
ip

tio
n 

U
ni

t 
Fl

ow
 d

ur
at

io
n 

cu
rv

e 
(F

D
C

) 
FM

S 
FD

C
 m

id
se

gm
en

t 
sl

op
e 

Sl
op

e 
of

 th
e 

FD
C

 b
et

w
ee

n 
th

e 
lo

g-
tra

ns
fo

rm
ed

 2
0%

 a
nd

 7
0%

 fl
ow

 
ex

ce
ed

an
ce

 v
al

ue
s o

f s
tre

am
flo

w
 (Y

ilm
az

 e
t a

l.,
 2

00
8)

 
[-

] 

Q
10

 
Fl

ow
 p

er
ce

nt
ile

 
10

%
 fl

ow
 e

xc
ee

da
nc

e 
va

lu
es

 o
f s

tre
am

flo
w

 d
iv

id
ed

 b
y 

m
ed

ia
n 

flo
w

 
(C

la
us

en
 a

nd
 B

ig
gs

, 2
00

0)
 

[-
] 

Fl
ow

 d
yn

am
ic

s 
B

FI
 

B
as

e 
flo

w
 in

de
x 

Fr
ac

tio
n 

of
 b

as
e 

flo
w

 w
ith

in
 th

e 
to

ta
l f

lo
w

 (E
ck

ha
rd

t, 
20

08
) 

[-
] 

A
C

F 
La

g-
1 

au
to

co
rr

el
at

io
n 

co
ef

fic
ie

nt
 

La
g-

1 
au

to
co

rr
el

at
io

n 
co

ef
fic

ie
nt

 o
f d

ai
ly

 st
re

am
flo

w
 ti

m
e 

se
rie

s 
 

[-
] 

Fr
eq

ue
nc

y 
of

 
flo

w
 e

ve
nt

s 
R

LD
 

R
is

in
g 

lim
b 

de
ns

ity
 

N
um

be
r o

f p
ea

ks
 d

iv
id

ed
 b

y 
th

e 
to

ta
l t

im
e 

th
e 

hy
dr

og
ra

ph
 is

 ri
si

ng
 

(S
ha

m
ir 

et
 a

l.,
 2

00
5)

 
[d

ay
-1

] 

H
PC

 
H

ig
h 

pu
ls

e 
co

un
t 

N
um

be
r o

f o
cc

ur
re

nc
es

 d
ur

in
g 

w
hi

ch
 fl

ow
 re

m
ai

ns
 3

 ti
m

es
 m

ed
ia

n 
da

ily
 

flo
w

 (C
la

us
en

 a
nd

 B
ig

gs
, 2

00
0)

 
[-

] 

R
ai

nf
al

l-R
un

of
f 

R
R

 
R

un
of

f r
at

io
 

R
at

io
 o

f r
un

of
f v

ol
um

e 
to

 a
re

al
 p

re
ci

pi
ta

tio
n 

 
[-

] 
SE

L 
St

re
am

flo
w

 e
la

st
ic

ity
 

Se
ns

iti
vi

ty
 o

f s
tre

am
flo

w
 to

 c
ha

ng
e 

of
 p

re
ci

pi
ta

tio
n 

(A
dd

or
 e

t a
l.,

 2
01

8)
 

[-
] 

63
1 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



39 
 

Code and data availability 632 

The Matlab source code of the original SABC is available on request from Dr. Dmitri 633 

Kavetski. The data that support the findings of this study, along with the code of the 634 

modified SABC program, are available from the corresponding authors upon 635 

reasonable request. 636 

Author contribution 637 

S. Liu designed the experiments, and prepare the original draft with contributions from 638 

all co-authors. D. X. She and L. P. Zhang contributed to the validation of the overall 639 

reproductivity of the experiments and the revision of the original draft. J. Xia and D. X. 640 

She were responsible for resources and fund acquisition. 641 

Competing interests 642 

The authors declare that they have no conflict of interest. 643 

Acknowledgements 644 

This research is sponsored by National Key Research and Development Program of 645 

China (Grant No. 2016YFC0402709). We appreciate Dr. Dmitri Kavetski for sharing 646 

the Matlab implementation of the original SABC algorithm. The source codes of 6-647 

hourly SAC-SMA model are retrieved from the DREAM suite, which is available on 648 

request from Dr. Jasper A. Vrugt. 649 

References 650 

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A 651 

ranking of hydrological signatures based on their predictability in space, Water Resour. 652 

Res., 54, 8792-8812, https://doi.org/10.1029/2018wr022606, 2018. 653 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



40 
 

Albert, C., Künsch, H. R., and Scheidegger, A.: A simulated annealing approach to 654 

approximate Bayes computations, Stat. Comput., 25, 1217-1232, 655 

https://doi.org/10.1007/s11222-014-9507-8, 2015. 656 

Beaumont, M. A.: Approximate Bayesian Computation, Annu. Rev. Stat. Appl., 6, 379-657 

403, https://doi.org/10.1146/annurev-statistics-030718-105212, 2019. 658 

Beaumont, M. A., Zhang, W. Y., and Balding, D. J.: Approximate Bayesian computation 659 

in population genetics, Genetics, 162, 2025-2035, 2002. 660 

Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., and Robert, C. P.: Adaptive 661 

approximate Bayesian computation, Biometrika, 96, 983-990, 662 

https://doi.org/10.1093/biomet/asp052, 2009. 663 

Beven, K. and Binley, A.: The future of distributed models: Model calibration and 664 

uncertainty prediction, Hydrol. Process., 6, 279-298, 665 

https://doi.org/10.1002/hyp.3360060305, 1992. 666 

Beven, K. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28, 5897-5918, 667 

https://doi.org/10.1002/hyp.10082, 2014. 668 

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and Zyvoloski, 669 

G. A.: Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov 670 

Chain Monte Carlo sampling, Adv. Water Resour., 31, 630-648, 671 

https://doi.org/10.1016/j.advwatres.2007.12.003, 2008. 672 

Burnash, R. J., Ferral, R. L., and McGuire, R. A.: A Generalized Streamflow Simulation 673 

System: Conceptual Modeling for Digital Computers, Joint Fed.-State River Forecast 674 

Cent., Sacramento, Calif.1973. 675 

Clausen, B. and Biggs, B. J. F.: Flow variables for ecological studies in temperate 676 

streams: groupings based on covariance, J. Hydrol., 237, 184-197, 677 

https://doi.org/10.1016/S0022-1694(00)00306-1, 2000. 678 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



41 
 

Diggle, P. J. and Gratton, R. J.: Monte Carlo methods of inference for implicit statistical 679 

models, J. Roy. Stat. Soc. B Met., 46, 193-227, https://doi.org/10.1111/j.2517-680 

6161.1984.tb01290.x, 1984. 681 

Duan, Q. Y., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization 682 

for conceptual ranfall-runoff models, Water Resour. Res., 28, 1015-1031, 683 

https://doi.org/10.1029/91WR02985, 1992. 684 

Eckhardt, K.: A comparison of baseflow indices, which were calculated with seven 685 

different baseflow separation methods, J. Hydrol., 352, 168-173, 686 

https://doi.org/10.1016/j.jhydrol.2008.01.005, 2008. 687 

Engeland, K. and Gottschalk, L.: Bayesian estimation of parameters in a regional 688 

hydrological model, Hydrol. Earth Syst. Sci., 6, 883-898, https://doi.org/10.5194/hess-689 

6-883-2002, 2002. 690 

Evin, G., Thyer, M., Kavetski, D., McInerney, D., and Kuczera, G.: Comparison of joint 691 

versus postprocessor approaches for hydrological uncertainty estimation accounting for 692 

error autocorrelation and heteroscedasticity, Water Resour. Res., 50, 2350-2375, 693 

https://doi.org/10.1002/2013WR014185, 2014. 694 

Fenicia, F., Kavetski, D., Reichert, P., and Albert, C.: Signature‐domain calibration of 695 

hydrological models using Approximate Bayesian Computation: Empirical analysis of 696 

fundamental properties, Water Resour. Res., 54, 3958-3987, 697 

https://doi.org/10.1002/2017WR021616, 2018. 698 

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved calibration of 699 

hydrologic models: Multiple and noncommensurable measures of information, Water 700 

Resour. Res., 34, 751-763, https://doi.org/10.1029/97wr03495, 1998. 701 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



42 
 

Gupta, H. V., Clark, M. P., Vrugt, J. A., Abramowitz, G., and Ye, M.: Towards a 702 

comprehensive assessment of model structural adequacy, Water Resour. Res., 48, 703 

https://doi.org/10.1029/2011wr011044, 2012. 704 

Haario, H., Saksman, E., and Tamminen, J.: Componentwise adaptation for high 705 

dimensional MCMC, Computation. Stat., 20, 265-273, 706 

https://doi.org/10.1007/BF02789703, 2005. 707 

Kavetski, D., Fenicia, F., Reichert, P., and Albert, C.: Signature‐domain calibration of 708 

hydrological models using Approximate Bayesian Computation: Theory and 709 

comparison to existing applications, Water Resour. Res., 54, 4059-4083, 710 

https://doi.org/10.1002/2017WR020528, 2018. 711 

Laio, F. and Tamea, S.: Verification tools for probabilistic forecasts of continuous 712 

hydrological variables, Hydrol. Earth Syst. Sci., 11, 1267-1277, 713 

https://doi.org/10.5194/hess-11-1267-2007, 2007. 714 

Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of hydrologic models 715 

using multiple-try DREAM(ZS) and high-performance computing, Water Resour. Res., 716 

48, https://doi.org/10.1029/2011WR010608, 2012. 717 

Liu, S., She, D., Zhang, L., and Xia, J.: A hybrid time- and signature-domain Bayesian 718 

inference framework for calibration of hydrological models: a case study in the Ren 719 

River basin in China, Stoch. Environ. Res. Risk A., https://doi.org/10.1007/s00477-720 

022-02282-3, 2022a. 721 

Liu, S., She, D., Zhang, L., Xia, J., Chen, S., and Wang, G.: Quantifying and reducing 722 

the uncertainty in multi-source precipitation products using Bayesian total error 723 

analysis: a case study in the Danjiangkou Reservoir region in China, J. Hydrol., 724 

https://doi.org/10.1016/j.jhydrol.2022.128557, 2022b. 725 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



43 
 

Marjoram, P., Molitor, J., Plagnol, V., and Tavare, S.: Markov Chain Monte Carlo 726 

without Likelihoods, P. Nati. Acad. Sci. USA, 100, 15324-15328, 727 

https://doi.org/10.1073/pnas.0306899100, 2003. 728 

McInerney, D., Thyer, M., Kavetski, D., Lerat, J., and Kuczera, G.: Improving 729 

probabilistic prediction of daily streamflow by identifying Pareto optimal approaches 730 

for modeling heteroscedastic residual errors, Water Resour. Res., 53, 2199-2239, 731 

https://doi.org/10.1002/2016WR019168, 2017. 732 

McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational uncertainties for 733 

hydrology: rainfall, river discharge and water quality, Hydrol. Process., 26, 4078-4111, 734 

https://doi.org/10.1002/hyp.9384, 2012. 735 

Nott, D. J., Marshall, L., and Brown, J.: Generalized likelihood uncertainty estimation 736 

(GLUE) and approximate Bayesian computation: What's the connection?, Water Resour. 737 

Res., 48, https://doi.org/10.1029/2011WR011128, 2012. 738 

Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydrologic indices for 739 

characterizing streamflow regimes, River Res. Appl,, 19, 101-121, 740 

https://doi.org/10.1002/rra.700, 2003. 741 

Sadegh, M. and Vrugt, J. A.: Bridging the gap between GLUE and formal statistical 742 

approaches: approximate Bayesian computation, Hydrol. Earth Syst. Sci., 17, 4831-743 

4850, https://doi.org/10.5194/hess-17-4831-2013, 2013. 744 

Sadegh, M. and Vrugt, J. A.: Approximate Bayesian Computation using Markov Chain 745 

Monte Carlo simulation: DREAM(ABC), Water Resour. Res., 50, 6767-6787, 746 

https://doi.org/10.1002/2014WR015386, 2014. 747 

Schoups, G. and Vrugt, J. A.: A formal likelihood function for parameter and predictive 748 

inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian 749 

errors, Water Resour. Res., 46, https://doi.org/10.1029/2009WR008933, 2010. 750 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



44 
 

Shafii, M. and Tolson, B. A.: Optimizing hydrological consistency by incorporating 751 

hydrological signatures into model calibration objectives, Water Resour. Res., 51, 3796-752 

3814, https://doi.org/10.1002/2014WR016520, 2015. 753 

Shafii, M., Tolson, B., and Shawn Matott, L.: Addressing subjective decision-making 754 

inherent in GLUE-based multi-criteria rainfall–runoff model calibration, J. Hydrol., 755 

523, 693-705, https://doi.org/10.1016/j.jhydrol.2015.01.051, 2015. 756 

Shamir, E., Imam, B., Gupta, H. V., and Sorooshian, S.: Application of temporal 757 

streamflow descriptors in hydrologic model parameter estimation, Water Resour. Res., 758 

41, https://doi.org/10.1029/2004wr003409, 2005. 759 

Sisson, S. A., Fan, Y., and Tanaka, M. M.: Sequential Monte Carlo without likelihoods, 760 

P. Nati. Acad. Sci. USA, 104, 1760-1765, https://doi.org/10.1073/pnas.0607208104, 761 

2007. 762 

Storn, R. and Price, K.: Differential evolution - A simple and efficient heuristic for 763 

global optimization over continuous spaces, J. Global Optim., 11, 341-359, 764 

https://doi.org/10.1023/A:1008202821328, 1997. 765 

Tavare, S., Balding, D. J., Griffiths, R. C., and Donnelly, P.: Inferring coalescence times 766 

from DNA sequence data, Genetics, 145, 505-518, 1997. 767 

ter Braak, C. J. F.: A Markov Chain Monte Carlo version of the genetic algorithm 768 

Differential Evolution: Easy Bayesian computing for real parameter spaces, Stat. 769 

Comput., 16, 239-249, https://doi.org/10.1007/s11222-006-8769-1, 2006. 770 

ter Braak, C. J. F. and Vrugt, J. A.: Differential Evolution Markov Chain with snooker 771 

updater and fewer chains, Stat. Comput., 18, 435-446, https://doi.org/10.1007/s11222-772 

008-9104-9, 2008. 773 

Thyer, M., Renard, B., Kavetski, D., Kuczera, G., Franks, S. W., and Srikanthan, S.: 774 

Critical evaluation of parameter consistency and predictive uncertainty in hydrological 775 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



45 
 

modeling: A case study using Bayesian total error analysis, Water Resour. Res., 45, 776 

https://doi.org/10.1029/2008WR006825, 2009. 777 

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. H.: Approximate 778 

Bayesian computation scheme for parameter inference and model selection in 779 

dynamical systems, J. Roy. Soc. Interface, 6, 187-202, 780 

https://doi.org/10.1098/rsif.2008.0172, 2009. 781 

Turner, B. M. and Van Zandt, T.: A tutorial on approximate Bayesian computation, J. 782 

Math. Psychol., 56, 69-85, https://doi.org/10.1016/j.jmp.2012.02.005, 2012. 783 

Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software 784 

package: Theory, concepts, and MATLAB implementation, Environ. Modell. Softw., 785 

75, 273-316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016. 786 

Vrugt, J. A. and Beven, K. J.: Embracing equifinality with efficiency: Limits of 787 

Acceptability sampling using the DREAM(LOA) algorithm, J. Hydrol., 559, 954-971, 788 

https://doi.org/10.1016/j.jhydrol.2018.02.026, 2018. 789 

Vrugt, J. A. and Sadegh, M.: Toward diagnostic model calibration and evaluation: 790 

Approximate Bayesian computation, Water Resour. Res., 49, 4335-4345, 791 

https://doi.org/10.1002/wrcr.20354, 2013. 792 

Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson, B. A.: 793 

Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward 794 

with Markov chain Monte Carlo simulation, Water Resour. Res., 44, 795 

https://doi.org/10.1029/2007WR006720, 2008. 796 

Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., and 797 

Higdon, D.: Accelerating Markov Chain Monte Carlo simulation by Differential 798 

Evolution with Self-Adaptive Randomized Subspace Sampling, Int. J. Nonlin. Sci. 799 

Num., 10, 273-290, https://doi.org/10.1515/IJNSNS.2009.10.3.273, 2009. 800 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.



46 
 

Weiss, G. and von Haeseler, A.: Inference of population history using a likelihood 801 

approach, Genetics, 149, 1539-1546, 1998. 802 

Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydrological signatures, Hydrol. 803 

Earth Syst. Sci., 19, 3951-3968, https://doi.org/10.5194/hess-19-3951-2015, 2015. 804 

Xiong, L., Wan, M., Wei, X., and O'Connor, K. M.: Indices for assessing the prediction 805 

bounds of hydrological models and application by generalised likelihood uncertainty 806 

estimation, Hydrol. Sci. J., 54, 852-871, https://doi.org/10.1623/hysj.54.5.852, 2009. 807 

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected 808 

watershed response behavior for improved predictions in ungauged basins, Adv. Water 809 

Resour., 30, 1756-1774, https://doi.org/10.1016/j.advwatres.2007.01.005, 2007. 810 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to 811 

model evaluation: Application to the NWS distributed hydrologic model, Water Resour. 812 

Res., 44, https://doi.org/10.1029/2007WR006716, 2008. 813 

Zhou, R., Li, Y., Lu, D., Liu, H., and Zhou, H.: An optimization based sampling 814 

approach for multiple metrics uncertainty analysis using generalized likelihood 815 

uncertainty estimation, J. Hydrol., 540, 274-286, 816 

https://doi.org/10.1016/j.jhydrol.2016.06.030, 2016. 817 

 818 

https://doi.org/10.5194/hess-2022-414
Preprint. Discussion started: 31 January 2023
c© Author(s) 2023. CC BY 4.0 License.


