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Abstract. A reliable flood frequency analysis (FFA) requires selection of an appropriate statistical distribution to model 

historic streamflow data and, where streamflow data are not available (ungauged sites), a regression-based regional flood 

frequency analysis (RFFA) often correlates well with downstream channel discharge to drainage area relations. However, the 

predictive strength of the accepted RFFA relies on an assumption of homogeneous watershed conditions. For glacially 10 

conditioned fluvial systems, inherited glacial landforms, sediments, and variable land use can alter flow paths and modify flow 

regimes. This study compares a multi-variate RFFA that considers 28 explanatory variables to characterize variable watershed 

conditions (i.e., surficial geology, climate, topography, and land use) to an accepted power-law relationship between discharge 

and drainage area. Archived gauge data from southern Ontario, Canada are used to test these ideas. Mathematical goodness-

of-fit criteria best estimate flood discharge for a broad range of flood recurrence intervals, i.e., 1.25, 2, 5, 10, 25, 50, and 100 15 

years. The LN, EV1, LP3, and GEV distributions are found most appropriate in 42.5%, 31.9%, 21.7%, and 3.9% of cases, 

respectively, suggesting that systematic model selection criterion is required for FFA in heterogeneous landscapes. Multi-

variate regression of estimated flood quantiles with backward elimination of explanatory variables using principal component 

and discriminant analyses reveal that precipitation provides a greater predictive relationship for more frequent flood events, 

whereas surficial geology demonstrates more predictive ability for high magnitude, less frequent flood events. In this study, 20 

all seven flood quantiles identify a statistically significant two-predictor model that incorporates upstream drainage area and 

the percentage of naturalized landscape with 5% improvement in predictive power over the commonly used single-variable 

drainage area model (p < 2.2e-16). An analysis of variance (ANOVA) further supports the two-predictor model indicating a 

decrease in the sum of squares of residuals and an F statistic (p < 0.001) that demonstrates very strong evidence in favour of 

the two-predictor model (i.e., drainage area and land use) when estimating flood discharge in this low-relief landscape with 25 

pronounced glacial legacy effects and heterogenous land use. 
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1. Introduction 

A reliable assessment of flood frequency and flood magnitude over space and time is critical for urban planning and 

infrastructure engineering that depends on flood probability (Basso et al., 2016). Flood magnitude, frequency, and duration are 30 

primary drivers of channel erosion and stream morphology (Taniguchi & Biggs, 2015) as a self-shaping alluvial channel 

entrains and transports sediment to adjust its dimensions, planform pattern, bed characteristics, and gradient in response to 

varying flow levels (Church & Ferguson, 2015). So reliable estimates of flood frequency are important for understanding 

geomorphic channel change. Flood frequency analysis (FFA) is widely used to estimate how often a specified flood event (or 

channel discharge) will occur (Farooq et al., 2018). Most often, an FFA uses the occurrence of extreme flood events to estimate 35 

the return period, T, of flood quantiles, Q(T), based on long-term, historic flow data from a gauge station. This probabilistic 

approach “fits” the site-specific data to a statistical distribution to predict the likelihood of future flood events. To provide 

flexibility of fit, statistical probability distributions require two to four parameters (Zhang et al., 2020). The choice of the 

probabilistic model that best represents the observed data and the estimation of a distribution’s parameters affects the reliability 

of flood prediction (Laio et al., 2009; Cunnane, 1973; Farooq et al., 2018). Poor model application and fit can lead to unreliable 40 

estimates (Basso et al., 2016). The Generalized Extreme Value (GEV) distribution, Gumbel Maximum or Extreme Value Type 

I (EV1) distribution, Log-Normal (LN) distribution, and Log-Pearson Type III (LP3) distribution have traditionally been 

recommended to characterize flood probability based on goodness-of-fit (Onen & Bagatur, 2017; Laio et al., 2009). The LP3 

and GEV distributions use three parameters, i.e., location, scale, and shape, and the EV1 and LN distributions uses two 

parameters, i.e., location and scale, to fit data distributions (see Appendix A). In Canada, it is recommended that FFA studies 45 

draw from the Normal, GEV, and Pearson distribution families. Distribution fitting with more than three parameters is not 

recommended due to the limited record lengths of Canadian gauge stations (Natural Resources Canada (NRC), 2019). Often, 

flood estimation will apply a fixed probabilistic model to historical gauge data (Di Baldassarre et al., 2009). For example, since 

1967 the U.S. Geological Survey (USGS) Bulletin-17C, Guidelines for Determining Flood Flow Frequency, recommend the 

use of the log-Pearson Type III (LP3) distribution as an appropriate statistical distribution to characterize the probabilities of 50 

annual flood series. However, for regions with diverse flood characteristics, multiple distributions may apply for different 

catchments and site specific selections are often recommended (Zhang et al., 2020). The most recent U.S. Army Corps of 

Engineers Hydrologic Engineering Center Statistical Software Package (HEC-SSP, Version 2.2, June 2019) includes the ability 

to perform two goodness-of-fit tests for up to 19 statistical distributions (US Army Corps of Engineers, 2019). Recent research 

indicates that estimation of flood frequency and magnitude improves with the application of a systematic and objective model 55 

selection criteria when fitting observed flow data to a statistical probabilistic curve (Di Baldassarre et al., 2009).  

A regional flood frequency analysis (RFFA) can be very important in determining the probability of extreme flood events 

where streamflow data are not readily available (Ahn & Palmer, 2016). An RFFA transfers observed hydrologic information 

from a group of gauged sites to comparative ungauged sites as a representation of flow statistics using hydrological variables 

(Odry & Arnaud, 2017). A common approach to RFFA consolidates data samples from many measuring sites and uses ordinary 60 
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least-squares (OLS) regression to identify a relationship between mean annual floods of multiple basins and some basin 

characteristic (e.g., drainage area). It has become an accepted practice to model discharge using a single-variable power-law 

relationship between discharge (Q) and drainage area (Ad) of the form 

𝑄 = 𝛼𝐴𝑑
𝛽

            (1) 

where Ad is the upstream drainage area and the coefficient α and exponent β are empirically derived by statistical regression 65 

(Dunne & Leopold, 1978, p. 818). This power relationship can be rewritten as 

log 𝑄 = log 𝛼 + 𝛽 log 𝐴𝑑           (2) 

The reliability of this single-variable predictive relationship, however, relies on the relative regional homogeneity, with similar 

basin conditions and climate present (Ahn & Palmer, 2016; Hosking & Wallis, 1993; Phillips & Desloges, 2014). Research 

suggests that the spatial variability of basin attributes (i.e., topographic relief, climate, vegetation, and land use) and the 70 

identification of subsurface characteristics which influence hydrological and fluvial function are controlling factors of a fluvial 

system’s drainage efficiency and relevant to the flow response in a catchment (Di Lazzaro et al., 2015; Oudin et al., 2008).  

Landscape modifications that decrease infiltration will impose changes to river hydrology (Ghunowa et al., 2021; Ashmore, 

2015; Taniguchi & Biggs, 2015; Winter, 2001) with a downstream cascading effect on flow regime (Royall, 2013). Human 

occupation, landscape manipulation, and the generation of impervious surfaces associated with urbanization have the most 75 

profound impact on hydrogeomorphic responses, particularly in smaller watersheds (Pasternack, 2013; Royall, 2013). And a 

fluvial system’s response to human-induced land use change (or its sensitivity to change) will vary, depending on basin 

attributes (i.e., configuration, geomorphology, and sediment retention) (Royall, 2013). For this reason, the spatial heterogeneity 

across a landscape will likely produce a variation in flood response that may best be captured using an RFFA approach with 

multi-variate analysis that considers relevant parameterized basin characteristics (i.e., topographic relief, land use, vegetation, 80 

and subsurface geology) as a set of explanatory variables to estimate flood discharge (Ahn & Palmer, 2016).  

Recent works have highlighted the impact of geomorphic spatial heterogeneity on the basin hydrologic response (Ahn & 

Palmer, 2016; Di Lazzaro et al., 2015; Taniguchi & Biggs, 2015). To better understand the link between intra-catchment 

variability and hydrological function, this study has four objectives: 

1) To complete an FFA in a heterogeneous landscape that models a reliable estimation of discharge for a broad range of 85 

flood recurrence intervals (i.e., Q1.25, Q2, Q5, Q10, Q25, Q50, and Q100). Model selection is determined by applying 

systematic and objective model selection criteria to optimize model fit to long term site-specific flow data (T > 10 

years). A test sample of 207 individual gauge sites within a glacially conditioned regional setting is used. 

2) To derive the commonly used single-variable RFFA (Eq. 1) for the test region that characterizes the relationship 

between discharge (Q) and site-specific drainage area (Ad) using optimized estimates of a broad range of flood 90 

quantiles to test the predictive power of a single hydrologic variable in a glacially conditioned landscape. 
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3) To present a multi-variate, regression based RFFA that considers the spatially variability of hydrologic controls in 

the context of inherited glacial landforms, sediments, and land use. To achieve this goal, twenty-eight (28) explanatory 

variables are explored to represent basin characteristics (i.e., topographic relief, climate, land use, vegetation, and 

subsurface geology). To identify the most parsimonious discharge models for recurrence intervals of 1.25, 2, 5, 10, 95 

25, 50, and 100 years where backwards elimination of explanatory variables is employed in principal component and 

discriminant analyses.  

4) To compare the predictive power of a multi-variate derived RFFA that considers multiple basin hydrologic controls 

to a generally accepted single-variable RFFA in a glacially conditioned setting.  

2. Regional Setting 100 

This flood frequency study focuses on a test region of peninsular southern Ontario, Canada (Figure 1) that is bounded by the 

Canadian Shield to the north, the three lower Great Lakes, Huron, Erie, and Ontario to the southwest and the Ottawa and St. 

Lawrence Rivers to the east. Located within the North American Great Lakes watershed, it is a region of modest relief, with 

elevation ranging from 544 m asl near Lake Huron draining by way of the St. Lawrence River lowlands at less than 70 m to 

the Atlantic Ocean (Larson & Schaetzl, 2001). Convective, synoptic, and tropical systems that influence the humid, continental 105 

climate of the region are enhanced by local, regional, and topographic conditions (Paixao et al., 2011). Moisture and 

temperature associated with the Great Lakes influence inland precipitation for up to 50 km. Consequently, the mean annual 

precipitation varies regionally from 800 mm to 1200 mm (Paixao et al., 2011). During winter months, precipitation typically 

accumulates in the form of snow, generating spring snowmelt floods that dominate river flow regimes (Javelle et al., 2003). 

The surficial geology of the region, and the hydrologic controls exerted by the parent materials, are the product of the region’s 110 

glacial history (Chapman & Putnam, 1984). Recurring continental glaciations over the last ~2 million years have 

topographically influenced the fluvial drainage networks of southern Ontario (Desloges et al., 2020; Fulton et al., 1986). 

Deglaciation, approximately 12 to 13 thousand years ago, has left pronounced glacial legacy effects with complex sequences 

of subglacial, ice-contact, and proglacial sediments deposited during the final retreat of the Laurentide Ice Sheet (Phillips & 

Desloges, 2014, 2015; Larson & Schaetzl, 2001). The most common physiographic features include sheets of till, finer 115 

glaciolacustrine plains of sand or clay, glaciofluvial outwash deposits of sand, gravel, silts and clays, and a configuration of 

moraines (Thayer et al., 2016). Two significant post-glacial geomorphic features are the Niagara Escarpment and the Oak 

Ridges Moraine (Figure 1). The Niagara Escarpment is a Paleozoic limestone bedrock ridge resulting from differential glacial 

erosion and weathering of harder and softer rock that arches from the region between Lakes Ontario and Erie, bypassing Lake 

Ontario and extending northward to Georgian Bay (Chapman & Putnam, 1984; Phillips & Desloges, 2014). 120 
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Figure 1 - Map identifying the study area (indicated in orange) and two significant post-glacial geomorphic features that influence 

drainage networks of southern Ontario (i.e., the Niagara Escarpment and the Oak Ridges Moraine). The inset map (upper right) 

indicates the study region within the Ontario portion of the Laurentian Great Lakes catchment relative to Canada. 

Several preglacial rivers have carved deep valleys into the Niagara Escarpment, however, Late Pleistocene glaciations have 125 

infilled these valleys with varying thicknesses of till (Chapman & Putnam, 1984) directing catchment flow mostly away from 

the escarpment crest. The Oak Ridges Moraine is a stratified kame moraine of glacial drift that extends from the Niagara 

Escarpment 160 km eastward across south-central Ontario (Phillips & Desloges, 2014). This massive ridge forms a drainage 

divide, separating catchments flowing north to Georgian Bay/Lake Huron and south to Lake Ontario. Glacial sediments 

typically blanket the study area at a thickness of 50 m, and up to 350 m in some places (Larson & Schaetzl, 2001). In many 130 

areas, where stratified limestones and shales of the Palaeozoic age lie beneath the thick glacial overburden, fertile soils rich in 

calcium carbonate and clay are produced (Phillips & Desloges, 2014, 2015; Desloges et al., 2020). These support southern 

Ontario’s widespread agricultural development.  

More recent European settlement and regional expansion have resulted in differentiated land use with extensive agricultural 

land, natural and reforested areas, and clustered urban settlement (Chapman & Putnam, 1984). The southern Ontario region 135 
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continues to accommodate an increasing population. Drawn by employment, most settle in built-up cities and surrounding 

areas, driving clustered regional urbanization that consumes surrounding rural lands. However, a comparable demand to 

expand the total area of cropland has also occurred to support larger farming operations (Donnan, 2008).  

3. Methods and Data Collection 

An overview of the methodology for this study is provided in Figure 2. 140 

 

Figure 2 - Flow chart of FFA and comparison of common and multi-variate RFFA. The single-variable RFFA uses a discharge to 

drainage area relationship. The regression-based multi-variate RFFA employs sub-basin characterization and backward elimination 

of explanatory variables to determine the most parsimonious model to predict discharge over seven (7) flood quantiles. 
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3.1 Flood frequency analysis 145 

A Station Meta Data Index for 1188 Ontario stream gauges from the HYDAT database of the Water Survey of Canada (WSC) 

monitoring program is accessed online at https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (Environment 

and Climate Change Canada (ECCC), 2019). The quality of gauge data depends on the selected measurement techniques, 

computation methods, and physical conditions at the monitoring sites (i.e., ice and other influences). However, the WSC 

performs regular audits of field activities and adheres to standard operating procedures to improve data quality (ECCC, 2019). 150 

Gauge locations are sorted by catchment and synthesized to identify gauges specific to the southern Ontario region.  

Retention of station data is based on three criteria: (1) the gauge station lies within the peninsular region of southern Ontario 

(2) the gauge station exists for a fluvial system with known field survey data (i.e., Annable (1995, 1996) and Phillips (2014)), 

and (3) streamflow data represent a minimum of 10 years of operation, continuous (non-seasonal) year-round operation. These 

criteria yield 207 gauge stations within the study area. Although some research suggests that the instantaneous maximum 155 

discharge may command greater geomorphic significance, the mean daily discharges provide a larger dataset with fewer gaps 

in the discharge records. The annual maximum mean daily discharge (m3/s) for each of the gauge stations is used for 

distribution fitting and flood recurrence computations. The annual maxima series approach uses the highest annual discharge 

from the recorded mean daily discharge values at a gauge, ensuring statistical independence of observations between years. 

This approach has been shown to be more efficient than the partial duration series approach that uses floods that exceed some 160 

base threshold discharge (q0), regardless of the time distribution (Cunnane, 1973). The MSClaio2008 R function, part of the 

package nsRFA in R, is used to compare the LP3, EV1, GEV, and LN distributions to the annual maximum discharge data for 

each of the 207 gauge stations and determine the most appropriate statistical distribution, or model. No prior processing is 

implemented to fit the distributions. Four criteria determine goodness-of-fit: the Akaike Information Criterion (AIC), the 

Bayesian Information Criterion (BIC), the Anderson-Darling Criterion (ADC), and a second-order variant of AIC, the 165 

Corrected AIC (AICC). These model selection criteria are shown to provide good operational strategy when applied to 

frequency analysis of hydrological extremes (Laio et al., 2009). To identify the distribution that best represents the data, the 

candidate models are assessed in the form of probability distributions with parameters estimated using the maximum likelihood 

method. For each of the 207 gauges, the selected optimal distribution for each gauge dataset is used to model flood recurrence 

using the cumulative probability for each model. Flood quantiles for seven recurrence intervals (RIs) of 1.25, 2, 5, 10, 25, 50, 170 

and 100 years (i.e., Q1.25, Q2, Q5, Q10, Q25, Q50, Q100) are derived directly from individual gauge data and, therefore, reflect the 

upstream conditions of the corresponding drainage basin.  

3.2 Single-variable regional flood frequency analysis 

The site specific drainage area for each gauge station is evaluated based on Ontario’s Provincial Digital Elevation Model 

(DEM) – Version 2.0.0 (OMNR, 2005). The provincial DEM – Version 2.0.0 is a hydrologically enforced tiled raster dataset 175 
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with a 10 m cell resolution and 5 m vertical accuracy. The accepted single-variable relationship (Eq. 1) between discharge and 

drainage area is obtained by statistical regression identifying a hydrologic relationship for each of the seven flood quantiles. 

3.3 Multi-variate regional flood frequency analysis 

Catchment basins of the study area are delineated based on the hierarchical framework of the Ontario Watershed Boundaries 

(OWB). The digital geospatial datasets, published by the Ontario Ministry of Natural Resources and Forestry (OMNRF), are 180 

accessed online from https://data.ontario.ca/dataset/ontario-watershed-boundaries. Basins are first identified according to 

Tertiary level watersheds. To characterize the upstream conditions affecting channel discharge, further subdivision is 

influenced by the Quaternary level boundaries. The watershed boundaries are accurate to within 100 m (OMNRF, 2020). All 

mapping and spatial analysis uses a combination of standard GIS software. Maps are projected to the Universal Transverse 

Mercator (UTM, Zone 17N), referenced to the North American Datum (NAD1983). 185 

Twenty-eight (28) basin attributes are selected to characterize the drainage area conditions representing the land use, 

precipitation, topography, and hydrological properties from a geomorphological perspective within the basins. Quantification 

of sub-basin characteristics is computed using digital geomatic mapping from multiple sources: 

a) The contributing upstream drainage area and the topographic conditions are captured using Ontario’s Provincial DEM – 

Version 2.0.0. 190 

b)  The surficial geology is characterized from the revised Surficial Geology of Southern Ontario (MRD 128–Revised) of 

the Ontario Geological Survey (OGS, 2010). Accessed online at 

http://www.geologyontario.mndm.gov.on.ca/mndmaccess/mndm_dir.asp?type=pub&id=MRD128-REV, the digital 

geospatial dataset provides a seamless, standardized map of the geology, primary material, genesis, and formation 

coverages for southern Ontario. 195 

c) Regional land use is based on the southern Ontario Land Resource Information System (SOLRIS) Version 3.0, a 

comprehensive, digital landscape level inventory published by the OMNRF that identifies urban, rural, and natural features 

at a 15 m resolution (OMNRF, 2019). The SOLRIS digital geospatial dataset was derived from Landsat-8 OLI imagery 

acquired from 2014 to 2017 and is accessed online at https://geohub.lio.gov.on.ca/datasets/southern-ontario-land-

resource-information-system-solris-3-0 . 200 

d) The precipitation patterns for southern Ontario are evaluated based on the Canadian Climate Normals 1981-2010. Climate 

Normals are commonly used to assess regional climate. The Canadian Climate Normals adhere to the accepted standards 

of the World Meteorological Organization which recommends 30-year records to eliminate year to year variation 

(Environment Climate Change Canada (ECCC), 2020). Rainfall and precipitation (including snowfall water equivalent) 

data for 65 observation stations are accessed at https://climate.weather.gc.ca/climate_normals.  205 
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A relationship between the explanatory variables and each of the quantile discharge datasets is assessed by applying OLS 

regression. OLS assumes that the set of explanatory variables (i.e., basin characteristics) and errors must be independent to 

avoid bias. To identify the final explanatory variables for regression, discriminant analysis is applied to assess covariance and 

the duplication of information among variables. Where high correlation between variables is identified, the variable with the 

weakest theoretical association to channel discharge is removed. Employing backward elimination, regression analysis is used 210 

to identify the most parsimonious discharge models for RIs of 1.25, 2, 5, 10, 25, 50, and 100 years, while also considering the 

residual error of models.  

3.4 Comparison of single-variable versus multi-variate RFFA 

To assess the predictive power of the single variable RFFA versus the multi-variate RFFA, a comparison is made based on 

model scatter, residual error, and an analysis of model variance. 215 

4. Results 

4.1 Selection of statistical distributions and establishing flood quantiles 

This study subdivides 16 tertiary level catchments of southern Ontario into 45 sub-watersheds for the purpose of establishing 

regional hydrologic, geomorphic, and land use conditions. Gauge stations are clustered within sub-basin units to best represent 

the immediate upstream hydrological conditions influencing the channel discharge response at each gauge station. Analysis 220 

indicates the hydrometric records of the 207 gauge stations have a minimum operation period of 10 years, an average of 42.5 

years (+/- 1.7 years, median = 42 years), and a maximum operation period of 106 years. For each flood dataset, the Akaike 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the Anderson-Darling Criterion (ADC) are applied 

to each of four candidate models (i.e., GEV, EV1, LN, and LP3) to evaluate model fit. Where the sample size, n, is small with 

respect to the number of estimated parameters, p, such that n/p < 40, the corrected Akaike Information Criterion (AICc) is also 225 

applied. The criteria enable a systematic and objective mathematical test of model fit. Figure 3 illustrates the delineation of 

sub-basins and clustering of gauge stations and the results of the “best fit” statistical model testing. The model selection criteria 

determines that 42.5% of the 207 hydrometric records are most suited to an LN distribution, 31.9% to an EV1 distribution, 

21.7% to an LP3 distribution, and 3.9% to a GEV distribution suggesting all four distributions tested are potentially suitable 

for modelling flood extremes in southern Ontario. For 74.4% of the gauge records tested, the model selection criteria chose a 230 

2-parameter model (i.e., LN or EV1) over a 3-parameter model (i.e., LP3 or GEV). The 2-parameter EV1 model is found to 

be five (5) times more likely to be selected as the optimal distribution over its 3-parameter parent model, GEV. The GEV 

distribution is only selected in a limited number of cases. Generally, within the areal extent of a sub-basin unit, multiple 

statistical distribution types are identified as optimal with no “best fit” distribution type indicated based on geographic location.  
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 235 
Figure 3 - Map identifying the geographic location of 207 gauge stations and spatial variability of the optimized statistical FFA 

distribution type based on the AMS data fit. Subdivisions of the tertiary level watershed boundaries are indicated. No sub-basin 

indicates a particular “best fit” distribution type. Forty-five (45) sub-watersheds are established to characterize basin conditions 

that represent the region’s variable land use, precipitation, topography, and hydrological properties from a geomorphic perspective. 

 240 

The selected optimal probability distribution curve for each gauge is used to estimate the flood quantiles for RIs of 1.25, 2, 5, 

10, 25, 50 and 100 years for each one of the 207 gauge stations. These flood quantiles are consistent with return periods 

explored in other flood frequency analyses (Ahn & Palmer, 2016; Basso et al., 2016; Onen & Bagatur, 2017; Hollis, 1975). A 

Shapiro-Wilk analysis tests the null hypothesis that the flood quantile datasets are normally distributed (Table 1). The results 

(Test 1) indicate that the dataset for each flood quantile does not meet the assumption of normality (p < 0.05) and the null 245 

hypothesis is rejected. A logarithmic transformation is applied to all flood quantile values. The results of a Shapiro-Wilk test 

for each of the log-transformed flood quantile datasets fails to reject the null hypothesis (p > 0.05) suggesting the log-

transformed flood quantiles are normally distributed (Test 2).  
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Table 1 – Results of Shapiro-Wilks Normality Tests for each flood quantile, with and without logarithmic transformation of data 250 

Test 1 – before transformation Test 2 – after logarithmic transformation 

Flood quantile W-stat p-value 
Log-transformed 

flood quantile 
W-stat p-value 

Q1.25 0.578 < 2.2e-16 Log Q1.25 0.991 0.200 

Q2 0.580 < 2.2e-16 Log Q2 0.992 0.299 

Q5 0.595 < 2.2e-16 Log Q5 0.991 0.194 

Q10 0.604 < 2.2e-16 Log Q10 0.990 0.135 

Q25 0.635 < 2.2e-16 Log Q25 0.991 0.260 

Q50 0.634 < 2.2e-16 Log Q50 0.992 0.351 

Q100 0.595 < 2.2e-16 Log Q100 0.991 0.247 

 

4.2 Single-variate regression RFFA 

The upstream drainage area for each georeferenced gauge station is extracted from the hydrologically enforced DEM. 

Hydrological enforcement ensures that drainage occurs in a down-slope direction, facilitating the construction of a flow 

accumulation raster necessary to establish the upstream drainage area. A logarithmic transformation is applied to the drainage 255 

area variable values to ensure normality (W = 0.994, p-value = 0.522).   

Regression of the logDrainage variable against each of the seven flood quantile datasets (i.e., Q1.25, Q2, Q5, Q10, Q25, Q50, 

Q100) establishes seven single-variable power relationships (Table 2). Strongly significant logDrainage area relations are 

indicated across all RI’s with a minor, but consistent, decrease in adjusted R2 values as RI increases. 

Table 2 – Single-variate RFFA models for each flood quantile 260 

Flood 

Quantile 

Single Variable Models (i.e., logDrainage) 

Equation Residual SE adjusted R2 

Q1.25 logQ1.25 = -0.858 + 0.945(logDrainage) 0.217 0.867 

Q2 logQ2    = -0.746 + 0.957(logDrainage) 0.224 0.862 

Q5 logQ5    = -0.549 + 0.945(logDrainage) 0.219 0.864 

Q10 logQ10   = -0.384 + 0.917(logDrainage) 0.233 0.842 

Q25 logQ25   = -0.223 + 0.906(logDrainage) 0.245 0.824 

Q50 logQ50   = -0.084 + 0.885(logDrainage) 0.278 0.776 

Q100 logQ100  = -0.053 + 0.864(logDrainage) 0.321 0.713 

 

Research indicates that the Q2 flood quantile (highlighted in Table 2) represents a flow magnitude and frequency that is 

important to the maintenance of channel morphology and has, therefore, been used in a discharge- drainage area relation in 

numerous other studies of the southern Ontario region (Annable et al., 2011; Vocal Ferencevic & Ashmore, 2012; Phillips & 

Desloges, 2014; Thayer et al., 2016). Expressing the Q2 results from Table 2 in a power-law format (Eq. 1), the Q2 model is 265 

found to be similar to the findings of other southern Ontario models (Figure 4). The findings of Phillips and Desloges (2014) 

and Annable (1995) were similarly derived from annual maximum series datasets of the southern Ontario region. The Q2 power 
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relationship identified in this study indicates a slightly lower estimate of Q2 discharge for smaller drainage areas (<100 km2) 

compared to the research of others. For larger drainage areas (>100 km2), this study predicts similar discharge estimates 

compared to the relationship of Phillips & Desloges (2014) but greater discharge estimates than Annable (1995). Neither of 270 

those studies specified best-fit RFFA distributions so the relationship presented here is considered more robust.  

 
Figure 4 – The single-variable discharge-drainage area relationship power relationship for the Q2 flood quantile of this study (in 

blue) compared to the findings of others. The Q2 relationship of Annable (1995) is indicated by the dashed black line. The Q2 

relationship of Phillips and Desloges (2014) is given by the solid black line. 275 

4.3 Multi-variate regression RFFA with parameterized basin characteristics 

4.3.1. Regression model inputs 

Geomorphic, hydrologic, land use and topographic basin attributes are related to best-fit RFFA model results from all 207 

gauges/basins. Sub-divided basin characteristic variables are extracted from four geospatial raster datasets (Figure 5) using 

cell counts and zonal statistics. The geomorphic basin attributes are represented by the percentage of the dominant surficial 280 

material within the geographic area of each sub-basin (Figure 5(a)). The hydrological conditions are characterized by an 

interpolation of Canadian Climate Normals (Figure 5(b)). Point information for mean annual precipitation, annual number of 

precipitation days, mean annual rainfall and annual number of rainfall days from 65 observation stations is converted to raster 

coverage using several interpolation techniques. Inverse distance weighting (IDW) and ordinary kriging (OK) using a stable 
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model and an exponential model are compared. OK has been shown to produce accurate results when used to describe spatially 285 

heterogeneous natural phenomena (Bevan & Conolly, 2009) such as precipitation. The results of cross validation suggest fitting 

an OK exponential model for annual mean precipitation, annual mean rainfall, and the annual number of rainfall days, and an 

OK stable model for the annual number of precipitation days.  

 
Figure 5 - Raster datasets illustrating (a) the dominant surficial material, (b) the mean annual precipitation, (c) the hydrologically 290 
enforced DEM, and (d) the categorical land use for the peninsular region of southern Ontario. 

The topographic conditions of the sub-basins are extracted and quantified from the hydrologically enforced DEM (Figure 5(c)). 

Percent land use is quantified using the SOLRIS categories for each sub-basin (Figure 5(d)). For this study, three land use 

categories are established: percent urban, percent agricultural cropland, and percent naturalized area. Urban regions combine 

all transportation and built-up areas. Agricultural cropland is defined by tilled areas. Naturalized regions combine all tallgrass 295 

landcover, mixed forests, cultivated tree plantations, swamps, wetlands, and open water areas as indicated by the SOLRIS 

Version 3.0 dataset. 

For each predictor variable, a single output value is produced and applied to the gauge(s) within a sub-basin. Since many sub-

basins contain more than one gauge station, some gauges share the same topographic, geomorphic, climate, and land use values 
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but possess their own unique drainage area value. In total, 28 predictor variables are quantified (Table 3). The characteristics 300 

selected are considered to represent independent variables that influence channel discharge (across all 7 flood frequency 

quantiles) in terms of the regional geomorphic, hydrologic, topographic and land use properties.  

Table 3 - Twenty-eight (28) sub-watershed characteristics to represent geomorphic, hydrologic, land use, and topographic variability 

between sub-basins. 

No.  SUB-BASIN VARIABLES ABBREVIATION FILE TYPE SOURCE 

Geomorphic Variables: Dominant Surficial Material 

1 Glaciolacustrine Clay Clay Raster Dataset OGS, 2010 

2 Glacial Till Daimicton Raster Dataset OGS, 2010 

3 Glaciofluvial/Glaciolacustrine Gravel Gravel Raster Dataset OGS, 2010 

4 Wetland Organic Raster Dataset OGS, 2010 

5 Paleozoic or Precambrian Bedrock Bedrock Raster Dataset OGS, 2010 

6 Glaciofluvial/Fluvial/Glaciolacustrine Sand Sand Raster Dataset OGS, 2010 

7 Glaciolacustrine/Fluvial Silt Silt Raster Dataset OGS, 2010 

Hydrologic Variables 

8 Gauge Drainage Area logDrainage Raster Dataset OMNR, 2005 

9 Mean Precipitation Mean_Precip Point Shapefile ECCC, 2020 

10 Precipitation Days Precip_Days Point Shapefile ECCC, 2020 

11 Mean Rainfall Mean_Rainfall Point Shapefile ECCC, 2020 

12 Rainfall Days Rainfall_Days Point Shapefile ECCC, 2020 

Land Use Variables 

13 % Urban Land Use Urban Raster Dataset MNRF, 2019 

14 % Tilled Cropland Cropland Raster Dataset MNRF, 2019 

15 % Naturalized Land Use Naturalized Raster Dataset MNRF, 2019 

Topographic Variables 

16 Gradient Mean Gradient_Mean Raster Dataset OMNR, 2005 

17 Gradient Standard Deviation Gradient_StDev Raster Dataset OMNR, 2005 

18 Aspect Mode Aspect_Mode Raster Dataset OMNR, 2005 

19 Stream Length Stream_Length Raster Dataset OMNR, 2005 

20 Drainage Density Drainage_Density Raster Dataset OMNR, 2005 

21 Sub-basin Area WS_Area Raster Dataset OMNR, 2005 

22 Sub-basin Perimeter WS_Perimeter Raster Dataset OMNR, 2005 

23 Sub-basin Compactness WS_Compactness Raster Dataset OMNR, 2005 

24 Minimum Elevation Min_Elevation Raster Dataset OMNR, 2005 

25 Maximum Elevation Max_Elevation Raster Dataset OMNR, 2005 

26 Elevation Range Elev_Range Raster Dataset OMNR, 2005 

27 Elevation Mean Elev_Mean Raster Dataset OMNR, 2005 

28 Elevation Standard Deviation Elev_StDev Raster Dataset OMNR, 2005 

 305 
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4.3.2. Basin characterization parsimony 

When characterizing natural systems, the potential exists for some variables to correlate with other variables due to their 

representation of related natural phenomena. This is often indicated by high correlations between variables suggesting a 

duplication of information captured (Ahn & Palmer, 2016; Phillips & Desloges, 2015). A simple Pearson correlation (|r| > 0.6) 

suggests that 29 correlated relationships exist among eleven basin characteristics including Diamicton and Sand, Cropland 310 

and Naturalized, Gradient_Mean, Gradient_StDev, Stream_Length, WS_Area, Mean_Rainfall, Min_elev, 

Max_elev, Elev_mean, and Elev_StDev.  

Principal components analysis (PCA) has been shown to be an effective tool for variable reduction that provides a statistical 

basis to discard redundant variables (King & Jackson, 1999). A PCA of the 28 explanatory variables indicates that the first 3 

dimensions account for almost 58% of the total variability of the dataset and are the most interpretable. This suggests an 315 

absence of strong intercorrelations among many of the 28 variables. The correlation circles in Figure 6 illustrate the projections 

of the first three principal components (Dim1, Dim2 and Dim3). The first principal component (Dim1) tends towards a land 

use composition grouping with some loading from gradient variables and precipitation variables (Dim1 explains 27.7% of the 

variance). The second principal component (Dim2) tends towards an elevation cluster with additional loading from 

precipitation variables (Dim2 explains 19.8% of the variance). The third principal component (Dim3) is a weakly defined land 320 

surface grouping with loading from surficial geology classifications and basin geometry (Dim3 explains 10.3% of the 

variance). While elevation is a clear contributor to the variance of the dataset based on the PCA tests, the directional indicators 

suggest the presence of multicollinearity among the elevation predictors, reinforcing the results of Pearson correlation 

detection. PCA and Pearson Correlation support elimination of the elevation variables (i.e., Min_elev, Max_elev, 

Elev_mean, Elev_StDev, Elev_Range) except for Gradient_Mean which is retained as the sole predictor to represent the 325 

variability of topography among the sub-basins. An observed correlation between Gradient_Mean and Gradient_StDev 

also results in the elimination of Gradient_StDev from the potential predictor variables. Other correlated variables are 

removed from further analysis due their weaker theoretical association, including WS_Area and Stream_Length in favour 

of retaining WS_Perimeter and Basin_Compactness. The elimination of these basin geometry variables enables greater 

focus on basin shape rather than basin size, concentrating instead on the efficiency with which a fluvial system can evacuate 330 

precipitation from the region. Mean_Rainfall is also eliminated due to correlation with multiple variables (i.e., 

Mean_Precip, Cropland, Gradient_StDev). By eliminating nine (9) sub-basin characteristics, twenty-seven (27) of the 29 

correlated relationships previously identified by the Pearson correlation tests (i.e., criterion |r| > 0.6) are removed. 
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Figure 6 - Principal component analysis (PCA) highlighting the most contributing variables of the 28-variable dataset for each 335 
dimension and illustrating the correlation circles for principal components one, two, and three (Dim1, Dim2 and Dim3). 

4.3.3. Multi-variate regression analysis with backward elimination to identify the most parsimonious models 

It can be a practice to test and transform independent variables to ensure a normal distribution of a multi-variate dataset, 

however, tests for multi-variate normality are rarely performed (Tacq, 2010). Alternatively, the plots of standardized residuals 

from combinations of predictor variables are examined for a desired elliptically symmetric distribution. To enable model 340 

comparison, the gauge drainage area predictor variable included in the multi-variate regression is logarithmically transformed, 

consistent with the single-variable power model. 
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Multiple linear regression is applied to the remaining 19-variable dataset for each of the seven flood RIs, i.e., 1.25, 2, 5, 10, 

25, 50 and 100 years, using an OLS approach. The fitted values of the model are compared to the dependent variables (i.e., 

Q1.25, Q2, Q5, Q10, Q25, Q50, and Q100) to detect heteroscedasticity. Regression diagnostics are implemented to assess statistical 345 

significance or covariance among variables and ensure the model validity. While considering model error, a backward 

elimination strategy is applied for each RI to find the most parsimonious model. Predictor variables are eliminated based on t-

tests and other information criterion statistics (i.e., examination of standardized residuals, added variable plots, variance 

inflation factors, and marginal model plots). F-tests indicate a linear association between a selected flood quantile and any of 

the predictor variables. Regression of all 19 predictor variables for each flood quantile reveals statistically significant 350 

relationships (p < 2.2e-16) suggesting at least one of the predictor variables is significantly related to the quantile discharge. 

The multiple coefficients of determination are greater than 0.8 (R2 > 0.8) for all quantiles. Examination of the associated p-

values for the t-statistic of each predictor variable indicates that, for all seven flood quantiles, logDrainage overwhelmingly 

contributes to the 19-variable prediction models (> 70%), although its importance decreases as flood frequency decreases. The 

19-variable regression (log-drainage area included) indicates that either Naturalized or Gradient_mean is statistically 355 

significant for predicting flood quantiles Q1.25, Q2, Q5, Q10 and Q25. This is consistent with the results of the PCA which 

identifies the first principal component as a land use grouping and the second principal component as an elevation grouping. 

Other potential predictor variables do not indicate statistical significance in the 19-variable models. The retention of each 

variable is subject to regression diagnostics to ensure model validity and to identify the most parsimonious model. Added-

variable plots (or partial regression plots) indicating low statistical significance are consistent with the t-statistic results 360 

confirming a lack of significance. Variables indicating no relationship are eliminated. Variance inflation factors (VIFs) are 

computed to further detect multicollinearity among variables. Factors exceeding 5 (VIF > 5) suggest high correlation and the 

variable with the weakest theoretical association to the dependent variable is eliminated. Contrasting geomorphic conditions 

between catchments (i.e., surficial geology) are represented by a high negative correlation (|r| > 0.6) between Sand or 

Diamicton. A high VIF (VIF > 5) confirms Diamicton is unsuitable as a predictor variable due to multicollinearity. Marginal 365 

model plots indicate somewhat linear but weak relationships for Organic, Sand, and Gravel. For both percent Clay and 

percent Bedrock, high incidences of zero values produce non-linear relationships suggesting a lack of significance as predictor 

variables. A high VIF is also indicated for Cropland. High negative correlation (r = -0.775) is also observed between 

Cropland and Gradient_mean resulting in the elimination of Cropland as a predictor. At each stage of backward 

elimination, reduced (or partial) models are compared for a change in the F-ratio of the fitted model.  370 

During backwards elimination, varying three-predictor models demonstrate statistical significance; however, the third variable 

is not consistent over all seven flood frequency quantiles. Results indicate that including Mean_precip as a variable increases 

model fit for flood quantiles Q1.25, Q2, Q5, and Q25, whereas including Rainfall_Days improves the goodness-of-fit for the Q10 

model. Alternatively, the inclusion of Organic is shown to have some statistical significance (p < 0.05) as a third predictor 

variable for flood quantiles Q50 and Q100. For all seven flood quantiles, Q1.25, Q2, Q5, Q10, Q25, Q50, and Q100, backward 375 
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elimination reduces to the same single independent variable, logDrainage. As the most parsimonious model, logDrainage is 

shown to significantly predict discharge (p < 2.2e-16) confirming the often used single-variable relationship between drainage 

area and discharge. However, all seven flood quantiles also identify a two-predictor model using the variables logDrainage 

and percent Naturalized where t-tests demonstrate that both logDrainage and Naturalized are statistically significant (p < 

2.2e-16) (Table 4). 380 

Table 4 – The most parsimonious two-variate RFFA models for each flood quantile 

Flood 

Quantile 

Two-variable Models (i.e., logDrainage and %Naturalized) 

Equation 
Residual 

SE 
adj R2 

Q1.25 logQ1.25 = -0.537 + 0.917(logDrainage) - 1.179(Naturalized) 0.177 0.911 

Q2 logQ2    = -0.420 + 0.928(logDrainage) - 1.196(Naturalized) 0.184 0.907 

Q5 logQ5    = -0.224 + 0.916(logDrainage) - 1.194(Naturalized) 0.179 0.910 

Q10 logQ10   = -0.068 + 0.889(logDrainage) - 1.158(Naturalized) 0.197 0.887 

Q25 logQ25   =  0.090 + 0.878(logDrainage) - 1.148(Naturalized) 0.213 0.867 

Q50 logQ50   =  0.223 + 0.858(logDrainage) - 1.127(Naturalized) 0.251 0.818 

Q100 logQ100  =  0.353 + 0.837(logDrainage) - 1.100(Naturalized) 0.299 0.750 

 

4.4 Model evaluation 

For all seven flood quantile models, the addition of the percent Naturalized predictor variable reduces the residual standard 

error (Res SE) and increases the adjusted coefficient of determination (adj R2). Figure 7 illustrates plots of the estimated 385 

discharge, derived from the flood frequency curves, against the fitted one- and two-variable models for six of the seven flood 

quantiles. For all seven flood quantiles, less scatter is observed in the two-variate model (i.e., logDrainage and Naturalized) 

with an increased adjusted R2 of approximately 0.05and a lower standard error using the two-predictor model suggesting the 

addition of the second variable (i.e., Naturalized) improves the goodness-of-fit for all seven flood quantile models (six 

illustrated). The two-predictor combination of variables provides an improved explanation for the variations in discharge by 390 

nearly 5%. Generally, an increase in model scatter is observed for both one-variable and two-variable prediction as the RI 

increases suggesting the predictive capability decreases moving from Q1.25 to Q100. 
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Figure 7 - The single-variable and two-variable fitted discharge models are plotted against the best-fit estimated discharge derived 

from the flood frequency curves for (a) a 1.25-year RI, (b) a 2-year RI, (c) a 5-year RI, (d) a 10-year RI, (e) a 25-year RI, and (f) a 395 
100-year RI. The two-predictor log-drainage area and percent naturalized landscape model shows less scatter and a lower standard 

error than the single log-drainage area predictor for all six flood RIs shown. The explanation of variability in flood discharge is 

improved by nearly 5% using the two-predictor model for all seven flood quantiles. 
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This is consistent with the higher variance in discharge observed for large, infrequent flood events within the original gauge 

datasets. The predictability of larger flood events is limited by both the low frequency with which they occur, and the length 400 

of the gauge records analyzed. An analysis of variance (ANOVA) (Table 5) comparing the single-variable models to the two-

variable models further indicates an improved prediction of discharge using the two-predictor model compared to the one-

predictor model.  

Table 5 – An analysis of variance (ANOVA) comparing the single-variable models to the two-variable models. 

Flood 

Quantile 

Analysis of Variance (ANOVA) 

RSS 

Single-variable 

RSS 

Two-variable 
Sum of Sq F-stat Pr(>F) 

Q1.25 9.669 6.400 3.269 104.190 < 2.2E-16 

Q2 10.264 6.898 3.366 99.534 < 2.2E-16 

Q5 9.850 6.497 3.353 105.300 < 2.2E-16 

Q10 11.081 7.925 3.156 81.225 < 2.2E-16 

Q25 12.343 9.241 3.102 68.480 1.65E-14 

Q50 15.859 12.872 2.987 47.341 7.18E-11 

Q100 21.127 18.279 2.848 31.779 5.70E-08 

 405 

For all seven flood quantiles, a decrease in the sum of squares of residuals is observed with the addition of the Naturalized 

predictor and an F statistic (p < 0.001) that demonstrates very strong evidence in favour of the two-predictor model. 

5. Discussion 

Flood magnitude, frequency and duration are primary drivers of channel erosion and stream morphology (Taniguchi & Biggs, 

2015). High-magnitude, less-frequent floods will undoubtedly result in significant alterations to a channel’s morphology and 410 

are more important when considering hazards, loss of life and infrastructure damage (Onen & Bagatur, 2017), however, the 

cumulative effects of more frequent, lower-magnitude floods can also be geomorphically more effective in altering channel 

form (Church & Ferguson, 2015; Wolman & Miller, 1960; Wolman & Gerson, 1978). Consequently, for effective risk 

management and hazard prevention, it is useful to model flows of different flood RIs when considering flood frequency as a 

predictive tool to better understand a river’s morphological response to discharge (Basso et al., 2016). The best estimation of 415 

extreme flood events, however, is limited by the availability and accuracy of recorded gauge data, the length of the observed 

flood series, and the presence or absence of extreme flood occurrences within a flow record (Odry & Arnaud, 2017). This 

analysis uses a broad range of high- and low-frequency flood estimates from long-term historical flow data to develop a reliable 

RFFA for urban planning and infrastructure engineering. It is common practice to develop an RFFA relating the drainage area 
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of a catchment to channel discharge using a single-variable power-law relationship. Research suggests that physiographic 420 

features, such as those inherited by southern Ontario’s glacial legacy, and anthropogenic land use, for example southern 

Ontario’s clustered urbanization and widespread agricultural development, can influence a region’s hydrogeomorphic 

response, particularly in smaller watersheds (Royall, 2013). The objective of this study was to derive a dependable RFFA 

using a multi-variate approach for a region influenced by glacial conditioning and varying land use, while also considering the 

hydrologic influences of climate and topography. The potential improvement on a generally accepted single-variate RFFA 425 

model is assessed.  

In this study, rigorous goodness-of-fit testing of annual maximum mean daily discharge data series from 207 hydrometric 

gauge stations shows that 42.5% of gauge records are most suited to a 2-parameter LN distribution, 31.9% to a 2-parameter 

EV1 distribution, 21.7% to a 3-parameter LP3 distribution, and 3.9% to a 3-parameter GEV distribution in southern Ontario. 

This suggests that all four distributions are potentially suitable for modelling flood extremes in heterogenous regions. The 430 

model selection criteria favoured a 2-parameter model over a 3-parameter model in 74.4% of cases. This is consistent with 

other studies which found that selection criteria demonstrate a predisposition towards the most parsimonious model (i.e., fewest 

distribution parameters) (Onen & Bagatur, 2017; Laio et al., 2009; Farooq et al., 2018). Most notably, the 2-parameter EV1 

model is optimal five (5) times more frequently than its 3-parameter parent model, the GEV distribution, which is only found 

appropriate for use in 3.9% of cases. This finding is similar to that of Laio et al. (2009) where the GEV distribution was only 435 

selected in a limited number of cases when modelling the annual maxima of peak discharge in 1000 United Kingdom basins.  

Often, flood estimation will universally apply a fixed probabilistic model to historical gauge data (Di Baldassarre et al., 2009). 

Other southern Ontario studies have employed a blanket LP3 probability distribution to model the Q2 flood frequency 

(Annable, 1995; Phillips & Desloges, 2014). However, the variation of statistical distributions identified as an optimal fit in 

this study suggests a need for careful, systematic model selection criteria when fitting observed flow data in regions with 440 

variable land use or other hydraulic influences (i.e., geomorphology, substrate materials, climate, or topography). To prevent 

an over-estimation or, more importantly, an under-estimation of discharge when predicting flood recurrence, model goodness-

of-fit should be evaluated. The results of this study indicate that a 2-parameter LN statistical distribution will provide an 

optimal fit for 43% of the southern Ontario flood records when a broad range of flood quantiles are being examined. 

The flood quantiles explored in this study (i.e., Q1.25, Q2, Q5, Q10, Q25, Q50, and Q100) are consistent with return periods in other 445 

flood frequency analyses (Ahn & Palmer, 2016; Basso et al., 2016; Onen & Bagatur, 2017; Hollis, 1975). Other studies have 

explored a variety of novel regionalization approaches. Di Lazzaro et al. (2015) presented an RFFA using a single-variable 

parameterization of drainage density. Ahn and Palmer (2016) estimate flood frequency using the GEV distribution and then 

proposed regionalization methods using a spatial proximity approach. However, regionalization based on spatial proximity 

assumes that nearby sites are more similar than distal sites (Odry & Arnaud, 2017). In a glacially conditioned landscape, such 450 

as the southern Ontario region, the configuration of glacial deposits (Figure 5(a)) often forms drainage divides that segregate 

neighbouring catchments with diverse flood characteristics. This study, therefore, estimates channel discharge based on the 
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optimal statistical model for individual gauge data series and explores regionalization through a multi-variate regression-based 

approach to capture the variability of upstream hydrologic controls that are often dependent on the spatial arrangement of post-

glacial physiographic features and, in the case of southern Ontario, the regionally clustered urbanization (Figure 5(d)). The 455 

mapping of surficial material, climate conditions, topography, and land use illustrates the variability of hydrologic influences 

on the region. Consistent with the agricultural land use of southern Ontario, analysis reveals a negative correlation is observed 

between Cropland and Gradient_mean. Regions of steep gradient are not typically associated with areas of high agricultural 

activity, whereas lower gradient regions provide much of the agricultural/cropping activity. Since crops are typically cultivated 

in areas with favourable conditions for growth (i.e., precipitation and gradient), this suggests that tilled cropland is a poor 460 

regional predictor for discharge if an elevation cluster is to be represented due to its collinear relationship with key elevation 

variables relevant to channel discharge. Similarly, the high spatial variability in surficial geology of southern Ontario (due to 

its glacial conditioning) is problematic. The attempt here to capture sub-watershed surficial materials using a single dominate 

material does not account for the detailed spatial variability of material heterogeneity (till, glaciolacustrine, glaciofluvial, etc.). 

Contrasting geomorphic conditions between catchments are represented by, for example, high negative correlations among 465 

Diamicton and Sand. 

During the backward elimination process of variables in section 4.3.3, different land use, geomorphic, climatic, and 

topographic variables assume different importance in predicting channel flow depending on the flood magnitude being 

modelled. For example, precipitation shows a greater predictive relationship of channel discharge for lower magnitude, more 

frequent flood events, whereas surficial geology (e.g., Organic and Bedrock) has more predictive value for high magnitude, 470 

less frequent flood events. This may be due to the ability for precipitation to infiltrate the surface before contributing to surface 

runoff. During low-magnitude flood events, it is unsurprising that a fluvial system’s hydrological response is more directly 

related to the amount of rainfall or snowmelt infiltration. However, during less frequent, high-magnitude or flash flood events, 

surface saturation is closely tied to surficial material properties that limit infiltration and contribute to surface runoff. 

Although the most parsimonious model for estimating discharge is found to be the generally accepted and efficient single-475 

variable relation between discharge and drainage area, when considering model variance, the two-predictor combination of 

upstream drainage area and the regional percentage of naturalized landscape (percent Naturalized) shows a 5% improvement 

when explaining variation in flood discharge for all RIs tested (i.e., 1.25, 2, 5, 10, 25, 50, and 100 years). An analysis of 

variance (ANOVA) further indicates a statistically significant improvement in prediction of discharge using the two-predictor 

model (i.e., logDrainage and percent Naturalized) compared to the single-predictor model (i.e., logDrainage). Percent 480 

Naturalized is important because it reflects areas within a catchment that have enhanced water storage compared to urban or 

agricultural areas. These findings are important for situations when it is necessary to reduce uncertainty in flood prediction. 

Plots comparing the single- and two-predictor models demonstrate less scatter for all seven flood quantiles. Generally, an 

increase in model scatter is observed for both one-variable and two-variable prediction as the RI increases suggesting the 

predictive capability lessens moving from Q1.25 to Q100. This finding is similar that of Basso et al. (2016) where model 485 

https://doi.org/10.5194/hess-2022-411
Preprint. Discussion started: 22 February 2023
c© Author(s) 2023. CC BY 4.0 License.



24 

 

performance is better for short and intermediate return intervals. Any flood frequency analysis is limited by the length of the 

flow records being analysed. Since the average length of gauge records used in this study is 42.5 years, a decrease in model 

reliability is anticipated as the non-linear hydrological processes of the region are extrapolated. Despite careful selection of 

the candidate statistical distributions to “best fit” the observed flow records, the absence of large flood events captured within 

the sample data can skew the estimation of flood frequency for low-probability, low-frequency events (Odry & Arnaud, 2017). 490 

Human landscape alterations that impact drainage density will influence rates of overland flow and channel flow, exerting 

additional influence on hydrological processes and stream response and, subsequently, impacting the magnitude and frequency 

of peak channel flows (Taniguchi & Biggs, 2015). Changes to land cover, such as deforestation, conversion to cropping and 

urbanization, typically decrease infiltration which increases discharge, and alters flood magnitude (Chin et al., 2013; Royall, 

2013). It follows that the presence of reforested or natural areas will have a significant influence on modelled discharge. Since 495 

the early 1900s, select areas of southern Ontario have been reforested in recognition of wasteful clearing of marginal and 

submarginal agricultural lands by early settlers (Armson et al., 2001). The Naturalized variable includes tallgrass landcover, 

mixed forests, cultivated tree plantations, swamps, wetlands, and open water areas, representing areas of high infiltration or 

the surface storage of water. The negative coefficient for the percentage of naturalized area reduces the weight of the drainage 

area input. This is consistent with the theoretical expectation that drainage area of sub-basins with a high percentage of 500 

naturalized areas may be overemphasized without the appropriate correction for surface water storage. Although urbanization 

has been shown to have the most profound influence on fluvial system response, altering hydrological processes through a 

decrease in infiltration, an increase in overland flow and a potential decrease in groundwater recharge (Chin et al., 2013), the 

regional impact of clustered urban populations of southern Ontario is diluted by the expansive regions of cropland, grazing, 

and naturalized areas that separate them. Consequently, the percent Urban variable showed minimal significance in the 505 

multivariate regression. Similarly, the percent Cropland was shown to be a poor regional predictor for discharge due to a 

collinear relationship with other predictors. Since agricultural crops are typically cultivated in areas with favourable conditions 

for crop growth (i.e., precipitation and gradient), tilled Cropland failed to demonstrate statistical significance when modelling 

discharge. The statistical significance of percent Naturalized land use, however, suggests that the percentage of a sub-basin 

that is naturalized can be an effective variable to represent temporary surface water storage, limiting the impact to a channel 510 

during flood events. 

6. Conclusions 

The primary objective of this research is to explore a regional multi-variate flood frequency approach to transfer flood 

discharge information from gauged sites to ungauged sites in a low-relief, glacially conditioned landscape. The main 

conclusions of this analysis are: 515 
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1) When modelling the annual maximum mean daily discharge records for southern Ontario, 42.5% were most suited to 

a 2-parameter LN distribution, 31.9% to EV1, and 21.7% to LP3, and 3.9% to a GEV distribution suggesting all four 

distributions tested are potentially suitable for modelling flood extremes in a heterogeneous landscape. The variation 

of “best fit” probability distributions indicates that systematic model selection criteria is necessary when fitting 

observed flow data in regions with variable land use or other hydraulic influences (i.e., geomorphology, climate, or 520 

topography). 

2) The percentage of tilled cropland is a poor regional multi-variate predictor for discharge if an elevation cluster is also 

explored. Extensive agricultural land use occurs in regions most favourable for crop growth (in terms of precipitation 

and topographic relief) resulting in a collinear relationship that favours the inclusion of key topographic variables 

over tilled cropland to explain channel discharge.  525 

3) While land use, geomorphology, material type, climate, and topographic variables are variably important on the flood 

magnitude being modelled, the results here show the most parsimonious predictor for estimating discharge in 

ungauged streams is the accepted and efficient single-variable, drainage area. 

4) However, when considering model variance, a two-predictor combination of upstream drainage area and the regional 

percentage of naturalized landscape shows a statistically significant 5% improvement when explaining variation in 530 

flood discharge for a broad range of recurrence intervals tested (i.e., 1.25, 2, 5, 10, 25, 50, and 100 years). The negative 

coefficient associated with the percentage of Naturalized area reduces serves as a correction to the drainage area 

relationship to account for surface water storage. This finding is important for situations when it is necessary to reduce 

uncertainty in flood prediction.  

In summary, the findings suggest that applying a zonal two-variable model, which accounts for drainage area and the 535 

percentage of upstream naturalized land use, serves as a correction for surface water storage when modelling flood magnitude 

for high- and low-frequency flood events. This improvement is of value when considering the geomorphic response of channels 

(e.g., width to depth ratio’s) to predicted channel discharge for a broad range of flood recurrence intervals. 

Appendix A:  Probability distribution functions 

The GEV distribution uses a three-parameter probability distribution function such that 540 

𝐹(𝑥) =

{
 

 𝑒𝑥𝑝 (−(1 − 𝜀
𝑥−𝜇

𝜎
)
1
𝜀⁄

)      𝜀 ≠ 0

𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
))          𝜀 = 0

        (A.1) 

where 𝜇, 𝜎 and 𝜀 are the location, scale, and shape parameters of the flow data, respectively. The location parameter describes 

the shift of a distribution along the horizontal axis, while the scale and shape parameters describe the spread (Zhang et al., 

2020). The GEV blends the Gumbel (EV1), Frechet and Weibull distributions which are nested models within the GEV 
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distribution (Laio et al., 2009). The simplified EV1 distribution uses the GEV function where the shape parameter, 𝜀, is reduced 545 

to zero, giving the two-parameter probability distribution function 

𝐹(𝑥) = 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
))         (A.2) 

where 𝜇 is the location parameter and 𝜎 is the scale parameter. Consideration of the three-parameter GEV distribution balances 

model bias versus model variance. The more complicated three-parameter GEV distribution reduces model bias compared to 

the two-parameter EV1 distribution, however, as the number of parameters increases, variance typically increases (Laio et al., 550 

2009). The LN distribution is the log-transformed two-parameter Normal or Gaussian distribution represented by the 

probability distribution function 

𝐹(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
(
𝑥−𝜇

𝜎
)
2

)         (A.3) 

also applying 𝜇 and 𝜎 as location and scale parameters, respectively. Similarly, the LP3 distribution is the log-transformed 

three-parameter Gamma or Pearson Type III identified by the probability distribution function 555 

𝐹(𝑥) =
1

|𝜎|Γ𝜀
(
𝑥−𝜇

𝜎
)
𝜀−1

𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
)         (A.4) 

where 𝜇, 𝜎 and 𝜀 are the location, scale, and shape parameters, respectively. Pearson Type III and Normal distributions are 

converted to LP3 and LN distributions when the data are log-transformed at the outset (Di Baldassarre et al., 2009). 
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