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Abstract. A reliable flood frequency analysis (FFA) requires selection of an appropriate statistical distribution to model 

historic streamflow data and, where streamflow data are not available (ungauged sites), a regression-based regional flood 

frequency analysis (RFFA) often correlates well with downstream channel discharge to drainage area relations. However, the 10 

predictive strength of the accepted RFFA relies on an assumption of homogeneous watershed conditions. For glacially 

conditioned fluvial systems, inherited glacial landforms, sediments, and variable land use can alter flow paths and modify flow 

regimes. This study compares a multi-variate RFFA that considers 28 explanatory variables to characterize variable watershed 

conditions (i.e., surficial geology, climate, topography, and land use) to an accepted power-law relationship between discharge 

and drainage area. Archived gauge data from southern Ontario, Canada are used to test these ideas. Mathematical goodness-15 

of-fit criteria best estimate flood discharge for a broad range of flood recurrence intervals, i.e., 1.25, 2, 5, 10, 25, 50, and 100 

years. The Log-Normal, Gumbel, Log-Pearson Type III, and Generalized Extreme Value distributions are found most 

appropriate in 42.5%, 31.9%, 21.7%, and 3.9% of cases, respectively, suggesting that systematic model selection criterion is 

required for FFA in heterogeneous landscapes. Multi-variate regression of estimated flood quantiles with backward elimination 

of explanatory variables using principal component and discriminant analyses reveal that precipitation provides a greater 20 

predictive relationship for more frequent flood events, whereas surficial geology demonstrates more predictive ability for high 

magnitude, less frequent flood events. In this study, all seven flood quantiles identify a statistically significant two-predictor 

model that incorporates upstream drainage area and the percentage of naturalized landscape with 5% improvement in predictive 

power over the commonly used single-variable drainage area model (p < 2.2e-16). Leave-one-out model testing and an 

analysis of variance (ANOVA) further support the parsimonious two-predictor model when estimating flood discharge in this 25 

low-relief landscape with pronounced glacial legacy effects and heterogenous land use. 

Keywords: flood frequency, FFA, RFFA, multi-variate modelling, land use, glacial conditioning  
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1. Introduction 

A reliable assessment of flood frequency and flood magnitude over space and time is critical for urban planning and 

infrastructure engineering that depends on flood probability (Basso et al., 2016). Flood magnitude, frequency, and duration are 30 

primary drivers of channel erosion and stream morphology (Taniguchi & Biggs, 2015) as a self-shaping alluvial channel 

entrains and transports sediment to adjust its dimensions, planform pattern, bed characteristics, and gradient in response to 

varying flow levels (Church & Ferguson, 2015). So reliable estimates of flood frequency are important for understanding 

geomorphic channel change. 

A regional flood frequency analysis (RFFA) can be very important in determining the probability of extreme flood events 35 

where streamflow data are not readily available (Ahn & Palmer, 2016) by transferring observed hydrologic information from 

a group of gauged sites to comparative ungauged sites as a representation of flow statistics using hydrological variables (Odry 

& Arnaud, 2017). A common approach to RFFA consolidates data samples from many measuring sites and uses ordinary least-

squares (OLS) regression to identify a relationship between mean annual floods of multiple basins and some basin 

characteristic (e.g., drainage area). As the source area for channel discharge, drainage area is a widely used proxy for channel 40 

discharge (Galster, 2006; Knighton, 1999). It has become an accepted practice to model discharge using a single-variable 

power-law relationship between discharge (Q) and drainage area (Ad) of the form 

𝑄 = 𝛼𝐴𝑑
𝛽

            (1) 

where Ad is the upstream drainage area and the coefficient α and exponent β are empirically derived by statistical regression 

(Dunne & Leopold, 1978; Knighton, 1999; Phillips & Desloges, 2014). This scaling relationship can be rewritten as 45 

log 𝑄 = log 𝛼 + 𝛽 log 𝐴𝑑 .           (2) 

The reliability of this single-variable predictive relationship, however, relies on the relative regional homogeneity of the 

landscape, with similar basin conditions and climate (Ahn & Palmer, 2016; Hosking & Wallis, 1993; Phillips & Desloges, 

2014). 

To estimate how often a specified flood event (or channel discharge) will occur, flood frequency analysis (FFA) is widely used 50 

(Farooq et al., 2018). Most often, an FFA uses the occurrence of extreme flood events to estimate the return period, T, of flood 

quantiles, Q(T), using a fixed probability model based on long-term, historic flow data from a gauge station (Di Baldassarre et 

al., 2009). This probabilistic approach “fits” the site-specific data to a statistical distribution to predict the likelihood of future 

flood events. To provide flexibility of fit, statistical probability distributions require two to four parameters (Zhang et al., 

2020). The choice of the probabilistic model that best represents the observed data and the estimation of a distribution’s 55 

parameters affects the reliability of flood prediction (Cunnane, 1973; Farooq et al., 2018; Laio et al., 2009). Poor model 

application and fit can lead to unreliable estimates (Basso et al., 2016). The Generalized Extreme Value (GEV) distribution, 

Gumbel Maximum or Extreme Value Type I (EV1) distribution, Log-Normal (LN) distribution, and Log-Pearson Type III 
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(LP3) distribution have traditionally been recommended to characterize flood probability based on goodness-of-fit (Onen & 

Bagatur, 2017; Laio et al., 2009). The LP3 and GEV distributions use three parameters, i.e., location, scale, and shape, and the 60 

EV1 and LN distributions use two parameters, i.e., location and scale, to fit data distributions (see Appendix A). In Canada, it 

is recommended that FFA studies draw from the Normal, GEV, and Pearson distribution families. Distribution fitting with 

more than three parameters is not recommended due to the limited record lengths of Canadian gauge stations (Natural 

Resources Canada, 2019). For regions with diverse flood characteristics, multiple distributions may apply for different 

catchments requiring site specific selections (Zhang et al., 2020). Since 1967, Guidelines for Determining Flood Flow 65 

Frequency, Bulletin 17C of the U.S. Geological Survey (USGS) recommend the use of the LP3 distribution as an appropriate 

statistical distribution to characterize the probabilities of annual flood series (USGS, 2019) but the recent HEC-SSP Statistical 

Software Package Version 2.2 includes the ability to perform two goodness-of-fit tests for up to 19 statistical distributions 

(Hydrologic Engineering Center, 2019). Recent research indicates that estimation of flood frequency and magnitude improves 

with the application of a systematic and objective model selection criteria when fitting observed flow data to a statistical 70 

probabilistic curve (Di Baldassarre et al., 2009).  

Research suggests that the spatial variability of basin attributes (i.e., topographic relief, climate, vegetation, and land use) and 

subsurface characteristics which influence hydrological and fluvial function are controlling factors of a fluvial system’s 

drainage efficiency and are relevant to the flow response in a catchment (Di Lazzaro et al., 2015; Fryirs & Brierley, 2012; 

Galster, 2006; Oudin et al., 2008). Additionally, landscape modifications that decrease infiltration will impose changes to river 75 

hydrology (Ashmore, 2015; Ghunowa et al., 2021; Taniguchi & Biggs, 2015; Winter, 2001) with a downstream cascading 

effect on flow regime (Royall, 2013). Human occupation, landscape manipulation, and the generation of impervious surfaces 

associated with urbanization have the most profound impact on hydrogeomorphic responses, particularly in smaller watersheds 

(Pasternack, 2013; Royall, 2013). And a fluvial system’s response to human-induced land use change (or its sensitivity to 

change) will vary, depending on basin attributes (i.e., configuration, geomorphology, and sediment retention) (Royall, 2013). 80 

For this reason, the spatial heterogeneity across a landscape will likely produce a variation in flood response that may best be 

captured using a multi-variate RFFA approach that considers parameterization of relevant basin characteristics (i.e., 

topographic relief, land use, vegetation, and subsurface geology) as a set of explanatory variables to estimate flood discharge 

(Ahn & Palmer, 2016).  

Recent works have highlighted the impact of geomorphic spatial heterogeneity on the basin hydrologic response (Ahn & 85 

Palmer, 2016; Di Lazzaro et al., 2015; Taniguchi & Biggs, 2015). However, many rapid geomorphic studies have relied on 

just catchment area as the leading attribute for estimating channel forming discharge (Ashmore et al., 2022). This study seeks 

to explore additional explanatory hydrologic and land use controls that improve the predictive strength of this relationship in 

a heterogeneous landscape. This multi-variate approach uses exploratory statistical analysis to better understand the link 

between intra-catchment variability and hydrological function. In this study: 90 
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1) An FFA is completed to model reliable estimations of discharge for a broad range of flood recurrence intervals (i.e., 

Q1.25, Q2, Q5, Q10, Q25, Q50, and Q100). Model selection is determined by applying systematic and objective model 

selection criteria to optimize model fit to long term site-specific flow data (>10 years). A test sample of 207 individual 

gauge sites within a glacially conditioned regional setting is used. 

2) The widely used single-variable RFFA (Eq. (1)) is derived to characterize the relationship between discharge (Q) and 95 

site-specific drainage area (Ad) for the test region using optimized estimates of a broad range of flood quantiles to test 

the predictive power of a single hydrologic variable in a spatially heterogeneous landscape. 

3) A multi-variate, regression based RFFA is presented that considers the spatially variability of hydrologic controls in 

the context of inherited glacial landforms, sediments, and land use. To achieve this goal, twenty-eight (28) predictor 

variables are explored representing basin characteristics (i.e., topographic relief, climate, land use, vegetation, and 100 

subsurface geology). A backward elimination approach is employed (i.e., discriminant and principal component 

analyses, regression diagnostics) to identify the most parsimonious discharge models for recurrence intervals of 1.25, 

2, 5, 10, 25, 50, and 100 years.  

4) The predictive power of a multi-variate derived RFFA that considers multiple basin hydrologic controls is compared 

to a generally accepted single-variable RFFA in a spatially heterogeneous setting.  105 

2. Regional Setting 

This flood frequency study focuses on a test region of peninsular southern Ontario, Canada (Figure 1) that is bounded by the 

Canadian Shield to the north, the three lower Great Lakes, Huron, Erie, and Ontario to the southwest and the Ottawa and St. 

Lawrence Rivers to the east. Located within the North American Great Lakes watershed, it is a region of modest relief, with 

elevation ranging from 544 m asl near Lake Huron draining by way of the St. Lawrence River lowlands at less than 70 m to 110 

the Atlantic Ocean (Larson & Schaetzl, 2001). Convective, synoptic, and tropical systems that influence the humid, continental 

climate of the region are enhanced by local, regional, and topographic conditions (Paixao et al., 2011). Moisture and 

temperature associated with the Great Lakes influence inland precipitation for up to 50 km. Consequently, the mean annual 

precipitation varies regionally from 800 mm to 1200 mm (Paixao et al., 2011). During winter months, precipitation typically 

accumulates in the form of snow, generating spring snowmelt floods that dominate river flow regimes (Javelle et al., 2003). 115 

The surficial geology of the region, and the hydrologic controls exerted by the parent materials, are the product of the region’s 

glacial history (Chapman & Putnam, 1984). Recurring continental glaciations over the last ~2 million years have 

topographically influenced the fluvial drainage networks of southern Ontario (Desloges et al., 2020; Fulton et al., 1986). 

Deglaciation, approximately 12 to 13 thousand years ago, has left pronounced glacial legacy effects with complex sequences 

of subglacial, ice-contact, and proglacial sediments deposited during the final retreat of the Laurentide Ice Sheet (Larson & 120 

Schaetzl, 2001; Phillips & Desloges, 2014, 2015). The most common physiographic features include sheets of till, finer 

glaciolacustrine plains of sand or clay, glaciofluvial outwash deposits of sand, gravel, silts and clays, and a configuration of 

moraines (Thayer et al., 2016). Two significant post-glacial geomorphic features are the Niagara Escarpment and the Oak 
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Ridges Moraine (Figure 1). The Niagara Escarpment is a Paleozoic limestone bedrock ridge resulting from differential glacial 

erosion and weathering of harder and softer rock that arches from the region between Lakes Ontario and Erie, bypassing Lake 125 

Ontario and extending northward to Georgian Bay (Chapman & Putnam, 1984; Phillips & Desloges, 2014). 

 
Figure 1 - Map identifying the study area (indicated in orange) and two significant post-glacial geomorphic features that influence 

drainage networks of southern Ontario (i.e., the Niagara Escarpment and the Oak Ridges Moraine). The inset map (upper right) 

indicates the study region within the Ontario portion of the Laurentian Great Lakes catchment relative to Canada. 130 

Several preglacial rivers have carved deep valleys into the Niagara Escarpment; however, Late Pleistocene glaciations have 

infilled these valleys with varying thicknesses of till (Chapman & Putnam, 1984) directing catchment flow mostly away from 

the escarpment crest. The Oak Ridges Moraine is a stratified kame moraine of glacial drift that extends from the Niagara 

Escarpment 160 km eastward across south-central Ontario (Phillips & Desloges, 2014). This massive ridge forms a drainage 

divide, separating catchments flowing north to Georgian Bay/Lake Huron and south to Lake Ontario. Glacial sediments 135 

typically blanket the study area at a thickness of 50 m, and up to 350 m in some places (Larson & Schaetzl, 2001). In many 

areas, where stratified limestones and shales of the Palaeozoic age lie beneath the thick glacial overburden, fertile soils rich in 

calcium carbonate and clay are produced (Desloges et al., 2020; Phillips & Desloges, 2014, 2015). These fertile soils support 

southern Ontario’s widespread agricultural development (Donnan, 2008).  
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More recent European settlement and regional expansion have resulted in differentiated land use with extensive agricultural 140 

land, natural and reforested areas, and clustered urban settlement (Chapman & Putnam, 1984). The southern Ontario region 

continues to accommodate an increasing population. Drawn by employment, most settle in built-up cities and surrounding 

areas, driving clustered regional urbanization that consumes surrounding rural lands. However, a comparable demand to 

expand the total area of cropland has also occurred to support larger farming operations (Donnan, 2008).  

3. Methods and Data Collection 145 

An overview of the methodology for this study is provided in Figure 2. 

 

Figure 2 - Flow chart of FFA and comparison of a multi-variate RFFA to a single-variable RFFA that uses a discharge to drainage 

area relationship. The regression-based multi-variate RFFA employs sub-basin characterization and backward elimination of 

explanatory variables to determine the most parsimonious model to predict discharge over seven (7) flood quantiles. 150 
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3.1 Estimation of flood frequency 

A Station Meta Data Index for 1188 Ontario georeferenced stream gauges from the HYDAT database of the Water Survey of 

Canada (WSC) monitoring program is accessed online at https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html 

(Environment and Climate Change Canada (ECCC), 2019). The quality of gauge data depends on the selected measurement 

techniques, computation methods, and physical conditions at the monitoring sites (i.e., ice and other influences). However, the 155 

WSC performs regular audits of field activities and adheres to standard operating procedures to improve data quality (ECCC, 

2019). Gauge locations are sorted by catchment and synthesized to identify gauges specific to the southern Ontario region.  

Retention of station data is based on three criteria: (1) the gauge station lies within the peninsular region of southern Ontario 

(2) the gauge station exists for a fluvial system with known field survey data (i.e., Annable (1995, 1996) and Phillips (2014)), 

and (3) streamflow data represent a minimum of 10 years of operation, continuous (non-seasonal) year-round operation. These 160 

criteria yield 207 gauge stations from the HYDAT database with a minimum operation period of 10 years, an average of 42.5 

years (+/-1.7 years, median=42 years), and a maximum operation period of 106 years. Two approaches are commonly used 

for FFA: the annual maxima series (AMS) and the partial duration series (PDS). The AMS approach uses the highest annual 

discharge from the recorded mean daily discharge values at a gauge, ensuring statistical independence of observations between 

years (USGS, 2019). Although some research suggests that the instantaneous maximum discharge may command greater 165 

geomorphic significance, the mean daily discharges provide a larger dataset with fewer gaps in the discharge records. 

Alternatively, the PDS approach (or Peak-over-Threshold) uses floods that exceed some base threshold discharge (q0), 

regardless of the time distribution (USGS, 2019). The AMS approach has been shown to be more efficient than the PDS 

approach for floods Q(T) when T>10 (Cunnane, 1973). This study uses the AMS of mean daily discharge (m3/s) for flood 

recurrence computations at each gauge station. The MSClaio2008 R function, part of the package nsRFA in R, is used to 170 

compare the LP3, EV1, GEV, and LN distributions to the annual maximum discharge data. No prior processing is implemented 

to fit the distributions. Each flood dataset is fit to each of the four candidate models (i.e., GEV, EV1, LN, and LP3) in the form 

of probability distributions with parameters estimated using the maximum likelihood method. Model selection criteria, 

including the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Anderson-Darling Criterion 

(ADC), and the corrected Akaike Information Criterion (AICc) where the sample size, n, is small with respect to the number 175 

of estimated parameters, p, such that n/p<40, are separately applied to each candidate model to evaluate the model which most 

closely fits the flood data, similar to the methods of others (Baldassarre et al., 2009; Farooq et al., 2018; Laio et al., 2009). 

These model selection criteria are shown to provide good operational strategy when applied to frequency analysis of 

hydrological extremes by enabling a systematic and objective mathematical test of model fit (Laio et al., 2009). For each flood 

dataset, the MSClaio2008 function returns the distribution that is most often selected by the selection criteria. The selected 180 

optimal distribution for each gauge dataset is used to model flood recurrence using the cumulative probability. Flood quantiles 

for seven recurrence intervals (RIs) of 1.25, 2, 5, 10, 25, 50, and 100 years (i.e., Q1.25, Q2, Q5, Q10, Q25, Q50, Q100) are derived 

directly from individual gauge data and, therefore, reflect the upstream conditions of the corresponding drainage basin.  

https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
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3.2 Selection of explanatory variables 

3.2.1 Gauge station drainage area 185 

Catchment basins of the study area are delineated based on the hierarchical framework of the Ontario Watershed Boundaries, 

published by the Ontario Ministry of Natural Resources and Forestry (OMNRF) (2020). The digital geospatial datasets are 

accurate to within 100 m and accessed online from https://data.ontario.ca/dataset/ontario-watershed-boundaries . Basins are 

first identified according to Tertiary level watersheds.  

The site specific drainage area for each gauge station is evaluated based on Ontario’s hydrologically enforced Provincial 190 

Digital Elevation Model (DEM) – Version 2.0.0 of the Ontario Ministry of Natural Resources (OMNR) (2005) following 

Phillips & Desloges (2014). Hydrological enforcement ensures that drainage occurs in a down-slope direction, facilitating the 

construction of a flow accumulation raster necessary to establish the upstream drainage area of each gauge station. 

3.2.2 Sub-basin attributes 

To characterize the upstream hydrologic, geomorphic, and land use conditions affecting channel discharge, the 16 tertiary level 195 

catchments of southern Ontario are subdivided into 45 sub-watersheds demarcated by quaternary level boundaries. 

Georeferenced gauge stations are clustered within sub-basin units to best represent the immediate upstream hydrological 

conditions. Sub-basin attributes are selected to characterize the drainage area conditions for each gauge station. Using digital 

cell counts and zonal statistics from multiple sources, sub-basin characteristic variables are extracted from four geospatial 

raster datasets to represent topography, land use, precipitation, and hydrologic properties from a geomorphic perspective: 200 

a) Ontario’s Provincial DEM, Version 2.0.0, a hydrologically enforced tiled raster dataset with a cell resolution of 10 m and 

vertical accuracy of 5 m.  

b) the southern Ontario Land Resource Information System (SOLRIS) Version 3.0, accessed online at 

https://geohub.lio.gov.on.ca/documents/lio::southern-ontario-land-resource-information-system-solris-3-0/about , a 

comprehensive, digital landscape level inventory published by the OMNRF(2019) that identifies urban, rural, and natural 205 

features at a 15 m resolution derived from Landsat-8 OLI imagery acquired from 2014 to 2017. 

c) the Canadian Climate Normals 1981-2010 accessed at https://climate.weather.gc.ca/climate_normals/ . The Canadian 

Climate Normals are commonly used to assess regional climate and adhere to the accepted standards of the World 

Meteorological Organization which recommends 30-year records to eliminate year to year variation (ECCC), 2020).  

d) the revised Surficial Geology of Southern Ontario (MRD 128–Revised), accessed online at 210 

http://www.geologyontario.mndm.gov.on.ca/mndmaccess/mndm_dir.asp?type=pub&id=MRD128-REV which provides 

a seamless, standardized map of the geology, primary material, genesis, and formation coverages for southern Ontario 

(Ontario Geological Survey (OGS), 2010). 

https://data.ontario.ca/dataset/ontario-watershed-boundaries
https://geohub.lio.gov.on.ca/documents/lio::southern-ontario-land-resource-information-system-solris-3-0/about
https://climate.weather.gc.ca/climate_normals/
http://www.geologyontario.mndm.gov.on.ca/mndmaccess/mndm_dir.asp?type=pub&id=MRD128-REV
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For each predictor variable (i.e., attribute), a single output value is produced and applied to the gauge(s) within a sub-basin. 

Since many sub-basins contain more than one gauge station, some gauges share the same topographic, land use, climate, and 215 

geomorphic values but possess their own unique drainage area value. All mapping and spatial analyses use a combination of 

standard GIS software and spreadsheet algorithms. Maps are projected to the Universal Transverse Mercator (UTM, Zone 

17N), referenced to the North American Datum (NAD1983). 

3.3 Comparison of single-variable RFFA to multi-variate RFFA 

For each of the seven flood quantiles, a single-variable relationship (Eq. (1)) between discharge and drainage area is obtained 220 

by statistical regression. Multi-variate relationships between the explanatory variables and each of the quantile discharge 

datasets are assessed by applying OLS regression. OLS assumes that the set of explanatory variables (i.e., basin characteristics) 

and errors must be independent to avoid bias. When characterizing natural systems, the potential exists for some variables to 

correlate with other variables due to their representation of related natural phenomena, often indicated by high correlations 

between variables suggesting a duplication of information captured (Ahn & Palmer, 2016; Phillips & Desloges, 2015). To 225 

identify the most parsimonious discharge model for RIs of 1.25, 2, 5, 10, 25, 50, and 100 years, regression models are 

developed using a backward elimination strategy (Figure 3): 

1) discriminant analysis, similar to Ahn & Palmer (2016), tests for variable independence and identifies highly correlated 

variables. A principal components analysis (PCA) explores the most important influences on channel discharge. PCA has 

been shown to be an effective tool for variable reduction that provides a statistical basis to discard redundant variables 230 

(King & Jackson, 1999). A simple Pearson correlation is applied to all predictor variables (criterion |r|>0.6). Preference 

is granted to predictors with a stronger theoretical association to channel discharge. Similarly, Ahn and Palmer (2016) 

apply a criterion of |r|>0.7 to eliminate strongly correlated variables,  

2) an iterative process of multi-variate regression diagnostics is applied, following others (Roman et al., 2012; Sheather & 

Oostrom, 2009), to remove variables that demonstrate little or no predictive power, and  235 

3) models are evaluated for performance using an analysis of variance (ANOVA) that compares the residual sum of squares 

of the multi-variate model to the single-variate model, and leave-one-out cross validation (LOOCV) to assess the 

predictive capabilities of the model in practice. 
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Figure 3 – Flowchart of discriminant analysis and backward elimination strategy employing tests for variable independence, multi-240 
variate regression diagnostics, and model evaluation. 

4. Regression Model Inputs 

4.1 Flood quantiles as dependent variables 

The model selection criteria determines that 42.5% of the 207 hydrometric gauge records are most suited to an LN distribution, 

31.9% to an EV1 distribution, 21.7% to an LP3 distribution, and 3.9% to a GEV distribution (Figure 4). Goodness-of-fit tests 245 

suggest that all four distributions are potentially suitable for modelling flood extremes from gauges in southern Ontario. For 

74.4% of the gauge records tested, the selection criteria chose a 2-parameter model (i.e., LN or EV1) over a 3-parameter model 

(i.e., LP3 or GEV). The 2-parameter EV1 model is found to be five (5) times more likely to be selected as the optimal 

distribution over its 3-parameter parent model, GEV. The GEV distribution is only selected in a limited number of cases. In 

general, there is no single “best fit” distribution type indicated based on geographic location within a sub-basin unit (Figure 250 

4). 
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Figure 4 - Map identifying the geographic location of 207 gauge stations and the optimal statistical distribution selected to model the 

AMS data. Subdivisions of the tertiary level watershed boundaries are indicated. No sub-basin indicates a single “best fit” 

distribution type.  255 

 

The optimal probability distribution curve is used to estimate the flood quantiles for RIs of 1.25, 2, 5, 10, 25, 50 and 100 years 

for each of the 207 gauge stations. These flood quantiles are consistent with return periods explored in other flood frequency 

analyses (Ahn & Palmer, 2016; Basso et al., 2016; Hollis, 1975; Onen & Bagatur, 2017). A Shapiro-Wilk analysis tests the 

null hypothesis that the flood quantile datasets are normally distributed (Table 1). The dataset for each flood quantile does not 260 

meet the assumption of normality (p<0.05) and the null hypothesis is rejected. A logarithmic transformation is applied to all 

flood quantile values. A subsequent Shapiro-Wilk test of the log-transformed flood quantile datasets fails to reject the null 

hypothesis (p>0.05) suggesting the log-transformed flood quantiles are normally distributed. 

Table 1 – Results of Shapiro-Wilks Normality Tests for each flood quantile, with and without logarithmic transformation of data. 

Test 1 – before transformation Test 2 – after logarithmic transformation 

Flood quantile W-stat p-value 
Log-transformed 

flood quantile 
W-stat p-value 

Q1.25 0.578 < 2.2e-16 Log Q1.25 0.991 0.200 

Q2 0.580 < 2.2e-16 Log Q2 0.992 0.299 

Q5 0.595 < 2.2e-16 Log Q5 0.991 0.194 

Q10 0.604 < 2.2e-16 Log Q10 0.990 0.135 

Q25 0.635 < 2.2e-16 Log Q25 0.991 0.260 

Q50 0.634 < 2.2e-16 Log Q50 0.992 0.351 

Q100 0.595 < 2.2e-16 Log Q100 0.991 0.247 
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4.2 Attributes as predictor variables 265 

Twenty-eight (28) attributes are selected (Table 2) to characterize the drainage area conditions representing the topography, 

precipitation, land use, and hydrological properties from a geomorphological perspective within the sub-basins that influences 

channel discharge (across all 7 flood frequency quantiles) in terms of the regional geomorphic, hydrologic, topographic and 

land use properties. 

Table 2 - Twenty-eight (28) variables representing geomorphic, hydrologic, land use, and topographic variability between sub-270 

basins. 

No.  PREDICTOR VARIABLES ABBREVIATION FILE TYPE SOURCE 

Geomorphic Variables: Dominant Surficial Material 

1 Glaciolacustrine Clay %Clay Raster Dataset OGS, 2010 

2 Glacial Till %Diamicton Raster Dataset OGS, 2010 

3 Glaciofluvial/Glaciolacustrine Gravel %Gravel Raster Dataset OGS, 2010 

4 Wetland %Organic Raster Dataset OGS, 2010 

5 Paleozoic or Precambrian Bedrock %Bedrock Raster Dataset OGS, 2010 

6 Glaciofluvial/Fluvial/Glaciolacustrine Sand %Sand Raster Dataset OGS, 2010 

7 Glaciolacustrine/Fluvial Silt %Silt Raster Dataset OGS, 2010 

Hydrologic Variables 

8 Gauge Drainage Area logDrainage Raster Dataset OMNR, 2005 

9 Mean Precipitation Mean_Precip Point Shapefile ECCC, 2020 

10 Precipitation Days Precip_Days Point Shapefile ECCC, 2020 

11 Mean Rainfall Mean_Rainfall Point Shapefile ECCC, 2020 

12 Rainfall Days Rainfall_Days Point Shapefile ECCC, 2020 

Land Use Variables 

13 Urban Land Use %Urban Raster Dataset OMNRF, 2019 

14 Tilled Cropland %Cropland Raster Dataset OMNRF, 2019 

15 Naturalized Land Use %Naturalized Raster Dataset OMNRF, 2019 

Topographic Variables 

16 Gradient Mean Gradient_Mean Raster Dataset OMNR, 2005 

17 Gradient Standard Deviation Gradient_StDev Raster Dataset OMNR, 2005 

18 Aspect Mode Aspect_Mode Raster Dataset OMNR, 2005 

19 Stream Length Stream_Length Raster Dataset OMNR, 2005 

20 Drainage Density Drainage_Density Raster Dataset OMNR, 2005 

21 Sub-basin Area WS_Area Raster Dataset OMNR, 2005 

22 Sub-basin Perimeter WS_Perimeter Raster Dataset OMNR, 2005 

23 Sub-basin Compactness WS_Compactness Raster Dataset OMNR, 2005 

24 Minimum Elevation Min_Elevation Raster Dataset OMNR, 2005 

25 Maximum Elevation Max_Elevation Raster Dataset OMNR, 2005 

26 Elevation Range Elev_Range Raster Dataset OMNR, 2005 

27 Elevation Mean Elev_Mean Raster Dataset OMNR, 2005 

28 Elevation Standard Deviation Elev_StDev Raster Dataset OMNR, 2005 
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The upstream drainage area for each georeferenced gauge station is extracted from the hydrologically enforced DEM. A 

logarithmic transformation is applied to the drainage area variable values to ensure normality (W=0.994, p-value=0.522). The 

geomorphic sub-basin attributes are represented by the percentage of the dominant surficial material within the geographic 

area of each sub-basin: Glaciolacustrine Clay, Glacial Till, Glaciofluvial/Glaciolacustrine Gravel, Wetland, Paleozoic or 275 

Precambrian Bedrock, Glaciofluvial/Fluvial/Glaciolacustrine Sand, and Glaciolacustrine/Fluvial Silt (Figure 5a). The 

hydrological conditions are characterized by an interpolation of Canadian Climate Normals (Figure 5b).  

 
 

Figure 5 - Raster datasets illustrating (a) the dominant surficial material, (b) the mean annual precipitation, (c) the hydrologically 280 
enforced DEM, and (d) the categorical land use for the peninsular region of southern Ontario. 

Point information for mean annual precipitation, annual number of precipitation days, mean annual rainfall and annual number 

of rainfall days from 65 observation stations is converted to raster coverage using several interpolation techniques. Inverse 

distance weighting (IDW) and ordinary kriging (OK) using a stable model and an exponential model are compared. OK has 
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been shown to produce accurate results when used to describe spatially heterogeneous natural phenomena (Bevan & Conolly, 285 

2009) such as precipitation. Cross validation suggests fitting an OK exponential model for annual mean precipitation, annual 

mean rainfall, and the annual number of rainfall days, and an OK stable model for the annual number of precipitation days. 

The topographic conditions of the sub-basins are extracted and quantified from the hydrologically enforced DEM (Figure 5c). 

Percent land use is quantified using the SOLRIS categories for each sub-basin (Figure 5d). For this study, three land use 

categories are established: %Urban, %Cropland, and %Naturalized area. %Urban regions combine all transportation and built-290 

up areas. %Cropland is defined by tilled agricultural areas. %Naturalized regions combine all tallgrass landcover, mixed 

forests, cultivated tree plantations, swamps, wetlands, and open water areas as indicated by the SOLRIS Version 3.0 dataset. 

5. Results 

5.1 Single-variate regression RFFA 

Regression of the logDrainage variable against each of the seven flood quantile datasets (i.e., Q1.25, Q2, Q5, Q10, Q25, Q50, Q100) 295 

establishes seven single-variable power relationships (Table 3). Statistically significant relations (p<0.001) for logDrainage 

area are indicated across all RIs with a minor, but consistent, decrease in adjusted R2 values as RI increases indicating greater 

uncertainty in prediction as flood magnitude increases. Research indicates that the Q2 flood quantile (highlighted in Table 3) 

represents a flow magnitude and frequency that is important to the maintenance of channel morphology and has, therefore, 

been used in a discharge- drainage area relation in numerous other studies of the southern Ontario region (Annable et al., 2011; 300 

Phillips & Desloges, 2014; Thayer et al., 2016; Vocal Ferencevic & Ashmore, 2012). 

Table 3 – Single-variate RFFA models for each flood quantile. 

Flood 

Quantile 

Single Variable Models (i.e., logDrainage) 

Equation Residual SE adjusted R2 

Q1.25 logQ1.25 = -0.858 + 0.945(logDrainage) 0.217 0.867 

Q2 logQ2    = -0.746 + 0.957(logDrainage) 0.224 0.862 

Q5 logQ5    = -0.549 + 0.945(logDrainage) 0.219 0.864 

Q10 logQ10   = -0.384 + 0.917(logDrainage) 0.233 0.842 

Q25 logQ25   = -0.223 + 0.906(logDrainage) 0.245 0.824 

Q50 logQ50   = -0.084 + 0.885(logDrainage) 0.278 0.776 

Q100 logQ100  = -0.053 + 0.864(logDrainage) 0.321 0.713 

 

Expressing the Q2 results (bolded in Table 3) in a power-law format (Eq. (1)), the Q2 model is found to be similar to the 

findings of other southern Ontario models similarly derived from annual maximum series datasets of the southern Ontario 305 

region (Annable, 1995, Phillips & Desloges, 2014). The Q2 power relationship identified in this study indicates a slightly lower 

estimate of Q2 discharge for smaller drainage areas (<100 km2) compared to the research of others (Figure 6). For larger 

drainage areas (>100 km2), this study predicts similar discharge estimates compared to the relationship of Phillips & Desloges 
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(2014) but greater discharge estimates than Annable (1995). Neither of those studies specified best-fit RFFA distributions so 

the relationship presented here is considered more robust.  310 

 
Figure 6 – The single-variable discharge-drainage area relationship for the Q2 flood quantile of this study (solid black line) compared 

to the findings of others. The Q2 relationship of Annable (1995) is indicated by the dashed black line. The Q2 relationship of Phillips 

and Desloges (2014) is given by the dotted black line. 

5.2 Multi-variate regression RFFA with parameterized basin characteristics 315 

5.2.1. Basin characterization parsimony 

A PCA of the 28 explanatory variables produces seven components with eigenvalues greater than 1.00 (eigenvalues for Dim.1 

through Dim.7 are 7.85, 5.48, 2.87, 2.25, 1.84, 1.09, and 1.04, respectively) that explain 80.1% of the total variability of the 

dataset. This suggests an absence of strong intercorrelations among many of the 28 variables. The latent root criterion (also 

known as the Kaiser or eigenvalue-one criterion) suggests retaining and interpreting principal components if the eigenvalue is 320 

greater than 1.00 (Kaiser, 1960). However, using the point where the first few eigenvalues depart from the more similar lesser 

eigenvalues (i.e., the broken-stick model) (Jackson, 1993), suggests retaining the first 3 dimensions which account for almost 

58% of the total variability of the dataset and are the most interpretable. The correlation circles illustrate the projections of the 

first three principal components (Dim1, Dim2 and Dim3) (Figure 7). Highly correlated variables project in the same direction. 

The first principal component (Dim1) tends towards a land use composition grouping with some loading from gradient 325 

variables and precipitation variables (Dim1 explains 28.0% of the variance). The second principal component (Dim2) tends 

towards an elevation cluster with additional loading from precipitation variables (Dim2 explains 19.6% of the variance). The 

third principal component (Dim3) is a weakly defined land surface grouping with loading from surficial geology classifications 

and basin geometry (Dim3 explains 10.2% of the variance). While elevation is a clear contributor to the variance of the dataset 
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based on the PCA tests, the directional indicators suggest the presence of multicollinearity among the elevation predictors, 330 

reinforcing the results of Pearson correlation detection.  

 
Figure 7 - Principal component analysis (PCA) highlighting the most contributing variables of the 28-variable dataset for each 

dimension and illustrating the correlation circles for principal components one, two, and three (Dim1, Dim2 and Dim3). 

A simple Pearson correlation (|r|>0.6) suggests that 29 correlated relationships exist among eleven basin characteristics 335 

including %Diamicton and %Sand, %Cropland and %Naturalized, Gradient_Mean, Gradient_StDev, Stream_Length, 

WS_Area, Mean_Rainfall, Min_elev, Max_elev, Elev_mean, and Elev_StDev. PCA and Pearson correlation support 

elimination of elevation variables (i.e., Min_elev, Max_elev, Elev_mean, Elev_StDev, Elev_Range) except for Gradient_Mean 

which is retained as the sole predictor to represent the variability of topography among the sub-basins. Correlations between 

Gradient_Mean and Gradient_StDev (r=-0.795) and between Mean_Rainfall and Mean Precipitation (r=0.697) also result in 340 
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the elimination of Gradient_StDev and Mean_Rainfall from the potential predictor variables. The Mean_Precipitation variable 

is retained as it explains snowmelt floods which dominate the flow regime of southern Ontario rivers (Javelle et al., 2003). 

Other correlated variables are removed from further analysis due to high correlation: the Pearson correlation value, r, for 

WS_Area versus WS_Compactness is 0.717 and the value for Stream_Length versus WS_Perimeter is 0.884. Subyani et al. 

(2012) similarly find significant correlation between stream length and basin perimeter. The variable WS_Area is removed in 345 

favour of WS_Compactness which is a descriptor of basin shape (Apaydin et al., 2006). Although total catchment size has 

been shown to have a role in the catchment hydrologic response (Merz & Blöschl, 2009), the contributing upstream drainage 

area is more proportionally relevant to channel discharge at individual gauge stations (Dunne & Leopold, 1978; Prancevic & 

Kirchner, 2019). Stream_Length is also removed in favour of retaining WS_Perimeter which is a descriptor of basin shape. 

The retention of WS_Compactness and WS_Perimeter enables greater focus on basin shape which impacts hydrologic 350 

relationships and the efficiency with which a fluvial system can evacuate precipitation from the region (Apaydin et al., 2006; 

Fryirs & Brierley, 2012). For example, elongated catchments (WS_Compactness ~ 0.4) have been shown to have slower runoff 

(Fryirs & Brierley, 2012). Mean_Rainfall is also eliminated due to correlation with multiple variables (i.e., Mean_Precip, 

%Cropland, Gradient_StDev). By eliminating nine (9) sub-basin characteristics (Min_Elev, Max_Elev, Elev_Mean, 

Elev_StDev, Elev_Range, Gradient_StDev, Mean_Rainfall, WS_Area, Stream_Length), 27 of the 29 correlated relationships 355 

identified by the Pearson correlation tests (i.e., criterion |r|>0.6) are removed. Contrasting geomorphic conditions between 

catchments (i.e., surficial geology) are represented by a high negative correlation (r=0.707) between %Sand or %Diamicton, 

however, both are initially retained for multi-variate modelling to represent the primary substrate of each sub-basin. 

5.2.2. Multi-variate regression analysis with backward elimination to identify the most parsimonious models. 

It can be a practice to test and transform independent variables to ensure a normal distribution of a multi-variate dataset, 360 

however, tests for multi-variate normality are rarely performed (Tacq, 2010). Alternatively, the plots of standardized residuals 

from combinations of predictor variables are examined for a desired elliptically symmetric distribution (Sheather & Oostrom, 

2009. To enable model comparison, the gauge drainage area predictor variable included in the multi-variate regression is 

logarithmically transformed, consistent with the single-variable power model. 

Multiple linear regression is applied to the remaining 19-variable dataset for each of the seven flood RIs, i.e., 1.25, 2, 5, 10, 365 

25, 50 and 100 years, using an OLS approach. The fitted values of the model are compared to the dependent variables (i.e., 

Q1.25, Q2, Q5, Q10, Q25, Q50, and Q100) to detect heteroscedasticity. Regression of all 19 predictor variables for each flood 

quantile reveals statistically significant relationships (p<2.2e-16) suggesting at least one of the predictor variables is 

significantly related to the quantile discharge (Table 4). The multiple coefficients of determination are greater than 0.8 (R2>0.8) 

for all quantiles.  370 
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Table 4 – Results from model regression (regression of all 19 predictors) indicating predictor variables found to be statistically 

significant in the 19-variable model. The remaining variables were not found to be statistically significant in 19-variable regressions. 

19-Variable 

Model 

Residual 

S.E. 
df R2 adj R2 F-stat p-value 

Variables 

identified as 

statistically 

significant 

t-statistic p-value 

Normalized 

Proportion of 

Variance 

Q1.25 0.152 187 0.941 0.935 156.7 <2.2e-16 

logDrainage 45.112 <2.2e-16 75.51% 

%Naturalized -1.759 0.080 2.72% 

Gradient _mean 2.622 0.010 2.25% 

Q2 0.161 187 0.935 0.929 142.5 <2.2e-16 
logDrainage 42.947 <2.2e-16 75.35% 

Gradient _mean 2.448 0.015 2.39% 

Q5 0.1534 187 0.940 0.934 153.1 <2.2e-16 
logDrainage 44.565 <2.2e-16 75.31% 

Gradient _mean 2.319 0.022 2.49% 

Q10 0.174 187 0.920 0.912 113.0 <2.2e-16 
logDrainage 38.081 <2.2e-16 74.73% 

%Naturalized -2.074 0.039 2.73% 

Q25, 0.186 187 0.908 0.899 97.5 <2.2e-16 

logDrainage 35.663 <2.2e-16 75.03% 

%Organic -1.999 0.047 0.67% 

%Bedrock -2.024 0.044 1.06% 

%Naturalized -1.760 0.080 2.65% 

Q50 0.225 187 0.868 0.854 64.5 <2.2e-16 

logDrainage 28.982 <2.2e-16 74.51% 

%Organic -2.196 0.029 0.86% 

%Bedrock -2.227 0.024 1.44% 

Q100 0.273 187 0.812 0.792 42.4 <2.2e-16 

logDrainage 23.417 <2.2e-16 73.67% 

%Organic -2.228 0.024 1.09% 

%Bedrock -2.394 0.018 1.94% 

Aspect_Mode -1.759 0.080 0.49% 

 

Examination of the associated p-values for the t-statistic of each predictor variable indicates that, for all seven flood quantiles, 

logDrainage overwhelmingly contributes to the 19-variable prediction models (>70%), although its importance decreases as 375 

flood frequency decreases. The 19-variable regression (logDrainage included) indicates that either %Naturalized or 

Gradient_mean is statistically significant for predicting flood quantiles Q1.25, Q2, Q5, Q10 and Q25. This is consistent with the 

results of the PCA which identifies the first principal component as a land use grouping and the second principal component 

as an elevation grouping. Other potential predictor variables do not indicate statistical significance in the 19-variable models. 

During backward elimination, added-variable plots (or partial regression plots) indicating low statistical significance are 380 

consistent with the t-statistic results confirming a lack of significance. Variables indicating no relationship are eliminated. A 

high VIF (VIF>5) confirms %Diamicton is unsuitable as a predictor variable due to multicollinearity. Marginal model plots 

indicate somewhat linear but weak relationships for %Organic, %Sand, and %Gravel. For both percent %Clay and percent 

%Bedrock, high incidences of zero values produce non-linear relationships suggesting a lack of significance as predictor 

variables. A high VIF is indicated for %Cropland. High negative correlation (r=-0.775) is also observed between %Cropland 385 
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and Gradient_Mean resulting in the elimination of %Cropland as a predictor. All five-predictor models demonstrate statistical 

significance; however, the identified variables are not consistent over all seven flood quantiles (Table 5). 

Table 5 – Regression results of five-predictor models and three-predictor models over all flood quantiles tested. Variables with some 

explanatory contribution in five- and three-predictor models are indicated by an “X”. 
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Q1.25  X   X X    X X   0.924 0.164 504.6 <2.2e-16 

Q2 X   X X X    X    0.924 0.166 502.9 <2.2e-16 

Q5  X   X X    X  X  0.925 0.163 509.1 <2.2e-16 

Q10     X  X X  X   X 0.901 0.185 374.0 <2.2e-16 

Q25  X   X X    X   X 0.886 0.198 319.9 <2.2e-16 

Q50  X  X X     X   X 0.823 0.248 192.1 <2.2e-16 

Q100  X X  X    X X    0.792 0.276 153.2 <2.2e-16 
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Q1.25     X X    X    0.922 0.166 808.9 <2.2e-16 

Q2     X X    X    0.919 0.171 782.5 <2.2e-16 

Q5     X X    X    0.923 0.165 826.8 <2.2e-16 

Q10     X   X  X    0.892 0.192 567.6 <2.2e-16 

Q25     X X    X    0.881 0.203 500.3 <2.2e-16 

Q50  X   X     X    0.821 0.249 315.9 <2.2e-16 

Q100  X   X     X    0.755 0.296 212.9 <2.2e-16 

 390 

The five- and three-predictor models retain surficial material variables (%Organic, %Sand, %Gravel) and climate variables 

(Mean_Precip, Precip_Days, Rainfall_Days). Reducing from 5-variable models to 3-variable models decreases the adjusted 

R2 value and increases the F-statistic over all flood quantiles. Three-predictor models demonstrate statistical significance; 

however, the third variable is not consistent over all seven flood frequency quantiles. Results show that including Mean_precip 

as a variable increases model fit for flood quantiles Q1.25, Q2, Q5, and Q25, whereas including Rainfall_Days improves the 395 

goodness-of-fit for the Q10 model. Alternatively, the inclusion of %Organic is shown to have some statistical significance 

(p<0.05) as a third predictor variable for flood quantiles Q50 and Q100. For all seven flood quantiles, Q1.25, Q2, Q5, Q10, Q25, 

Q50, and Q100, backward elimination reduces to the same single independent variable, logDrainage. As the most parsimonious 

model, logDrainage is shown to significantly predict discharge (p<2.2e-16) confirming the often used single-variable 

relationship between drainage area and discharge. However, all seven flood quantiles also identify a two-predictor model using 400 
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the variables logDrainage and %Naturalized where t-tests demonstrate that both logDrainage and %Naturalized are statistically 

significant (p<2.2e-16) (Table 6). 

Table 6 – The most parsimonious two-variate RFFA models for each flood quantile. 

Flood 

Quantile 

Two-variable Models (i.e., logDrainage and %Naturalized) 

Equation 
Residual 

SE 
adj R2 

Q1.25 logQ1.25 = -0.537 + 0.917(logDrainage) – 1.179(%Naturalized) 0.177 0.911 

Q2 logQ2    = -0.420 + 0.928(logDrainage) – 1.196(%Naturalized) 0.184 0.907 

Q5 logQ5    = -0.224 + 0.916(logDrainage) – 1.194(%Naturalized) 0.179 0.910 

Q10 logQ10   = -0.068 + 0.889(logDrainage) – 1.158(%Naturalized) 0.197 0.887 

Q25 logQ25   =  0.090 + 0.878(logDrainage) – 1.148(%Naturalized) 0.213 0.867 

Q50 logQ50   =  0.223 + 0.858(logDrainage) – 1.127(%Naturalized) 0.251 0.818 

Q100 logQ100  =  0.353 + 0.837(logDrainage) – 1.100(%Naturalized) 0.299 0.750 

 

5.3 Model evaluation 405 

For all seven flood quantile models, the addition of the %Naturalized predictor variable reduces the residual standard error 

(Res SE) and increases the adjusted coefficient of determination (adj R2). Plots of the fitted single-variable models and the 

two-variable models versus gauge derived estimates of discharge, demonstrate less scatter (Figure 8 illustrates six quantiles). 

The two-variable model (i.e., logDrainage and %Naturalized) results in an increased adjusted R2 of approximately 0.05 and a 

lower standard error suggesting the addition of the second variable (i.e., %Naturalized) improves the goodness-of-fit for all 410 

seven flood quantile models (six illustrated). The two-predictor combination of variables provides an improved explanation 

for the variations in discharge by nearly 5%. Generally, an increase in model scatter is observed for both one-variable and two-

variable prediction as the RI increases suggesting increasing uncertainty in prediction of discharge moving from Q1.25 to Q100. 

This is consistent with the higher variance in discharge observed for large, infrequent flood events within the original gauge 

datasets. The predictability of larger flood events is limited by both the low frequency with which they occur, and the length 415 

of the gauge records analyzed (average 42.5 years). 
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Figure 8 – The single-variable and two-variable fitted discharge models are plotted against the best-fit estimated discharge derived 

from the flood frequency curves for (a) a 1.25-year RI, (b) a 2-year RI, (c) a 5-year RI, (d) a 10-year RI, (e) a 25-year RI, and (f) a 

100-year RI. The two-predictor logDrainage and %Naturalized model shows less scatter and a lower standard error than the single 420 
logDrainage predictor for all six flood RIs shown. The explanation of variability in flood discharge is improved by nearly 5% using 

the two-predictor model for all seven flood quantiles. 
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An analysis of variance (ANOVA) (Table 7) comparing the single-variable models to the two-variable models further indicates 

an improved prediction of discharge using the two-predictor model compared to the one-predictor model. For all seven flood 

quantiles, a decrease in the sum of squares of residuals is observed with the addition of the %Naturalized predictor and an F- 425 

statistic (p<0.001) demonstrates very strong evidence in favour of the two-predictor model. These results are supported by 

leave-one-out cross validation (LOOCV) (Table 7). For all seven flood quantiles, LOOCV demonstrates a reduction of the 

root mean square error (RMSE), an improvement of the R2 value, and a reduction of the mean absolute error for the two-

variable model compared to the single-variable model. 

Table 7 – Leave-one-out cross validation (LOOCV) and analysis of variance (ANOVA) comparing the single-variable models to the 430 
two-variable models. 

Flood 

Quantile 
Model 

Leave-one-out Cross Validation Analysis of Variance (ANOVA) 

RMSE R2 MAE RSS 
Sum of 

Sq 
F-stat Pr(>F) 

Q1.25 
Single-variable Model 0.218 0.865 0.171 9.669 

3.269 104.2 < 2.2e-16 
Two-variable Model 0.178 0.909 0.136 6.400 

Q2 
Single-variable Model 0.225 0.860 0.177 10.264 

3.366 99.5 < 2.2e-16 
Two-variable Model 0.185 0.905 0.144 6.898 

Q5 
Single-variable Model 0.220 0.862 0.176 9.850 

3.353 105.3 < 2.2e-16 
Two-variable Model 0.180 0.908 0.143 6.497 

Q10 
Single-variable Model 0.234 0.840 0.183 11.081 

3.156 81.2 < 2.2e-16 
Two-variable Model 0.199 0.884 0.153 7.925 

Q25 
Single-variable Model 0.247 0.821 0.193 12.343 

3.102 68.5 1.65e-14 
Two-variable Model 0.214 0.865 0.169 9.241 

Q50 
Single-variable Model 0.279 0.773 0.215 15.859 

2.987 47.3 7.18e-11 
Two-variable Model 0.253 0.814 0.198 12.872 

Q100 
Single-variable Model 0.322 0.709 0.248 21.127 

2.848 31.8 5.70e-08 
Two-variable Model 0.301 0.746 0.237 18.279 

 

6. Discussion 

Flood magnitude, frequency and duration are primary drivers of channel erosion and stream morphology (Taniguchi & Biggs, 

2015). High-magnitude, less-frequent floods will undoubtedly result in significant alterations to a channel’s morphology and 435 

are more important when considering hazards, loss of life and infrastructure damage (Onen & Bagatur, 2017), however, the 

cumulative effects of more frequent, lower-magnitude floods can also be geomorphically more effective in altering channel 

form (Church & Ferguson, 2015; Wolman & Gerson, 1978; Wolman & Miller, 1960). Consequently, for effective risk 
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management and hazard prevention, it is useful to model flows of different flood RIs when considering flood frequency as a 

predictive tool to better understand a river’s morphological response to discharge (Basso et al., 2016). The best estimation of 440 

extreme flood events, however, is limited by the availability and accuracy of recorded gauge data, the length of the observed 

flood series, and the presence or absence of extreme flood occurrences within a flow record (Odry & Arnaud, 2017). This 

analysis uses a broad range of high- and low-frequency flood estimates from long-term historical flow data to develop a reliable 

RFFA for urban planning and infrastructure engineering. It is common practice to develop an RFFA relating the drainage area 

of a catchment to channel discharge using a single-variable power-law relationship. Research suggests that physiographic 445 

features, such as those inherited by southern Ontario’s glacial legacy, and anthropogenic land use, for example southern 

Ontario’s clustered urbanization and widespread agricultural development, can influence a region’s hydrogeomorphic 

response, particularly in smaller watersheds (Royall, 2013). Seeking to improve upon a widely accepted single-variate RFFA 

model in a heterogenous landscape, the objective of this study was to explore a dependable RFFA using a multi-variate 

approach for a region influenced by glacial conditioning and varying land use, while also considering the hydrologic influences 450 

of climate and topography.  

In this study, rigorous goodness-of-fit testing of annual maximum mean daily discharge data series from 207 hydrometric 

gauge stations in a heterogeneous landscape shows that 42.5% of gauge records are most suited to a 2-parameter LN 

distribution, 31.9% to a 2-parameter EV1 distribution, 21.7% to a 3-parameter LP3 distribution, and 3.9% to a 3-parameter 

GEV distribution. This suggests that all four distributions are potentially suitable for modelling flood extremes in heterogenous 455 

regions. The model selection criteria favoured a 2-parameter model over a 3-parameter model in 74.4% of cases, consistent 

with other studies which found that selection criteria demonstrate a predisposition towards the most parsimonious model (i.e., 

fewest distribution parameters) (Farooq et al., 2018; Laio et al., 2009; Onen & Bagatur, 2017). Most notably, the 2-parameter 

EV1 model is optimal five (5) times more frequently than its 3-parameter parent model, the GEV distribution, which is only 

found appropriate for use in 3.9% of cases. This finding is similar to that of Laio et al. (2009) where the GEV distribution was 460 

only selected in a limited number of cases when modelling the annual maxima of peak discharge in 1000 United Kingdom 

basins. However, the GEV and LP3 distributions are heavier tailed than the LN or EV1 distributions (El Adlouni et al., 2008; 

Merz et al., 2022; Papalexiou et al., 2013) suggesting the upper tail behaviour of a flood time series may be underestimated 

when estimating flood frequency from small sample sizes (less than 50) while a single extreme flood event may lead to 

overestimation of the upper tail (Papalexiou et al., 2013). The average hydrologic record in this study is 42.5 years which 465 

implies uncertainty in estimating extreme quantiles in the study region due to limited record length of some gauges, but 

research has indicated that basins with snowmelt-dominated regimes tend toward lighter tailed distributions (Merz et al., 2022). 

Flood estimation will often apply a universal, fixed probabilistic model to historical gauge data (Di Baldassarre et al., 2009). 

Other southern Ontario studies have employed a blanket LP3 probability distribution to model the Q2 flood frequency 

(Annable, 1995; Phillips & Desloges, 2014). However, the variation of statistical distributions identified as an optimal fit in 470 

this study suggests a need for careful, systematic model selection criteria when fitting observed flow data in regions with 
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variable land use or other hydraulic influences (i.e., geomorphology, substrate materials, climate, or topography). To prevent 

an over-estimation or, more importantly, an under-estimation of discharge when predicting flood recurrence, model goodness-

of-fit should be evaluated. The results of this study indicate that a 2-parameter LN statistical distribution will provide an 

optimal fit for 43% of the southern Ontario flood records when a broad range of flood quantiles are being examined. 475 

Other studies have explored a variety of novel regionalization approaches. Di Lazzaro et al. (2015) presented an RFFA using 

a single-variable parameterization of drainage density. Ahn and Palmer (2016) estimate flood frequency using the GEV 

distribution and then proposed regionalization methods using a spatial proximity approach. However, regionalization based on 

spatial proximity assumes that nearby sites are more similar than distal sites (Odry & Arnaud, 2017). In a glacially conditioned 

landscape, such as the southern Ontario region, the configuration of glacial deposits (Figure 5a) often forms drainage divides 480 

that segregate neighbouring catchments with diverse flood characteristics. This study, therefore, explores regionalization 

through a multi-variate regression-based approach to capture the variability of upstream hydrologic controls that are often 

dependent on the spatial arrangement of post-glacial physiographic features and, in the case of southern Ontario, the variable 

land use (i.e., regionally clustered urbanization and agricultural development). The mapping of surficial material, climate 

conditions, topography, and land use illustrates the variability of hydrologic influences on the region (Figure 5). Consistent 485 

with the agricultural land use of southern Ontario, analysis reveals a negative correlation between %Cropland and 

Gradient_mean. Regions of steep gradient are not typically associated with areas of high agricultural activity, whereas lower 

gradient regions provide much of the agricultural/cropping activity. Crops are typically cultivated in areas with favourable 

conditions for growth (i.e., rainfall and gradient) producing collinear relationships with key elevation and precipitation 

variables relevant to channel discharge. Likewise, the high spatial variability in surficial geology of southern Ontario (due to 490 

its glacial conditioning) can be problematic. Contrasting geomorphic conditions between catchments are represented by, for 

example, high negative correlations among %Diamicton and %Sand and an absence of surficial material types in many areas 

(e.g., %Bedrock and %Clay) produces high incidences of zero values and non-linear relationships. Conversely, a measure of 

natural land use is available across the study region, making a linear relationship between %Naturalized and discharge possible. 

During the backward elimination process, different land use, geomorphic, climatic, and topographic variables assume different 495 

importance in predicting channel flow depending on the flood magnitude being modelled. The influence of the glacial legacy 

is captured by the inclusion of surficial materials in the five- and three-variable models (Table 5). The less parsimonious, but 

still statistically valid, five- and three-predictor models show the importance of land cover/glacial legacy (%Organics, %Sand, 

%Gravel) and climate variables (rainfall days). In three-variable models, precipitation (i.e., Mean_precip or Rainfall_Days) 

increases model fit for lower magnitude, more frequent flood events (i.e., Q1.25, Q2, Q5, Q10, and Q25), suggesting a greater 500 

predictive relationship of channel discharge. In contrast, surficial geology (i.e., %Organic) has more predictive value for high 

magnitude, less frequent flood events (Q50 and Q100). During low-magnitude flood events, it is unsurprising that a fluvial 

system’s hydrological response is more directly related to the amount of rainfall or snowmelt infiltration whereas during less 

frequent, high-magnitude or flash flood events, surface saturation across an increasing area of the watershed is more closely 
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tied to surficial material properties that limit or enhance infiltration, impacting surface runoff. The surficial material %Organic 505 

is retained for high-magnitude, low frequency floods (i.e., Q50 and Q100) in the 3-variable models suggesting that the percentage 

of a basin with highly organic surficial material (e.g., wetlands) can effectively increase infiltration, limiting overland flow 

and the magnitude of channel discharge during high magnitude flood events. Surficial material with higher organic content 

has been shown to significantly increase infiltration capacity and porosity (Luna et al., 2018).  

Although the most parsimonious model for estimating discharge is found to be the generally accepted and efficient single-510 

variable relation between discharge and drainage area, when considering model variance, the two-predictor combination of 

upstream drainage area and the regional percentage of naturalized landscape (%Naturalized) shows a 5% improvement when 

explaining variation in flood discharge for all RIs tested (i.e., 1.25, 2, 5, 10, 25, 50, and 100 years). An analysis of variance 

(ANOVA) further indicates a statistically significant improvement in prediction of discharge using the two-predictor model 

(i.e., logDrainage and %Naturalized) compared to the single-predictor model (i.e., logDrainage). The percentage of naturalized 515 

landscape is important because it reflects areas within a catchment that have enhanced water storage compared to urban or 

agricultural areas. These findings are important for situations when it is necessary to reduce uncertainty in flood prediction. 

Plots comparing the single- and two-predictor models demonstrate less scatter for all seven flood quantiles. Generally, an 

increase in model scatter is observed for both one-variable and two-variable prediction as the RI increases suggesting the 

predictive capability lessens moving from Q1.25 to Q100. This finding is similar to that of Basso et al. (2016) where model 520 

performance is better for short and intermediate return intervals. Any flood frequency analysis is limited by the length of the 

flow records being analysed. Since the average length of gauge records used in this study is 42.5 years, a decrease in model 

reliability is anticipated as the non-linear hydrological processes of the region are extrapolated. Despite careful selection of 

the candidate statistical distributions to “best fit” the observed flow records, the absence of large flood events captured within 

the sample data can skew the estimation of flood frequency for low-probability, low-frequency events (Odry & Arnaud, 2017). 525 

The findings of this research demonstrate that land use has greater predictive power than surficial geology when coupled with 

drainage area to estimate channel discharge in a heterogeneous landscape over a broad range of flood quantiles. While the 

methodology used in this study is transferable to other regions, this finding may also be transferable. However, a new scenario 

would require recalibration of the drainage area relationship and possibly reclassification of land use types to suit the spatial 

variation of the new location. Human landscape alterations that impact drainage density will influence rates of overland flow 530 

and channel flow, exerting additional influence on hydrological processes and stream response and, subsequently, impacting 

the magnitude and frequency of peak channel flows (Taniguchi & Biggs, 2015). Changes to land cover, such as deforestation, 

conversion to cropping and urbanization, typically decrease infiltration which increases discharge, and alters flood magnitude 

(Chin et al., 2013; Royall, 2013). It follows that the presence of reforested or natural areas will have a significant influence on 

modelled discharge. Since the early 1900s, select areas of southern Ontario have been reforested in recognition of wasteful 535 

clearing of marginal and submarginal agricultural lands by early settlers (Armson et al., 2001). The %Naturalized variable 

includes tallgrass landcover, mixed forests, cultivated tree plantations, swamps, wetlands, and open water areas, representing 
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areas of high infiltration or the surface storage of water. The negative coefficient for the percentage of naturalized area reduces 

the weight of the drainage area input. This is consistent with the theoretical expectation that drainage area of sub-basins with 

a high percentage of naturalized areas may be overemphasized without the appropriate correction for surface water storage. 540 

Although urbanization has been shown to have the most profound influence on fluvial system response, altering hydrological 

processes through a decrease in infiltration, an increase in overland flow and a potential decrease in groundwater recharge 

(Chin et al., 2013), the regional impact of clustered urban populations of southern Ontario is diluted by the expansive regions 

of cropland, grazing, and naturalized areas that separate them. Consequently, the percent %Urban variable shows minimal 

significance in the multivariate regression. Similarly, the %Cropland was shown to be a poor regional predictor for discharge 545 

due to a collinear relationship with other predictors. The statistical significance of %Naturalized, however, suggests that the 

percentage of a sub-basin that is naturalized can be an effective variable to represent temporary surface water storage, limiting 

the impact to a channel during flood events. 

7. Conclusion 

To transfer flood discharge information from gauged sites to ungauged sites in a heterogeneous landscape (e.g., a low-relief, 550 

glacially conditioned landscape with variable land use), the primary objective of this research is to explore additional 

explanatory hydrologic controls to improve the predictive strength of a well-known regional flood frequency approach that 

correlates drainage area to discharge. The main conclusions of this analysis are: 

1) When modelling the annual maximum mean daily discharge records for southern Ontario, 42.5% were most suited to 

a 2-parameter LN distribution, 31.9% to EV1, and 21.7% to LP3, and 3.9% to a GEV distribution suggesting all four 555 

distributions tested are potentially suitable for modelling flood extremes in a heterogeneous landscape. The variation 

of “best fit” probability distributions indicates that systematic model selection criteria is necessary when fitting 

observed flow data in regions with variable land use or other hydraulic influences (i.e., geomorphology, climate, or 

topography). 

2) For lower magnitude, more frequent flood events (i.e., Q1.25, Q2, Q5, Q10, and Q25), precipitation shows a greater 560 

predictive relationship with channel discharge in 3- and 5-variable models whereas for high magnitude, less frequent 

flood events surficial geology has more predictive value. For high-magnitude, low frequency floods (i.e., Q50 and 

Q100) highly organic surficial material (e.g., wetlands) can effectively increase infiltration, limiting overland flow and 

the magnitude of channel discharge during high magnitude flood events. 

3) While land use, geomorphology, material type, climate, and topographic variables are variably important on the flood 565 

magnitude being modelled, the results here show the most parsimonious predictor for estimating discharge in 

ungauged streams is the accepted and efficient single-variable, drainage area. 

4) However, when considering model variance, a two-predictor combination of upstream drainage area and the regional 

percentage of naturalized landscape shows a statistically significant 5% improvement when explaining variation in 
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flood discharge for a broad range of recurrence intervals tested (i.e., 1.25, 2, 5, 10, 25, 50, and 100 years). The negative 570 

coefficient associated with the percentage of naturalized area reduces serves as a correction to the drainage area 

relationship to account for surface water storage. This finding is important for situations when it is necessary to reduce 

uncertainty in flood prediction.  

In summary, the findings suggest that applying a zonal two-variable model, which accounts for drainage area and the 

percentage of upstream naturalized land use, serves as a correction for surface water storage when modelling flood magnitude 575 

for high- and low-frequency flood events. This improvement is of value in a heterogeneous landscape when considering the 

geomorphic response of channels to predicted channel discharge for a broad range of flood recurrence intervals and greater 

precision is required. 

Appendix A:  Probability distribution functions 

The GEV distribution uses a three-parameter probability distribution function such that 580 

𝐹(𝑥) =

{
 

 𝑒𝑥𝑝 (−(1 − 𝜀
𝑥−𝜇

𝜎
)
1
𝜀⁄

)      𝜀 ≠ 0

𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
))          𝜀 = 0

         (A.1) 

where 𝜇, 𝜎 and 𝜀 are the location, scale, and shape parameters of the flow data, respectively. The location parameter describes 

the shift of a distribution along the horizontal axis, while the scale and shape parameters describe the spread (Zhang et al., 

2020). The GEV blends the Gumbel (EV1), Frechet and Weibull distributions which are nested models within the GEV 

distribution (Laio et al., 2009). The simplified EV1 distribution uses the GEV function where the shape parameter, 𝜀, is reduced 585 

to zero, giving the two-parameter probability distribution function 

𝐹(𝑥) = 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
))          (A.2) 

where 𝜇 is the location parameter and 𝜎 is the scale parameter. Consideration of the three-parameter GEV distribution balances 

model bias versus model variance. The more complicated three-parameter GEV distribution reduces model bias compared to 

the two-parameter EV1 distribution, however, as the number of parameters increases, variance typically increases (Laio et al., 590 

2009). The LN distribution is the log-transformed two-parameter Normal or Gaussian distribution represented by the 

probability distribution function 

𝐹(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
(
𝑥−𝜇

𝜎
)
2

)          (A.3) 

also applying 𝜇 and 𝜎 as location and scale parameters, respectively. Similarly, the LP3 distribution is the log-transformed 

three-parameter Gamma or Pearson Type III identified by the probability distribution function 595 

𝐹(𝑥) =
1
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where 𝜇, 𝜎 and 𝜀 are the location, scale, and shape parameters, respectively. Pearson Type III and Normal distributions are 

converted to LP3 and LN distributions when the data are log-transformed at the outset (Di Baldassarre et al., 2009). 
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