
1

Beyond precipitation: diversity of drivers of high river flows
in European near-natural catchments

Manal Lam'barki1,*, Wantong Li1,*, Sungmin O2, Chunhui Zhan1, and Rene Orth15

1Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
2Department of Climate and Energy System Engineering, Ewha Womans University, Seoul, South Korea

* These authors contributed equally to this work.10

Correspondence to: Wantong Li (wantong@bgc-jena.mpg.de)

Abstract. High streamflow in rivers can lead to flooding, which may have severe impacts on economy, society
and ecosystems. Therefore it is imperative to understand their underlying physical mechanisms. Previous
research has illustrated the relevance of several hydrological drivers, such as precipitation, snowmelt and soil15
moisture. However, the relative importance of these drivers compared with each other is unclear. Moreover, the
role of vegetation-related drivers is not well studied. In this study, we focus on high river flows and consider a
comprehensive set of potential drivers and analyze their relative importance. This is done with streamflow
observations from over 250 near-natural catchments located across Europe during 1984-2007, which are
matched with driver data from various observation-based sources. Not surprisingly, we find that precipitation is20
the most relevant driver of high river flows in most catchments. In addition, and more interestingly, we show
that next to precipitation a diversity of other drivers is relevant for high flows, including shallow soil moisture,
deep soil moisture, snowmelt, evapotranspiration and leaf area index. These non-precipitation drivers tend to be
even more relevant for more extreme high flows. The relative importance of most considered drivers is similar
across daily, weekly and monthly time scales. The spatial patterns of the relevance of precipitation, snowmelt25
and soil moisture for supporting high river flows are controlled by vegetation types and terrain characteristics,
while climate and basin area are less important. By analyzing a comprehensive selection of drivers of high river
flow in a powerful framework which accounts for co-linearities between drivers, this study advances the
understanding of flood generation processes and informs respective model development.

30

35

https://doi.org/10.5194/hess-2022-404
Preprint. Discussion started: 20 December 2022
c© Author(s) 2022. CC BY 4.0 License.



2

1. Introduction

Hydrological extremes have significant impacts on society and ecosystems (Kundzewicz and Kaczmarek, 2000;
Alfieri et al. , 2020; Orth et al. , 2022; Merz et al. , 2021; Bradford and Heinonen, 2008). For example, droughts
and floods have been more devastating than other natural hazards in terms of their socio-economic damage5
(Barredo, 2007; Naumann et al., 2015; Gao et al., 2019). Knowledge about flood generation mechanisms is key
to optimize flood management and protection strategies to mitigate impacts (Merz et al., 2021).

Most major floods are characterized by a synergistic combination of atmospheric circulation patterns delivering
large amounts of precipitation, and antecedent basin properties that condition the climate-runoff relationship
(Hirschboeck, 1991; Liu, 2019). Therefore, river flooding remains complex to understand as it is not exclusively10
linked with heavy precipitation but also depends on other factors such as antecedent soil conditions or snowmelt
(Berghuijs et al., 2016a; Bertola et al., 2020). For example, soil moisture excess has been shown to be the most
relevant hydroclimatic variable to explain flood seasonality in Western Europe (Berghuijs et al., 2019). It has
also been shown that wet antecedent soil moisture amplified the floods in the upper Danube in June 2013
(Blöschl et al., 2013).15

An analysis of literature in the Web of Science (www.webofscience.com) reveals the focus of recent flood
research; flood-related articles often refer to precipitation (19’556 articles during 2002-2021, see Table S1 for
detailed search commands), sometimes to vegetation (7’066 articles), and relatively rarely to snow (2’813
articles) and soil moisture (2’804 articles). There are only 11 articles referring to all these drivers simultaneously.
And in these 11 articles the focus is mainly on regional and/or modelling studies, and they use some drivers for20
explanation of the results rather than including them in the actual analysis. This leaves a knowledge gap in the
joint understanding of a variety of observation-based controls of high river flows across continental-scale areas.
Also, this highlights that it is important to extend the focus towards jointly investigating a multitude of potential
drivers of extremes (Brunner et al., 2021b), especially in the context of climate change where increasing
precipitation may not necessarily translate to increasing streamflow (Sharma et al., 2018; Brunner et al., 2021a).25
Moreover, the consideration of several drivers across many catchments allows to analyze the spatial variability
in the relevance of individual drivers of high river flows. This way, it is possible to determine which climate,
terrain or vegetation characteristics influence these spatial patterns.

Moreover, flood generation processes not only vary across catchments but also vary across different time scales.
Previous studies have recognized this by separating different kinds of floods such as flash floods, short rain30
floods, long rain floods, excess rainfall floods, rain/snowmelt floods, and snowmelt floods (Merz and Blöschl,
2003; Sikorska et al., 2015; Stein et al., 2020; Tarasova et al., 2019). This way, different levels of streamflow
may result from similar amounts of precipitation or snowmelt depending on the time scale during which they hit
a catchment. This is further modulated by the soil moisture and vegetation conditions during the respective time
frame. Many flood-related studies have employed a weekly time scale to infer potential flood drivers (e.g.,35
Berghuijs et al., 2016a; Blöschl et al., 2017; Stein et al., 2020; Tramblay et al., 2021; Wasko et al., 2020), while
the relative relevance of flood drivers at different time scales (daily, monthly) remains more unclear. This
illustrates the importance of jointly considering different time scales in the analysis of high river flows, in
particular because floods as rare extreme events are likely induced by a similarly rare combination of processes
or drivers acting across time scales.40

The objective of this study is to determine relevant drivers of high river flows in Europe across different time
scales in a data-driven way. This is done by jointly analyzing the relationship of high river flows with a
multitude of drivers in a comprehensive statistical framework which can account for co-linearities between
drivers and for mismatches between the river flow and driver dynamics. Our selection of drivers is based on
physical linkages with the land water balance and river flows, and includes vegetation-related variables such as45
evapotranspiration and leaf area index reflecting interception capacity. As shallow and deep soil moisture might
differently affect baseflow and overland flow, we also consider soil moisture separately from different layers.
Note that this analysis focuses on high river flows rather than actual floods. While there might be a strong
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correspondence between them, streamflow data are more accurate and abundant and hence employed in this
study to characterize high flow events. Finally we attribute the determined spatial patterns of the relevance of
the main drivers of high flows to vegetation, terrain, catchment and climate characteristics in order to advance
the understanding of flood generation processes and to inform hydrological model development.

2. Data and Methodology5

2.1. Data

2.1.1. Streamflow data

We use daily streamflow observations during 1984-2007 obtained from 436 river gauging stations from Stahl et10
al. 2010 who consolidate data from UNESCO’s European Water Archive, regional and national agencies and the
EU WATCH (WATer and global CHange) project. These data have been employed and validated in various
previous studies, e.g. to build a European flood database (Hall et al., 2015), to empirically evaluate streamflow
trends in Europe (Stahl et al., 2010), to analyze water storage sensitivity to streamflow (Berghuijs et al., 2016b),
and to estimate continental-scale runoff (Gudmundsson and Seneviratne, 2015). Our study focuses on high15
flows as determined from high quantiles of daily streamflow. These extreme river flows can potentially coincide
with flooding events where water overtops the river channel.

2.1.2. Hydro-meteorological and dynamic vegetation data

We use hydro-meteorological and vegetation-related variables from various sources as potential drivers of high20
river flows (see Table 1). We focus on drivers with a physical link to streamflow. As these datasets are gridded
we are matching the grid cells with the locations of the catchments from which we have streamflow
measurements using the method of the nearest neighbor. Then, time series are obtained from the respective grid
cell and jointly analyzed with the corresponding streamflow observations. The set of considered drivers includes
for example vertically resolved soil moisture, evapotranspiration and leaf area index. The latter is included as a25
proxy for interception, and its daily estimates are calculated by linear interpolation of monthly values to avoid
gaps related to missing daily satellite information due to cloud cover. Further, we take into account precipitation
variability by calculating the ratio between the peak daily precipitation and the cumulative precipitation during
the considered time scale/window (hereafter referred to as distribution of rainfall).
Daily snowmelt is obtained using the Simple Water Balance Model (Orth and Seneviratne, 2015), using30
observation-based forcing data Therein, snowmelt is estimated as water equivalent using a degree-day approach;
whenever precipitation occurs in combination with a temperature below threshold, snow is formed and stored
until temperatures rise above the threshold where the snow is assumed to melt proportionally to the temperature
difference to the threshold (Orth and Seneviratne; 2013, 2015). The model is forced with net radiation from the
ERA-5 dataset (Hersbach et al., 2020) and precipitation and air temperature from the E-OBS dataset. This is35
done for the grid cells corresponding to the considered 436 catchments during the study time period. Calibration
parameter values are used from Fallah et al. (2020) who calibrated the model against streamflow observations.
The data of potential drivers of high flows are mostly considered from grid cells of 0.25˚ spatial resolution such
that they represent an area of approximately 625 km2 which is roughly similar to the mean size of the considered
catchments.40

2.1.3. Static datasets

To attribute the identified spatial patterns of the relevance of the considered drivers, we consider a range of
static data. This includes a characterization of the climate through (i) the long-term mean temperature as inferred
from E-OBS data, and (ii) the aridity index as computed from the ratio of average net solar radiation (in MJ.m-

2.day-1) and unit-adjusted precipitation (in mm.day-1) from the ERA-5 dataset. We further use the tree cover45
fraction which is obtained from the VCF5KYR data product and corresponds to the proportion of the ground
covered by the vertical projection of tree crowns (Song et al., 2018). We also include catchment attributes such
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as basin area and to characterize the terrain we consider mean elevation and slope, which are obtained from a
digital elevation model with an original spatial resolution of 250 m (Amatulli et al., 2018) which we aggregated
to 0.25˚ spatial resolution.

Table 1: Overview of considered drivers of high flow.5

Variable Dataset Type Unit Temporal
resolution

Spatial
resolution

References

Precipitation and
precipitation

variability (see text)

E-OBS
gridded data

(v.20)

Interpolated
from station
observations

mm

daily

0.25°×0.25° Cornes et al.
(2018)

Evapo-
transpiration

Global Land
Evaporation
Amsterdam
Model
(v3.5a)

Model-based mm Martens et
al. (2016)

Snowmelt Simple Water
Balance
Model

Model-based
mm

Orth and
Seneviratne
(2015)

Soil moisture from
multiple depths

(layer 1 : 0 - 7cm ,
layer 2: 7 - 28 cm ,
layer 3: 28 - 100

cm)

European
ReAnalysis 5
(ERA-5)

Reanalysis m3 m-3 Hersbach et
al. (2020)

Leaf Area Index GEOV2-
AVHRR

Derived from
satellite

observations

- monthly
interpolated
to daily

0.5° x 0.5° Verger
(CNES-
Theia ,
2014)

2.2. Methodology

2.2.1. Catchment selection

This study aims to focus on near-natural catchments with no or minor disturbance on river flow due to human10
intervention. We assess this through the reproducibility of streamflow dynamics by a conceptual model. Using
the Simple Water Balance Model (from Orth and Seneviratne; 2013, 2015) and calibration parameters obtained
from Fallah et al. (2020), we obtain modeled runoff for each individual catchment. Then we calculate the level
of agreement between modeled and observed streamflow for each catchment and disregard catchments where
the agreement is weaker than a threshold score for the Nash-Sutcliffe efficiency of 0.36, which is adopted from15
O et al, 2020. We assume that in these catchments the streamflow dynamics are affected by non-natural
processes such as irrigation or other forms of human management. Further, catchments with more than 10% of
missing runoff data are excluded.
As a result, 251 near-natural catchments from 12 countries are selected (Fig. 1). Basin sizes range from 7 to
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3780 km2, however, with only a small number of catchments (23) with a basin size greater than 1000 km2. These
catchments are located across the European continent with fewer samples in the East and the South but
nevertheless spanning a considerable climate gradient.

Figure 1: Locations and climate conditions of the considered near-natural catchments.5

2.2.2. Identification of high flow events

To study potential drivers in generating high flows with different magnitudes, we select high flow events from
daily streamflow records of each catchment which exceed different thresholds. In particular, we consider the10
90th, 95th, 98th, 99th, and 99.5th percentiles of the entire daily streamflow time series of each catchment. For
each threshold, we ensure to select high flows which are independent from one another by considering only the
daily streamflow peaks which are at least one month apart from each other. The number of selected events for
each catchment and percentile threshold and their corresponding magnitudes are shown in Fig. S1.

15

2.2.3. Deriving high flow drivers across time scales

After selecting high flow events, the main drivers of these events are computed for each catchment considering
the variables listed in Table 1.20
First we remove the mean seasonal cycles from both the streamflow and driver data in order to focus on
anomalies. We assume that society and ecosystems in each catchment are adapted to the usual streamflow
evolution (i.e. mean seasonal cycle) and most affected by strong deviations from this. The mean seasonal cycles
are determined for each variable by averaging values from the same day-of-year across all available years (e.g..,
the mean seasonal temperature on the 1st of January corresponds to the average of temperature the 1st of January25
in each individual year between 1984 and 2007). To remove random variations in the computed mean season
cycle, a smoothing function of the calculated seasonal cycle is performed using a centered moving average
including 5 previous and subsequent values to calculate the average at each time step.
A novel aspect of our study is the consideration of different time scales in the determination of relevant high
flow drivers. For this purpose, we average the driver data anomalies across weekly (7 days) and monthly (3030
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days) time windows which are positioned before each high flow event. Results for the daily time scale are
derived using the concurrent driver data at the day of the high flow.

2.2.4. Quantifying the importance of potential drivers of high flows

An overview of our workflow is shown in Fig. 2. For each catchment and each high flow magnitude we consider
all detected daily high flow values together with the corresponding driver anomaly values. This is done5
separately for each of the considered time scales. We evaluate the relevance of each considered driver using the
dredge function from the MuMIn package in the R programming environment (Barton, 2014), which generates
numerous multivariate linear regression models considering all possible combinations of considered drivers to
predict the considered high flows. These models are then ranked according to their prediction performance using
Akaike’s information criterion (AIC) which takes into account the goodness of fit together with the complexity10
(i.e., number of involved drivers) of each model. Then, we select all models of which the difference between the
AIC and the AIC of the best model is less than 4 (as in Denissen et al. 2022). This step ensures that the influence
of co-linearities between drivers on our results is minimized which could otherwise lead to inaccurate
estimations of their relevance; Models with correlated drivers tend to have less beneficial AIC scores as the
overlapping information content of co-varying drivers reduces the model performance normalized by the15
considered number of drivers.

Since drivers are selected such as they would be physically linked to runoff, we disregard regression models
where the slope between runoff and evapotranspiration or leaf area index is positive, as this indicates
confounding effects where e.g. precipitation increases evapotranspiration (and also leaf area index) and runoff at
the same time such that evapotranspiration (and leaf area index) is not an actual driver. If all selected20
multivariate regression models exhibit estimated positive slopes between runoff and evapotranspiration or leaf
area index, we re-compute the multivariate regression analysis for the given catchment without consideration of
evapotranspiration or leaf area index as potential drivers of high flows.
As a next step, from the remaining regression models in each catchment we select models with sufficient
predictive power (adjusted R2 > 0.3) to ensure that the contained drivers can actually explain the high flow25
variability. This also serves as a test of the agreement between the independent streamflow and driver datasets.
From the remaining multivariate regression models in each catchment we determine the most relevant driver.
This is done by computing the average of the high flow variance explained by each driver across regression
models, weighted by the model’s AICs. Then, by comparing the fractions of high flow variance explained by
each driver, we determine the most and second-most relevant drivers in each catchment.30
We further apply an alternative methodology where we compute Spearman correlations between the selected
high flow anomalies and the respective driver anomaly values in each catchment. Also this analysis is done
separately for each considered time scale. The most relevant driver is then determined by the highest correlation
coefficient. Similarly to the other methodology, positive correlations between evapotranspiration and runoff, and
between leaf area index and runoff are not considered.35
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Figure 2: Illustration of our workflow. We use runoff data from selected catchments in conjunction with time series
of potential drivers physically related to runoff. Independent high flow events are identified from the runoff time
series in each catchment, and time series of considered drivers’ anomalies are averaged across different time windows
before each event. Finally, we investigate relationships between the averaged driver values and the high flow5
magnitudes using two independent methodologies.

2.2.5. Attribution analysis

We study the controls of the spatial patterns of the importance of main high flow drivers, namely precipitation,
snow melt and soil moisture. This is done by correlating the driver importances from all catchments with the
considered attribution controls including climate, vegetation and terrain parameters. Thereby, we use partial10
correlations to mitigate the effect of co-linearities between attribution controls and to isolate the individual
effect of each control. For the driver importances we apply a normalization to make them comparable across
catchments by using a ratio of explained variance of the driver and the average R2 (which is the total explained
variance) of all finally considered regression models for each catchment. In the case of soil moisture, we add the
explained fractions of high flow variance from all three layers.15

20
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3. Results and discussion

3.1. Determining dominant drivers of high flows across time scales and flow magnitudes

Figure 3: Illustration of the most influential driver of high flows in each catchment as shown through color-coding. In5
each catchment all independent high flow events exceeding the 90th percentile are considered, in the three time scales
(daily, weekly, monthly) that precede the events. Statistics in the legend indicate the number of catchments where
each driver is most influential, and the respective mean fraction of explained high flow variance across these
catchments. Non-significant results correspond to the catchments where the average R² of the models is below 0.3 or
if runoff in all the models has a positive relationship with evapotranspiration or leaf area index.10

Figure 4: Illustration of the second most influential drivers of extreme high flows exceeding the 90th percentile.
Similar format as in Fig. 3.15
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The most relevant drivers of high flows as determined with the multimodel inference approach are shown for
each catchment in Fig. 3. Antecedent precipitation is the most relevant driver in the majority of the considered
European catchments. This is observed for all considered time scales, and most pronounced at the weekly time
scale. This is also demonstrated by the mean explained variance of high flows given in the legend, which varies
between 0.29 and 0.34. Snowmelt is overall the second most relevant driver of high flows, both in terms of the5
number of catchments where it is the most relevant predictor of high flows, and the relatively large explained
fraction of variance of high flows. Snow melt is most relevant in the Alps, the Massif Central in France, and
across (other) uplands of Central Europe, and its importance peaks at the weekly time scale. Catchments where
no main driver could be determined as no regression model was left after all filtering steps (in particular after
the R2> 0.3 filtering) are shown in gray.10
In addition, we also investigate extreme high flows exceeding the 95th, 98th and 99th percentile (Fig. S2). The
results are similar to the findings in Fig. 3 with antecedent precipitation is the most relevant driver of high flows.
However, there are more catchments with most relevant drivers of high flow other than precipitation such that
the diversity of most relevant drivers is overall enhanced towards more extreme high flows. For example, soil
moisture and the distribution of the precipitation across the considered time scale emerge as most relevant15
drivers in some catchments.
Another interesting result is that the explained variance of high flows of the dominant drivers is similar across
time scales. This indicates that studying drivers at different time scales is relevant to understand high flow
dynamics, whereas daily, weekly and monthly time scales are similarly important. Multilayer soil moisture has a
higher explained variance for events of the 99th percentile, suggesting the soil water storage is more relevant for20
the more extreme high flow generation.
The spatial patterns of most important drivers in Fig. 3 are confirmed with a methodology based on correlations
between high flows and drivers (see section 2.2.4) as shown in Fig. S3. While the obtained correlations are
highly significant for the results of the 90th percentile high flow threshold, this is less the case for the higher
thresholds as the number of considered high flow events decreases (Fig. S4).25
Although the most important high flow driver, antecedent precipitation, is consistent across many catchments,
high flow magnitudes, and time windows, the second-most important drivers are generally more diverse, as
illustrated in Fig. 4. This diversity is even increasing towards more extreme events (Fig. S5). This indicates the
difficulty to understand extreme high flow generation, and highlights the essentials of considering multifaceted
controls of high flow generation. Interestingly, Figure 4 also shows that evapotranspiration and surface soil30
moisture become more relevant towards longer time scales while deep soil moisture gets less relevant. In the
case of evapotranspiration this is probably related to the fact that this becomes larger when aggregated across
longer time periods. The shift in the relevance of shallow versus deeper soil moisture with increasing time scales
could be explained with stronger precipitation events at short time scales which might saturate the surface soil
such that the soil moisture in deeper layers becomes more relevant to buffer or enhance the resulting streamflow.35
By contrast, at longer time scales the precipitation is typically distributed to several events which might not be
sufficient to saturate the surface soil such that this layer then determines more which fraction of the precipitation
contributes to streamflow.
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Figure 5: Summary of our results. Box colors indicate the most influential drivers across time scales and high flow
magnitudes, as determined from the number of catchments where a particular driver is found to be most influential.
Second most relevant drivers are shown within each box through color-coding. Results shown for (a) multi-model
regression inference methodology and (b) an independent correlation analysis. Note that results for the 99.5th5
percentile could not be computed for the multi-model inference approach due to the low number of such extreme
high flows.

Next, we summarize the results of the most and second-most relevant drivers of high flows across time scales
and high flow magnitudes in Fig. 5. Results are shown for both considered methodologies of determining the10
most relevant high flow drivers. Both methods demonstrate that antecedent precipitation is the dominant driver
of high flows across all considered time scales and flow magnitudes. Snowmelt is overall the second most
important driver. Note that as soil moisture layers are considered separately the overall relevance of soil
moisture might be underestimated in Fig. 5. However, the results in Fig. 3 and S3 in terms of the number of
catchments where snow melt or any soil moisture layer is the most relevant high flow driver do not indicate a15
strong bias in the results of Figure 5.
The correlation analysis generally supports the multi-model inference results, even though soil moisture is found
as a second-most important driver for many high flow magnitudes at the daily time scale instead of snowmelt.
The correlation analysis allows to compute results for very extreme high flows exceeding the 99.5th percentile
while the multimodel inference method does not detect any suitable regression models which can be fitted for20
such few remaining high flow events in most catchments. For such extreme high flows the distribution of
rainfall and soil moisture become more relevant in a greater number of catchments, even though still less
catchments where precipitation is found to be most relevant. These results are, however, not statistically
significant due to the low number of considered extreme high flows. Our results therefore confirm previous
studies which have demonstrated that river floods are usually generated by the interactions between event25
precipitation, antecedent soil wetness, and snowmelt (Merz and Blöschl, 2003; Tarasova et al., 2019). The
current study additionally shows that a multitude of drivers other than precipitation become increasingly
relevant towards more extreme high flows.

30
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3.2. Attribution analysis

5

Figure 6: Attributing the spatial patterns of the relevance of considered drivers of high flows to climate, vegetation
and terrain characteristics for high flow events exceeding the 90th percentile. Vertical axis corresponds to the partial
correlation between driver relevance and each attribution variable. Results are shown for the considered different
time scales. Stars on top of the bars indicate statistically significant partial correlations (** : p-value <0.05 , *** : p-10
value < 0.005).

We furthermore study the controls of the spatial variations of the relevance of main high flow drivers.
Figure S6 shows the relevance of precipitation in each catchment, soil moisture and snowmelt.
As described in section 2.2.5 we consider climate, basin and terrain attributes as potential controls in this15
context. Figure 6 provides the results and shows that tree over fraction is overall most important in explaining
spatial patterns of the relevance of precipitation, snowmelt and soil moisture for high flows. It remains also an
important control when considering only the tree cover fraction, the elevation and the slope (Fig. S7).
In more tree-covered regions the relevance of precipitation for causing high flows tends to increase while that of
snowmelt and soil moisture tends to decrease. This might be related to litterfall which impedes the infiltration of20
water into soils and hence increases the fraction of precipitation contributing directly to streamflow, while the
contributions of soil moisture and snowmelt are decreased. We find an increased relevance of precipitation in
warmer catchments which is probably related to the higher rain-to-snow ratio. By contrast the results for slope
and elevation are hard to interpret and further research, potentially with more diverse catchments offering more
variability in terms of slope and elevation allowing to derive more informative and significant results.25
In general, the results for precipitation are opposite to those of snowmelt and soil moisture, indicating that
whenever a considered control favors precipitation this comes at the expense of the relevance of snowmelt and
soil moisture, and vice versa.
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3.3. Limitations

While we test the robustness of our results with two independent methods, the main findings have to be seen in
the light of some limitations related to our data and methodology. First, there is a spatial mismatch between the
catchment area and the grid cells from which the driver data is derived. While there is an overlap between the5
different regions, the time series do not exactly represent the same areas. However, in most catchments the
employed driver data corresponds sufficiently well with the observed high flow dynamics as tested with the R2

threshold in the multimodel inference approach such that there seems to be a sufficient level of agreement
between the considered data streams. This could in principle be different for smaller versus larger catchments
but the attribution analysis indicated that the results do not vary according to catchment size.10
Second, it is possible that trends in the considered data streams could influence our results and induce shifts in
the relevance of high flow drivers over time. However, the visual inspection of the streamflow time series in
many catchments does not indicate trends in our target variable such that this should not affect our results.
Third, even though we are considering a comprehensive set of potential drivers of high river flows there might
be more influential drivers representing alternative processes which are not captured by our analysis. This15
applies for example to groundwater which we could not include here due to a lack of sufficient data.
Finally, the attribution analysis is somewhat limited by the fact that only European catchments are considered
here such that the spatial variability of climate, vegetation and terrain characteristics is rather low. Future
research focusing on larger sets of catchments with more diversity in these aspects could provide more
significant insights into the spatial variations of the relevance of main flood drivers.20

4. Conclusion

This study provides a quantitative mapping of the importance of drivers of high river flow in near-natural
European catchments. We consider a comprehensive set of drivers, and use a powerful statistical approach based
on multiple multivariate regressions to determine their relative importance across time scales and high flow25
magnitudes. In agreement with previous knowledge and literature, we find that antecedent precipitation
anomalies are the most important driver of high flows in most catchments. In some other catchments snowmelt
and soil moisture are found to be the most relevant drivers. Moving beyond the state of the art we find a
remarkable diversity of second-most important drivers across Europe. This includes vegetation-related drivers
such as evapotranspiration. Overall, observed daily high flow dynamics can be explained similarly well using30
drivers from the daily, weekly and monthly time scales. This indicates that mechanisms acting at different time
scales contribute similarly and jointly to high flow events. While the most important drivers are similar across
time scales, we find interesting variations for the second-most relevant drivers where evapotranspiration and
surface soil moisture become more relevant towards longer time scales while deep soil moisture gets less
relevant. Furthermore, for more extreme high flows we find a greater diversity of most important drivers across35
the considered catchments. Therefore, while moderate high flows are strongly associated with antecedent
precipitation, the most extreme events can only be fully understood when considering a comprehensive selection
of drivers. The spatial variations in the relevance of considered high flow drivers can be attributed to vegetation
and terrain characteristics of the catchments. Our findings thereby illustrate that it is beneficial for flood
monitoring and prediction to jointly consider several time scales and a comprehensive set of drivers physically40
related to streamflow dynamics. This way, identifying the relative importance of high flow generating
mechanisms can reveal regional patterns of causes of floods in Europe and inform future model development.
More recent model developments have focused on incorporating more processes into models. Our results based
on multiple independent datasets provide an improved benchmark for evaluating all relevant hydrological
processes in the model in a comprehensive manner. Further, given the relatively weak link between future45
precipitation and runoff changes, increasing attention has been paid to non-precipitation flood drivers (Brunner
et al. 2021a). In this context, the framework introduced in this study provides a starting point to a data-driven
investigation of possible future changes in high flow generation drivers and mechanisms globally to efficiently
advance flood adaptation and resilience.
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