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Abstract 15 

Rock moisture, which is considered as a hidden component of the terrestrial hydrological cycle, has received 

little attention. In this study, the frequency-domain reflectometry (FDR) is used to obtain fluctuating rock water 

content in a sandstone cave of the Yungang Grottoes, China. We identified two major cycles of rock moisture 

addition and depletion, one in the summer and the other in the winter. By using the LSTM (Long Short-Term 

Memory) network and the SHAP (SHapley Additive exPlanations) method, relative humidity, air temperature and 20 

wall temperature are found to have contributions to rock moisture in the summer. By using vapor concentration 

and the difference between dew point temperature and wall temperature as two input variables of the LSTM 

network, the predicted rock water content has a very good agreement with the measured rock water content, with 

the Nash–Sutcliffe efficiency coefficient (NSE) being as high as 0.978. Because the two new input variables are 

factors directly controlling vapor condensation, they provide informative priors to the deep learning model and 25 

improved prediction performance. After identifying the causal factors of rock water content fluctuations, we also 

identified the mechanism controlling the multi diurnal vapor condensation. The increased vapor concentration 
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accompanying a precipitation event leads to transport of water vapor into rock pores, which is subsequently 

adsorbed onto the surface of rock pores and then condensed into liquid water. With the aid of the deep learning 

model, this study increases understanding of sources of water in caves, which would contribute to future strategies 30 

of alleviating weathering in caves.  

 

1 Introduction  

Water movement in the unsaturated zone is a fundamental component of the hydrologic cycle regulating the 

atmosphere, the hydrosphere and the lithosphere (Arora et al., 2019; Brubaker and Entekhabi, 1996; Lu and Likos, 35 

2004; Tindall et al., 1998). Although there are abundant studies on water movement in various scales of unsaturated 

soils (Larson et al., 2022; Schoups et al., 2005; Vereecken et al., 2014; Vinnikov et al., 1996; Yu et al., 2016), much 

less attention has been paid to water in unsaturated rocks. In a recent study, Rempe and Dietrich (2018) defined 

water stored in unsaturated rocks as rock moisture and pointed out that rock moisture is a hidden component of the 

terrestrial hydrologic cycle critical to ecosystems and weathering processes. Due to the ubiquitous occurrence of 40 

precipitation infiltration through unsaturated rocks, infiltrating precipitation was found to be the main source of 

rock moisture (Rempe et al., 2018; Sass, 2005). In fact, as early as in the fourth century BC, Aristotle (384-322 BC) 

hypothesized that atmospheric water vapor could penetrate into rocks in caves with low temperature and condense 

into liquid water (after Meinzer, 1934). Due to occurrence of hidden water in the form of rock moisture, many stone 

heritages inside caves have suffered from weathering (Auler and Smart, 2004; Camuffo, 1998; de Freitas et al., 45 

2006; Guerriera et al., 2019; Linan et al., 2021). However, up to now, there is no observations of rock moisture in 

caves, which hampers a comprehensive understanding of the source and control factors of rock moisture.  

By using such techniques as downhole neutron probe (Rempe and Dietrich, 2018), time domain reflectometry 

(TDR) (Salve et al., 2012) and nuclear magnetic resonance (NMR) (Schmidt and Rempe, 2020), the responses of 

rock moisture to precipitation were identified in some small catchments. However, these devices, which are usually 50 

long in length (the lengths of TDR and neutron probe are larger than 30 mm) or large in diameter (the diameter of 

NMR is around 70 mm), are not suitable to be used in stone heritages. The frequency domain reflectometry (FDR), 

which has the advantage of small in volume (the length is less than 60 mm), has been widely used to characterize 

the temporal variability of soil moisture (Irmak and Irmak, 2005; Li et al., 2020; Xie et al., 2021; Zhang et al., 

2019). Note that both TDR and FDR measure the dielectric constant of porous media, and FDR is less influenced 55 

by temperature (Zhu et al., 2019). In this study, we attempt to use the FDR for monitoring rock moisture in the field 
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for the first time and identify the atmospheric conditions controlling rock moisture in caves not exposed to rain.  

Establishing the cause-and-effect relationship between rock moisture and various atmospheric conditions is 

a feasible approach to identify the source of rock moisture in caves and reveal mechanisms controlling rock 

moisture fluctuations. Machine learning has the ability to acquire knowledge and establish the complicated 60 

nonlinear relationship between variables in a vast domain (Chen et al., 2019a; Jumin et al., 2020). Although 

machine learning models have the ability of high accuracy prediction, they are notorious for being a black-box 

model. Lundberg and Lee (2017) proposed the SHAP (SHapley Additive exPlanations) values as a unified measure 

of feature importance, which led to a combination of accuracy and interpretability of predictions by machine 

learning models. In almost all applications of machine learning in the field of hydrology, the directly measured 65 

meteorological factors like precipitation, temperature, radiation, humidity and wind speed are used as input 

variables (e.g., Barzegar et al., 2017; Fang et al., 2017; Gao et al., 2020; Lees et al., 2021; Liu et al., 2022; Xiang 

et al., 2019; Zhao et al., 2022). In fact, using prior knowledge stemming from physical or mathematical 

understanding as model inputs could improve the performance of a machine learning algorithm, which is called 

physics-informed learning (Karniadakis et al., 2021).  70 

In this study, the classic Long Short-Term Memory (LSTM) network, which is deep learning model, is 

combined with the SHAP values to predict rock moisture and evaluate the relative importance of four directly 

measured variables (precipitation, relative humidity, air temperature and wall temperature). After excluding the 

possible control by precipitation, based on the physics controlling vapor condensation, two new variables derived 

from relative humidity, air temperature and wall temperature are used as inputs of the LSTM network, which not 75 

only leads to improved prediction performance, but also improve understanding of source of water in caves.  

2 Study site and field monitoring 

2.1. Study site  

The Yungang Grottoes (40°07' N, 113°08' E), which are located in Datong, Shanxi Province, China, were 

declared World Heritage Site by the UNESCO in 2001 (http://whc.unesco.org/en/list/1039). According to 80 

meteorological data in recent 20 years in the Datong city (data from The China Meteorological Data Service Center, 

http: //data.cma.cn/en), the site has a semi-arid climate, with an annual average precipitation of 393 mm and an 

annual average pan evaporation of 1243 mm. The precipitation in the rainy season from June to September accounts 

for 73% of the annual precipitation. The annual average temperature is 8 ℃, the average temperature in summer is 

20.3 ℃, and the average temperature in winter is -8.2 ℃.  85 
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Most statues in the Yungang Grottoes were carved in sandstone caves (Fig. 1a). In the summer, water droplets 

with planar distribution can be occasionally observed on the walls of some caves (Fig. 1b). Although no water 

droplets occur in other sandstone walls, by absorbing water, the high rock moisture leads to slight changes in the 

color of some walls. These different forms of water are responsible for weathering of the statues, however, the 

sources of these forms of water remains controversial. Previous studies suggested that the possible sources of water 90 

in caves include infiltrating precipitation through the overlying thick unsaturated zone (Wang et al., 2012) and 

condensation of water vapor onto walls (Cao et al., 2005; Huang, 2008; Huang, 2010).  

 

Figure 1. (a) Some caves and statues in the Yungang Grottoes; (b) The occurrence (b1-b3) and disappearance (b4) 

of water droplets in Cave #5 of the Yungang Grottoes in the summer of 2021. 95 
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2.2. Monitoring of rock moisture and atmospheric conditions 

To monitor variations of rock moisture in the shallow part of a cave wall, a FDR-based ECH2O EC-5 sensor 

(produced by DECAGON, USA) was installed at 3-8 cm inside the north wall of Cave #9 (Fig. 2). Due to the 

difficulty of calibrating the actual water content in the field, the apparent rock water content measured by the sensor 

is directly used in the current study. As reported in previous experimental studies (Mollo and Greco, 2011; Sakaki 100 

and Rajaram, 2005), there is a good linear relationship between actual rock water content and rock moisture 

transformed from dielectric constant. Because the purpose of the current study to identify the source of rock 

moisture addition by establishing the relationship between rock moisture and atmospheric conditions, the relative 

changes of rock water content is more important than the actual value of rock water content. Therefore, direct use 

of apparent rock water content does not influence the results of our study, and the apparent rock water content is 105 

directly called rock water content. 

Air temperature (Ta) and air relative humidity (RH) are simultaneously monitored near the monitoring site 

of rock moisture (Fig. 2). The wall temperature is also monitored to analyze whether the wall meets the condition 

for condensation. Moreover, hourly precipitation is available from a meteorological station outside the cave. 

 110 

Figure 2. A photo showing the arrangements of sensors for rock moisture, wall temperature, air temperature and 

relative humidity in the north wall of Cave #9 
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3 Methods  

3.1 Long short-term memory (LSTM) network  

The LSTM network is an improved variant of the conventional Recurrent Neural Network (RNN) and has 115 

the same fundamental framework as the conventional RNN. Therefore, we first give a brief introduction to the 

conventional RNN. As shown in Fig. 3, in the RNN, there is an input layer, a hidden layer and an output layer. xt is 

the input vector at time step t, ht is the hidden state at time step t determined by both the input vector xt at time step 

t and the hidden state (ht-1) at time step t-1 (Zhao et al., 2017), and opt is the output of the RNN at time step t. 

Mathematically, the relationship between the three layers can be written as: 120 

    1t t t hh = t a n h U x + W h + b
                         (1) 

    t t oo p = V h b
                                (2) 

where tanh is the activation function which means the hyperbolic tangent performs nonlinear transformations of 

the inputs, U, W and V are the network weight matrices for input-to-hidden, hidden-to-hidden and hidden-to-output 

connections, respectively, bo and bh are bias vectors. In this study, the open-source framework TensorFlow (version 125 

1.14.0) written in Python 3.7.6 is used to build and train the LSTM model. 

 

Figure 3. The structure of the Recurrent Neural Network (RNN) (Modified from Hopfield, 1982). 

 

When the time sequence is too long, the RNN is not sufficiently efficient to learn because of vanishing 130 

gradient and exploding gradient problems (Bengio, 1994; Hochreiter and Schmidhuber, 1997). To solve such 

problems, Hochreiter and Schmidhuber (1997) proposed an improved variant of RNN whose hidden layer can 

capture the correlation within time series in both short and long term. This improved variant was named the LSTM 
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network, and its hidden layer was called the LSTM cell. As shown in Fig. 4, a LSTM cell has three gates, including 

a forget gate, an input gate and an output gate, to maintain and adjust its cell state ct (also called memory) and 135 

hidden state ht. The forget gate determines what information should be discarded from the cell state, the input gate 

specifies what new information need be stored in the cell state, and the output gate determines what information 

from the cell state ct should be passed to the next step (Gao et al., 2020; Fischer and Krauss, 2018; Lipton et al., 

2015). Note that in the input gate, the cell state is determined simultaneously by the the sigmoid activation function 

which determines the weights of the information and the tanh activation function which eliminates the bias of the 140 

network, the latter of which is termed abstract cell state.  

 

Figure 4. The structure of the LSTM cell (Modified from Hochreiter and Schmidhuber, 1997). 

 

The formulas of the three gates, abstract cell state, cell state and hidden state in the LSTM cell are shown as 145 

follows: 

(forget gate)          
 1t fx t fh t ff = W x +W h +b 

                (3) 

(input gate)           
 1t i x t i h t ii = W x + W h + b                    (4) 

(output gate)          
 1t ox t oh t oo = W x +W h +b                 (5) 

(abstract cell state)     1( )t cx t ch t cc = tanh W x +W h +b
                   (6) 150 

(cell state)            1t t t t tc = f c i c
                         (7) 

(hidden state)         t t th = o t a n h c
                          (8) 

where it, ft and ot are the vectors of input, forget and output gates at time step t, respectively, all of which have the 
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same sizes as ct and ht, σ is the logistic sigmoidal activation function, c̃t is the vector of abstract cell state at time 

step t, ⊙ is element wise multiplication of two vectors. Similar to RNN, Wix, Wih, Wox, Woh, Wcx and Wch are the 155 

matrices for different connections in the network, bi, bo and bc are bias vectors. In this study, the open-source 

framework TensorFlow (version 1.14.0) written in Python 3.7.6 is used to build and train the LSTM model. 

Although purely data-driven models may have a high accuracy of prediction, most machine learning models 

cannot extract interpretable information and knowledge from this data deluge (Karniadakis et al., 2021). The 

performance of machine learning models could be improved through providing physical prior knowledge. In this 160 

study, we simply integrate physics controlling vapor condensation into the input variables to improve the 

performance of the LSTM model. 

3.2 Model interpretation and evaluation 

To interpret the performance of a machine model, Lundberg and Lee (2017) proposed the SHAP (SHapley 

Additive exPlanations) explanation method, which is based on game theory (Štrumbelj and Kononenko, 2014). 165 

The Shapely value of every input variable represents the contribution of it on the prediction, and the importance of 

each input variable is clarified by comparing model performances with and without it. The formula for calculation 

of the Shapely value is 

i

! 1 !

!S F i

S F S
v S i v S

n
                        (9) 

where ϕi is the contribution of variable i; F is the set of all input variables; v(S∪{i}) is the result of a model trained 170 

with the variable i, and v(S) is the result without the variable i, so the difference between them represents the effect 

of feature i on the model prediction. This method requires retraining the model on all feature subsets S ⊆F (Shapley, 

1953). 

To assess the accuracy of prediction by the LSTM network, we use the statistical metrics of Nash–Sutcliffe 

efficiency coefficient (NSE), mean absolute error (MAE) and root mean squared error (RMSE), all of which are 175 

widely used in the literature. NSE is the ratio of the sum of the squares of the regression to the total sum of the 

squares, which reflects the linear fit between the predictions and observations. The closer the value is to 1, the 

better the linear fit. The expression of NSE is 
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where N is the number of data, and yPred, y, and ͞y are the predicted, observed, and mean observed value, respectively. 180 
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MAE is the mean of the distance between the predicted and the observations, whereas RMSE is the square root of 

the mean of the square of the deviation between the predicted and the observations. The expressions of MAE and 

RMSE are 

=1

1
= -

N

Pred

i

MAE y y
N


                                   (11) 
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1
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N

Pred

i
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N 

 
                               (12) 185 

4 Results and discussion 

4.1 The seasonal variation of rock moisture and atmospheric conditions  

In the north wall of Cave #9, although there is no obvious occurrence of liquid water throughout the year, 

there is a clear trend of seasonal variation in rock water content (Fig. 5). From April to May, the rock water content 

is relatively stable and maintains at around 0.013 cm3/ cm3. From June to September, which correspond to the rainy 190 

season with high relative humidity and high air temperature, there is a cycle of significant addition and depletion 

of rock moisture. From October to December, there is a trend of gradual decrease in rock water content. The cycles 

of precipitation, relative humidity, air temperature and wall temperature from spring to early winter have quite 

similar trends as the cycle of rock water content, indicating that they are possible environmental conditions leading 

to the fluctuating rock water content.  195 

 

Figure 5. The temporal variations of rock water content (θ), air relative humidity (RH), air temperature (Ta), 

precipitation (P) and wall temperature (Tw). The two periods in yellow correspond to the summer period with high 

temperature and high humidity, whereas the two periods in green correspond to the fluctuation of rock moisture 

caused by freezing-thawing.  200 
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In the summer of 2021, the rock water content has a sharp increase since 9 July, reaches a maximum value 

equaling 0.029 cm3/ cm3 on 17 July, and is maintained at relatively high values until 28 July. The high rock water 

content indicates that there are atmospheric conditions responsible for water infiltration or condensation of water 

vapor. Note that this period corresponds to the period with occurrence of water droplets in Cave #5 as shown in 205 

Fig. 1b1-b3. Although there is no water droplet in Cave #9, the color of the sandstone changes slightly, indicating 

that a slight change in the color of sandstone is a result of the fluctuating rock water content. Therefore, we believe 

that the rock water content measured by FDR reflects the actual change of water content in the rock.  

From mid December in 2020 to the end of January in 2021, and from late December in 2021 to the end of 

February in 2022, there are also significant fluctuations of rock water content (Fig. 5). This pattern of fluctuating 210 

rock water content is a direct of freezing-thawing, which can be confirmed by the negative wall temperature. At 

the beginning of the freezing-thawing cycle, there is a trend of increasing rock water content around the sensor due 

to freezing-induced liquid water migration towards the wall surface with the lowest temperature. By the end of the 

freezing period, the rock water content reaches a minimum value of the year because most liquid water has been 

transformed into ice. In the two years, the minimum liquid water content is 0.009 cm3/ cm3 (on 16 January 2021) 215 

and 0.010 cm3/ cm3 (on 25 February 2022), respectively. In the thawing stage, there is a trend of increasing liquid 

water content.  

The pattern of freezing-thawing-induced rock water content fluctuations is similar to that of freezing-

thawing-induced soil water content fluctuations (Deprez et al., 2020; Matsuoka and Murton, 2008; Sun and Scherer, 

2010; Xie et al., 2021; Yu et al., 2018), demonstrating that the FDR technique is very sensitive to liquid water 220 

content in sandstone and is suitable to measure rock moisture. The fluctuating rock water content during the 

freezing-thawing cycle also has implications for understanding weathering processes. The decreasing low liquid 

water content induced by freezing indicates that rock moisture in spring and autumn belongs to movable bound 

water that could be responsible for chemical weathering. Moreover, the freezing of accumulated liquid water near 

the wall surface might cause physical weathering.  225 

4.2 The performance of LSTM model with two different schemes  

In the rainy season, as we pointed out in 4.1, precipitation, relative humidity, air temperature and wall 

temperature have quite similar trends of seasonal variation as apparent rock moisture. Apparently, they are all 

possible factors determining the fluctuating apparent rock moisture. Therefore, in 4.2.1, we first use all of them as 

input variables (scheme #1) of the LSTM model to predict rock water content, and use the SHAP values to evaluate 230 
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the contribution of each input variable. After excluding precipitation whose mean |SHAP value| equals 0, in 4.2.2, 

we use two new parameters (vapor concentration, dew point temperature minus wall temperature) calculated from 

relative humidity, air temperature and wall temperature as input variables (scheme #2) of the LSTM model to 

predict apparent rock moisture.  

Deep learning models require a large amount of data for training, as well as data sets with a longtime span 235 

to ensure the mastery of complete data features. Because the period from 1 June to 1 October has the most 

significant trends of rock moisture addition and depletion, the hourly data during this period in the year 2020 are 

used to construct the training set, whereas the hourly data in the year 2021 are used to construct the test set.  

4.2.1 The predicted results based on directly monitored variables 

By using relative humidity, air temperature, precipitation and wall temperature as model input variables, 240 

there is a fairly good match between the predicted and measured rock water content, with similar patterns of 

fluctuations (Fig. 6a). Although there is obvious underestimation of rock water content in mid and late July, and 

slight underestimation or overestimation in other months, the NSE is as high as 0.958, indicating that the fluctuating 

relative humidity, air temperature, precipitation and wall temperature can capture the major patterns of fluctuating 

rock water content. 245 

 

Figure 6. The predicted and measured rock water content obtained by two schemes. (a) Scheme #1 using four 

directly measured variables; (b) Scheme #2 using two calculated variables controlling vapor condensation. Also 

shown are NSE of the whole time series, MAE and RMSE of three different stages.  
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Fig. 7a shows the mean absolute SHAP value of each input variable, which represents the relative importance 250 

of each variable for the prediction. The mean absolute SHAP values of air relative humidity, air temperature, wall 

temperature, rock water content at previous time step and precipitation are 0.0087, 0.0032, 0.0018, 0.0004 and 0, 

respectively. Therefore, precipitation has no direct contribution to rock moisture in caves, and we infer that vapor 

condensation should be the source of rock moisture in caves. 

 255 

Figure 7. The relative importance of each input variable in the two schemes with different input variables. (a) 

Scheme #1 using four directly measured variables; (b) Scheme #2 using two calculated variables controlling vapor 

condensation. Note that rock water content at previous step (θ') also has contribution to prediction.  

 

4.2.2 The prediction results based on variables controlling vapor condensation 260 

Based on the SHAP values of scheme #1, precipitation can be excluded as an input variable for the LSTM 

network. Among the three directly monitored variables that have contributions to rock water content, air relative 

humidity and air temperature determines the vapor concentration and the dew point temperature (Nguyen et al., 

2014), and whether the wall temperature is below the dew point temperature determines whether vapor 

condensation could occur (Fernández-Cortés et al., 2006; Gabrovšek et al., 2010; Li et al., 2021). Because water 265 

vapor is the direct source of condensation water and whether the wall temperature is below the dew point 
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temperature is the precondition of condensation, we use vapor concentration and dew point temperature minus wall 

temperature as two input variables, both of which are direct variables controlling vapor condensation.  

Vapor concentration and dew point temperature are both functions of actual vapor pressure, which is 

determined by air temperature, saturated vapor pressure and relative humidity. For air with a temperature of T (K), 270 

the formula for calculating saturated vapor pressure and actual vapor pressure are (Lawrence, 2002; Lu, 2004):  

v,sat

273.2
0.611exp 17.27

36

T
u

T

 
  

                           （13） 

v v,satu u RH 
                                 （14） 

where uv,sat is the saturation vapor pressure (kPa), RH is the relative humidity of air (%), and uv is the actual 

vapor pressure (kPa). After obtaining uv, the vapor concentration, Cv (g/m3), and the dew point temperature, Td (K), 275 

can be calculated as (Lu, 2004)    

v
v=217

273.15

u
C

T


                             （15） 

 

 
v

d

v

36ln 4700

ln 16.78

u
T

u





                             （16）  

As indicated in Equation 16, a higher water vapor content in the air, uv, corresponds to a higher dew point 

temperature, thus a higher possibility of condensation at the wall. Fig. 8 shows that the patterns of fluctuating rock 280 

water content, vapor concentration and difference between dew point temperature and wall temperature (denoted 

as Td-Tw hereafter) in the whole non-freezing period are quite similar. Moreover, we find the period with a positive 

Td-Tw has a good correspondence with the period with a high level of rock moisture. 

 

Figure 8. The fluctuating apparent rock moisture (θ), vapor concentration (Cv), and the difference between dew 285 

point temperature and wall temperature (Td-Tw). The zones in purple represents the periods with positive Td-Tw and 

high rock moisture. 
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In scheme #2, by using the two new variables as input of the LSTM model, the mean absolute SHAP values 

of Td-Tw and vapor concentration are 0.0217 and 0.0100, respectively (Fig. 7b), indicating that both variables have 

significant contributions to rock moisture. Moreover, the NSE of predicted rock moisture is further increased to 290 

0.978 (Fig. 6b). Although the prediction still underestimates rock water content from mid July to the end of July, 

the MAE reduced from 0.245 in scheme #1 to 0.186 in scheme #2, and RMSE reduced from 0.01416 in scheme #1 

to 0.01050 in scheme #2. In the other two time durations, the MAE and RMSE of scheme #2 also decrease obviously. 

Therefore, scheme #2 has much better performance of prediction, showing that using physics-informed variables 

would improve accuracy of prediction.  295 

4.3 The mechanism of water vapor condensation  

As we illustrated in 4.2, precipitation is not directly responsible for rock moisture fluctuations, but other 

atmospheric conditions controlling vapor concentration and the condition of vapor condensation are directly 

responsible for rock moisture fluctuations in the cave. In fact, vapor concentration fluctuations are more or less 

related to precipitation events. As shown in Fig. 9, the vapor concentration usually begins to rise prior to the 300 

occurrence of a precipitation event, and declines under the control of solar radiation after a precipitation event. 

Under the control of convection and diffusion, the increased water vapor in the air could be transported into 

porous media. When the sandstone is dry, water vapor can be adsorbed onto the surface of the rock pores, forming 

an adsorbed layer as thin water film; as curved menisci begin to form under increasing relative humidity, capillary 

condensation occurs in the rock pores (Broekhoff, 1969; Lu and Likos, 2004; Xu et al., 1998). Both adsorption and 305 

capillary condensation would lead to rock moisture addition. As shown in Fig. 9, in the summer of 2021, there are 

10 stages with obvious rock moisture additions. In the majority of the 10 stages, there are lagged responses of rock 

moisture additions to rising vapor concentration in the air, probably due to time required for vapor convection and 

diffusion. 

 Among the 10 stages, the magnitude of rock moisture addition is controlled by Td-Tw. In stages IV, V, VII, 310 

VIII, IX and X, because the dew point temperature seldom exceeds the wall temperature, the magnitudes of rock 

moisture additions are relatively small. In stages I, II, III and VI, there are long durations with dew point 

temperature being higher than the wall temperature, causing large magnitudes of rock moisture addition. However, 

at the beginning of these four stages, even if dew point temperature is still lower than the wall temperature, 

increasing vapor concentration has resulted in rock moisture addition. Therefore, although a negative Td-Tw does 315 

not exclude the possible occurrence of capillary condensation, a positive Td-Tw does promote capillary 
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condensation.  

 Following the 10 stages of rock moisture additions, we find rock moisture depletion is very sensitive to 

decreasing vapor concentration. Moreover, in stage III with very high rock water content, a slight decrease in vapor 

concentration results in a slight decrease in rock water content. Therefore, we believe that rock water content 320 

measured by the FDR technique is sensitive enough to fluctuating vapor concentrations and can be applied in future 

rock moisture monitoring in other settings.  

 

Figure. 9 Plots showing the responses of rock water content (θ) to precipitation (P), vapor concentration (Cv), dew 

point temperature (Td) and wall temperature (Tw) in the summer of 2021. The zones in yellow have increasing rock 325 

water content, and zones in red have increasing rock water content as well as positive Td-Tw.  

 

5 Conclusion  

The source of water in the sandstones caves in the Yungang Grottoes responsible for weathering was a long-

standing unresolved scientific question. In this study, we use the FDR to monitor the rock moisture in a cave, which 330 

shows clear rock moisture addition-depletions cycles due to various controlling mechanisms. By using relative 

humidity, air temperature, precipitation and wall temperature as the input variables of the LSTM network, the 

predicted rock moisture well reproduced the pattern of monitored rock moisture fluctuations. Moreover, we find 

that precipitation has no contribution, but all other three variables have contribution to the fluctuating rock moisture. 
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Because relative humidity, air temperature and wall temperature belong to factors controlling vapor condensation, 335 

this scheme of deep learning reveals that vapor condensation instead of precipitation is the source of rock moisture 

in the cave. 

By calculating vapor concentration and dew point temperature from air temperature and relative humidity, 

we proposed two new variables, vapor concentration and the difference between dew point temperature and wall 

temperature as input variables of the LSTM network. Because the two variables are direct control factors of vapor 340 

condensation, this scheme leads to a much better accuracy of prediction, confirming that rock moisture in the cave 

is derived from vapor condensation. We also analyzed how precipitation events control vapor concentration, thus 

indirectly control vapor condensation inside the rock. 

By examining the sensitiveness of rock moisture to vapor concentration and the difference between dew 

point temperature and wall temperature, this study demonstrates for the first time that the FDR technique is an 345 

effective means for monitoring rock moisture. By using variables directly controlling vapor condensation as the 

input variables of the LSTM model, this study shows that “physics-informed” deep learning can improve prediction 

performance. Moreover, by identifying how vapor condensation controls rock moisture and occasional occurrence 

of water droplets in the study area, this study contributes to the understanding of sources of water in caves, which 

is important in providing scientific-based proofs to propose future strategies for alleviating weathering of stone 350 

heritages.   
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