
 

 1

Physics-informed machine learning for 

understanding rock moisture dynamics in a 

sandstone cave 

 
Kai-Gao Ouyang1, Xiao-Wei Jiang1,2*, Gang Mei3, Hong-Bin Yan4,  5 

Ran Niu1, Li Wan1, Yijian Zeng5 

1. MWR Key Laboratory of Groundwater Conservation, China University of Geosciences, Beijing, China 

2. MNR Key Laboratory of Shallow Geothermal Energy, China University of Geosciences, Beijing, China 

3. School of Engineering and Technology, China University of Geosciences, Beijing, China 

4. Yungang Research Institute, Datong, Shanxi, China 10 

5. Department of Water Resources, ITC Faculty of Geo-Information Science and Earth Observation, University of 

Twente, Enschede, the Netherlands 

*Correspondence: Xiao-Wei Jiang (jxw@cugb.edu.cn) 

 

Abstract 15 

Rock moisture, which is a hidden component of the terrestrial hydrological cycle, has received little attention. 

In this study, the frequency-domain reflectometry is used to monitor fluctuating rock water content (RWC) in a 

sandstone cave of the Yungang Grottoes, China. We identified two major cycles of rock moisture addition and 

depletion, one in summer affected by air vapor concentration, and the other in winter caused by freezing-thawing. 

For the summer-time RWC, by using the Long Short-Term Memory (LSTM) network and the SHapley Additive 20 

exPlanations (SHAP) method, we find relative humidity, air temperature and wall temperature have contributions 

to rock moisture and there is a good match between predicted and measured RWC using the three variables as 

model inputs. Moreover, by using summer-time vapor concentration and the difference between dew point 

temperature and wall temperature as input variables of the LSTM network, which belongs to physics-informed 

machine learning, the predicted RWC has a better agreement with the measured RWC, with increased NSE and 25 

decreased MAE and RMSE. After identifying the causal factors of RWC fluctuations, we also identified the 

mechanism controlling the interday fluctuations of vapor condensation. The increased vapor concentration 
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accompanying a precipitation event leads to transport of water vapor into rock pores, which is subsequently 

adsorbed onto the surface of rock pores and then condensed into liquid water. With the aid of the physics-informed 

deep learning model, this study increases understanding of sources of water in caves, which would contribute to 30 

future strategies of alleviating weathering in caves.  

 

1 Introduction  

Water movement in the unsaturated zone is a fundamental component of the hydrologic cycle regulating the 

atmosphere, the hydrosphere and the lithosphere (Arora et al., 2019; Brubaker and Entekhabi, 1996; Lu and Likos, 35 

2004; Tindall et al., 1998). Although there are abundant studies on water movement in various scales of unsaturated 

soils (Larson et al., 2022; Schoups et al., 2005; Vereecken et al., 2014; Vinnikov et al., 1996; Yu et al., 2016), much 

less attention has been paid to water in unsaturated rocks. In a recent study, Rempe and Dietrich (2018) defined 

water stored in unsaturated rocks as rock moisture and pointed out that rock moisture is a hidden component of the 

terrestrial hydrologic cycle critical to ecosystems and weathering processes. Due to the ubiquitous occurrence of 40 

precipitation infiltration through unsaturated rocks, infiltrating precipitation was found to be the main source of 

rock moisture (Rempe et al., 2018; Sass, 2005). In fact, as early as in the fourth century BC, Aristotle (384-322 BC) 

hypothesized that atmospheric water vapor could penetrate into rocks in caves with low temperature and condense 

into liquid water (after Meinzer, 1934). Due to occurrence of hidden water in the form of rock moisture, many stone 

heritages inside caves have suffered from weathering (Auler and Smart, 2004; Camuffo, 1998; de Freitas et al., 45 

2006; Guerriera et al., 2019; Linan et al., 2021). However, up to now, there is no observations of rock moisture in 

caves, which hampers a comprehensive understanding of the source and control factors of rock moisture.  

By using such techniques as downhole neutron probe (Rempe and Dietrich, 2018), time domain reflectometry 

(TDR) (Salve et al., 2012) and nuclear magnetic resonance (NMR) (Schmidt and Rempe, 2020), the responses of 

rock moisture to precipitation were identified in some previous studies. However, these devices are usually long in 50 

length or large in diameter, thus are not suitable to be used in stone heritages. For example, the lengths of neutron 

probes are larger than 300 mm, and the diameter of NMR is around 70 mm. In the recent two decades, the frequency 

domain reflectometry (FDR), has been widely used to characterize the temporal variability of soil moisture (Irmak 

and Irmak, 2005; Xie et al., 2021; Zhang et al., 2019). Because FDR sensors have the advantage of small in volume 

(the length is less than 60 mm), for minimizing disturbance to rocks in heritage sites, we attempt to use the FDR 55 

sensor to monitor rock moisture in a cave with stone carvings.  
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Establishing the cause-and-effect relationship between rock moisture and various atmospheric conditions is 

a feasible approach to identify the source of rock moisture responsible for weathering in caves and to reveal 

mechanisms controlling cycles of rock moisture addition and depletion. Machine learning has the ability to acquire 

knowledge and establish the complicated nonlinear relationship between variables in a vast domain (Chen et al., 60 

2019a; Jumin et al., 2020). Although machine learning models have the ability of high accuracy prediction, they 

are notorious for being a black-box model. Lundberg and Lee (2017) proposed the SHAP (SHapley Additive 

exPlanations) values as a unified measure of feature importance, which led to a combination of accuracy and 

interpretability of predictions by machine learning models. In almost all applications of machine learning in the 

field of hydrology, the directly measured meteorological factors like precipitation, temperature, radiation, humidity 65 

and wind speed are used as input variables (e.g., Barzegar et al., 2017; Fang et al., 2017; Gao et al., 2020; Lees et 

al., 2021; Liu et al., 2022; Xiang et al., 2019; Zhao et al., 2022). In fact, the performance of a machine learning 

algorithm could be improved by using prior knowledge stemming from physical or mathematical understanding as 

model inputs, which is called physics-informed learning (Karniadakis et al., 2021).  

In this study, the Long Short-Term Memory (LSTM) network, which is a classic deep learning model, is 70 

combined with the SHAP values to predict rock moisture and evaluate the relative importance of four directly 

measured variables (precipitation, relative humidity, air temperature and wall temperature). After excluding the 

possible control by precipitation infiltration, based on the physics controlling vapor condensation, two new 

variables derived from relative humidity, air temperature and wall temperature are used as inputs of the LSTM 

network, which not only improves prediction performance, but also leads to improved understanding of source of 75 

water in caves.  

2 Study site and field monitoring 

2.1. Study site  

The Yungang Grottoes (40°07' N, 113°08' E), which are located in Datong, Shanxi Province, China, were 

declared World Heritage Site by the UNESCO in 2001 (http://whc.unesco.org/en/list/1039). According to 80 

meteorological data in recent 20 years (from 2002 to 2021) in the Datong city (data from China Meteorological 

Data Service Center, http: //data.cma.cn/en), the study area has a semi-arid climate, with an annual average 

precipitation of 393 mm and an annual average pan evaporation of 1243 mm. The precipitation in the rainy season 

from June to September accounts for 73% of the annual precipitation. The annual average temperature is 8 ℃, the 

average temperature in summer is 20.3 ℃, and the average temperature in winter is -8.2 ℃.  85 
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Most statues in the Yungang Grottoes were carved in sandstone caves in ~1500 years ago (Fig. 1a). In summer, 

water droplets with planar distribution can be occasionally observed on the walls of some caves (Fig. 1b). Although 

no water droplets occur in other sandstone walls, by absorbing water, the high rock moisture leads to slight changes 

in the color of some walls. Water in the form of either water droplets or rock moisture is responsible for weathering 

of the statues, however, the sources of the two forms of water remain controversial. Previous studies suggested that 90 

the possible source of water in caves include infiltrating precipitation through the overlying thick unsaturated zone 

(Wang et al., 2012) and condensation of water vapor onto walls (Cao et al., 2005). Recent studies reveal that it is 

difficult for precipitation to infiltrate through the silt overlying the sandstone (Mao et al., 2022). 

 

Figure 1. (a) Some caves and statues in the Yungang Grottoes; (b) The occurrence (b1-b3) and disappearance (b4) 95 

of water droplets in Cave #5 of the Yungang Grottoes in summer of 2021. 
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2.2. Monitoring of rock moisture and atmospheric conditions 

To monitor variations of rock moisture in the shallow part of a cave wall, a FDR-based sensor (ECH2O EC-

5, produced by DECAGON, USA) was installed at 3-8 cm inside the north wall of Cave #9 (Fig. 2). Air temperature 

(Ta) and air relative humidity (RH) are simultaneously monitored near the monitoring site of rock moisture (Fig. 100 

2). The wall temperature is also monitored to analyze whether the wall meets the condition for condensation. 

Moreover, hourly precipitation is available from a meteorological station outside the cave. 

To make sure that the sensor is in close proximity to the porous rock, which is crucial to obtain accurate 

measurement, we use fine sand as infilling in the hole for the FDR sensor. Because the FDR sensor is installed 

inside the cave without direct exposure to sunshine, there is limited diurnal fluctuations in wall temperature. 105 

Because there is no correlation between the instantaneous change in temperature and the instantaneous change in 

the FDR reading, the possible influence of fluctuating temperature on rock water content (RWC) can be neglected 

(Fig. S1). As reported in previous experimental studies (Mollo and Greco, 2011; Sakaki and Rajaram, 2005), there 

is a good linear relationship between actual RWC and rock moisture transformed from dielectric constant. 

Considering the difficulty of calibrating the actual water content in the field (Li et al., 2020; Sass,2005), and the 110 

purpose of the current study is to establish the relationship between rock moisture fluctuations and atmospheric 

conditions, the apparent RWC is directly used as RWC. 

 

Figure 2. (a) The arrangements of sensors for rock moisture, wall temperature, air temperature and relative 

humidity in the north wall of Cave #9. (b) A photo showing the installed FDR sensor in Cave #9. 115 
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3 Methods  

3.1 The LSTM network  

The LSTM network is an improved variant of the conventional Recurrent Neural Network (RNN), which is a 

recurrent neural network that is mainly used for modeling sequence data. Because the LSTM network has the same 

fundamental framework as the conventional RNN, we first briefly introduce the structure of RNN. As shown in 120 

Fig. 3, a common RNN model consist of an input layer, a hidden layer and an output layer, where the hidden layer 

is used to capture features of sequence data by RNN cells. xt is the input vector at time step t, ht is the hidden state 

at time step t determined by both the input vector xt at time step t and the hidden state (ht-1) at time step t-1 (Zhao 

et al., 2017), and opt is the output of the RNN at time step t. Mathematically, the relationship between the three 

layers can be written as 125 

     1t t t hh = tanh Ux +Wh +b                          (1) 

    t t oop =Vh b                                 (2) 

where tanh is the activation function which means the hyperbolic tangent performs nonlinear transformations of 

the inputs, U, W and V are the network weight matrices for input-to-hidden, hidden-to-hidden and hidden-to-output 

connections, respectively, bo and bh are bias vectors.  130 

 

Figure 3. The structure of the Recurrent Neural Network (RNN) (Modified from Hopfield, 1982). 

 

The limitation of common RNNs is that they cannot capture the long time dependence of sequences, that is, 

some earlier historical data are ignored when conducting predictions on long time series data (Bengio, 1994; 135 

Hochreiter and Schmidhuber, 1997). To solve such problems, Hochreiter and Schmidhuber (1997) proposed an 
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improved variant of RNN whose hidden layer can capture the correlation within time series in both short- and long-

term dependence, which was named the LSTM network. In other words, the LSTM is a variant model that improve 

the limitation of common RNNs for long-term dependence. As shown in Fig. 4, the LSTM replaces the RNN cell 

in hidden layer with the LSTM cell, which introduces three types of gates: forget gate (ft), input gate (it) and output 140 

gate (ot). The forget gate determines the effect of the cell state ct-1 at the previous moment on the current cell state 

ct; the input gate determines the effect of the input xt at the current moment on the cell state ct; and finally the output 

gate determines the effect of the cell state ct on the output ht (Gao et al., 2020; Fischer and Krauss, 2018; Lipton et 

al., 2015).  

 145 
Figure 4. The structure of the LSTM cell (Modified from Hochreiter and Schmidhuber, 1997). 

 

The formulas of the three gates, abstract cell state, cell state and hidden state in the LSTM cell are shown as 

follows: 

(forget gate)          
 1t fx t fh t ff = W x +W h + b                   (3) 150 

(input gate)           
 1t ix t ih t ii = W x +W h + b                    (4) 

(output gate)          
 1t ox t oh t oo = W x + W h + b                 (5) 

(abstract cell state)     1( )t cx t ch t cc = tanh W x +W h + b
             (6) 

(cell state)            1t t t t tc = f c i c   
                         (7) 

(hidden state)         t t th = o tanh c
                            (8) 155 

where it, ft and ot are the vectors of input, forget and output gates at time step t, respectively, all of which have the 

same sizes as ct and ht, σ is the logistic sigmoidal activation function, c̃t is the vector of abstract cell state at time 

step t, ⊙ is element wise multiplication of two vectors. Similar to RNN, Wfx, Wfh, Wix, Wih, Wox, Woh, Wcx and Wch 
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are the matrices for different connections in the network, bi, bo and bc are bias vectors. The dimensions of Wfx, Wix, 

Wox and Wcx are D×M, and the dimensions of Wfh, Wih, Woh and Wch are M×M, where D is the number of input 160 

features and M is the number of hidden units in the LSTM layer. When M is large enough, an increasing M would 

lead to more computation time, but does not improve the prediction performance (Bengio, 2012). 

In this study, the open-source framework TensorFlow (version 1.14.0) written in Python 3.7.6 is used to 

build and train the LSTM model. We first use the raw atmospheric data (air relative humidity (RH), air 

temperature (Ta), precipitation (P) and wall temperature (Tw)) to predict RWC, then integrate physics controlling 165 

vapor condensation into the input variables to improve the performance of the LSTM model. In both schemes, we 

find the accuracy has stabilized when M equals 48. 

3.2 Model interpretation and evaluation 

To interpret the performance of a machine model, Lundberg and Lee (2017) proposed the SHAP (SHapley 

Additive exPlanations) explanation method, which is based on the game theory (Štrumbelj and Kononenko, 2014). 170 

The Shapely value of every input variable represents its contribution on the prediction, and the importance of each 

input variable is clarified by comparing model performances with and without it. The formula for calculation of 

the Shapely value is 

      
 

i

! 1 !
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where ϕi is the contribution of variable i; F is the set of all input variables; v(S∪{i}) is the result of a model trained 175 

with the variable i, and v(S) is the result without the variable i, so the difference between them represents the effect 

of feature i on the model prediction. This method requires retraining the model on all feature subsets S ⊆F (Shapley, 

1953). 

To assess the accuracy of prediction by the LSTM network, we use the statistical metrics of Nash–Sutcliffe 

efficiency coefficient (NSE), mean absolute error (MAE) and root mean squared error (RMSE), all of which are 180 

widely used in the literature. NSE is the ratio of the sum of the squares of the regression to the total sum of the 

squares, which reflects the linear fit between the predictions and observations. The closer the value is to 1, the 

better the linear fit. The expression of NSE is 
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where N is the number of data, and yPred, y, and ͞y are the predicted, observed, and mean observed value, respectively. 185 
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MAE is the mean of the distance between the predicted and the observations, whereas RMSE is the square root of 

the mean of the square of the deviation between the predicted and the observations. The expressions of MAE and 

RMSE are 
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4 Results and discussion 

4.1 The seasonal variations of rock moisture and atmospheric conditions  

In the north wall of Cave #9, although there is no obvious occurrence of liquid water throughout the year, 

there is a clear trend of seasonal variations in RWC (Fig. 5). Take the year 2021 for example, from February to 

May, the RWC is relatively stable, maintaining at around 0.013 cm3/ cm3; from June to September, which 195 

correspond to the rainy season with high relative humidity and high air temperature, there is a cycle of significant 

addition and depletion of rock moisture; from October to December, there is a trend of gradual decrease in RWC. 

The cycles of precipitation, relative humidity, air temperature and wall temperature from spring to early winter 

have quite similar trends as the cycle of RWC, indicating that they are possible environmental conditions leading 

to the fluctuating RWC.  200 

 

Figure 5. The temporal variations of rock water content (RWC), air relative humidity (RH), air temperature (Ta), 

precipitation (P) and wall temperature (Tw). The two periods in yellow correspond to the summer period with 

high temperature and high humidity, whereas the two periods in green correspond to the fluctuation of rock 

moisture caused by freezing-thawing.  205 
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In the summer of 2021, the RWC has a sharp increase since 9 July and is maintained at relatively high values 

until 28 July, with a maximum value equaling 0.029 cm3/ cm3 on 17 July. The high RWC indicates that there are 

atmospheric conditions responsible for water infiltration or water vapor condensation. Note that this period with 

high RWC corresponds to the period with occurrence of water droplets in Cave #5 as shown in Fig. 1b1-b3. 210 

Although there is no water droplet in Cave #9, the color of the sandstone changes slightly, indicating that this slight 

change is a result of the increased RWC.  

From mid December 2020 to the end of January 2021, and from late December 2021 to the end of February 

2022, there are also significant fluctuations of RWC (Fig. 5). This pattern of fluctuation is a direct consequence of 

freezing-thawing, which can be confirmed by the negative wall temperature. At the beginning of the freezing-215 

thawing cycle, there is a trend of increasing RWC due to freezing-induced liquid water migration towards the wall 

surface with the lowest temperature. By the end of the freezing period, the RWC reaches a minimum value of the 

year because most liquid water has been transformed into ice. In the two years, the minimum liquid water content 

is 0.009 cm3/ cm3 (on 16 January 2021) and 0.010 cm3/ cm3 (on 25 February 2022), respectively. In the thawing 

stage, there is a trend of increasing liquid water content.  220 

The pattern of freezing-thawing-induced RWC fluctuations is similar to that of freezing-thawing-induced 

soil water content fluctuations (Deprez et al., 2020; Matsuoka and Murton, 2008; Sun and Scherer, 2010; Xie et al., 

2021; Yu et al., 2018), demonstrating that the FDR technique is very sensitive to liquid water content in sandstone 

and is suitable to measure rock moisture. The fluctuating RWC during the freezing-thawing cycle also has 

implications for understanding weathering processes. The increased RWC before freezing indicates that there is 225 

movable water in winter even if the RWC is very low. The movable water could be responsible for chemical 

weathering, and the freezing of liquid water near the wall surface might cause physical weathering. Therefore, our 

field monitoring of RWC in winter has implications for understanding rock weathering.  

4.2 The performance of the LSTM model with two different schemes of model inputs 

In the rainy season, as we pointed out in 4.1, precipitation, relative humidity, air temperature and wall 230 

temperature have quite similar trends of seasonal variations as RWC. Apparently, they are all possible factors 

determining the fluctuating apparent rock moisture. Therefore, in 4.2.1, we first use all of them as input variables 

(scheme #1) of the LSTM model to predict RWC, and use the SHAP values to evaluate the contribution of each 

input variable. After excluding precipitation whose mean |SHAP value| equals 0, in 4.2.2, we use two new 

parameters (vapor concentration, dew point temperature minus wall temperature) calculated from relative humidity, 235 
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air temperature and wall temperature as input variables (scheme #2) of the LSTM model to predict RWC.  

Deep learning models require a large amount of data for training, as well as data sets with a longtime span 

to ensure the mastery of complete data features. Because the period from 1 June to 1 October has the most 

significant trends of rock moisture addition and depletion, the hourly data during this period in the year 2020 are 

used to construct the training set, whereas the hourly data in the year 2021 are used to construct the test set.  240 

4.2.1 The predicted results based on directly monitored variables 

By using relative humidity, air temperature, precipitation and wall temperature as model input variables, 

there is a fairly good match between the predicted and measured RWC, with similar patterns of fluctuations (Fig. 

6a). Although there is obvious underestimation of RWC in mid and late July, and slight underestimation or 

overestimation in other months, the NSE is as high as 0.958, indicating that the fluctuating relative humidity, air 245 

temperature, precipitation and wall temperature can capture the major patterns of the fluctuating RWC. 

  

Figure 6. The predicted and measured RWC obtained by two schemes. (a) Scheme #1 using four directly measured 

variables; (b) Scheme #2 using two calculated variables controlling vapor condensation. Also shown are NSE of 

the whole time series, MAE and RMSE of three different stages.  250 

 

Fig. 7a shows the mean absolute SHAP value of each input variable, which represents the relative importance 

of each variable for the prediction. The mean absolute SHAP values are in descending order: air relative humidity 
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(0.0087), air temperature (0.0032), wall temperature (0.0018), RWC at previous time step (0.0004) and 

precipitation (0) respectively. Therefore, precipitation infiltration has no direct contribution to rock moisture in 255 

caves, and we infer that vapor condensation should be the source of rock moisture in caves. 

 
Figure 7. The relative importance of each input variable in the two schemes with different input variables. (a) 

Scheme #1 using four directly measured variables; (b) Scheme #2 using two calculated variables controlling vapor 

condensation. Note that RWC at previous steps (RWC’) also has contribution to prediction.  260 

 

4.2.2 The prediction results based on variables controlling vapor condensation 

Based on the SHAP values of scheme #1, precipitation can be excluded as an input variable for the LSTM 

network. Among the three directly monitored variables that have contributions to RWC, air relative humidity and 

air temperature determines the vapor concentration and the dew point temperature (Nguyen et al., 2014), and 265 

whether the wall temperature is below the dew point temperature determines whether vapor condensation could 

occur (Fernández-Cortés et al., 2006; Gabrovšek et al., 2010; Li et al., 2021). Because water vapor is the direct 

source of condensation water and whether the wall temperature is below the dew point temperature is the 

precondition of vapor condensation, we use vapor concentration and dew point temperature minus wall temperature 

as two input variables.  270 

Vapor concentration and dew point temperature are both functions of actual vapor pressure, which is 
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determined by air temperature, saturated vapor pressure and relative humidity. For air with a temperature of T (K), 

the formulas for calculating saturated vapor pressure and actual vapor pressure are (Lawrence, 2002; Lu, 2004):  

v,sat

273.2
0.611exp 17.27

36

T
u

T

                              （13） 

v v,satu u RH 
                                 （14） 275 

where uv,sat is the saturation vapor pressure (kPa), RH is the relative humidity of air (%), and uv is the actual vapor 

pressure (kPa). After obtaining uv, we can calculate the vapor concentration, Cv (g/m3), and the dew point 

temperature, Td (K). The equations of Cv and Td are (Lu, 2004)    

v
v=217

273.15

u
C

T


                                 （15） 

 
 

v
d

v

36 ln 4700

ln 16.78

u
T

u





                               （16） 280 

As indicated in Equation 15, a higher water vapor pressure in the air, uv, corresponds to a higher vapor 

concentration, thus a higher possibility of condensation at the wall. Fig. 8 shows that the patterns of fluctuating 

RWC, vapor concentration and difference between dew point temperature and wall temperature (denoted as Td-Tw 

hereafter) in the whole non-freezing period are quite similar. Moreover, we find the period with a positive Td-Tw 

has a good correspondence with the period with a high level of rock moisture. 285 

  

Figure 8. The fluctuating apparent rock moisture (RWC), vapor concentration (Cv), and the difference between dew 

point temperature and wall temperature (Td-Tw). The zones in purple represent the periods with positive Td-Tw and 

high rock moisture. 

 290 

In scheme #2, by using the two new variables as inputs of the LSTM model, the mean absolute SHAP values 

of Td-Tw and vapor concentration are 0.0217 and 0.0100, respectively (Fig. 7b), indicating that both variables have 
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significant contributions to rock moisture. Moreover, the NSE of predicted rock moisture is increased to 0.978 (Fig. 

6b). Although the prediction still underestimates RWC from mid-July to the end of July, the MAE reduced from 

0.245 in scheme #1 to 0.186 in scheme #2, and the RMSE reduced from 0.01416 in scheme #1 to 0.01050 in scheme 295 

#2. In the other two time durations shown in Fig. 6b, the MAE and the RMSE of scheme #2 also decrease obviously. 

Therefore, scheme #2 has much better performance of prediction, showing that using physics-informed variables 

would improve accuracy of prediction.  

4.3 The mechanism of water vapor condensation  

As we illustrated in 4.2, precipitation is not directly responsible for rock moisture fluctuations, but other 300 

atmospheric conditions controlling vapor concentration and the condition of vapor condensation are directly 

responsible for RWC fluctuations in the cave. In fact, vapor concentration fluctuations are more or less related to 

precipitation events. As shown in Fig. 9, the vapor concentration usually begins to rise before a precipitation event, 

and declines under the control of solar radiation after a precipitation event. 

Under the control of convection and diffusion, the increased water vapor in the air could be transported into 305 

porous media. When the sandstone is dry, water vapor can be adsorbed onto the surface of the rock pores, forming 

an adsorbed layer as thin water film; as curved menisci begin to form under increasing relative humidity, capillary 

condensation occurs in the rock pores (Broekhoff, 1969; Lu and Likos, 2004; Xu et al., 1998). Both adsorption and 

capillary condensation would lead to rock moisture addition. As shown in Fig. 9, in summer of 2021, there are 10 

stages with obvious rock moisture additions. In the majority of the 10 stages, there are lagged responses of rock 310 

moisture additions to rising vapor concentration in the air, probably due to time required for vapor convection and 

diffusion. 

 Among the 10 stages, the magnitude of rock moisture addition is controlled by Td-Tw. In stages IV, V, VII, 

VIII, IX and X, because the dew point temperature seldom exceeds the wall temperature, the magnitudes of rock 

moisture additions are relatively small. In stages I, II, III and VI, there are long durations with dew point 315 

temperature being higher than the wall temperature, causing large magnitudes of rock moisture addition. However, 

at the beginning of these four stages, even if dew point temperature is still lower than the wall temperature, 

increasing vapor concentration has resulted in rock moisture addition. Therefore, although a negative Td-Tw does 

not exclude the possible occurrence of capillary condensation, a positive Td-Tw does promote capillary 

condensation.  320 

 After the 10 stages of rock moisture additions, we find rock moisture depletions are very sensitive to 
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decreasing vapor concentration. Moreover, inside stage III with very high RWC, a slight decrease in vapor 

concentration results in a slight decrease in RWC. Therefore, we believe that RWC measured by the FDR technique 

is sensitive enough to fluctuating vapor concentrations and can be applied in future rock moisture monitoring in 

other settings.  325 

 

Figure 9. Plots showing the responses of rock water content (RWC) to precipitation (P), vapor concentration (Cv), 

dew point temperature (Td) and wall temperature (Tw) in summer of 2021. The zones in yellow have increasing 

RWC, and zones in red have increasing RWC as well as positive Td-Tw.  

 330 

5 Conclusion  

The source of water in the sandstones caves in the Yungang Grottoes responsible for weathering was a long-

standing unresolved scientific question. In this study, we use the FDR sensor to monitor the rock moisture in a cave, 

which shows clear rock moisture addition-depletion cycles due to various controlling mechanisms. By using 

relative humidity, air temperature, precipitation and wall temperature as the input variables of the LSTM network, 335 

the predicted rock moisture well reproduced the pattern of monitored rock moisture fluctuations. Moreover, we 

find that precipitation has no contribution, but all other three variables have contribution to the fluctuating rock 

moisture. Because relative humidity, air temperature and wall temperature belong to factors controlling vapor 

condensation, this scheme of deep learning reveals that vapor condensation instead of precipitation infiltration is 
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the source of rock moisture in the cave. 340 

By calculating vapor concentration and dew point temperature from air temperature and relative humidity, 

we proposed two new variables, vapor concentration and the difference between dew point temperature and wall 

temperature as input variables of the LSTM network. Because the two variables are direct controlling factors of 

vapor condensation, this scheme leads to a much better accuracy of prediction, confirming that rock moisture in 

the cave is derived from vapor condensation. We also analyzed how precipitation events control vapor 345 

concentration, thus indirectly control vapor condensation inside the rock. 

By monitoring rock moisture in the field and examining their responses to atmospheric conditions, this study 

demonstrates for the first time that the FDR technique is effective for monitoring rock moisture. By using variables 

directly controlling vapor condensation as the input variables of the LSTM model, this study shows that “physics-

informed” deep learning can improve prediction performance. Moreover, by identifying how vapor condensation 350 

controls rock moisture and occasional occurrence of water droplets in the study area, this study contributes to the 

understanding of the source of water in caves, which is important in providing scientific-based proofs to propose 

future strategies for alleviating weathering of stone heritages.   
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