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Abstract. Stable isotopes (δ18O) and tritium (3H) are frequently used as tracers in environmental sciences to estimate age 10 

distributions of water. However, it has previously been argued that seasonally variable tracers, such as δ18O, generally and 

systematically fail to detect the tails of water age distributions and therefore substantially underestimate water ages as 

compared to radioactive tracers, such as 3H. In this study for the Neckar river basin in central Europe and based on a >20-year 

record of hydrological, δ18O and 3H data, we systematically scrutinized the above postulate together with the potential role of 

spatial aggregation effects to exacerbate the underestimation of water ages. This was done by comparing water age distributions 15 

inferred from δ18O and 3H with a total of 12 different model implementations, including lumped parameter sine-wave (SW) 

and convolution integral models (CO) as well as integrated hydrological models in combination with SAS-functions (IM-SAS).  

We found that, indeed, water ages inferred from δ18O with commonly used SW and CO models are with mean transit times 

(MTT) ~ 1 – 2 years substantially lower than those obtained from 3H with the same models, reaching MTTs ~ 10 years. In 

contrast, several implementations of IM-SAS models did not only allow simultaneous representations of stream flow as well 20 

as δ18O and 3H stream signals, but water ages inferred from δ18O with these models were with MTTs ~ 16 years much higher 

than those from SW and CO models and similar to those inferred from 3H, which suggested MTTs ~ 15 years. Characterized 

by similar parameter posterior distributions, in particular for parameters that control water age, IM-SAS model 

implementations individually constrained with δ18O or 3H observations, exhibited only limited differences in the magnitudes 

of water ages in different parts of the models as well as in the temporal variability of TTDs in response to changing wetness 25 

conditions. This suggests that both tracers lead to comparable descriptions of how water is routed through the system. These 

findings provide evidence that allowed us to reject the hypothesis that δ18O as a tracer generally and systematically “cannot 

see water older than about 4 years” and that it truncates the corresponding tails in water age distributions, leading to 

underestimations of water ages. Instead, our results provide evidence for a broad equivalence of δ18O and 3H as age tracers for 

systems characterized by MTTs of at least 15 – 20 years. The question to which degree aggregation of spatial heterogeneity 30 

can further adversely affect estimates of water ages remains unresolved as the lumped and distributed implementations of the 
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IM-SAS model provided inconclusive results. 

Overall, this study demonstrates that previously reported underestimations of water ages are most likely not a result of the use 

of δ18O or other seasonally variable tracers per se. Rather, these underestimations can be largely attributed to choices of model 

approaches and complexity not considering hydrological next to tracer aspects. Given the additional vulnerability of SW and 35 

CO model approaches in combination with δ18O to substantially underestimate water ages due to spatial aggregation and 

potentially other, still unknown effects, we therefore advocate to avoid the use of this model type in combination with 

seasonally variable tracers if possible, and to instead adopt SAS-based or comparable model formulations.  

1 Introduction 

Age distributions of water fluxes (“transit time distributions”, TTD) and water stored in catchments (“residence time 40 

distributions”, RTD) are fundamental descriptors of hydrological functioning (Botter et al., 2011; Sprenger et al., 2019) and 

catchment storage (Birkel et al., 2015). They provide a way to quantitatively describe the physical link between the 

hydrological response of catchments and physical transport processes of conservative solutes. While the former is largely 

controlled by the celerities of pressure waves propagating through the system, the latter, in contrast, occur at velocities that 

can be up to several orders of magnitude lower (McDonnell and Beven, 2014; Hrachowitz et al., 2016).  45 

Water age distributions cannot be directly observed. Instead, they can, in principle, be inferred from observed tracer 

breakthrough curves. While practically feasible at lysimeter (e.g. Asadollahi et al., 2020; Benettin et al., 2021) and small 

hillslope scales (e.g. Kim et al., 2022), lack of adequate observation technology together with logistical constraints make this 

problematic at scales larger than that. At the catchment-scale, estimates of water age distributions are therefore typically 

inferred from models that describe the relationships between time-series of observed tracer input and output signals. 50 

Over the past decades a wide spectrum of such models has been developed. Early approaches mostly relied on simple lumped 

sine-wave (hereafter: SW) or lumped parameter convolution integral models (hereafter CO; Maloszewski and Zuber, 

1982,1983; McGuire and McDonnell, 2006), originally developed for aquifers. In spite of their wide-spread application, these 

models feature multiple critical simplifying assumptions. Most importantly, the vast majority of these model implementations 

work under the assumption that catchments are at steady state and that, as a consequence, TTDs are time-invariant and can be 55 

a priori defined or calibrated. While this assumption may have limited effect on TTDs in aquifers, given the temporal 

variability in the hydro-meteorological drivers of surface water systems (e.g. precipitation, atmospheric water demand) and 

the spatial heterogeneity in the hydrological processes, this assumption is violated in most environments world-wide and can 

lead to misinterpretations of the model results. This led to the development of a more coherent framework to estimate water 

age distributions without the need of an a priori definition of time-invariant TTDs. Instead, probability distributions, referred 60 

to as StorAge Selection (SAS) functions, are a priori defined or calibrated, and changes in water storage are considered. Thus, 

water fluxes within and released from the system are sampled from water volumes of different ages stored in the system 

according to these SAS functions (Botter et al., 2011; Rinaldo et al., 2015). The sampling procedure based on SAS functions 
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thereby explicitly tracks the history of water (and tracer) input to and output from the system. As such it does account for non-

steady state conditions, which in turn leads to the emergence of time-variable TTDs and RTDs (see review Benettin et al., 65 

2022).  

Irrespective of the modelling approach, two types of environmental tracers have in the past been frequently used to estimate 

water age distributions with the above models. The first type are tracers that are characterized by distinct differences in their 

seasonal signals. They include stable isotopes of water (2H, 18O; e.g. Maloszewski et al., 1983; Vitvar and Balderer, 1997; 

Fenicia et al., 2010) or solutes, such as Cl- (e.g. Kirchner et al., 2001, 2010; Shaw et al., 2008; Hrachowitz et al., 2009a, 2015). 70 

With these tracers, water ages and (metrics of) their distributions can be estimated by the degree to which the seasonal 

amplitudes of the precipitation tracer concentrations are time-shifted and/or attenuated in the stream flow (McGuire and 

McDonnell, 2006; Kirchner, 2016). Broadly speaking, the stronger the attenuation of the seasonally variable tracer amplitude 

in stream flow (As) as compared to its amplitude in precipitation (Ap), i.e., the lower the amplitude ratio As/Ap, the older stream 

water is, on average. The second type of commonly used tracers are radioactive isotopes, such as tritium (3H). Forming the 75 

basis for many water dating studies going back to the 1950s (e.g. Begemann and Libby, 1957; Eriksson, 1958; Dincer et al., 

1970; Stewart et al., 2007; Morgenstern et al., 2010; Duvert et al., 2016; Gallart et al., 2016; Rank et al., 2018; Visser et al., 

2019), water age can be estimated with radioactive tracers based on the level of radioactive decay experienced by precipitation 

input signals experience before they reach the stream.  

The relationship between the tracer amplitude ratios As/Ap and water age that is exploited by seasonally variable tracers is 80 

highly non-linear. With increasing attenuation of the tracer signal in the stream, i.e., a lower As/Ap, water therefore does not 

only become older but the age estimates become more sensitive to changes in the amplitude ratio (Kirchner, 2016). This 

implies that the older the water, uncertainties in the observed amplitude ratios lead to increased uncertainties in water age 

estimates. As a consequence, there is an upper limit to the age of water which can be practically and feasibly practically and 

feasibly determined with seasonally variable tracers. A rare attempt to quantify this potential upper detectible age limit was 85 

reported by DeWalle et al. (1997). With an observed δ18O precipitation amplitude Ap = 3.41‰, an assumed lowest possible 

δ18O stream water amplitude that equaled the observational error As = 0.1‰, and the use of a lumped, time-invariant 

exponential TTD (“complete mixing”) they determined a maximum detectable mean transit time (MTT) of around 5 years at 

their study site. Several authors subsequently emphasized that estimates of MTT and in particular of maximum detectable 

MTT such as reported by DeWalle et al. (1997) are specific to Ap at individual study sites (McGuire and McDonnell, 2006) 90 

and highly sensitive to choices in the modelling process (Stewart et al., 2010; Seeger and Weiler, 2014; Kirchner, 2016). For 

example, multiple previous studies demonstrated that the use of gamma distributions with a shape parameter α ~ 0.5 as TTD 

produces model results that are more consistent with observed tracer data than the use of exponential distributions (i.e. α =1) 

in a wide range of contrasting environments world-wide (Kirchner et al., 2001; Godsey et al. 2010; Hrachowitz et al., 2010). 

Merely replacing the exponential distribution by a gamma distribution with α = 0.5 as TTD at the study site of DeWalle et al. 95 

(1997) leads, in a quick back-of-the-envelope calculation, to a substantial increase of the maximum MTT from the reported 

5 years to ~ 90 years. This is exacerbated by the potential presence of spatial aggregation bias in the lumped implementation 
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of that model, which may cause further considerable underestimation of MTT as demonstrated by Kirchner (2016).  

The relevance of the above assumptions is often overlooked and in spite of little additional quantitative evidence, it remains 

widely assumed that water ages in systems characterized by MTTs > 4 – 5 years cannot be meaningfully quantified with 100 

seasonally variable tracers. Most notably, Stewart et al. (2010, 2012) argued that water older than that remains hidden to 

stable water isotopes and other seasonally variable tracers, which inevitably results in a misleading truncation of water age 

distributions. Such a pronounced and systematic underestimation of water ages would have far reaching consequences for 

estimates of water storage (e.g. Birkel et al., 2015; Pfister et al., 2017) and the associated turnover times of nutrients and 

contaminants in catchments (e.g. Harman, 2015; Hrachowitz et al., 2015). Stewart et al. (2012), further argue that the use of 105 

radioactive tracers, such as 3H, can largely avoid the truncation of the long tails of TTDs. This is mostly owed to the 3H half-

life of T1/2 = 12.32 years. Even with the current atmospheric 3H concentrations that, after peaking in the early 1960s, have 

been converging back towards pre-nuclear bomb testing levels, precipitation 3H signals can be detected in the system for 

several decades, making 3H an effective tracer now and for the foreseeable future (Michel et al., 2015; Harms et al., 2016; 

Stewart and Morgenstern, 2016). Indeed, a range of studies, based on 3H and often in conjunction with lumped parameter 110 

convolution integral approaches, suggest that many catchments and larger river basins world-wide are characterized by MTTs 

that are decadal or higher (e.g. Stewart et al., 2010 and references therein). It is further rather remarkable that such elevated 

water ages are largely absent in estimates derived from lumped parameter convolution integral studies based on seasonally 

variable tracers, which often indicate MTTs between 1 – 3 years (e.g. McGuire and McDonnell, 2006 and references therein; 

Hrachowitz et al., 2009b; Godsey et al., 2010), as correctly and importantly pointed out by Stewart et al. (2010). This in itself 115 

could be supporting evidence for the failure of seasonally variable tracers to detect long tails of TTDs, as postulated by 

Stewart et al. (2012). However, it could just as well be a mere artifact arising from a sample bias due to the different 

catchments analyzed or from choices in the modelling process. There are only a few studies that have directly and 

systematically compared estimates of water age derived from both, seasonally variable (2H, 18O) and radioactive tracers (3H) 

at the same study site and based on (at least partly) comparable model approaches (Maloszewski et al., 1983; Uhlenbrook et 120 

al., 2002; Stewart et al., 2007; Stewart and Thomas, 2008). The MTT estimates derived from seasonally variable tracers in 

these comparative studies are consistently, but to varying degrees lower than estimates based on 3H. However, these studies 

are nevertheless subject to limitations that may weaken the generality of the conclusion that seasonally variable tracers 

underestimate catchment water ages. More specifically, tracer data were available for only rather short time periods of about 

2 – 3 years, including, for some studies, only a handful of 3H data points. All these studies relied on lumped parameter 125 

convolution integral approaches with time-invariant TTDs whose pre-defined functional form when applied with seasonally 

variable tracers was limited to shapes (e.g. exponential) that already a priori precluded the representation of long-tails and 

thus old ages. In addition, the models to estimate water ages in these studies were implemented in a spatially lumped way, 

which further exacerbates the potential for underestimating water ages due to spatial aggregation effects in environments that 

are likely subject to considerable heterogeneity in hydrological functioning (Kirchner, 2016).  130 

Addressing some of the concerns above, a recent study by Rodriguez et al. (2021) compared catchment water ages inferred 
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from two-year data records of a seasonally variable tracer (2H; 1088 data points) and 3H (24 data points) using a spatially 

lumped implementation of a previously developed simple tracer circulation model based on the SAS approach, which 

generates time-variable TTDs (Rodriguez and Klaus., 2019). In spite of consistently higher age estimates obtained from 3H, 

the absolute differences to 2H inferred estimates were very minor. While the difference in mean transit times was estimated 135 

at ΔMTT ~ 0.22 years for MTTs ~ 3 years, the difference in the estimate of the 90th percentile of water ages, as metric for the 

presence of old ages, was with Δ90th ~ 0.15 years even lower. The authors concluded that these results cast some doubt on 

“[…] the perception that stable isotopes systematically truncate the tails of TTDs” (Rodriguez et al., 2021). However, their 

interpretation was questioned by Stewart et al. (2021), who pointed out that simply no older water may be present in their 

study catchment.  140 

Building on the above work of Rodriguez et al. (2021), the objective of this study is therefore to further scrutinize the notion 

that the use of seasonally variable tracers leads to truncated estimates of water age distributions in a systematic comparative 

experiment. The novel aspects of this study for the ~13.000 km2 Neckar River basin in South-West Germany include that we 

here use (1) long-term records, i.e. > 20 years, of hydrological data as well as of seasonally variable (18O) and radioactive 

tracers (3H) together with (2) a spatially semi-distributed implementation of (3) an integrated, process-based model, making 145 

use of the SAS-function approach to simultaneously reproduce hydrological and tracer response dynamics and to track 

temporally variable water age distributions in the system and compare them to results using SW/CO models. The above points 

allow us to, at least partially, explore several unresolved questions how different factors may or may not contribute to the 

apparent underestimation of water ages by seasonally variable tracers, including potential effects of uncertainties arising from 

short data records, spatial aggregation and the use of oversimplified models. More specifically, we here test the hypothesis 150 

that 18O as tracer generally and systematically cannot detect tails in water age distributions and that this truncation leads to 

systematically younger water age estimates than the use of 3H.  

2 Study site 

The Neckar River basin in South-West Germany has an area of ~13,000 km2. The elevation in the basin ranges from 122 m at 

the outlet in the north to about 1019 m in the South (Fig. 1a; Table 1). Following the elevation gradient, the landscape is 155 

characterized by terrace-like elements and undulating hills with wide valleys used as grass- and croplands in lower regions, in 

particular in the northern parts of the Neckar Basin, and increasingly steep and narrow forested valleys towards the southern 

parts (Fig. 1c). Long-term mean annual precipitation reaches ~909 mm yr-1, with considerable spatial variability ranging from 

~660 mm yr-1 in the lower parts of the basin to over 1500 mm yr-1 at high elevations in the southwest (Fig. 1b). With a long-

term mean temperature of about 8.9 ℃ and an aridity index (i.e., IA = EP/P) IA ~0.98 the basin is characterized by a temperate-160 

humid climate, where snow cover can be present for several weeks in the winter months. 
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3 Data  

3.1 Data  

Daily hydro-meteorological data were available for the period 01/01/1970 – 31/12/2016. As the forcing data of the hydrological 

models, daily precipitation and daily mean air temperature were obtained from stations operated by the German Weather 165 

Service (DWD). Precipitation was recorded at 16 stations and temperature measurements were available at 12 stations (Fig. 1) 

in or close to the study basin. Daily mean discharge data for the period 01/01/1970 – 31/12/2016 at the outlet of the Neckar 

basin at Rockenau station were provided by the German Federal Institute of Hydrology (BfG).  

Long-term volume-weighted monthly δ18O data in precipitation was available for the period 01/01/1978 – 31/12/2016 at the 

Stuttgart station. At the sampling gauge, a monthly accumulation bottle was filled with the collected daily precipitation, and 170 

all collected water was mixed together. Therefore, the water samples of precipitation reflect the volume-weighted monthly 

isotopic composition. Then, a monthly isotope sample bottle for stable isotope (i.e., 18O) was filled with 50 ml precipitation 

water from the corresponding monthly accumulation bottle. All precipitation samples were tightly sealed and stored in a dark 

room at ~4℃ before analysis. Monthly stream water samples were collected at Schwabenheim, close to the Rockenau discharge 

station, by the BfG for the period of 01/10/2001 – 31/12/2016 (Schmidt et al. 2020; Königer et al. 2022). Note that the available 175 

data do not represent instantaneous grab samples but bulk samples from mixed daily samples. River water was sampled 

automatically by samplers (SP III-XY-36, Maxx Meb- und Probenahmetechnik GmbH, Germany), which contained 36 bottles 

(each with a volume of 2.5 L). Every 30 minutes, 50 ml river water was pumped into one bottle (48 subsamples per day). A 

new bottle was filled every 24 h with the same procedure. All daily river water samples were stored in the sample compartment 

at ~4℃ and were subsequently combined into monthly samples in the laboratory of BfG. This means the stream water samples 180 

reflect a non-flow-weighted monthly average isotopic composition. The stable isotopes ratios were analyzed with dual-inlet 

mass spectrometry and a laser-based cavity ring-down spectrometer (L2120-i/L2130-i, Picarro Inc.) at Helmholtz Zentrum 

München, Germany. When changing from dual-inlet mass spectrometry to cavity ring-down spectrometry, the long-term 

precision of the analytical systems (±0.15 ‰ and ±0.1 ‰, respectively, for δ18O) was ensured (Stumpp et al. 2014; Reckerth 

et al., 2017). 185 

Long-term monthly 3H data in precipitation were obtained for the period 01/01/1978 – 31/12/2016 at Stuttgart station (same 

station as 18O data in precipitation; Schmidt et al., 2020). For the purpose of establishing robust initial conditions for the model 

experiment (see section 4.2) the tritium record in precipitation was reconstructed for the preceding 1970-1977 period by bias 

correcting data from the sampling station Vienna, available from the Global Network of Isotopes in Precipitation which is a 

joint database of the International Atomic Energy Agency (IAEA) and the World Metrological Organization (WMO) 190 

(Supplementary Material Fig. S1). The precipitation for tritium data was sampled based on the same method as that for 18O in 

precipitation which means that the precipitation samples for tritium also reflect the volume-weighted monthly isotopic 

composition. Stream water samples for tritium were collected based on the same method as that for as 18O in stream. Therefore, 

tritium stream water samples also reflect non-volume-weighted monthly average isotopic compositions. All water samples 
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were analyzed for tritium concentrations by the BfG Environmental Radioactivity Laboratory using liquid scintillation counters 195 

(Ultima Gold LLT) with a 2-sigma analytical uncertainty (Schmidt et al. 2020). 

Land use types of the catchments are determined using the CORINE Land Cover data set of 2018 

(https://land.copernicus.eu/pan-european/corine-land-cover). The 90 m × 90 m digital elevation model of the study region (Fig. 

1a) was obtained from https://www.usgs.gov/ and used to derive the local topographic indices including height above nearest 

drainage (HAND) and slope. 200 

3.2 Data pre-processing 

For the subsequent model experiment (section 4.2), the study basin was stratified into four regions P1 – P4 that are 

characterized by distinct long-term precipitation pattern (hereafter: precipitation zones). In the following the procedure to infer 

these precipitation zones and to estimate the associated differences in δ18O and 3H input is described. 

3.2.1 Spatial distribution of precipitation and identification of precipitation zones 205 

To account, at least to some degree, for spatial heterogeneity in precipitation we stratified the Neckar River basin into 

precipitation zones that are each characterized by distinct average annual precipitation totals. Goovaerts (2000) and Lloyd 

(2005) showed that areal precipitation estimates informed by elevation data were often more accurate than those based on 

precipitation gauge observations alone. Thus, to interpolate and to estimate areal precipitation across the basin we used Co-

Kriging, considering elevation, as a preliminary analysis suggested lower errors. Finally, the individual precipitation estimates 210 

for each grid cell were used with K-means clustering to establish four clusters, representing the four precipitation zones P1 – 

P4 (see Fig. 1b). 

3.2.2 Spatial extrapolation of precipitation δ18O to precipitation zones 

Records of observed precipitation δ18O are available at one location close to the center of the Neckar Basin (Fig. 1). However, 

it is well described (e.g. Kendall and Mcdonnell, 2012) that precipitation δ18O input can be subject to considerable spatial 215 

heterogeneity, largely controlled by topographic and meteorological influences. Stumpp et al. (2014) specifically identified 

latitude, elevation and temperature as the key factors controlling δ18O input heterogeneity in the greater study region. To at 

least partially account for these effects and to locally adjust δ18O input signals throughout the study basin, we made use of the 

sinusoidal isoscapes method (Allen et al., 2018, 2019). Briefly, this method exploits the seasonal pattern in δ18O precipitation 

signal by fitting sine functions to observed δ18O input signals for a large sample of locations:  220 

𝛿𝛿18𝑂𝑂𝑃𝑃(𝑡𝑡) = 𝑎𝑎𝑃𝑃 sin(2𝜋𝜋𝜋𝜋 − 𝜑𝜑𝑃𝑃) + 𝑏𝑏𝑃𝑃,                                                                (1) 

With aP [‰] the amplitude of the seasonal precipitation signal, bP [‰] a constant offset and φP [rad] the phase of the signal. 

For each of the three fitting parameters, i.e., aP, bP and φP, multiple regression relationships were previously developed (Allen 

et al., 2018). Depending on the fitting parameter, predictor variables included a selection of latitude, longitude, elevation, range 
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of annual temperature range and mean annual precipitation (Allen et al., 2018). The relationships defined by these predictor 225 

variables then allow to estimate aP, bP and φP, and thus the seasonal signal of δ18OP for locations where no precipitation δ18O 

observations are available.  

Here, we adopted the method as described in the following. In a first step, we estimated the sine wave parameters for the time 

series of precipitation δ18O observed at the station Stuttgart, using the procedure described by Allen et al. (2018). Subsequently, 

we estimated the associated sine wave parameters aP, bP and φP in each of the four precipitation zones (P1 – P4; Supplementary 230 

Material Table S2) based on Eqs. (S1) - (S3) in the Supplement, using the above-described individual predictor variables, 

averaged for each precipitation zone (Supplementary Material Table S1). We then used the estimated sine wave parameters to 

construct an individual δ18OP sine wave for each precipitation zone (Eq.1). In a last step, we adjusted the observed δ18O input 

for the four precipitation zones by rescaling and bias correcting the observed δ18O signal according to the differences between 

the sine waves at the observation station and sine waves estimated for each precipitation zone, respectively (Supplementary 235 

Material Fig. S2).  

3.2.3 Spatial extrapolation of precipitation 3H to precipitation zones 

As for δ18O, it is well documented that 3H exhibits spatial heterogeneity that is to some extent controlled by geographical 

factors. It has been shown that the 3H concentration in precipitation increases with latitude, with highest concentrations in 

polar regions (Rozanski et al., 1991). In addition, 3H concentrations in precipitation increase with elevation due to the 3H-240 

enriched upper troposphere and isotopic exchange between liquid water and atmospheric moisture, depleting 3H in lower 

tropospheric layers (Tadros et al., 2014). Considering the above effects, we established a multiple linear regression relationship 

between 3H concentrations in precipitation observed at 15 multiple locations across Germany (Supplementary Material Fig. 

S3) as available through the WISER database (IAEA and WMO, 2022; Schmidt et al., 2020), and their corresponding elevation 

and latitude, respectively (Supplementary Material Fig. S4). We then used this relationship to adjust the 3H precipitation input 245 

for the four precipitation zones according to their corresponding average latitude and elevation estimate: 

𝐻𝐻𝑃𝑃(𝑡𝑡)3 = −0.75(𝐿𝐿𝑃𝑃 − 𝐿𝐿𝑜𝑜) − 0.002(𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑜𝑜) + 𝐻𝐻𝑜𝑜3 ,                                                 (2) 

where 3HP is the latitude- and elevation-adjusted tritium precipitation concentration for each precipitation zone (P1 – P4), 3Ho 

is the tritium precipitation concentration observed at the Stuttgart station, LP and EP are the mean latitude and elevation, 

respectively, of each precipitation zone and Lo and Eo are the latitude and elevation, respectively, of the Stuttgart station. 250 

4 Methods 

The experiment to test the hypothesis that the use of δ18O data systematically leads to truncated water age distributions 

and associated underestimations of water ages is designed and executed in a step-wise approach. Twelve different model types 

and spatial implementations thereof are sequentially calibrated (and tested) to reproduce observed δ18O and 3H signals in stream 
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flow. For these models, several metrics of water age distributions resulting from the 2 independent calibration procedures, i.e., 255 

for δ18O and 3H, respectively, are then estimated and compared. As a baseline and to ensure comparability with previous studies, 

water ages are quantified with spatially lumped implementations of 9 model scenarios (Table 2): sine-wave models using 

exponential (SW-EM) and gamma distributions as TTDs (SW-GM; only δ18O), lumped parameter convolution integral models 

using exponential (CO-EM) and gamma distributions as TTDs (CO-GM) and a spatially integrated hydrological model with 

tracer routing based on SAS-functions (IM-SAS-L). Estimates of water ages from these spatially lumped model 260 

implementations are then compared to water ages inferred from 3 spatially distributed implementations of the same integrated 

hydrological model in combination with SAS-functions (IM-SAS-D).  

4.1 Models 

4.1.1 Sine-wave model (SW) 

As demonstrated by Małoszewski et al. (1983), sine waves fitted to δ18O precipitation and stream flow signals can be used to 265 

indicatively determine water ages. More specifically, the ratio of the amplitudes of the fitted sine waves, i.e. As/Ap, can be used 

together with the assumption of a shape of the TTD to estimate the associated MTT of a system. In the case of a gamma 

distribution as TTD, this is done according to (Kirchner, 2016): 

𝜏𝜏̅ = 𝛼𝛼𝛼𝛼,                                                                                       (3) 

with 270 

𝛽𝛽 = 1
2𝜋𝜋𝜋𝜋

��𝐴𝐴𝑠𝑠 𝐴𝐴𝑝𝑝⁄ �−2 𝛼𝛼⁄ − 1,                                                                       (4)  

where 𝜏𝜏̅ is the MTT, α is a shape parameter, β is a scale parameter and f here is the frequency for the seasonal δ18O signal, 

i.e., f = 1 yr-1. Here we analyze the two cases α =1 (SW-EM) and 0.5 (SW-GM). Note that with α = 1, the gamma distribution 

is equivalent to an exponential distribution. The sine wave model is a simplification of a convolution integral model and can 

be directly derived from that. For a more detailed description of the method and underlying assumptions we refer to McGuire 275 

and McDonnell (2006) and Kirchner (2016).  

4.1.2 Lumped parameter convolution integral model (CO) 

While the sine wave approach requires regular cyclic signals of tracer composition, i.e., sine waves fitted to the observations, 

convolution integral models make direct use of the observed tracer data (e.g. Kreft and Zuber, 1978). Tracer composition in 

the system output can thus be estimated based on a convolution operation of the tracer composition in the system input together 280 

with an a priori assumption of a TTD (e.g. Maloszewski and Zuber, 1982): 

 

𝐶𝐶𝑜𝑜(𝑡𝑡) =  ∫ 𝑔𝑔(𝜏𝜏)𝐶𝐶𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝜆𝜆𝜆𝜆 𝑑𝑑𝑑𝑑∞
0 ,                                                                 (5) 
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Where Co(t) is the tracer composition of the system output (here: stream flow) at time t, Ci (t – τ) is the tracer composition of 

the system input (here: precipitation) at any previous time t – τ, λ is the radioactive decay constant (λ = 0.00015 d-1 for 3H and 285 

λ = 0 d-1 for stable isotopes) and g(τ) is the distribution of transit times τ. Here, we used gamma distributions as TTDs (e.g. 

Kirchner et al., 2001): 

 

𝑔𝑔(𝜏𝜏) = 𝜏𝜏𝛼𝛼−1

𝛽𝛽𝛼𝛼Γ(𝛼𝛼)
𝑒𝑒
−𝜏𝜏
𝛽𝛽 ,                                                                              (6) 

With the shape parameter α and the scale parameter β being calibration parameters. The MTT associated with these parameters 290 

is then obtained with Eq. (3). Here we use the two cases α = 1 (CO-EM) and 0.5 (CO-GM) for both, δ18O and 3H, to estimate 

the respective MTTs, and only β is treated as a free calibration parameter. For more detailed description of the method, refer 

to McGuire and McDonnell (2006). 

4.1.3 Integrated model (IM-SAS) 

A previously developed process-based model, based on the DYNAMITE modular modelling scheme (Hrachowitz et al., 2013, 295 

2021), was iteratively customized and tested for the Neckar study basin. To allow for simultaneous representation of water and 

tracer fluxes, the hydrological model was adapted with additional, hydrologically passive water storages volumes from which 

water and tracer fluxes were sampled using the storage-age selection function (SAS) concept as outlined by Rinaldo et al. 

(2015). Water ages, their distributions, and the associated moments thereof were then estimated by tracking water and tracer 

fluxes through the model. 300 

 
Hydrological model 
The hydrological model consists of a suite of storage components and associated water fluxes between them. The influence of 

functionally different landscape elements, i.e. forest, grass-/cropland and flat valley bottoms, for brevity hereafter referred to 

as wetland, is represented by parallel hydrological response units (HRU), linked by a common storage component representing 305 

the groundwater system (Fig. 2), as previously implemented and successfully tested in many contrasting environments (e.g. 

Gao et al., 2014; Gharari et al., 2014; Euser et al., 2015; Nijzink et al., 2016; Prenner et al., 2018; Hanus et al., 2021). Briefly, 

precipitation P (mm d-1) falling on days with temperatures below threshold temperature Tt (oC), is accumulated as snow Psnow 

(mm d-1) in the snow storage Ssnow (mm). On days with temperatures higher than that, precipitation enters the system as rainfall 

Prain (mm d-1) and, based on a simple degree-day approach, water is released from Ssnow as snow melt Msnow (mm d-1), controlled 310 

by melt factor Cmelt (mm d-1 oC-1; e.g. Gao et al., 2017; Girons Lopez et al., 2020). Rain water is then routed through the 

interception storage Si (mm). With Ei (mm d-1) as interception evaporation at the potential evaporation rate, effective 

precipitation Pre (mm d-1) generated by overflow once the maximum interception capacity (Simax) is exceeded, together with 

Msnow, enters the unsaturated root-zone Su (mm). From Su water can then be released as vapor via a combined soil evaporation 

and transpiration flux Ea (mm d-1). Drainage of liquid water from Su can either recharge the groundwater Ss (mm) over a 315 
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percolation flux Rperc (mm d-1) and a faster preferential recharge Rpref (mm d-1). Alternatively, it can be routed via Ruf (mm d-1) 

to a faster responding component Sf (mm) from where it is directly released to the stream as Qf (mm d-1), representing lateral 

preferential flow. Rain and snow melt entering the wetland HRU directly reach Su. Soil moisture levels in the wetland Su are 

further sustained by a fraction of groundwater Rcap (mm d-1) that is upwelling into Su from Ss (e.g., Hulsman et al., 2021a). The 

detailed equations of the model are provided as Table S3 in the Supplementary Material. 320 

 
 

Tracer transport model 
δ18O and 3H were routed through the above-described storage components (Fig.2) by sampling the modeled outflow volumes 

that leave the individual components at each time step t (d) (e.g. Msnow, Rperc, Ea, etc.) from the individual water volumes of 325 

different age T (d) that are stored in the associated storage component (e.g. Ssnow, Su, etc.) at each time step according to a SAS 

function. The distribution of water volumes of different ages in each storage component, i.e., the residence time distribution 

RTD, depends on the past sequence of inflows I (mm d-1) and outflows O (mm d-1) and therefore varies over time. As a 

consequence of being sampled from RTDs that evolve over time, both, inflows I and outflows O are correspondingly 

characterized by water age distributions (or transit time distributions TTD) that change over time. A straightforward 330 

implementation of this SAS concept is facilitated by the formulation of age-ranked storages ST(T,t) (mm). As emphasized by 

Benettin et al. (2017), ST(T,t) describes “at any time t the cumulative volumes of water in a storage component as ranked by 

their age T”. Correspondingly, the total inflow (I) into as well as the total outflow volumes (O) from different storages can be 

expressed in terms of their cumulative, age-ranked volumes IT(T,t) and OT(T,t) (mm d-1). At any time, closing the resulting 

water age balance for each storage component j (e.g. Ssnow, Su, etc.) also leads to an updated age-ranked storage ST,j (T,t) for 335 

that component, formulated as (Benettin et al., 2015a; Botter et al., 2011; Harman, 2015; Van Der Velde et al., 2012): 

𝜕𝜕𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇,𝑡𝑡)

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇,𝑡𝑡)

𝜕𝜕𝜕𝜕
= ∑ 𝐼𝐼𝑇𝑇,𝑛𝑛,𝑗𝑗(𝑇𝑇, 𝑡𝑡) − ∑ 𝑂𝑂𝑇𝑇,𝑚𝑚,𝑗𝑗(𝑇𝑇, 𝑡𝑡)𝑀𝑀

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1 ,                                            (7) 

Where ∂ST/∂T is the aging process of water in storage. Here, the water age balance (Eq.7) was formulated individually for 

each storage reservoir j, also accounting for different numbers N of storage component inflows I (e.g. Prain, Msnow, Rperc) and 

numbers M of outflows O (e.g., Rperc, Rpref, Ea) (Fig. 2), similar to previous studies (e.g. Hrachowitz et al., 2021). For a daily 340 

modelling time step, it can in the water age balance be assumed that precipitation P(t) that is falling on day t is characterized 

by an age T = 0. This implies for the age ranked inflow IT,P,j(0,t) = PT(0,t) = P(t). Note, that all other age ranked inflows IT,n,j(T,t) 

that enter a storage component are equivalent to the corresponding age ranked outflows OT,m,j(T,t) that leave a “higher” storage 

component. 

Depending on the total volume of outflow Om,j(t) and the cumulative distribution of ages Po,m,j(T,t) of that flow, an age-ranked 345 

outflow OT,m,j(T,t) for each flux m released from each storage component j can be defined as:  

𝑂𝑂𝑇𝑇,𝑚𝑚,𝑗𝑗(𝑇𝑇, 𝑡𝑡) = 𝑂𝑂𝑚𝑚,𝑗𝑗(𝑡𝑡)𝑃𝑃𝑜𝑜,𝑚𝑚,𝑗𝑗(𝑇𝑇, 𝑡𝑡),                                                                 (8) 

While the outflow Om,j(t) from any storage component j is computed for each time step t by the hydrological model described 
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above, the associated Po,m,j(T,t) cannot be assumed to be known as it is controlled by the temporally evolving distribution of 

water ages present in that storage component ST,j(T,t) at t. However, the temporally variable Po,m,j(T,t) can be inferred for each 350 

time step t by defining for each storage j and for each outflow m released from j a SAS function ωo,m,j together with its 

cumulative form Ωo,m,j. These functions then describe how the water volumes of different ages, stored in component j at time 

t, i.e. ST,j(T,t), are sampled and combined into the corresponding total outflow volume Om,j(t): 

𝑃𝑃𝑜𝑜,𝑚𝑚,𝑗𝑗(𝑇𝑇, 𝑡𝑡) = Ω𝑜𝑜,𝑚𝑚,𝑗𝑗�𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇, 𝑡𝑡), 𝑡𝑡�,                                                                 (9) 

 355 
The probability density function po,m,j(T,t) associated with the cumulative distribution of ages Po,m,j(T,t), then represents the 

transit time distribution TTD of that outflow and can be written as:  

𝑝𝑝𝑜𝑜,𝑚𝑚,𝑗𝑗(𝑇𝑇, 𝑡𝑡) = 𝜛𝜛𝑜𝑜,𝑚𝑚,𝑗𝑗�𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇, 𝑡𝑡), 𝑡𝑡�
𝜕𝜕𝑆𝑆𝑇𝑇,𝑗𝑗

𝜕𝜕𝜕𝜕
,                                                             (10) 

Conservation of mass dictates that  

Ω𝑜𝑜,𝑚𝑚,𝑗𝑗�𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇, 𝑡𝑡) → 𝑆𝑆𝑗𝑗(𝑡𝑡), 𝑡𝑡� = 1,                                                                  (11) 360 

Where Sj (mm) is the total volume of water stored in component j at time t. The resulting need to rescale ωo,m,j for each time 

step was here avoided by instead normalizing and therefore bounding the age ranked storage to the interval [0,1] according to 

𝑆𝑆𝑇𝑇,𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚,𝑗𝑗(𝑇𝑇, 𝑡𝑡) =
𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇,𝑡𝑡)

𝑆𝑆𝑗𝑗(𝑡𝑡)
,                                                                         (12) 

Note that ST,norm,j also represents the RTD of storage component j at time t. 

In this study, we used uniform distributions in the form of ω = const. as SAS function in each storage component as previously 365 

shown to be effective in many studies (e.g. Birkel et al., 2011; van der Velde et al., 2015; Benettin et al., 2015b, 2017; Ala-

Aho et al., 2017; Kuppel et al., 2018; Rodriguez et al., 2018). This implies random sampling and the assumption that each 

storage component is fully mixed and that there is no preference for sampling younger or older water. Here, it is important to 

note that the “combined” SAS functions of all storage components will, due to distinct storage capacities and time-scales, not 

lead to an overall system response that is fully mixed. Uniform SAS functions were here chosen over other shapes, such as 370 

beta-distributions (e.g. van der Velde et al., 2012; Hrachowitz et al., 2021), as they do not need additional model parameters 

and avoid the need for explicit calculation of TTDs at each model time step to route tracers through the model (Benettin et al., 

2015b), thereby drastically reducing computational time and computer memory requirements (Benettin et al., 2022). 

To adequately damp tracer input signals, additional and hydrologically passive storage volumes are typically required (e.g. 

Birkel et al., 2010; Hrachowitz et al., 2015, 2016). Such a passive water storage volume Ss,p (mm), characterized by dSs,p/dt = 375 

0, was added as calibration parameter to the active groundwater storage Ss (Fig. 2). While the outflow Qs from the groundwater 

storage is exclusively regulated by the temporally varying storage volume in Ss (Supplementary Material Eq. S9), the tracer 

and age composition of that outflow is sampled from the total groundwater storage volume Ss,tot = Ss + Ss,p. 
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The δ18O and 3H concentrations were then routed through each individual storage component according to (e.g. Harman, 2015; 

Benettin et al., 2017): 380 

𝐶𝐶𝑜𝑜,𝑚𝑚,𝑗𝑗(𝑡𝑡) = ∫ 𝐶𝐶𝑠𝑠,𝑗𝑗�𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇, 𝑡𝑡), 𝑡𝑡�𝜔𝜔𝑜𝑜,𝑚𝑚,𝑗𝑗�𝑆𝑆𝑇𝑇,𝑗𝑗(𝑇𝑇, 𝑡𝑡), 𝑡𝑡�𝑒𝑒−𝜆𝜆𝜆𝜆 𝑑𝑑𝑆𝑆𝑇𝑇
𝑆𝑆𝑗𝑗
0 ,                                           (13) 

Where Co,m,j is the tracer concentration in outflow m from storage component j at time t, Cs,j is the tracer concentration of water 

in storage at time t and λ is the radioactive decay constant (λ = 0 d-1 for δ18O and λ = 0.00015 d-1 for 3H). 

4.2 Model implementation  

4.2.1 Spatially lumped model implementation 385 

The original argument that the use of seasonally variable tracers underestimates water ages was exclusively based on lumped 

implementations of sine-wave and convolution integral models (Stewart et al., 2010). For a baseline comparison and to check 

whether the above conclusion would also have been reached for our study basin using the same methods, we here similarly 

implemented the sine-wave (SW-EM, SW-GM) and convolution integral (CO-EM, CO-GM) in a spatially lumped way. For 

this baseline case the catchment average tracer input was estimated as the spatially weighted mean from the four precipitation 390 

zones P1 – P4 as described in section 3.2. 

The spatially lumped implementation of the integrated model (IM-SAS-L) was also forced with the same spatially averaged 

input. In addition, the spatial fractions of the grassland and wetland HRUs, respectively, were set to 0 and the entire study 

basin therefore represented by the one HRU which is similar to the forest HRU described in distributed model, similar to many 

traditional lumped formulations of process-based conceptual models (Bouaziz et al., 2021; Clark et al., 2008; Fenicia et al., 395 

2006; Fovet et al., 2015; Seibert et al., 2010). This implementation has 11 calibration parameters (Table 3).  

4.2.2 Spatially distributed model implementation 

To balance the need for spatial detail to some extent with the adverse effects of increased parameter uncertainty (e.g. Beven, 

2006) and computational capacity (in particular for the calculation of TTDs), we here implemented the integrated model in 

parallel (IM-SAS-D) in the four precipitation zones P1 – P4 and forced it with the corresponding input (e.g. P, δ18O and 3H) 400 

for each precipitation zone as described in section 3.2. Each precipitation zone was further discretized (1) into 100 m elevation 

zones for a stratified representation of the snow storage Ssnow (e.g. Mostbauer et al., 2018) and (2) into three HRUs, i.e., forest, 

grassland, wetland (Fig.2; e.g. Gharari et al., 2014; Hanus et al., 2021). Rain Prain and melt water Msnow from the different 

elevation zones was aggregated according to their associated spatial weights in each elevation zone. This total liquid water 

input was then routed through the three parallel HRUs. The classification into the three HRUs was based on the metric Height-405 

above-nearest-drainage (HAND; Gharari et al., 2011) and land cover. While landscape elements with HAND < 5 m were 

classified as wetland, all other parts of the landscape were classified as forest or grassland according to land-use data. In total, 

there are therefore 12 individual, parallel model components, i.e., three HRUs in each of the four precipitation zones, not 
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counting the elevation zones for the snow module. All flux and storage variables of the 12 components are weighted according 

to their areal fractions. While each of the three HRUs was characterized by individual parameters (e.g. Gao et al., 2016; Prenner 410 

et al., 2018), the same parameter values were used in all four precipitation zones in distributed moisture accounting approach 

(e.g. Ajami et al., 2004; Euser et al., 2015; Hulsman et al., 2021b; Roodari et al., 2021). Overall, the spatially distributed 

implementation has 19 model parameters, including five global parameters (Tt, Cmelt, Ca, Ks and Ss,p) that are identical for each 

HRU and 14 HRU-specific parameters (Table 3; Fig.2).     

4.3 Model calibration and post-calibration evaluation 415 

The models were run at a daily time step, whereby the observed volume-weighted monthly tracer concentration in precipitation 

was used as model input for each day of that month together with the daily data of precipitation. Model performance was 

evaluated based on the Mean Square Error (MSE) as error metric. The convolution integral models, using uniform prior 

parameter distributions as shown in Table 3, were individually calibrated to the observed δ18O (calibration strategy Cδ18O; Table 

2) and 3H stream water concentrations (C3H), respectively. In contrast, a multi-objective calibration approach was applied for 420 

the integrated model to simultaneously reproduce stream flow volumes and tracer concentrations thereof (e.g. 3H and/or δ18O). 

Briefly, the model parameters were calibrated by using Borg_MOEA algorithm (Borg Multi-objective evolutionary algorithm; 

Hadka and Reed, 2013) and based on uniform prior distributions (Table 3). The model performances were evaluated based on 

the models’ ability to simultaneously reproduce multiple signatures of stream flow as well as signatures of tracer dynamics as 

shown in Table 2. The sets of pareto optimal solutions obtained from the calibration procedures were then retained as acceptable 425 

solutions for the subsequent analysis. To compare the water age distributions (i.e., TTDs and RTDs) and thus to test the research 

hypothesis, different calibration strategies – Cδ18O,Q, C3H,Q and Cδ18O,3H,Q – were adopted (Table 2). While in strategy Cδ18O,Q the 

models were calibrated to simultaneously reproduce signatures of stream flow and δ18O, C3H,Q combined the stream flow 

signatures with 3H. In strategy Cδ18O,3H,Q the model was finally calibrated to simultaneously reproduce the six stream flow 

signatures, δ18O, and 3H dynamics. For each strategy, all performance metrics were also combined into an overall performance 430 

metric based on the Euclidian distance (DE), where DE = 0 indicates a perfect fit. To find a somewhat balanced solution in 

absence of more detailed information all individual performance metrics were here equally weighted (e.g., Hrachowitz et al., 

2021; Hulsman et al., 2021b): 

 

𝐷𝐷𝐸𝐸 = �1
2
�∑ �𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀,𝑄𝑄,𝑛𝑛�

2𝑁𝑁
𝑛𝑛=1

𝑁𝑁
+ ∑ �𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚�

2𝑀𝑀
𝑚𝑚=1

𝑀𝑀
�,                                                    (14) 435 

 
Where 𝑁𝑁 = 6 is the number of performance metrics with respect to stream flow and 𝑀𝑀 is the number of performance metrics 

for tracers in each combination (e.g. 𝑀𝑀=1 for Cδ18O,Q, and C3H,Q, 𝑀𝑀=2 for Cδ18O,3H,Q). Note that the different units and thus 

different magnitudes of residuals introduce some subjectivity in finding the most balanced overall solution according to DE 
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(Eq. 14). However, a preliminary sensitivity analysis with varying weights for the individual performance metrics in DE 440 

suggested limited influence on the overall results and is thus not further reported here.    

After a warm-up period 01/01/1978 – 30/09/2001 the models were calibrated for the 01/10/2001 – 31/12/2009 period. The 

calibration period was chosen so that observations of all three calibration variables, i.e., Q, 3H and δ18O, are available for the 

entire calibration period to allow a consistent comparison. The long model warm-up period was deemed necessary to 

meaningfully approximate the model initial conditions due to the potential and a priori unknown relevance of old water in the 445 

study basin, and thus to avoid underestimation of water ages inferred from 3H data. The pareto optimal solutions (parameter 

sets) were then used to test the model in the post-calibration evaluation period 01/01/2010 – 31/12/2016. The water age 

distributions, i.e., TTDs and RTDs, extracted from the individual models and calibration strategies were then estimated based 

on the corresponding sets of pareto optimal solutions obtained for each calibration strategy. 

5 Results 450 

5.1 Model performance  

The stream tracer responses of the lumped baseline models were found to be broadly consistent with the available observations 

(Table 4). For the SW models (Scenarios 1, 2) in particular the sine wave fitted to the stream water δ18O observations provides 

a robust characterization of the observed signal with MSEδ
18

O = 0.121 and 0.144 ‰ for calibration and model evaluation 

periods, respectively (Supplementary Material Fig. S5). Similarly, the CO models (Scenarios 3, 5) reproduced the overall 455 

pattern of seasonal fluctuations and the degree of dampening of the δ18O response (Supplementary Material Fig. S6). With 

MSEδ
18

O = 0.213 and 0.245 ‰ for the calibration and model evaluation periods, respectively, the CO-GM model, based on a 

gamma TTD performed slightly better than the exponential model (CO-EM) with MSEδ
18

O = 0.334 and 0.430 ‰. When used 

with 3H data in scenarios 4 and 6, the CO models do capture the general decrease in the magnitude of stream water 3H 

concentrations although fluctuations at shorter timescales are not well reproduced (Supplementary Material Fig. S7). Both, 460 

CO-EM and CO-GM are characterized by MSE3
H ~ 5 TU2 throughout the calibration and evaluation periods. It is also noted 

that both models already mimic the 3H response well in the 1978 – 2001 pre-calibration model warm-up period.  

In contrast to the above baseline models the implementations of the integrated model IM-SAS (Table 4) aim to not only to 

reproduce the δ18O or 3H stream signals, but to additionally and simultaneously describe the hydrological response (Table 4). 

Both, the lumped IM-SAS-L (scenario 7; Supplementary Material Fig. S8a, b) and the distributed IM-SAS-D (scenario 10; 465 

Fig. 3a, b) reproduce the seasonal fluctuations as well as the degree of dampening of the δ18O signals with MSEδ
18

O = 0.079 – 

0.083 ‰ for the calibration and 0.273 – 0.332 ‰ for the evaluation periods similar to or better than the baseline models. The 

IM-SAS models do also describe the evolution of the 3H stream signals rather well (scenarios 8 and 11). With MSE3
H < 3 TU2, 

IM-SAS-L (Supplementary Material Fig. S9) and IM-SAS-D (Fig. 4) do not only outperform the baseline models with respect 

to the overall magnitude of 3H, but do, in spite of somewhat underestimating the magnitude of seasonal amplitudes, also 470 

provide a better representation of these intra-annual fluctuations. Similar to the above baseline models, the IM-SAS 
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implementations also very well capture the 3H response in the 1978 – 2001 pre-calibration model warm-up period. The 

simultaneous calibration to the hydrological response, δ18O and 3H stream signals (scenarios 9, 12) led to a comparable model 

skill to reproduce the tracer signals. In addition to the tracer concentrations, all IM-SAS implementations do also reproduce 

the main features of the hydrological response (Table 4). More specifically, the modelled hydrographs in particular describe 475 

well the timing of peaks as well as the shape of recessions; although in some cases peak flows were underestimated and low 

flows overestimated as shown for scenario 12 in Figure 5 (for scenarios 7 – 11 see Figs. S10 – S14). The resulting in MSEQ 

remains ≤ 0.336 mm2 d-2 across all IM-SAS implementations (scenarios 7 – 12). Crucially, the models also reproduce well the 

other observed stream flow signatures such as the flow duration curves (MSEFDCQ ≤ 0.047 mm2 d-2; Fig. 5d), the seasonal 

runoff coefficients (MSERC ≤ 0.008; Fig. 5e) and the autocorrelation functions (MSEACQ ≤ 0.007; Fig. 5f).  480 

5.2 Model parameters 

Parameters of the baseline models (scenarios 1 – 6) directly define the shapes of parametric TTDs and thus the associated 

metrics of water age, such as MTT following Eqs. (3) and (4). The SW and CO models representing δ18O signals (scenarios 1 

– 4) are characterized by parameters that lead to values of β ~ 270 – 1275 d. In comparison, the same models calibrated to 3H 

(scenarios 5, 6) lead to parameter values β ~ 3795 and 7020 d that are higher by at least a factor of 5 (Table 3). 485 

The individual parameters of the IM-SAS model implementations (scenarios 7 – 12), in contrast, do not directly define 

parametric TTDs nor can they be readily and directly be linked to water ages. However, it has been previously shown that the 

sizes of water storage volumes is an important control on water ages (e.g. Harman, 2015) and that in particular hydrologically 

passive storage volumes, represented in the IM-SAS models by parameter Ss,p, are key to regulate in particular older water 

ages in many systems (e.g. Hrachowitz et al., 2016). Calibration of the lumped IM-SAS-L to δ18O and stream flow (Cδ18O,Q) in 490 

scenario 7 led to a moderately well identifiable range of this parameter Ss,p ~ 4107 – 10029 mm across all pareto optimal 

solutions (Fig. 6a, Table 3). Reflecting the water storage capacity in the unsaturated root zone, which is an important control 

on younger water ages (Hrachowitz et al., 2021), the parameter SumaxF was found to range between ~ 314 – 415mm (Fig. 6b, 

Table 3) for the same scenario. The calibration of the same model to 3H (scenario 8) resulted in a similar ranges for both Ss,p ~ 

3924 – 9339 mm (Fig. 6a) as well as, albeit slightly lower, SumaxF ~236 – 355 mm (Fig. 6b). The similarities between these two 495 

scenarios are also reflected in the parameter ranges obtained from the simultaneous calibration to δ18O and 3H (Cδ18O,
3
H,Q) in 

scenario 9. The calibration of the distributed IM-SAS-D model following all the three calibration strategies in scenarios 10 – 

12, resulted in values for Ss,p ~ 3270 – 9011 mm (Fig. 6c) that are broadly in the similar ranges as for IM-SAS-L (Ss,p ~ 3924 

– 13676 mm). In contrast, the distinction into the individual HRUs led to clear differences between SumaxF, SumaxG and SumaxW 

(Figs. 6d-f), reflective of the different hydrological functioning of these HRUs. Nevertheless, the area-weighted average of 500 

these parameters comes close to the equivalent parameter from the lumped model implementation (SumaxF). The general 

consistency of these parameters obtained from the different calibration strategies is exacerbated by the limited differences in 

the most balanced solutions (smallest DE) between the different scenarios. For example the most balanced solutions of Ss,p fall 

between ~ 4000 – 5000 mm for all IM-SAS scenarios 7 – 12 (Figs. 6a, c). All other parameters, which are less clearly related 
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to water ages, exhibit different levels of variation across the individual scenarios yet not following any clear and systematic 505 

pattern (Table 3). 

5.3 Water age distributions 

Based on a δ18O amplitude ratio As /Ap = 0.21 (Table 4), the results of the SW models (scenarios 1, 2) suggest a system that is 

characterized by rather young stream water with MTT ~ 0.7 – 1.8 yr, depending on the choice of TTD (Table 5; Fig. 7). The 

TTDs obtained from the CO models calibrated to δ18O (scenarios 3, 5) are broadly consistent with that, suggesting MTT ~ 1.4 510 

– 1.7 yr. These TTDs suggest mean water ages that are up to ~ 9 yr lower than estimates from CO models calibrated to 3H 

(scenarios 4, 6) with MTT ~ 9.6 – 10.4 yr (Table 5; Fig. 7). For higher percentiles the differences in water ages can even reach 

more than 20 years. Correspondingly, the fractions of younger water F(T < 3 m) exhibit considerable differences of 14 – 17% 

points between δ18O and 3H inferred estimates, which further increase to differences of 39 – 63% for F(T < 3 yr).  

In contrast, from the implementations of IM-SAS models in scenarios 7 – 12 it can be clearly seen that the stream water ages 515 

inferred from δ18O are across most percentiles by a factor of around 10 higher than those from SW and CO models, resulting 

in volume-weighted average MTT ~ 16 – 18 yr over the modelling period (Table 5; Fig. 7). Similarly, all water fractions below 

20 years are substantially lower for the IM-SAS models than for SW and CO models. The most pronounced difference is 

observed at F(T < 5 yr) that reaches 38 % for IM-SAS and 91 – 100% for SW and CO, which equals to a difference of more 

than 50%. These water age estimates from δ18O in IM-SAS (scenarios 7, 10) models are not only very similar to the estimates 520 

from 3H in these models (scenarios 8, 11) but δ18O suggests, against the expectations, even slightly older water than 3H does. 

More specifically, while δ18O results in stream water MTT > 16 yr, the 3H-based estimates reach MTT ~ 15 yr and thus one 

year younger (Table 5; Fig. 7). The differences between δ18O and 3H water ages inferred from all IM-SAS model 

implementations (scenarios 7 – 12) are similar over all percentiles with ΔTTδ18O-3H, on average, not exceeding ~ 2 yr. 

Accordingly, the fractions of water of any given age up to T < 20 years is ~ 2 – 8 % higher for 3H than for δ18O, suggesting 525 

higher fractions of old water modelled with δ18O (Table 5). Equivalent pattern and comparable magnitudes are found for the 

combined use of δ18O and 3H in scenarios 9 and 12. 

An explicit comparison between the lumped IM-SAS-L (scenarios 7 – 9) and the distributed IM-SAS-D (scenarios 10 – 12) 

also suggests a good correspondence between the respective inferred water ages for both tracers. While IM-SAS-L generates 

MTT ~ 13.6 – 18.2 years, the MTT obtained from IM-SAS-D reach ~ 14 – 16 years (Table 5, Fig. 7). Besides the MTT, also 530 

the differences in water ages across all percentiles is minor and reaches a maximum of 4.6 years at the 75th percentile. 

Accordingly, the fractions of water with ages T < 20 yr exhibit only marginal differences between the lumped (IM-SAS-L) and 

distributed model (IM-SAS-D) implementations.  

The consistency between water ages inferred from δ18O and 3H, respectively, is further illustrated by the direction and 

magnitude of change in water age distributions as a consequence of changing wetness conditions. In particular during wet-up 535 

and wet periods, a marked variability of daily TTDs can be observed for all scenarios 7 – 12, with young water fractions F(T 

< 3 m) ranging between ~ 20 – 65% for δ18O-based estimates and ~ 25 – 70% for 3H (Fig. 8a, b). Less variability in daily TTDs 
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is found under drying and dry conditions with generally F(T < 3 m) in the range of ~ 1 – 20%, with only very few outliers > 

30%. Overall, the volume-weighted average TTDs for wet conditions suggest slightly older water inferred from δ18O with a 

median water age of ~ 3 year and F(T < 3 m) ~ 30%, for wet conditions than from 3H, for which a median age of ~ 1 year and 540 

F(T < 3 m) ~ 40 % were found (Fig. 8d). This is in opposite to dry conditions for which the differences between δ18O and 3H-

derived water age estimates become mostly negligible (Fig. 8d).     

With IM-SAS models, not only MTT/TTD in streams can be derived but also in any fluxes/storages (i.e., transpiration flux Ea, 

ground water storage). An even more pronounced young water variability in daily TTDs was found for the transpiration flux 

Ea leaving the unsaturated root zone storage Su in the IM-SAS models (scenarios 7 – 12). As shown in Figure 9a, the 545 

transpiration TTDs inferred from δ18O suggest a median transpiration age during wet conditions of ~ 2 – 40 days and F(T < 3 

m) ~ 60 – 100%. This variability shifts to median ages between ~ 30 – 100 days and F(T < 3 m) ~ 30 – 95% for dry conditions. 

This pattern of variability in daily TTDs in wet and dry periods is very closely matched by the estimates based on 3H (Fig. 9b). 

Overall, the volume-weighted average TTDs of transpiration suggest median ages of around 14 days for wet conditions and 

between 35 days (3H) and 70 days (δ18O) for dry conditions (Fig. 9d).   550 

The modelled groundwater, in comparison, was found to be characterized by substantially less temporal variability in TTDs 

and older water ages (Fig. 10). The TTDs inferred from both, δ18O and 3H, are similar and characterized by a median age of ~ 

10 years under wet and dry conditions. While F(T < 3 m) largely remains < 1%, and ~ 20 – 25 % of the groundwater is older 

than 20 years.     

6 Implications, limitations and unresolved questions  555 

What can we learn from the above? We believe the results obtained in this study have several implications for the utility of 

different tracer and model types, as described in detail below.    

6.1 The individual roles of the choices of tracers and models for underestimation of water ages  

The overall magnitude of water ages here estimated from SW and CO models in combination with δ18O reach MTTs of ~ 2 

years (Table 5, Fig.7). These values fall within the age ranges reported for comparable model experiments with seasonally 560 

variable tracers in many other catchments world-wide (see McGuire and McDonnell, 2006; Godsey et al., 2009; Hrachowitz 

et al., 2009; Stewart et al., 2010 and references therein). Similarly, the water ages estimated with the same CO models in 

combination with 3H are with MTTs ~ 10 yrs by a factor of ~ 5 higher (Table 5, Fig. 7), and also well reflect the findings of 

previous studies, many of which suggest 3H-inferred catchment MTTs of ~ 10 – 15yr (Stewart et al., 2010 and references 

therein). This suggests that the Neckar basin does not exhibit unusual or unexpected water age characteristics. By themselves, 565 

these results would therefore lend further supporting evidence for the interpretation provided by Stewart et al. (2010) and, 

crucially, lead us to the same conclusion, that the use of δ18O and comparable seasonally variable tracers truncate stream water 

ages.  
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However, and in stark contrast, the estimates of water age obtained from all IM-SAS model implementations in this study, i.e., 

scenarios 7 – 12, are similar to each other, and most importantly, irrespective of the tracer used. Water ages estimated from 570 

δ18O are, with MTT > 16 yr, not only substantially older than those inferred from the SW and CO models (scenarios 1 – 3, 5), 

and similar than those inferred from 3H in IM-SAS models, which reach MTT ~ 15 yr (Table 5, Fig. 7). These water ages 

highlight the importance of old water in the Neckar basin, similar to what is suggested by the use of 3H in CO models (scenarios 

4, 6). 

It is important to note that the IM-SAS models can simultaneously reproduce several signatures of the hydrological response 575 

together with the δ18O and 3H stream water signals. They therefore provide a more coherent and holistic description of physical 

transport processes in the system (Table 4, Fig. 3 – 5) than the SW and CO models, which can mimic merely one single tracer 

signal and thus one isolated variable at a time. In addition, the IM-SAS model parameters that are most linked to tracer 

circulation, e.g. Ss,p and Sumax (Fig. 6), exhibit little difference when obtained from calibration to δ18O or 3H, respectively. This 

implies that both, δ18O and 3H, provide similar information about how tracers are routed through the model and how water is 580 

stored in and released from the system. As a consequence, also the simultaneous representation of all three types of variables 

under consideration, i.e., the hydrological response as well as the δ18O and 3H stream signals, in these models is consistent 

with the observed data (scenarios 9, 12).  

The above is further corroborated by how water ages in the Neckar basin respond to changing wetness conditions. Although 

not identical, δ18O and 3H-inferred daily TTDs exhibit nevertheless broad agreement in the directions and magnitudes of change 585 

in response to changing wetness conditions (Fig. 8). Changes in stream flow TTDs are not primarily caused by changes of 

water ages within individual storage components. In particular, the modelled water age distributions in the groundwater Ss 

show limited sensitivity to changing wetness conditions, with MTT varying between ~ 18 years in dry periods and ~ 17 years 

in wet periods (Fig. 10). The TTDs in the transpiration flux Ea, which are reflective of the water ages in the unsaturated root 

zone Su, exhibit with MTTs between ~ 0.20 and 0.12 years in dry and wet periods (Fig. 9), respectively, magnitudes and 590 

fluctuations over time that are similar to what has been previously reported in other studies (e.g., Hrachowitz et al., 2015; 

Soulsby et al., 2016; Visser et al., 2019; Birkel et al., 2020; Kuppel et al., 2020). However, the level of these age fluctuations 

alone is insufficient to explain the magnitude of change in stream flow TTDs, which can vary by several years. Instead, the 

temporal variability of stream flow TTDs is largely controlled by switches in the relative contributions of individual storage 

components to stream flow under different wetness conditions. Under increasingly wet conditions, considerably increasing 595 

proportions of comparably young water from SU contribute over shallow preferential flow pathways (SF) to stream flow, while 

the relative proportion of groundwater contributing to stream flow under such conditions is reduced (Hrachowitz et al., 2013). 

Both tracers, δ18O and 3H, generate these patterns in a corresponding way.   

Altogether, this suggests that the IM-SAS models and the resulting estimates of water ages resulting from both, δ18O and 3H, 

provide plausible descriptions of transport processes and thus water ages in the Neckar basin. Clearly, with current observation 600 

technology, it is impossible to know the real water age distribution at river basin scale. However, the water ages and their 

temporal variability inferred from both, δ18O and 3H using IM-SAS models are widely consistent. In addition, these models 
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can also reproduce the hydrological response. Together, this is suggestive that it is not the use of δ18O per se that leads to 

truncation of TTDs, but rather that lumped convolution integral models are incapable of extracting meaningful information 

from δ18O signals. These results mirror anecdotal evidence from several previous studies (e.g., Hrachowitz et al., 2015, 2021; 605 

Ala-aho et al., 2017; Buzacott et al., 2020; Yang et al, 2021). Although no direct comparison with 3H data is provided in these 

studies, they demonstrated the potential of δ18O in SAS-based model approaches to estimate water age distributions with 

considerable fractions of water older than 5 – 10 years and Birkel et al. (2020) explicitly estimated MTTs of up to 18 years. 

Our results also strongly support the findings and general conclusions of Rodriguez et al. (2021), who undertook a direct 

comparison of water ages inferred from δ18O and 3H. In their study for a small catchment and based on shorter tracer time 610 

series, i.e., 2 years, and a system that is characterized by rather low MTT of ~ 3 years, they found that although 3H led to higher 

MTTs than δ18O, the absolute difference between these ages estimates was with 0.2 years limited and even decreasing for 

higher percentiles of the water age distributions.    

We therefore argue that the evidence emerging from our results and the above considerations is strong enough to reject the 

hypothesis that δ18O as a tracer generally and systematically “cannot see water older than about 4 years” (Stewart et al., 2010, 615 

2012) and the corresponding tails in water age distributions, leading to underestimations of water ages. We further argue that 

previous underestimations of water ages are rather a consequence of the use of lumped parameter convolution integral model 

techniques that cannot resolve the information contained δ18O signals in a meaningful way for catchments with transient flow 

conditions. Only the combined information using hydrological and tracer data and the consideration of transient flow 

conditions gives similar MTT, independent of the used tracer. 620 

However, and notwithstanding the rejection of the above hypothesis it is important to note that overall and in spite of the 

similarity between δ18O and 3H inferred water ages in the study basin on the basis of IM-SAS models, there may be no general 

equivalence between δ18O and 3H tracers. Instead, it is plausible to assume that differences will gradually increase with higher 

water ages. In systems characterized by water older than the water in the Neckar study basin, and where the amplitudes of the 

δ18O stream signal are attenuated to below the analytical precision, the water age estimates from δ18O will indeed become 625 

subject to increasing uncertainty up to the point where further attenuation and thus older water ages cannot be discerned 

anymore; independent of modelling approaches. The specific magnitude of such a water age threshold remains difficult to 

quantify with the available data. However, given the results in the Neckar study basin, the question raised by Stewart et al. 

(2021), if δ18O allows to see “the full range of travel times”, can to some extent be answered: it can be assumed that, when 

used with a suitable model, δ18O contains sufficient information for a meaningful characterization of water ages in systems 630 

characterized by MTTs of at least ~15 – 20 years, which encompasses the vast majority of river basins so far analyzed in 

literature (see Stewart et al., 2010 and references therein). As a step forward, the original hypothesis above can, for future 

research, be reformulated into: δ18O-inferred water age estimates are subject to increasing uncertainty and bias when compared 

to 3H-inferred estimates when stream water MTTs of ~ 15 – 20 years are exceeded in systems characterized by increasingly 

old water.  635 
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6.2 The role of spatial aggregation on underestimation of water ages  

In addition to the above, Kirchner (2016) demonstrated that the use of seasonally variable tracers with lumped parameter model 

approaches, i.e., SW and CO, has considerable potential to underestimate water ages due to the aggregation of spatially 

heterogeneous processes. We could here not reproduce that exact experiment, as stream observations were available only at 

one location for each tracer. However, in the distributed implementation of the IM-SAS-D model (scenarios 10 – 12), we 640 

nevertheless explicitly accounted, albeit to a limited degree, for heterogeneity in the system input variables as well as for 

potential differences in landscape types, as expressed by the three model HRUs. The comparison between the lumped IM-

SAS-L (scenarios 7 – 9) and the distributed IM-SAS-D models does not show major differences in their ability to reproduce 

the various hydrological signatures nor the δ18O and 3H stream signals (Table 4). Against evidence from various previous 

studies (e.g., Euser et al., 2015; Gao et al., 2016; Nijzink et al., 2016), this reflects to some degree the conclusion by Loritz et 645 

al. (2021), who found in a comparative analysis that distributed model implementations do not improve a model’s ability to 

reproduce the hydrological response as compared to spatially lumped formulations. As a consequence, the results here also do 

not show significant differences in the associated water age estimates, with MTTs ~ 14 – 18 yrs for IM-SAS-L and 14 – 16 yrs 

for IM-SAS-D, respectively (Table 5, Fig. 7).  

How can this be interpreted? If significantly older ages were inferred from the distributed IM-SAS-D implementation, this 650 

would have provided strong supporting evidence for the role and effect of spatial heterogeneity on water ages as demonstrated 

by Kirchner (2016). However, the similar water ages inferred from the spatially lumped and distributed implementations, 

respectively, allow two possible but mutually contradicting interpretations. Either, it could indicate that the aggregation of 

spatial heterogeneity does not have any discernible effect on water ages inferred from the IM-SAS model in the study basin 

or, on the contrary, the spatial resolution of the model and the available data was not sufficient to detect any significant 655 

differences. The evidence found here therefore remains inconclusive and further research is required to describe the role of the 

aggregation of spatial heterogeneity for estimates of water ages using IM-SAS type of models. 

For any estimates of water ages in this study – as in any other study – it is important to bear in mind that they are conditional 

on the available data and models used. Uncertainties can and do arise from both, data and from decisions taken in the modelling 

process (e.g., Beven, 2006; Kirchner, 2006). One challenge in this study was that precipitation δ18O and 3H compositions were 660 

only available at rather coarse spatial and temporal resolutions. We have used the best available information to spatially 

extrapolate the tracer precipitation data from the individual sampling stations to estimate their spatial variation across the 

Neckar basin including stations outside the study basin. The monthly δ18O and 3H distribution in precipitation within South-

Germany is generally similar (Stumpp et al. 2014; Schmidt et al. 2020); still, regional correction for δ18O might not be sufficient 

to explain local differences in δ18O precipitation data. A similar limitation applies to the temporal resolution of tracer 665 

composition in precipitation as only monthly information was available. However, as the available data nevertheless reflect 

the seasonal variation in δ18O and 3H precipitation input, the uncertainties arising can be assumed to largely affect the short-

term dynamics of tracers in the stream and thus rather young water ages, whereas the objective of our analysis was focused on 
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the right tail of the water age distributions and thus on old ages. Notwithstanding these uncertainties, the overall model 

performances with respect to the hydrological and tracer responses, suggest that the choice of input data and the model 670 

formulations led to model results that are largely consistent with the observed responses in the stream. The observation that 

there is little ambiguity in the results further suggests that the remaining uncertainties are unlikely to affect the overall 

interpretation and conclusions of this study.    

7 Conclusions 

δ18O and 3H are frequently used as tracers in environmental sciences to estimate age distributions of water. However, it has 675 

previously been argued that seasonally variable tracers, such as δ18O, fail to detect the tails of water age distributions and 

therefore substantially underestimate water ages as compared to radioactive tracers, such as 3H. In this study for the Neckar 

River basin in central Europe and based on a >20-year record of hydrological, δ18O and 3H data we systematically scrutinized 

the above postulate by comparing water age distributions inferred from δ18O and 3H with a total of 12 different model 

implementations. The main findings of our analysis are the following: 680 

(1) Water ages inferred from δ18O with commonly used sine wave (SW) and lumped parameter convolution integral models 

(CO) are with MTTs ~ 1 – 2 years substantially lower than those obtained from 3H with the same models, reaching MTTs ~ 10 

years. 

(2) In contrast, integrated hydrological models in combination with the concept of SAS-functions (IM-SAS) did not only allow 

simultaneous representations of stream flow as well as δ18O and 3H stream signals, but water ages inferred from δ18O were 685 

with MTTs ~ 16 years much higher than those from SW and CO models and even higher than inferred from 3H, which 

suggested MTTs ~ 15 years.  

(3) Constraining IM-SAS model implementations individually with δ18O and 3H observations resulted in similar values for 

parameters that control water ages, such as the passive groundwater volumes Ss,p. In addition, δ18O and 3H-constrained models 

both exhibited limited differences in the magnitudes of water ages in different parts of the models as well as in the temporal 690 

variability of TTDs in response to changing wetness conditions. This suggests that both tracers lead to comparable descriptions 

of how water is routed through the system.   

(4) Based on the points above, we reject the hypothesis that δ18O as a tracer generally and systematically “cannot see water 

older than about 4 years” (Stewart et al., 2010, 2012) and that it truncates the corresponding tails in water age distributions, 

leading to underestimations of water ages.  695 

(5) Instead, our results provide evidence of broad equivalence of δ18O and 3H as age tracers for systems characterized by MTTs 

of at least 15 – 20 years.  

(6) The question to which degree aggregation of spatial heterogeneity can further adversely affect estimates of water ages 

remains unresolved as the lumped and distributed implementations of the IM-SAS model provided inconclusive results. 

Overall, this study demonstrates that previously reported underestimations of water ages are most likely not a result of the use 700 
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of δ18O or other seasonally variable tracers per se. Rather, these underestimations can be largely attributed to the choices of 

model approaches which rely on assumptions not frequently met in catchment hydrology. Given the vulnerability of lumped 

parameter convolution integral approaches in combination with δ18O to substantially underestimate water ages due to transient 

flow conditions, spatial aggregation and potentially other, still unknown effects, we therefore strongly advocate to avoid the 

use of this model type in combination with seasonally variable tracers and to instead adopt SAS-based or comparable model 705 

formulations.  

 
Code availability. The model code used can be made available by the first author upon request. The equations used in the 

model are described in supplement. 
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Table1. Characteristics of the Neckar catchment in Germany 1010 

Characteristics  
latitude (N) 48°02′00″-49°33′45″ 
longitude (E) 8°18′45″-10°18′45″ 
Area (km2) 13,041 
Average annual precipitation (mm yr-1) 909 
Average annual temperature (℃) 8.9 
Elevation range (m) 122-1019 
Mean elevation (m) 569 
Slope range (°) 0-53 
Mean slope (°) 5.1 
Forest dominated land (%) 38.1 
Grass dominated land (%) 51.2 
Wetland (%) 10.7 

 

 

Table 2. The 12 model scenarios here implemented for the Neckar study basin together with the associated calibration strategies, the individual calibration 
performance metrics and the type of spatial implementation (lumped or distributed). SW indicates sine-wave models, CO indicates lumped parameter 
convolution integral models and IM-SAS indicates the integrated hydrological model based on SAS-functions. EM represents an exponential TTD (i.e. α = 1) 1015 
and GM indicates a gamma TTD with α = 0.5. The symbols L and D indicate lumped and distributed model implementations, respectively. The calibration 
strategies show which variables/signatures a model was simultaneously calibrated to using the Mean Square Error (MSE) with Cδ

18
O calibration to only the 

observed stream water δ18O signal; C3
H calibration to only stream water 3H; Cδ

18
O,Q simultaneous calibration to δ18O and six signatures of stream flow Q; C3

H,Q 
simultaneous calibration to 3H and the signatures of Q; Cδ

18
O,

3
H,Q the simultaneous calibration to δ18O, 3H and the signatures of Q. *) Note, that for SW models 

calibration involves least-square fits of sine waves to both, the precipitation and stream flow signals available. 1020 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

Model SW-
EM 

SW-
GM 

CO-EM CO-GM IM-SAS-L IM-SAS-D 

Implementation Lumped Distributed 

 Signature 

Calibration 
strategy → 

Performance 
metric ↓ 

Cx
*) Cx

*) Cδ
18

O C3

H Cδ
18

O C3

H 
Cδ

18
O

,Q C3
H,Q Cδ

18
O,

3
H

,Q 
Cδ

18
O

,Q 
C3

H,

Q 
Cδ

18
O,

3
H

,Q 

Pe
rfo

rm
an

ce
 m

et
ric

s 

Times series δ18O in stream 
flow 𝑀𝑀𝑀𝑀𝑀𝑀𝛿𝛿18𝑂𝑂 • • • - • - • - • • - • 

Time series 3H in stream flow 𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻3  - - - • - • - • • - • • 
Time series of stream flow (Q) 𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 - - - - - - • • • • • • 

Time series of log(Q) 𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙(𝑄𝑄) - - - - - - • • • • • • 
Flow duration curve of Q 

(FDCQ) 
𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑄𝑄 - - - - - - • • • • • • 

Flow duration curve log(Q) 
(FDClog(Q)) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙(𝑄𝑄) - - - - - - • • • • • • 

Seasonal runoff coefficient 
(RC) 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅  - - - - - - • • • • • • 

Autocorrelation function of Q 
(ACQ) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝑄𝑄 - - - - - - • • • • • • 
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Table 3. Parameter prior ranges and pareto optimal ranges (5th/95th percentiles) for each model scenario. Note that *) for the parameters of the SW models, 
Ap and As, no prior distribution was explicitly defined as they are determined by least-squares fits. **) the CO models were calibrated using a single objective 
function, therefore the set of pareto optimal solution collapses to one optimal solution. 1030 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 
Model SW-EM SW-GM CO-EM CO-GM IM-SAS-L IM-SAS-D 

Calibration strategy Cx Cx Cδ
18

O C3
H Cδ

18
O C3

H Cδ
18

O,Q C3
H,Q Cδ

18
O,

3
H,Q Cδ

18
O,Q C3

H,Q Cδ
18

O,
3

H,Q 
Parameter Prior range Pareto optimal range 

Ap (‰) -* 2.69 - - - - - - - - - - 
As (‰) -* 0.57 - - - -      - - - - - - 
β (d) ** 1 -15000 - - 510 1275 3795 7020 - - - - - - 
Tt (oC) -2.5-2.5 - - - - - - -0.94-2.08 -0.88-1.75 -2.15-1.57 -1.84-1.81 -1.74-0.16 -1.92-1.54 

Cmelt (mmoC-1d-1) 1-5 - - - - - - 2.32-4.42 1.67-3.96 1.79-3.77 2.30-4.89 1.56-3.25 1.23-4.10 
SimaxF (mm) 0.1-5 - - - - - - 1.53-3.73 1.35-4.39 0.55-4.10 3.18-4.03 2.94-4.98 2.04-4.39 
SimaxG (mm) 0.1-5 - - - - - - - - - 0.30-0.60 0.46-0.70 0.38-1.39 

Ca (-) 0.1-0.7 - - - - - - 0.24-0.43 0.35-0.55 0.33-0.62 0.30-0.66 0.38-0.52 0.30-0.56 
SumaxF (mm) 50-500 - - - - - - 314-415 236-355 233-464 355-438 301-441 352-485 
SumaxG (mm) 50-500 - - - - - - - - - 161-199 152-287 173-297 
SumaxW (mm) 50-500 - - - - - - - - - 56-149 89-149 85-148 

γF (-) 0.1-5 - - - - - - 0.93-1.68 0.61-1.01 0.57-2.03 0.99-4.59 2.04-3.98 0.76-4.94 
γG (-) 0.1-5 - - - - - - - - - 0.15-0.26 0.23-0.53 0.11-0.52 
γW (-) 0.1-5 - - - - - - - - - 0.14-3.64 0.12-0.32 0.10-2.88 
D (-) 0-1 - - - - - - 0.30-0.77 0.41-0.81 0.30-0.69 0.03-0.35 0.06-0.33 0.03-0.33 

CpmaxF (mm d-1) 0.1-4 - - - - - - 1.04-2.03 0.98-1.83 1.05-2.62 0.91-3.19 0.94-3.66 1.37-3.72 
CpmaxG (mm d-1) 0.1-4 - - - - - - - - - 0.74-1.80 0.22-1.17 0.93-2.13 
Crmax (mm d-1) 0-4 - - - - - - - - - 0.00-0.31 0.02-1.06 0.01-0.98 

KfF (d-1) 0.2-5 - - - - - - 0.27-2.99 0.24-1.52 0.31-3.79 0.21-3.03 0.21-0.70 0.50-4.21 
KfG (d-1) 0.2-5 - - - - - - - - - 0.21-4.04 0.25-0.41 0.25-3.66 
Ks (d-1) 0.002-0.2 - - - - - - 0.04-0.19 0.05-0.18 0.05-0.18 0.05-0.17 0.03-0.14 0.05-0.17 

Ss,p (mm) 100-20000 - - - - - - 4107-10029 3924-9339 4078-13676 4278-9011 3270-4622 4150-8568 
   
 
Table 4. Performance metrics of the model implementations and the associated calibration strategies for the 2001 – 2009 calibration period (cal.) and the 2010 
– 2016 model evaluation period (val.). For brevity only the values for the most balanced solution, i.e., lowest DE (Eq. 14) are shown here. The ranges of all 
performance metrics for the full set of pareto optimal solutions for the multi-objective calibration cases (Scenarios 7 – 12) are provided in the Table S5 in 1035 
supplement. *) The MSE values provided for Cx describe the sine wave fits of both, the precipitation and stream flow δ18O signals, respectively.  

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 
Model SW-EM SW-GM CO-EM CO-GM IM-SAS-L IM-SAS-D 

Implementation Lumped Distributed 
Calibration strategy → 
Performance metric ↓ Cx Cx Cδ18O C3H Cδ18O C3H Cδ18O,Q C3H,Q Cδ18O,3H,Q Cδ18O,Q C3H,Q Cδ18O,3H,Q 

Pe
rfo

rm
an

ce
 m

et
ric

s 

𝑀𝑀𝑀𝑀𝑀𝑀𝛿𝛿18𝑂𝑂 cal. 3.850/0.121*) 0.334 - 0.213 - 0.083 - 0.118 0.079 - 0.114 
val. 5.208/0.144*) 0.430 - 0.245 - 0.332 - 0.273 0.273 - 0.275 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻3  cal. - - - 5.904 - 5.810 - 2.972 2.823 - 2.920 2.981 
val. - - - 5.160 - 4.468 - 2.389 2.285 - 2.357 2.450 

𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄 cal. - - - - - - 0.202 0.299 0.308 0.228 0.263 0.317 
val. - - - - - - 0.224 0.297 0.329 0.251 0.283 0.336 

𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙(𝑄𝑄) 
cal. - - - - - - 0.120 0.158 0.174 0.130 0.171 0.161 
val. - - - - - - 0.120 0.148 0.150 0.127 0.201 0.165 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑄𝑄 cal. - - - - - - 0.058 0.024 0.073 0.022 0.017 0.025 
val. - - - - - - 0.103 0.022 0.142 0.043 0.065 0.059 

𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙(𝑄𝑄) 
cal. - - - - - - 0.011 0.011 0.047 0.006 0.019 0.009 
val. - - - - - - 0.015 0.009 0.047 0.009 0.050 0.018 

𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅  cal. - - - - - - 0.004 0.005 0.007 0.003 0.006 0.003 
val. - - - - - - 0.004 0.004 0.005 0.003 0.008 0.003 

𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝑄𝑄 cal. - - - - - - 0.003 0.002 0.003 0.002 0.001 0.001 
val. - - - - - - 0.008 0.002 0.001 0.005 0.002 0.007 
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 1040 
 
 
Table 5. Metrics of stream flow TTDs derived from the 12 model scenarios with the different associated calibration strategies, where Cδ18O indicates calibration 
to δ18O, C3H calibration to 3H, while Cδ18O,Q, C3H,Q and Cδ18O,3H,Q indicate multi-objective, i.e. simultaneous calibration to combinations of δ18O, 3H and stream 
flow. The TTD metrics for scenarios 1-6 represent the best fits of the respective time-invariant TTD, while for scenarios 7-12 the mean and standard deviations 1045 
of all daily streamflow TTDs during the modelling period 01/10/2001 – 31/12/2016 are given. The mean transit time for scenarios 7 – 12 was estimated by 
fitting Gamma distributions to the volume-weighted mean TTDs of each individual scenario. The water fractions are shown as the fractions of below a specific 
age T. The columns with absolute difference Δ illustrate the differences in TTDs from the same models calibrated to δ18O and 3H, respectively. The subscripts 
indicate the scenarios that are compared (e.g., Δ3,4 compares scenarios 3 and 4). *Note that the fraction of water younger than 3 months is comparable to the 
fraction of young water as suggested by Kirchner (2016). 1050 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 Δ3,4 Δ5,6 Δ7,8 Δ10,11 
Model SW-EM SW-GM CO-EM CO-GM IM-SAS-L IM-SAS-D Absolute difference 

ΔTTδ
18

O-3H  
ΔF(T<x)δ

18
O-3H 

Calibration strategy → 
TTD metrics ↓ Cx Cx Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O,Q C3

H,Q Cδ
18

O,
3

H,Q Cδ
18

O,Q C3
H,Q Cδ

18
O,

3
H,Q 

 Mean (yr) 0.7 1.8 1.4 10.4 1.7 9.6 18.2 14.1 13.6 16.0 15.0 14.0 -9.0 -7.9 4.1 1.0 

Pe
rc

en
til

es
 

(y
r) 

10th 0.1 < 0.1 0.1 1.1 < 0.1 0.2 0.5±0.7 0.5±0.8 0.4±0.6 0.3±0.5 0.3±0.5 0.3±0.4 -1.0 -0.2 0.0 0.0 
25th 0.2 0.2 0.4 3.0 0.2 1.0 2.1±2.1 1.9±2.1 1.5±1.8 2.1±1.7 1.5±1.7 1.4±1.5 -2.6 -0.8 0.2 0.6 

50th (median) 0.5 0.8 1.0 7.2 0.8 4.4 9.0±3.3 6.5±4.8 5.7±4.3 8.6±2.6 6.7±3.7 6.6±3.5 -6.2 -3.6 2.5 1.9 
75th 1.0 2.3 1.9 14.4 2.3 12.7 22.2±3.3 17.6±6.5 16.3±6.2 20.8±2.8 18.8±4.6 17.8±4.2 -12.5 -10.4 4.6 2.0 
90th 1.7 4.8 3.2 23.9 4.7 25.9 31.3±4.3 29.2±5.0 28.6±5.1 31.1±4.2 30.4±4.3 29.9±4.2 -20.7 -21.2 2.1 0.7 

W
at

er
 fr

ac
tio

ns
 

(%
) 

F(T<3 m)* 29 29 16 2 29 12 18±12 23±19 21±15 16±10 22±13 23±15 14 17 -5 -6 
F(T<6 m) 49 41 30 5 41 18 21±13 29±22 30±19 20±11 27±16 27±16 25 23 -8 -7 
F(T<1 yr) 74 55 51 9 55 25 24±13 32±22 35±21 22±11 30±16 29±15 41 30 -8 -8 
F(T<3 yr) 98 81 88 25 81 42 31±11 39±20 42±19 30±10 37±14 37±14 63 39 -8 -7 
F(T<5 yr) 100 91 97 38 91 53 38±10 46±18 49±17 38±9 44±13 44±12 59 38 -8 -6 

F(T<10 yr) 100 98 100 62 98 69 52±8 59±13 62±12 53±7 58±10 58±9 38 29 -7 -5 
F(T<20 yr) 100 100 100 85 100 85 71±5 77±7 79±7 74±4 76±5 77±5 15 15 -6 -2 
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Figure 1. (a) Elevation of the Neckar catchment with discharge and hydro-meteorological stations as well as the water sampling locations used in this study, 1060 
(b) the spatial distribution of long-term mean annual precipitation in the Neckar catchment and the stratification into four distinct precipitation zones P1 – P4, 
(c) hydrological response units classified according to their land-cover and topographic characteristics. 
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Figure 2. Model structure of the integrated model, discretized into three parallel hydrological response units HRU, i.e. forest, grassland and wetland in each 1065 
precipitation zone P1 – P4. The light blue boxes indicate the hydrologically active individual storage volumes. The dark blue box indicates the hydrologically 
passive storage volume Ss,p. The arrow lines indicate water fluxes and model parameters are shown in red. All symbols are described in Table S4 in the 
Supplementary Material. 
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Figure 3. The time series of stream δ18O reproduced by model IM-SAS-D based on simultaneous calibration to δ18O and the streamflow signatures, i.e. 1070 
calibration strategy Cδ18O,Q (scenario 10) and Cδ18O,

3
H,Q (scenario 12), for the model calibration and evaluation periods. (a) Observed δ18Osignals in precipitation 
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(light grey dots; size of dots indicates the precipitation volume) and observed stream δ18O signals (orange dots) as well as the most balanced, i.e. lowest DE, 
modelled δ18O signal in the stream (green dots) for scenario 10 and the 5th/95th percentile of all retained pareto optimal solutions obtained from calibration 
strategy Cδ

18
O,Q (green shaded area), (b) zoom-in of observed and modelled δ18O signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 10, 

(c) Observed δ18Osignals in precipitation and in stream same as (a), and the modelled stream δ18Osignals (relatively darker green dots) for scenario 12 and the 1075 
5th/95th percentile of all retained pareto optimal solutions obtained from calibration strategy Cδ18O,

3
H,Q (light green shaded area), (d) zoom-in of observed and 

modelled δ18O signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 12. 
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Figure 4. Time series of stream 3H reproduced by model IM-SAS-D based on simultaneous calibration to 3H and the streamflow signatures, i.e. calibration 
strategy C3H,Q (scenario 11) and Cδ18O,

3
H,Q (scenario 12), for the model calibration and evaluation periods. (a) Observed 3H signals in precipitation (light blue-1080 
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purple dots; size of dots indicates associated precipitation volume) and in streamflow (pink dots) as well as the modelled 3H stream signal based on the most 
balanced solution, i.e. lowest DE ( purple dots), and the 5th/95th inter-quantile range of all retained pareto optimal solutions obtained from calibration strategy 
C3

H,Q (purple shaded area) for scenario 11, (b) zoom-in of observed and modelled 3H signals for the 01/01/2007 – 31/12/2012 period for scenario 11, (c) 
Observed 3H signals in precipitation and in stream same as (a), and the modelled stream 3H signals (relatively darker purple dots) for scenario 12 and the 
5th/95th percentile of all retained pareto optimal solutions obtained from calibration strategy Cδ18O,

3
H,Q (light purple shaded area), (d) zoom-in of observed and 1085 

modelled 3H signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 12. 

 
 
 

 1090 
Figure 5. Hydrograph and selected hydrological signatures reproduced by IM-SAS-D, following a simultaneous calibration to the hydrological response, δ18O 
and 3H (Cδ18O,3H,Q; scenario 12). (a) Time series of observed daily precipitation; observed and modelled (b) daily stream flow (Q), where the red line indicates 
the most balanced solution, i.e., lowest DE, and the red shaded area the 5th/95th inter-quantile range obtained from all pareto optimal solutions; (c) stream flow 
zoomed-in to the 01/01/2007 – 31/12/2012 period; (d) flow duration curves (FDCQ), (e) seasonal runoff coefficients (RCQ) and (f) autocorrelation functions 
of stream flow (ACQ) for the calibration period. Blue lines indicate values based on observed streamflow (Qo), red lines are values based on modelled stream 1095 
flow (Qm) representing the most balanced solutions, i.e., lowest DE and the red shaded areas show the 5th/95th inter-quantile ranges obtained from all pareto 
optimal solutions. 
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Figure 6 Pareto-optimal distributions of selected parameters of the IM-SAS models (i.e., IM-SAS-L, IM-SAS-D) shown as the associated empirical 1100 
cumulative distribution functions (lines). Light green shades indicate scenario 7, light purple shades indicate scenario 8 and light brown shades indicate 
scenario 9 in (a) and (b); relatively darker green shades indicate scenario 10, relatively darker purple shades indicate scenario 11 and relatively darker brown 
shades indicate scenario 12 in (c) - (f). The dots indicate the parameter values associated with the most balanced solution, i.e., lowest DE. 
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Figure 7. Stream flow TTDs derived from the 12 model scenarios with the different associated calibration strategies. The TTDs for scenarios 1-6 represent 
the best fits of the respective time-invariant TTD, while for scenarios 7-12 the volume weighted average daily TTDs during the modelling period 01/10/2001 
– 31/12/2016 are given. Green shades represent the TTDs inferred from δ18O based on different models (from lighter to darker for scenarios 1, 2, 3, 5, 7 and 
10) in (a) and (b); the purple shades represent TTDs inferred from 3H based on different models (from lighter to darker for scenario 4, 6, 8, 11), the brown 1110 
lines represent TTDs inferred from combined δ18O and 3H based on different models (brown shades from lighter to darker for scenario 9 and 12); the black 
dots in (b) indicate the mean transit time for each of 12 model scenarios. Note that the mean transit time for scenarios 7 – 12 was estimated by fitting Gamma 
distributions to the volume-weighted mean TTDs of each individual scenario. 
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Figure 8. Daily streamflow (Q) TTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenarios 10 – 12), based on (a) 
calibration strategy Cδ18O,Q (scenario 10), (b) calibration strategy C3H,Q (scenario 11) and (c) calibration strategy Cδ18O,3H,Q (scenario 12). The line colors represent 
the transition between dry and wet periods. Panel (d) shows the volume weighted average TTDs for the wet and dry periods, respectively. The light shades 1120 
represent calibration strategy Cδ18O,Q (scenario 10), the intermediate shades indicate calibration strategy C3H,Q (scenario 11) and the dark shades are calibration 
strategy Cδ18O,3H,Q (scenario 12). For illustrative purposes, also the fraction of water younger than 3 months F (T < 3 m) is indicated. 
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Figure 9. Daily transpiration (Ea) TTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenarios 10 – 12), based on 
(a) calibration strategy Cδ18O,Q (scenario 10), (b) calibration strategy C3H,Q (scenario 11) and (c) calibration strategy Cδ18O,3H,Q (scenario 12). The line colors 
represent the transition between dry and wet periods. Panel (d) shows the volume weighted average TTDs for the wet and dry periods, respectively. The light 
shades represent calibration strategy Cδ18O,Q (scenario 10), the intermediate shades indicate calibration strategy C3H,Q (scenario 11) and the dark shades are 1130 
calibration strategy Cδ18O,3H,Q (scenario 12). For illustrative purposes, also the fraction of water younger than 3 months F (T < 3 m) is indicated. 
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Figure 10. Daily groundwater (Ss) RTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenarios 10 – 12), based on 1135 
(a) calibration strategy Cδ18O,Q (scenario 10), (b) calibration strategy C3H,Q (scenario 11) and (c) calibration strategy Cδ18O,3H,Q (scenario 12). The line colors 
represent the transition between dry and wet periods. Panel (d) shows the volume weighted average RTDs for the wet and dry periods, respectively. The light 
shades represent calibration strategy Cδ18O,Q (scenario 10), the intermediate shades indicate calibration strategy C3H,Q (scenario 11) and the dark shades are 
calibration strategy Cδ18O,3H,Q (scenario 12). For illustrative purposes, also the fraction of water younger than 3 months F (T < 3 m) is indicated. 
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