
 
 

The following revised manuscript is based on two reviewers’ comments. The red shades are revisions, 
adjustments and corrections based on the comments of Reviewer #1 and the blue shades are based on the 
comments of Reviewer #2. 

Response to Reviewer #1: 

(1) Reviewer Comment: 

I suggest to provide more context / justification / details about the calibration procedure – for example, how do 

you make sure your calibrated best-fits were not local best-fits but globe ones. The best-fit results of different 

implementations (such as IM-SAS-L and IM-SAS-D) were similar, but that does not mean the modelled results such 

as MTT was true. This generally requires an analysis of the potential uncertainty. While I understand a full 

uncertainty analysis may be unfeasible, the impact of choices done in the calibration need to be better discussed. 

Reply: 

We completely agree with this point. We have therefore done an uncertainty analysis to quantify the effects of 

parameter uncertainty on the modelled TTDs by randomly sampling from the posterior parameter distributions 

for both, IM-SAS-L and IM-SAS-D models. While parameter uncertainty can cause some variability in TTDs and 

thus in the actual magnitudes of water ages, this variability is consistently within similar age ranges for 18O and 
3H, respectively. It does therefore not affect the overall interpretation of the results and the rejection of the 

hypothesis that 18O underestimates water ages, as shown for scenarios 19-21 in Figure FR1 here below. We will 

add these results in the revised manuscript. (In the track-changed revised manuscript: Table 7) 

 

 

 

 

 

 

 

 

 

 

Figure FR1. Stream flow TTDs derived from the 6 model scenarios based on IM-SAS models with the different associated calibration strategies (scenarios 

10-12). Each line represents the volume weighted average daily TTDs during the modelling period 01/10/2001 – 31/12/2016, generated from parameters 

(a)

(b)

(c)



 
 

randomly sampled from the posterior distribution (light shades) and the most balanced solution of each scenario (dark shades). (a) TTDs inferred from δ18O 

in scenario 19; (b) TTDs inferred from 3H in scenario 20; (c) The TTDs inferred from combined δ18O and 3H in scenario 21. 

(2) Reviewer Comment: 

I do agree with the authors that the 3H and δ18O tracers both are informative for the flow systems, what is needed 

is just a model good enough to resolve such information in a meaningful way. Especially for the catchments with 

strong seasonality. However, I am not sure if the model has to use combined date sets of hydrological and tracer 

as the author argued that “only the combined information using hydrological and tracer data and the 

consideration of transient flow conditions gives similar MTT, independent of the used tracer”. I think the important 

thing is that the flow model can represent the reality in a good way, such that the tracer transport can be well 

reproduced. Using hydrological data in calibration may not a key control for that. 

Reply: 

We agree with this point. We will therefore reformulate that sentence on P.20, l.620, “only the combined 

information using hydrological and tracer data and the consideration of transient flow conditions gives similar 

MTT, independent of the used tracer” in the revised manuscript so that it better reflects that point. (In the track-

changed revised manuscript: P.22, l.685ff) 

 

(3) Reviewer Comment: 

Line 160: What are Ep and P? 

Reply: 

Thank you for pointing this out. While Ep represents potential evaporation, P represents precipitation. We will 

add the definitions in the revised manuscript. (In the track-changed revised manuscript: P.6, l.165ff) 

 

(4) Reviewer Comment: 

Line 368: perhaps say that the storage component is just locally full-mixed and those local full mixtures do not 

lead to an overall fully mixed system 

Reply: 

We completely agree with this suggestion. It was mentioned on P.12, L.368ff, but we will make it clearer in the 

revised manuscript. (In the track-changed revised manuscript: P.13, l.405ff) 

 

(5) Reviewer Comment: 



 
 

I don’t think that to reduce computational time and computer memory requirements is good reason for using 

uniform SAS functions rather than other shapes of SAS function. I think the right way should be describing the 

model of reduced complexity (parameters) was already enough for your modelling targets. 

 

Reply: 

We agree with the argument that reduced complexity here already allows to draw robust conclusions. We will 

reformulate the statement and add this aspect. However, we would also like to explicitly re-iterate here that 

computational capacity imposes major practical obstacles to testing other SAS function shapes: in contrast to 

uniform distributions, the sampling process then requires an explicit generation of RTDs and TTDs for each time 

step and to “carry” all RTDs and TTDs of all model components through the entire model period, including the 

warm-up period (here: 46 years). This entails for a daily modelling time-step the simultaneous handling of 

multiple matrices > 16.800x16.800 elements in floating number format (i.e. 8B each), which corresponds to >2 

GB/matrix. With a working memory of common but good computers (i.e. 16-32 GB) this means that the 

generation of RTDs and TTDs alone will use (if not exceed) the memory of these computers, not to speak of other 

processes required. 

 

(6) Reviewer Comment: 

Line 378: could you explain in more detail how was the tracer sampled from the passive and active volumes? Also 

random sampling from Ss,tot ? 

Reply: 

The tracer and age composition of that outflow is indeed randomly sampled from the total groundwater storage 

volume SS,tot. We will clarify this in the revised manuscript. (In the track-changed revised manuscript: P.14, l.420ff) 

 

(7) Reviewer Comment: 

Line 393-395: maybe simply say the lumped implementation used a single HUR to represent the entire basin. Is 

that what you mean? In this case the precipitation zones were not used any more, right? Maybe clarify this. 

Reply: 

Indeed, the lumped implementation used a single HRU (equivalent to the forest HRU described in distributed 

model, Fig.2) to represent the entire catchment and the precipitation zones were not used any more in this 

lumped case. We have will clarify this in the revised manuscript. (In the track-changed revised manuscript: P.14, 

l.438ff) 

 



 
 

(8) Reviewer Comment: 

Equation 14: what are Emse,Q,n and Emse,tracer,m? 

Reply: 

Thank you for pointing this out. We will add the missing definitions in the revised manuscript. (In the track-

changed revised manuscript: P.16, l.483ff) 

 

(9) Reviewer Comment: 

Line 473: it looks like that when using all the data, the lumped model (scenario 9) was even better than the 

distributed model (scenario 12) that has more parameters, does that mean the high model complexity is not 

essential for a better model performance in your case, could you clarify that. 

Reply: 

This is an interesting aspect. However, while the distributed implementation IM-SAS-D can indeed not be 

considered to outperform the lumped IM-SAS-L implementation, the opposite cannot be concluded either: as can 

be seen in Table 4, considering the most balanced solution, some signatures were indeed captured better by IM-

SAS-L than by IM-SAS-D. Yet, others were much better reproduced by IM-SAS-D. In addition, it can be seen that 

the full set of pareto front solutions of IM-SAS-L includes a considerable number with poorer performance metrics 

(i.e. upper limit of performance ranges shown in Table S5 in the Supplementary Material). 

 

(10) Reviewer Comment: 

Line 508: Table 3? 

Reply: 

Indeed. We will correct that. 

 

 

 

 

 

 

 

 

 

 



 
 

Response to Reviewer #2: 

(1) Reviewer Comment: 

The study fits the scope of HESS and makes a valuable contribution to the field of transit time modelling and tracer 

hydrology. Illustrating the capacity of stable water isotopes to quantify older water will open up new opportunities 

for TT modelling in catchments that are assumed to show comparably large MTTs. Hence, I support the general 

motivation and objectives of the study. 

Reply: 

We highly appreciate this positive overall assessment of our work and we thank the reviewer for her interest in 

our work as well as for the thoughtful and detailed comments that helped to strengthen our analysis. Below, we 

provide clarifications and our perspectives to respond in detail to the individual reviewer comments. 

 

(2) Reviewer Comment: 

First, I am not sure whether a catchment (river basin) of 13,000 km² with at the same time limited availability of 

tracer data is the best choice for the study objectives. While individual controls on TTs remains largely elusive, it 

has been shown that TTs (or their metrics) vary widely depending on catchment characteristics such as elevation, 

topography or climate (e.g., Jasecko et al., 2016, Kumar et al., 2020). Modelling TTs in a river basin that shows a 

gradient of more than 800 mm yr-1 in annual precipitation, an elevation gradient of around 900 meters and 

varying land use types adds a lot of complexity that could have been avoided when using a much smaller and more 

homogeneous catchment. At the same time, the study relies on only one precipitation station for both stable water 

isotopes and tritium (within the basin) providing monthly composite samples. Hence, the tracer data are rather 

sparse both temporally and spatially, which adds another layer of uncertainty to the modelling. An alternative 

might be to compile data from previous TT modelling approaches that have been conducted in smaller catchments 

with more highly-resolved (space and/or time) stable water isotope and tritium data (e.g., Rodriguez et al., 2021 

– reference already in manuscript). 

Reply: 

Choice of study region 

We agree that it remains a defining challenge in hydrology to fully account for heterogeneities in larger systems. 

Unfortunately, there is no “silver bullet” to solve that problem. This is also explicitly discussed in the Discussion 

section of our manuscript (p.21, l.658ff). While we share the reviewer’s view that studies at smaller scales are 

very important, these types of studies typically suffer from other limitations. Specifically for the case of stable 

isotope and tritium comparisons and apart from the fact that there are hardly any catchments world-wide in 

which data for both tracers are available, the study cited by the Reviewer (Rodriguez et al., 2021) is indeed 

conducted in a smaller catchment with higher tracer sampling frequency. However, and as explicitly mentioned 

in the manuscript (p.4, l.132-150), it relies on much shorter time series, i.e. 2 years, and only a handful of tritium 



 
 

samples, i.e. 24.  In addition, conclusions from that study on the ability of stable isotopes to see older water may 

be hampered by the potential *absence* of older water. In other words, if there is no older water present in a 

catchment, stable isotopes can also not see it, as recently pointed out by Stewart et al. (2021). We therefore 

believe, that in spite of potential uncertainties arising from the size of the system, our study allows us to explore 

aspects of the research question that could not (or not fully) be addressed by Rodriguez et al. (2021).  

 

Role of heterogeneity for older water ages – catchment as low-pass filter 

It is also important to note that in our study we are mostly interested in older water ages. As catchments act as 

low-pass filters, they already smooth out much of short time-scale and small spatial-scale hydro-climatic 

variability. The remaining higher-frequency components in the response, e.g. responses to individual rain events, 

then mostly affect water ages at the younger side of the spectrum. These can indeed be sensitive to spatial-

temporal heterogeneities. In contrast, older water ages are mostly controlled by low frequency components of 

the system and thus variabilities at much larger spatial and longer temporal scales, e.g. seasonal or inter-annual 

changes in groundwater tables, and are thus much less sensitive to small-scale heterogeneities. This can for 

example be seen in the significant differences between the power spectra of stream tracer concentrations of fast 

responding parts of the system (i.e. short time-scales, high-frequency components and thus younger water ages) 

and groundwater tracer concentrations (i.e. much longer time-scales, low-frequency components of the system 

and older water ages), as for example demonstrated by Hrachowitz et al. (2015; Figure 8 therein) and which 

define the recurrently described, very characteristic 1/f scaling of stream tracer responses across many system in 

contrasting environmental settings across the world (e.g. Kirchner et al., 2001; Godsey et al., 2009; Hrachowitz et 

al., 2009; Aubert et al., 2013; Kirchner and Neal, 2013). Another piece of evidence for the lower sensitivity of 

older water to heterogeneity is the higher sensitivity of high-frequency components and younger water ages to 

hydro-climatic variability (e.g. Figure 9 in our original manuscript) as compared to the almost complete lack 

sensitivity to hydro-climatic in low-frequency components and thus older water (e.g. Figure 10), which has also 

been reported in many other studies (e.g. Hrachowitz et al., 2013, 2015; Soulsby et al., 2016). Overall, this means 

that while the pattern and dynamics of young water ages may indeed to some degree be affected by 

heterogeneities within our study basin, it is plausible to assume that they have only minor impact on the 

estimation of older water ages. 

 

Spatial representation of hydro-climatic and tracer input heterogeneity in the study 

Notwithstanding the above and to limit adverse effects of a coarser data resolution, we here invested 

considerable effort into spatial adjustments of hydro-meteorological input data as well as tracer data, according 

to the best available information in our distributed model implementation. While the major spatial differences in 

precipitation are accounted for by the identification and use of four individual precipitation zones, major spatial 

differences in temperature (and thus also in EP) are accounted for by the additional stratification into 100m 

elevation zones as described in Sections 3.2.1 and 4.2.2. Similarly and more importantly, the tracer input signals 

were spatially adjusted, as described in Sections 3.2.2 and 3.2.3 as well as in the Supplement, following the 



 
 

method recently developed by Allan et al. (2018, 2019). This method identified strong relationships between 

multiple catchment characteristics and seasonal stable isotope signals in precipitation. These relationships thus 

allow a robust estimation of the spatial differences in stable isotope input, both globally (Allan et al., 2019) and 

perhaps more importantly, also regionally, as demonstrated in Allan et al. (2018) who quantified spatial stable 

isotope input for Switzerland, which is just across the border from our study basin in Southern Germany. A 

comparable approach was applied for precipitation tritium concentrations, which in any case do not exhibit major 

spatial differences (e.g. Schmidt et al., 2020). The same applies also to water stable isotopes in precipitation for 

monthly sampling resolution as indicated by the similarity to isotopes for stations close by, i.e. Karlsruhe (Stumpp 

et al. 2014).  

 

Ability of the model to represent the response and spatial heterogeneity therein 

To reduce the potential of misrepresentations of the system and its heterogeneities by the model we have 

deliberately chosen to expose the model to a rigorous calibration and post-calibration evaluation procedure that 

goes far beyond what is done in the vast majority of studies in scientific hydrology. The use of eight different 

performance indicators, that describe the models’ ability to simultaneously reproduce distinct signatures and thus 

distinct aspects of the system response, allowed to identify and discard solutions that in traditional model 

calibration/evaluation procedures, based on one or two performance metrics, would have been falsely accepted 

as feasible. This leads to a robust representation of the system, as can be seen by the models’ ability to relatively 

well and simultaneously reproduce these multiple signatures – both, in the calibration as well as and more 

importantly in the post-calibration evaluation (“validation”) periods as illustrated by Figures 3-5 and Table 4 in 

the original manuscript and also illustrated here below in Figure FR1, for the example of stream flow Q in Scenario 

12.  

 

 

 

 

 

 

Figure FR1. Model performance of all pareto-optimal solutions accepted as feasible against to reproduce stream flow Q in model calibration vs. model 

evaluation periods based on the mean squared error (MSEQ). The dark dot indicates the most balanced pareto-optimal solution.  The fact that all solutions 

plot very close to the 1:1 line suggests that the model does reproduce Q in the model post-calibration evaluation period (”validation”) almost as good as in 

the calibration period. This is a strong indicator of the model being a plausible representation of the system response. 

 

However and in addition to the strict model evaluation procedure in our original manuscript, we have taken this 

concern of the reviewer very serious and decided to confront the model with additional observations to further 



 
 

test its ability to meaningfully represent spatial differences in the response. To do so, we have now also evaluated 

the model outputs against streamflow observations in three sub-catchments (C1: Kirchentellinsfurt, C2: Calw, and 

C3: Untergriesheim) within the Neckar basin, whereby each one of them largely represents the response from 

one of the precipitation zones (Figure FR2 here below). 

 

 

 

Figure FR2: (a) Sub-catchments C1 – C3 within the Neckar basin used to evaluate the model performance, (b) model performance in the 

Neckar basin vs. sub-catchment C1, (c) Neckar vs. C2 and (d) Neckar vs. C3, based on Scenario 10. The dots indicate all Pareto-optimal 

solutions in the multi-objective model performance space. The shades from dark to light indicate the overall model performance based on 

the Euclidean Distance DE, with the darker solutions representing the overall better solutions (i.e. smaller DE)  

 

It can be seen, that the model calibrated on stream flow of the entire Neckar basin can reproduce stream flow in 

the 3 sub-catchments similarly well, with C1 and C2 even better reproduced with many of the solutions than the 

calibrated Neckar stream flow. These results suggest that the model does indeed pick up the major differences in 

response types due to hydro-climatic heterogeneities throughout the Neckar basin. Together with the spatial 

adjustments of the tracer inputs as described above, this is further evidence that the model provides an adequate 

representation of the major features of the hydrological response even at the larger scale of the Neckar basin and 

therefore also a meaningful spatial representation of the tracer circulation. We will add these additional model 

tests to the manuscript to better demonstrate the suitability of the model for our study.  

 

Overall, we can and do not claim that our models generate the best possible TTD estimates. Rather, our intention 

in this analysis is to show the consistency between TTD estimates derived from stable isotopes and tritium, i.e. 

that both contain enough and comparable information which can be exploited to estimate water ages. In other 

words, even if TTD estimates of both tracers are subject to uncertainties, the fact that they provide similar TTD 

estimates when used in the same model type is evidence for a similar information content, supporting the notion 

that stable isotopes have indeed the potential to see older water, if used in conjunction with suitable modelling 

approaches. This is explicitly discussed in the text (p.19, l.600ff in the original manuscript). 

 

(a)



 
 

(3) Reviewer Comment: 

Secondly, there is a remarkably great difference in model complexities between the individual TT modelling 

approaches. On the one hand, simple CO models with only one compartment, no temporal/seasonal variation and 

two pre-defined shape parameters for the TTs have been used, while on the other hand, the SAS model consists of 

three hydrological response units with multiple storage volumes each, has 11 calibration parameters and is also 

tested in a spatially distributed implementation. As the authors are clearly aware of, time-variant concepts of CO 

models (see Hrachowitz et al., 2010; and references cited therein) as well as multi-compartment models 

representing fast and slow flow routes have been used; using especially the latter is a common approach in CO 

modelling. Moreover, the SAS model with its comparably large number of parameters is calibrated simultaneously 

to discharge and at least one of the two tracers, while the CO models are calibrated to only one tracer. I am thus 

wondering to what extent results from these TT models can be compared at all. I understand that the objective of 

this paper is not to dismiss a specific model type, but rather to analyse the flexibility of stable water isotopes as 

TT model tracers. However, this requires to use model setups and data similar to those used in the papers that 

have demonstrated the truncation of TT distributions by calibration to stable water isotopes. To address this 

concern, one could think of (i) focussing on a smaller (or even headwater) catchment with preferably daily tracer 

data, (ii) using established CO models such as the more complex ones in Stewart et al. (2010), and (iii) using 

measured and modelled P, ET, storage and Q data as input for SAS modelling (potentially with non-random 

sampling) with one or a maximum of two SAS function compartments, as commonly done in more recent SAS 

modelling studies (e.g., Benettin et al., 2017; Harman, 2015; Nguyen et al., 2021). 

Reply: 

We agree with the reviewer that the model approaches are different and we also agree that comparisons need 

to be consistent and systematic to be meaningful. 

However, we also want to point out here – as correctly mentioned by the reviewer – that the objective of our 

analysis is to analyse the potential of stable isotopes to see older water and not a full-fledged comparison of 

different model approaches. This is explicitly stated in the research hypothesis “[…] that 18O as tracer generally 

and systematically cannot detect tails in water age distributions and that this truncation leads to systematically 

younger water age estimates than the use of 3H” (p.5, l.151-152) 

Please note that therefore what is actually compared here are models of the same type (and same complexity) 

run with stable isotopes and subsequently with tritium. The comparison is not made between models of different 

types and/or complexities. In other words, we compare water age estimates obtained from e.g. a CO model with 

exponential TTD run with 18O with those obtained from the same model but run with 3H. In contrast, we do not 

compare water ages from that CO model with ages estimated from another model, e.g. IM-SAS. This is also 

emphasized by the last four columns of table 5. 

To further clarify, we have estimated water ages based on CO models to check if we would find differences in 

water ages between 18O- and 3H-based model runs in the study basin, using the same types of lumped, time-

invariant models that Stewart et al. (2010) based their argument on. The fact that we found significant differences 



 
 

between these estimates, would, without further analysis, further support the observation of Stewart et al. (2010) 

that 18O generally truncates water ages.   

Our intention is not to show that CO models are generally not capable to estimate older ages. Perhaps, time-

variant implementations can do that very well, but exploring this was not the objective of our study. Also the 

combined use of 18O and 3H in CO models has previously been shown to be useful to estimate older ages. But this 

is outside the scope of our study. Instead, as clearly stated in the research hypothesis, we test if 18O can generally 

be considered to be useless for the determination of ages older than ~4 years. Our results then further suggest, 

that, if used in combination with IM-SAS models, the hypothesis needs to be rejected, as these models produce 

similar water ages with 18O and 3H that are much older than 4 years. Given that the results of Stewart et al. (2010) 

as well as our own CO scenarios are based on lumped, time-invariant CO model implementations, our results 

eventually also allow the observation that the perceived failure of 18O to see older ages is not a general limitation 

of that tracer, but rather a consequence of its use in lumped, time-invariant CO models.  

However, we agree with the reviewer that we have not tested the more complex CO model implementations 

from Stewart et al. (2010) in our original manuscript. We therefore took up this advice of the reviewer and did 

additional model runs, with full calibrations (and evaluations) of a wider range of common time-invariant 

implementations of CO models, also including more complex ones. Our analysis now includes in addition to 

exponential (EM) and gamma (GM) models also two parallel reservoir (2EM; scenarios X1-2), three parallel 

reservoir (3EM; scenarios X3-4) and exponential piston flow (EPM, scenarios X5-6) implementations. The TTD 

estimates from these additional model implementations are consistent with those in the original analysis: for all 

tested lumped, time-invariant CO models, the TTDs derived from 18O indicated with MTTs ~ 1-2 yrs significantly 

younger water than those derived from 3H, which suggest MTTs ~10 yrs throughout (see Table TR1 and Figure 

FR3 below). This further strengthens our previous results, suggesting that 18O when used in lumped, time-

invariant CO models underestimates water ages, as suggested by Stewart et al. (2010). 

 

Table TR1. Metrics of stream flow TTDs derived from the 10 model scenarios with the different associated calibration strategies based on different CO 

models, where Cδ
18

O indicates calibration to δ18O, C3
H calibration to 3H. The TTD metrics represent the best fits of the respective time-invariant TTD. The 

water fractions are shown as the fractions of below a specific age T. The columns with absolute difference Δ illustrate the differences in TTDs from the same 

models calibrated to δ18O and 3H, respectively. The subscripts indicate the scenarios that are compared (e.g., Δ3,4 compares scenarios 3 and 4).  

Scenario 3 4 5 6 X1 X2 X3 X4 X5 X6 Δ3,4 Δ5,6 ΔX1, X2 ΔX3, X4 ΔX5, X6 

Model CO-EM CO-GM CO-2EM CO-3EM CO-EPM Absolute difference 

ΔTTδ
18

O-
3

H  

ΔF(T<x)δ
18

O-
3

H 
Calibration strategy → 

TTD metrics ↓ 
Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H 

 Mean (yr) 1.4 10.4 2.4 9.7 1.9 9.5 2.1 9.4 1.8 10 -9.0 -7.3 -7.6 -7.3 -8.2 

P
er

ce
n

ti
le

s 

(y
r)

 

10th 0.1 1.1 <0.1 0.3 <0.1 <0.1 <0.1 0.9 1.0 1.1 -1.0 -0.2 0.0 -0.8 -0.1 

25th 0.4 3.0 0.2 1.3 0.2 0.3 0.2 2.8 1.1 2.9 -2.6 -1.1 -0.1 -2.6 -1.8 

50th (median) 1.0 7.2 1.0 5.0 1.1 3.6 1.3 7.3 1.5 7 -6.2 -4.0 -2.5 -6.0 -5.5 

75th 1.9 14.4 3.2 13.1 2.7 13.8 3.1 15.0 2.2 13.9 -12.5 -9.9 -11.1 -11.9 -11.7 

90th 3.2 26.3 6.8 25.4 4.8 27.3 5.6 25.6 3.0 23.1 -23.1 -18.6 -22.5 -20.0 -20.1 

W
at

er
 

fr
ac

ti
o
n

s 

(%
) 

F(T<3 m)* 16 2 28 10 26 25 25 3 0 2 14 18 1 22 -2 

F(T<6 m) 30 5 38 14 34 34 32 6 0 5 25 24 0 26 -5 

F(T<1 yr) 51 9 50 21 47 40 44 10 13 9 42 29 7 34 4 

F(T<3 yr) 88 25 74 39 78 48 74 26 90 26 63 35 30 48 64 

F(T<5 yr) 97 38 85 50 91 55 88 38 99 39 59 35 36 50 60 

F(T<10 yr) 100 62 95 68 99 68 98 60 100 63 38 27 31 38 37 

F(T<20 yr) 100 85 100 85 100 84 100 84 100 86 15 15 16 16 14 



 
 

 

 

Figure FR3. Stream flow TTDs derived from the 10 model scenarios with the different associated calibration strategies based on different CO models. The 

TTDs represent the best fits of the respective time-invariant TTD. Green shades represent the TTDs inferred from δ18O based on different CO models (from 

lighter to darker for scenarios 3, 5, X1, X3 and X5) in (a) and (b); the purple shades represent TTDs inferred from 3H based on different CO models (from 

lighter to darker for scenario 4, 6, X2, X4 and X6); the black dots in (b) indicate the mean transit time for each model scenario.  

 

In addition, and as requested by the reviewer, we have also included a “pure” SAS scenario (scenarios X7-9) with 

one compartment as described in Benettin et al. (2017), using observed Q to account for storage variations (as 

opposed to modelled Q in the IM-SAS implementations in scenarios 7-12) and one power-law shaped SAS function 

to route tracers through the system. Also, the results from this model implementation supports our original 

interpretation: the SAS model, similar to all other IM-SAS implementations (scenarios 7-12), provides similar TTDs 

for 18O and 3H. Both estimates are with MTT ~ 11 yrs also broadly consistent with the higher MTTs obtained from 

the other IM-SAS implementations (see Figure FR4 and Table TR2 here below).  

(a)

(b)



 
 

Overall, all results and TTD estimates from additional model implementations are highly consistent with our 

previous results and considerably strengthen our conclusions to reject the hypothesis that stable isotopes 

underestimate water ages. We will add all additional model scenarios in the revised manuscript. 

Table TR2. Metrics of stream flow TTDs derived from the 9 model scenarios with the different associated calibration strategies based on different SAS 

models, where Cδ
18

O indicates calibration to δ18O, C3
H calibration to 3H, while Cδ

18
O,Q, C3

H,Q and Cδ
18

O,
3
H,Q indicate multi-objective, i.e. simultaneous calibration 

to combinations of δ18O, 3H and stream flow. The TTD metrics represent the mean and standard deviations of all daily streamflow TTDs during the modelling 

period 01/10/2001 – 31/12/2016 are given. The mean transit time was estimated by fitting Gamma distributions to the volume-weighted mean TTDs of each 

individual scenario. The water fractions are shown as the fractions of below a specific age T. The columns with absolute difference Δ illustrate the differences 

in TTDs from the same models calibrated to δ18O and 3H, respectively. The subscripts indicate the scenarios that are compared (e.g., Δ7,8 compares scenarios 

7 and 8). *Note that the fraction of water younger than 3 months is comparable to the fraction of young water as suggested by Kirchner (2016). 

Scenario 7 8 9 10 11 12 X7 X8 X9 Δ7,8 Δ10,11 ΔX7, X8 

Model IM-SAS-L IM-SAS-D P-SAS Absolute difference 

ΔTTδ
18

O-
3

H 

ΔF(T<x)δ
18

O-
3

H 
Calibration strategy → 

TTD metrics ↓ 
Cδ

18
O,Q C3

H,Q Cδ
18

O,
3

H,Q Cδ
18

O,Q C3
H,Q Cδ

18
O,

3
H,Q Cδ

18
O C3

H Cδ
18

O,
3

H 

 Mean (yr) 17.4 11.9 11.2 15.6 13.2 12.8 11.4 11.0 11.0 5.5 2.4 0.4 

P
er

ce
n

ti
le

s 

(y
r)

 

10th 0.5±0.7 0.5±0.8 0.4±0.6 0.3±0.5 0.3±0.5 0.3±0.4 0.04±0.03 0.02±0.02 0.02±0.02 0.0 0.0 0.02 

25th 2.1±2.1 1.9±2.1 1.5±1.8 2.1±1.7 1.5±1.7 1.4±1.5 0.4±0.1 0.2±0.1 0.2±0.1 0.2 0.6 0.2 

50th (median) 9.0±3.3 6.5±4.8 5.7±4.3 8.6±2.6 6.7±3.7 6.6±3.5 3.2±0.2 2.4±0.2 2.5±0.2 2.5 1.9 0.7 

75th 22.2±3.3 17.6±6.5 16.3±6.2 20.8±2.8 18.8±4.6 17.8±4.2 13.7±0.3 12.5±0.4 12.5±0.3 4.6 2.0 1.2 

90th 31.3±4.3 29.2±5.0 28.6±5.1 31.1±4.2 30.4±4.3 29.9±4.2 33.4±0.4 33.4±0.4 32.7±0.2 2.1 0.7 0.0 
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F(T<3 m)* 18±12 23±19 21±15 16±10 22±13 23±15 22±3 26±3 26±2 -5 -6 -5 

F(T<6 m) 21±13 29±22 30±19 20±11 27±16 27±16 27±2 32±2 32±2 -8 -7 -5 

F(T<1 yr) 24±13 32±22 35±21 22±11 30±16 29±15 34±2 39±2 39±1 -8 -8 -5 

F(T<3 yr) 31±11 39±20 42±19 30±10 37±14 37±14 49±1 53±1 52±1 -8 -7 -4 

F(T<5 yr) 38±10 46±18 49±17 38±9 44±13 44±12 57±1 60±1 60±1 -8 -6 -3 

F(T<10 yr) 52±8 59±13 62±12 53±7 58±10 58±9 69±1 71±1 71±1 -7 -5 -2 

F(T<20 yr) 71±5 77±7 79±7 74±4 76±5 77±5 82±0 83±0 83±0 -6 -2 -1 

 

Figure FR4. Stream flow TTDs derived from the 9 model scenarios with the different associated calibration strategies based on different SAS models (i.e., 

scenarios7-9 based on model IM-SAS-L, scenarios 10-12 based on model IM-SAS-D, scenariosX7-X9 based on model P-SAS which is same as that described 

in Benettin et al. (2017)). The TTDs represent the volume weighted average daily TTDs during the modelling period 01/10/2001 – 31/12/2016 are given. 

Green shades represent the TTDs inferred from δ18O based on different SAS models (from lighter to darker for scenario 7,10, X7) in (a) and (b); the purple 

shades represent TTDs inferred from 3H based on different models (from lighter to darker for scenario 8, 11, X8), the brown lines represent TTDs inferred 

from combined δ18O and 3H based on different models (brown shades from lighter to darker for scenario 9, 12, X9); the black dots in (b) indicate the mean 

transit time for each model scenario. Note that the mean transit time was estimated by fitting Gamma distributions to the volume-weighted mean TTDs of 

each individual scenario. 

(a)

(b)



 
 

(4) Reviewer Comment: 

Thirdly, the fact that spatial aggregation introduces bias in CO model-based MTTs, as stated also by the authors, 

raises the question to what extent comparison of MTT estimates is meaningful. I understand that the authors 

would like to test the validity of stable water isotopes in TT modelling particularly of older water ages, and that 

MTT has been a metric commonly reported for CO models. Nonetheless, according to Kirchner (2016 – reference 

already in manuscript), sine-wave fitting to seasonal isotope data does give robust estimates of the young water 

fraction Fyw. Hence, it might be more meaningful to compare Fyw estimates by the different TT model approaches, 

or, even better, to add this as further TT metric in the comparison. 

Reply: 

We agree, that MTT estimates from stable isotopes may be less robust than previously assumed if they are 

estimated using CO-type of models and if there is a large contrast in MTTs from sub-parts of the system (which 

we do not know in reality), as demonstrated by Kirchner (2016). This, however, can at this point not (yet) be 

generalized as it does not imply that MTT estimates obtained from different model approaches and/or systems 

with little internal contrast in MTTs suffer similar uncertainties.  

But we also completely agree with the reviewer that the exclusive comparison of MTT has the potential to conceal 

interesting pattern. In that sense there seems to be a misunderstanding: our analysis was never limited to MTTs. 

Instead, throughout the experiment and the reporting of the results, we always analyse the full range of TTDs, i.e. 

percentiles and fractions of water of different ages. This can be seen in Table 5, as well as Figures 7 – 10 in the 

original manuscript but also in Figures FR3-4 and Tables TR1-2 here above. As water ages throughout all 

percentiles show similar pattern between the individual scenarios, we used the MTT for communicative purposes 

in the text (note that the use of any other percentile would have resulted in equivalent descriptions) as this has 

traditionally been the most commonly used metric. For the purpose of our analysis we believe that the emphasis 

on MTT in the text instead of using multiple metrics improves the readability of the manuscript. In addition, we 

think that MTT is more suitable here than the fraction of young water, because the core of the analysis is older 

water instead of young water. In any case, the young water fractions Fyw are of course also part of the analysis in 

the original manuscript (Table 5, Figures 7 – 10) but also here above (Tables TR1-2, Figures FR3-4). Please note 

that we used a different symbol to represent it – F(T<3m) (see p.17, l.536) – to remain consistent with the notation 

of other metrics throughout the manuscript. We will clarify this in the text. 

 

(5) Reviewer Comment: 

Finally, I would highly appreciate if the authors could increase traceability of their results and provide the 

underlying tracer data as well as model codes. Traceability is one of the main criteria for HESS nowadays and given 

that the authors address such a fundamental claim in tracer hydrology and TT modelling, I find it necessary for 

the entire TT community to benefit from this study not only via the paper, but also in terms of data and code 

accessibility. 

 



 
 

 

Reply: 

We agree, and we will upload the model code to an open access repository. Most tracer data are available via 

open access databases as explicitly highlighted in text and the Data availability section. The water stable isotopes 

in stream samples will be available soon, together with other stream data from Germany, as those data are 

currently prepared for publication in a data paper. Still, the data from the Neckar can be shared upon request.   

 

 

Minor Comments 

(6) Reviewer Comment: 

Lines 35—37: if this refers to the findings by Kirchner (2016), one could be more precise by specifying that the MTT 

(as commonly reported metric) derived from CO models is affected by spatial aggregation errors. 

Reply: 

Agreed. We will adjust that in the revised manuscript. 

 

(7) Reviewer Comment: 

Line 59: in what sense is there more coherence? 

Reply: 

There is more coherence in the sense that tracer circulation is explicitly linked to and described by the movement 

of water (i.e. storage and release), which is the actual agent of physical transport in terrestrial hydrological 

systems.  

 

(8) Reviewer Comment: 

Line 70: does Cl- have a clear seasonal cycle? I assume both weathering and anthropogenic effects (e.g., 

application of road salt) govern its concentrations. Another possible distinction would be radioactive vs. 

conservative tracers. 

Reply: 

The chloride ion has a pronounced seasonal cycle, in particular in coastal and maritime influenced climates. It has 

been successfully applied as age tracer in many previous studies (e.g. Kirchner et al., 2001, 2010; Page et al., 2007; 



 
 

Shaw et al., 2008; Hrachowitz et al., 2009; Soulsby et al., 2010; McMillan et al., 2012; Benettin et al., 2015; Harman, 

2015; Wilusz et al., 2017; Cain et al., 2019; Kaandorp et al., 2021; Meira Neto et al., 2022). Anthropogenic effects, 

such as road gritting, can indeed influence the chloride concentrations. That is why the above studies are limited 

to catchments with minor human influence. 

 

(9) Reviewer Comment: 

Lines 80—98: the focus on the amplitude ratio for the “traditional” TT approaches is fine for simple one-

compartment gamma (and thus also exponential) models, but is this also relevant for multiple-compartment CO 

models and other pre-defined TT shapes such as the dispersion model? This suggests that CO models are 

exclusively based on the amplitude ratio and shift in seasonal isotope ratios. 

Reply: 

We are not entirely sure what the reviewer wants to express here. The concept of seasonal tracers as means to 

estimate stream water ages is rooted in the attenuation of seasonal tracer precipitation amplitudes in the stream 

water. This is independent of the model application. Any model that aims to represent the movement of such a 

seasonal tracer through a catchment will have to reproduce these observed attenuation between precipitation 

stream tracer amplitudes, i.e. the amplitude ratio. 

 

(10) Reviewer Comment: 

Lines 84—85: “practically” and “feasibly” twice? 

Reply: 

Indeed. We will correct that. 

 

(11) Reviewer Comment: 

Lines 97: to what extent could a spatial aggregation bias also affect spatially lumped (one-compartment) SAS 

models? 

Reply: 

This is unknown and to some extent also investigated here, as explicitly mentioned in the original manuscript (e.g. 

p.5, l.147ff; p.21, l.636ff; p.22, l.698ff). 

 

 



 
 

(12) Reviewer Comment: 

Lines 197: you used the CORINE dataset from 2018. To what extent has land use remained stable since 2001? 

Reply: 

There was no significant change between the here defined land use classes over the 2001-2018 period, as shown 

in Table TR3 below. 

 

Table TR3: Landuse in the Neckar basin between 1990 and 2018 based on CORINE landcover data. 

Landcover 
percentage 

1990 2000 2006 2012 2018 

Forest (%) 35 35 35 36 36 

Grass/Crop (%) 53 53 52 50 50 

Urban (%) 11 12 13 14 14 

Water (%) 1 ~0 ~0 ~0 ~0 

 

 

(13) Reviewer Comment: 

Line 374: we do not necessarily see passive storage volumes in the most recent SAS model studies. 

Reply: 

This seems to be a misunderstanding. Indeed, studies based on the “pure” SAS approach that do not model Q, 

typically define a mixing/sampling storage Stot, although the symbols and terminology vary between individual 

papers (e.g. Benettin et al., 2017). This Stot represents the total storage available for mixing/sampling in a 

component and is thereby fully equivalent with our SS,tot. The difference is that we have to distinguish a 

hydraulically active part SS of that storage that represents the hydraulic head above the river bed to generate Q 

in our model as visualized in e.g. Zuber (1986, Figure 1 – “dynamic” and “minimum” volume) or Hrachowitz et al. 

(2016; Figure 2), so that SS,tot=SS+SS,p. As “pure” SAS models do not generate Q they also do not need this 

distinction. Besides that, two definitions of storage are completely identical. 

 

(14) Reviewer Comment: 

Lines 398—414: I am wondering to what extent we can trust the spatially distributed implementation, given that 

there is only one calibration gauge at the outlet of the entire catchment. This also relates to my general comment 

about the considerable size and few data for the study basin. 

 



 
 

Reply: 

This is indeed an important comment. To further test the IM-SAS implementations for their ability to reflect the 

spatial differences in the study basin, we have now evaluated the models’ ability to reproduce observed stream 

flow in several sub-catchments within the Neckar river basin. As described in detail in reply to Comment (2) above 

and as can be seen in Figure FR2, the results suggest that the model provides a rather robust representation of 

the hydrological response and its spatial variability throughout the Neckar basin. We will add this analysis to the 

revised version of the manuscript. 

 

(15) Reviewer Comment: 

Line 411: could you specify what the distributed moisture accounting approach is? 

 

Reply: 

This type of model implementation, elsewhere also referred to as “data-gridded” or “semi-lumped” as in detail 

described by Ajami et al. (2004), runs a model with spatially distributed forcing data but using the same model 

parameters. For example, here, each precipitation zone receives different precipitation, but the model 

parameters are the same in all four precipitation zones. This approach has in past been shown to be very effective 

for improving the representation of spatially variable response dynamics while limiting the amount of necessary 

model parameters (e.g. Fenicia et al., 2008; Euser et al., 2015). 

 

(16) Reviewer Comment: 

Lines 420—421: why have the authors not applied a multi-objective calibration to the CO models? 

Reply: 

We are not sure what the reviewer intends to express here. The CO models in our study exclusively model the 

tracer circulation in the basin. They generate only one single output variable, i.e. the tracer concentration in the 

stream. We therefore cannot perform the same multi-objective calibration as for the IM-SAS models that besides 

tracer concentrations also reproduce streamflow Q. If the reviewer had a simultaneous calibration of 18O and 3H 

in mind, we would like to emphasize that the objective of this paper is to test if the exclusive use of 18O 

underestimates water ages. A simultaneous calibration to both tracers in CO models will not add any additional 

information to answer this question. Please also note that the simultaneous calibration to 18O and 3H in the IM-

SAS models was only done to test if/how it affects parameters that control water fluxes in the model. Major 

differences in model parameters between the different calibration approaches would have been an indication for 

differences of how the individual models route water and tracers through the system and thus a source of 

potential uncertainty in the interpretation.  



 
 

 

(17) Reviewer Comment: 

Line 424: this is interesting but I think, as stated in my general comments, that TTs should be obtained from a SAS 

model with storage, input and output fluxes defined a priori (as if they were “real” data), rather than computing 

TTs from simultaneous calibration against flow and tracers. I think that this would be a more straightforward 

methodology given the scope of TT modelling and tracers. As presented here, we do not know to what extent 

simulated TTs are affected by equifinality in the hydrological model parameters. 

Reply: 

Please see above: as replied to Comment (3) we have now added such a model implementation (scenario X7-8; 

Figure FR4 and Table TR2). The results lead to the same conclusions as the IM-SAS model implementations: 18O 

and 3H lead to similar TTDs, and there is no indication for 18O truncating water ages. This further strengthens our 

original conclusions. We will add this model implementation to the revised manuscript. 

 

(18) Reviewer Comment: 

Lines 553—555: not a complete sentence 

Reply: 

We well correct this. 

 

(19) Reviewer Comment: 

Line 571: not only, but also…? 

Reply: 

We will correct this. 

 

(20) Reviewer Comment: 

Lines 577—578: I think you could easily implement the multi-objective calibration for the CO models as well. 

Reply: 

Indeed. It would be easily to implement that, but as explained in response to Comment (16) it does not add any 

additional information to test the research hypothesis. 

 



 
 

(21) Reviewer Comment: 

Lines 619—620: so here one could at least test how time-variant/seasonal CO models perform 

Reply: 

This would indeed be an interesting analysis. However, it is outside the scope of this study as explained in 

response to Comment (3) above. 

 

(22) Reviewer Comment: 

Lines 642—644: could this not be an indication of the fact that there are too many degrees of freedom and the 

model always succeeds to fit the tracer data, regardless of whether it is spatially lumped or semi-distributed? 

Reply: 

As shown in Figure FR1 above, there is little indication of model overfitting that could results from “too many 

degrees of freedom”. One explanation of the observed similarity between the lumped and distributed models 

could be that much of the climatic and topographic heterogeneity within the catchment is filtered out in the 

response (see also reply to Comment (2) above), so that a lumped representation may be sufficient to pick up the 

major features of the hydrological response in the study basin.  

 

(23) Reviewer Comment: 

Lines 656—657: see, e.g., Nguyen et al. (2022) who found substantial differences in SAS-based transport models 

between spatially lumped and semi-distributed setup. 

Reply: 

We will refer to that study as an example of a setting where spatial differences seem to be more relevant. 
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Abstract. Stable isotopes (δ18O) and tritium (3H) are frequently used as tracers in environmental sciences to estimate age 10 

distributions of water. However, it has previously been argued that seasonally variable tracers, such as δ18O, generally and 

systematically fail to detect the tails of water age distributions and therefore substantially underestimate water ages as 

compared to radioactive tracers, such as 3H. In this study for the Neckar river basin in central Europe and based on a >20-year 

record of hydrological, δ18O and 3H data, we systematically scrutinized the above postulate together with the potential role of 

spatial aggregation effects to exacerbate the underestimation of water ages. This was done by comparing water age distributions 15 

inferred from δ18O and 3H with a total of 21 different model implementations, including time-invariant, lumped parameter 

sine-wave (SW) and convolution integral models (CO) as well as SAS-function models (P-SAS) and integrated hydrological 

models in combination with SAS-functions (IM-SAS).  

We found that, indeed, water ages inferred from δ18O with commonly used SW and CO models are with mean transit times 

(MTT) ~ 1 – 2 years substantially lower than those obtained from 3H with the same models, reaching MTTs ~ 10 years. In 20 

contrast, several implementations of P-SAS and IM-SAS models did not only allow simultaneous representations of storage 

variations and stream flow as well as δ18O and 3H stream signals, but water ages inferred from δ18O with these models were 

with MTTs ~ 11 – 17 years much higher and similar to those inferred from 3H, which suggested MTTs ~ 11 – 13 years. 

Characterized by similar parameter posterior distributions, in particular for parameters that control water age, P-SAS and IM-

SAS model implementations individually constrained with δ18O or 3H observations, exhibited only limited differences in the 25 

magnitudes of water ages in different parts of the models as well as in the temporal variability of TTDs in response to changing 

wetness conditions. This suggests that both tracers lead to comparable descriptions of how water is routed through the system. 

These findings provide evidence that allowed us to reject the hypothesis that δ18O as a tracer generally and systematically 

“cannot see water older than about 4 years” and that it truncates the corresponding tails in water age distributions, leading to 

underestimations of water ages. Instead, our results provide evidence for a broad equivalence of δ18O and 3H as age tracers for 30 

systems characterized by MTTs of at least 15 – 20 years. The question to which degree aggregation of spatial heterogeneity 

can further adversely affect estimates of water ages remains unresolved as the lumped and distributed implementations of the 

IM-SAS model provided inconclusive results.  
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Overall, this study demonstrates that previously reported underestimations of water ages are most likely not a result of the use 

of δ18O or other seasonally variable tracers per se. Rather, these underestimations can be largely attributed to choices of model 35 

approaches and complexity not considering transient hydrological conditions next to tracer aspects. Given the additional 

vulnerability of time-invariant, lumped SW and CO model approaches in combination with δ18O to substantially underestimate 

water ages due to spatial aggregation and potentially other, still unknown effects, we therefore advocate to avoid the use of 

this model type in combination with seasonally variable tracers if possible, and to instead adopt SAS-based models or time-

variant formulations of CO models.  40 

1 Introduction 

Age distributions of water fluxes (“transit time distributions”, TTD) and water stored in catchments (“residence time 

distributions”, RTD) are fundamental descriptors of hydrological functioning (Botter et al., 2011; Sprenger et al., 2019) and 

catchment storage (Birkel et al., 2015). They provide a way to quantitatively describe the physical link between the 

hydrological response of catchments and physical transport processes of conservative solutes. While the former is largely 45 

controlled by the celerities of pressure waves propagating through the system, the latter, in contrast, occur at velocities that 

can be up to several orders of magnitude lower (McDonnell and Beven, 2014; Hrachowitz et al., 2016).  

Water age distributions cannot be directly observed. Instead, they can, in principle, be inferred from observed tracer 

breakthrough curves. While practically feasible at lysimeter (e.g. Asadollahi et al., 2020; Benettin et al., 2021) and small 

hillslope scales (e.g. Kim et al., 2022), lack of adequate observation technology together with logistical constraints make this 50 

problematic at scales larger than that. At the catchment-scale, estimates of water age distributions are therefore typically 

inferred from models that describe the relationships between time-series of observed tracer input and output signals. 

Over the past decades a wide spectrum of such models has been developed. Early approaches often relied on simple lumped 

sine-wave (hereafter: SW) or lumped parameter convolution integral models (hereafter CO; Maloszewski and Zuber, 1982; 

Maloszewski et al.,1983; McGuire and McDonnell, 2006), originally developed for aquifers. In spite of their wide-spread 55 

application, these models feature multiple critical simplifying assumptions. Most importantly, the vast majority of these model 

implementations work under the assumption that water storage in catchments is at steady state and that, as a consequence, 

TTDs are time-invariant and can be a priori defined or calibrated. While the role of storage as first order control on water ages 

was described early in the general definition of mean turnover times (e.g. Eriksson, 1958; Bolin and Rodhe, 1973; Nir, 1973), 

the steady state assumption, i.e. constant storage, may have limited effect on TTDs in aquifers, as the fraction of transient 60 

water volumes in such systems is typically rather low. However, given the temporal variability in the hydro-meteorological 

system drivers (e.g. precipitation, atmospheric water demand) and the spatial heterogeneity in near-surface hydrological 

processes, this assumption is violated in most surface water systems world-wide and can lead to misinterpretations of the 

model results. This triggered the development of a more coherent framework to estimate water age distributions without the 

need of an a priori definition of time-invariant TTDs. Instead, probability distributions, referred to as StorAge Selection (SAS) 65 
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functions, are a priori defined or calibrated, and changes in water storage are explicitly accounted for. Thus, water fluxes 

within and released from the system are sampled from water volumes of different ages stored in the system according to these 

SAS functions (Botter et al., 2011; Rinaldo et al., 2015). The general concept is firmly rooted in the development of hydro-

chemical routing schemes for the Birkenes, HBV or similar models going back to at least the 1970s (e.g. Lundquist, 1977; 

Christophersen and Wright, 1981; Christophersen et al., 1982; Seip et al., 1985; de Groisbois et al., 1988; Hooper et al., 1988; 70 

Barnes and Bonell, 1996), as illustrated by Figure 1 in Bergström et al. (1985). Although functionally very similar to CO model 

implementations that allow for transient, i.e. time-variant TTDs (Nir, 1973; Niemi, 1977), the sampling procedure based on 

SAS functions has the advantage to explicitly track the history of water (and tracer) input to and output from the system through 

the water age balance. As such it does explicitly account for non-steady state conditions, which in turn leads to the emergence 

of time-variable TTDs and RTDs (see review Benettin et al., 2022).  75 

Irrespective of the modelling approach, two types of environmental tracers have in the past been frequently used to estimate 

water age distributions with the above models. The first type are tracers that are characterized by distinct differences in their 

seasonal signals. They include stable isotopes of water (2H, 18O; e.g. Maloszewski et al., 1983; Vitvar and Balderer, 1997; 

Fenicia et al., 2010) or solutes, such as Cl- (e.g. Kirchner et al., 2001, 2010; Shaw et al., 2008; Hrachowitz et al., 2009a, 2015). 

With these tracers, water ages and (metrics of) their distributions can be estimated by the degree to which the seasonal 80 

amplitudes of the precipitation tracer concentrations are time-shifted and/or attenuated in the stream flow (McGuire and 

McDonnell, 2006; Kirchner, 2016). Broadly speaking, the stronger the attenuation of the seasonally variable tracer amplitude 

in stream flow (As) as compared to its amplitude in precipitation (Ap), i.e., the lower the amplitude ratio As/Ap, the older stream 

water is, on average. The second type of commonly used tracers are radioactive isotopes, such as tritium (3H). Forming the 

basis for many water dating studies going back to the 1950s (e.g. Begemann and Libby, 1957; Eriksson, 1958; Dincer et al., 85 

1970; Stewart et al., 2007; Morgenstern et al., 2010; Duvert et al., 2016; Gallart et al., 2016; Rank et al., 2018; Visser et al., 

2019), water age can be estimated with radioactive tracers based on the level of radioactive decay experienced by precipitation 

input signals experience before they reach the stream.  

The relationship between the tracer amplitude ratios As/Ap and water age that is exploited by seasonally variable tracers is 

highly non-linear. With increasing attenuation of the tracer signal in the stream, i.e., a lower As/Ap, water therefore does not 90 

only become older but the age estimates become more sensitive to changes in the amplitude ratio (Kirchner, 2016). This 

implies that the older the water, uncertainties in the observed amplitude ratios lead to increased uncertainties in water age 

estimates. As a consequence, there is an upper limit to the age of water which can be practically and feasibly determined with 

seasonally variable tracers. A rare attempt to quantify this potential upper detectible age limit was reported by DeWalle et al. 

(1997). With an observed δ18O precipitation amplitude Ap = 3.41‰, an assumed lowest possible δ18O stream water amplitude 95 

that equaled the observational error As = 0.1‰, and the use of a lumped, time-invariant exponential TTD (“complete mixing”) 

they determined a maximum detectable mean transit time (MTT) of around 5 years at their study site. Several authors 

subsequently emphasized that estimates of MTT and in particular of maximum detectable MTT such as reported by DeWalle 

et al. (1997) are specific to Ap at individual study sites (McGuire and McDonnell, 2006) and highly sensitive to choices in 
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the modelling process (Stewart et al., 2010; Seeger and Weiler, 2014; Kirchner, 2016). For example, multiple previous studies 100 

demonstrated that the use of gamma distributions with a shape parameter α ~ 0.5 as TTD produces model results that are 

more consistent with observed tracer data than the use of exponential distributions (i.e. α =1) in a wide range of contrasting 

environments world-wide (Kirchner et al., 2001; Godsey et al. 2010; Hrachowitz et al., 2010a, b). Merely replacing the 

exponential distribution by a gamma distribution with α = 0.5 as TTD at the study site of DeWalle et al. (1997) leads, in a 

quick back-of-the-envelope calculation, to a substantial increase of the maximum MTT from the reported 5 years to ~ 90 105 

years. This is exacerbated by the potential presence of spatial aggregation bias in the lumped implementation of that model, 

which may cause further considerable underestimation of MTT as demonstrated by Kirchner (2016).  

The relevance of the above assumptions is often overlooked and in spite of little additional quantitative evidence, it remains 

widely assumed that water ages in systems characterized by MTTs > 4 – 5 years cannot be meaningfully quantified with 

seasonally variable tracers. Most notably, Stewart et al. (2010, 2012) argued that water older than that remains hidden to 110 

stable water isotopes and other seasonally variable tracers, which inevitably results in a misleading truncation of water age 

distributions. Such a pronounced and systematic underestimation of water ages would have far reaching consequences for 

estimates of water storage (e.g. Birkel et al., 2015; Pfister et al., 2017) and the associated turnover times of nutrients and 

contaminants in catchments (e.g. Harman, 2015; Hrachowitz et al., 2015). Stewart et al. (2012), further argue that the use of 

radioactive tracers, such as 3H, can largely avoid the truncation of the long tails of TTDs. This is mostly owed to the 3H half-115 

life of T1/2 = 12.32 years. Even with the current atmospheric 3H concentrations that, after peaking in the early 1960s, have 

been converging back towards pre-nuclear bomb testing levels, precipitation 3H signals can be detected in the system for 

several decades, making 3H an effective tracer now and for the foreseeable future (Michel et al., 2015; Harms et al., 2016; 

Stewart and Morgenstern, 2016). Indeed, a range of studies, based on 3H and often in conjunction with lumped parameter 

convolution integral approaches, suggest that many catchments and larger river basins world-wide are characterized by MTTs 120 

that are decadal or higher (e.g. Stewart et al., 2010 and references therein). It is further rather remarkable that such elevated 

water ages are largely absent in estimates derived from lumped parameter convolution integral studies based on seasonally 

variable tracers, which often indicate MTTs between 1 – 3 years (e.g. McGuire and McDonnell, 2006 and references therein; 

Hrachowitz et al., 2009b; Godsey et al., 2010), as correctly and importantly pointed out by Stewart et al. (2010). This in itself 

could be supporting evidence for the failure of seasonally variable tracers to detect long tails of TTDs, as postulated by 125 

Stewart et al. (2012). However, it could just as well be a mere artifact arising from a sample bias due to the different 

catchments analyzed or from choices in the modelling process. There are only a few studies that have directly and 

systematically compared estimates of water age derived from both, seasonally variable (2H, 18O) and radioactive tracers (3H) 

at the same study site and based on (at least partly) comparable model approaches (Maloszewski et al., 1983; Uhlenbrook et 

al., 2002; Stewart et al., 2007; Stewart and Thomas, 2008). The MTT estimates derived from seasonally variable tracers in 130 

these comparative studies are consistently, but to varying degrees lower than estimates based on 3H. However, these studies 

are nevertheless subject to limitations that may weaken the generality of the conclusion that seasonally variable tracers 

underestimate catchment water ages. More specifically, tracer data were available for only rather short time periods of about 
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2 – 3 years, including, for some studies, only a handful of 3H data points. Many these studies relied on lumped parameter 

convolution integral approaches with time-invariant TTDs whose pre-defined functional form when applied with seasonally 135 

variable tracers was limited to shapes (e.g. exponential) that already a priori precluded the representation of heavy-tails and 

thus a meaningful representation of old ages. In addition, the models to estimate water ages in these studies were implemented 

in a spatially lumped way, which further exacerbates the potential for underestimating water ages due to spatial aggregation 

effects in environments that are likely subject to considerable heterogeneity in hydrological functioning (Kirchner, 2016).  

Addressing some of the concerns above, a recent study by Rodriguez et al. (2021) compared catchment water ages inferred 140 

from two-year data records of a seasonally variable tracer (2H; 1088 data points) and 3H (24 data points) using a spatially 

lumped implementation of a previously developed simple tracer circulation model based on the SAS approach, which 

generates time-variable TTDs (Rodriguez and Klaus., 2019). In spite of consistently higher age estimates obtained from 3H, 

the absolute differences to 2H inferred estimates were very minor. While the difference in mean transit times was estimated 

at ΔMTT ~ 0.22 years for MTTs ~ 3 years, the difference in the estimate of the 90th percentile of water ages, as metric for the 145 

presence of old ages, was with Δ90th ~ 0.15 years even lower. The authors concluded that these results cast some doubt on 

“[…] the perception that stable isotopes systematically truncate the tails of TTDs” (Rodriguez et al., 2021). However, their 

interpretation was questioned by Stewart et al. (2021), who pointed out that simply no older water may be present in their 

study catchment.  

Building on the above work of Rodriguez et al. (2021), the objective of this study is therefore to further scrutinize the notion 150 

that the use of seasonally variable tracers leads to truncated estimates of water age distributions in a systematic comparative 

experiment. The novel aspects of this study for the ~13.000 km2 Neckar River basin in South-West Germany include that we 

here use (1) long-term records, i.e. > 20 years, of hydrological data as well as of seasonally variable (18O) and radioactive 

tracers (3H) together with (2) a suite of lumped and spatially semi-distributed implementations of (3) SW, CO and SAS-

function based models, including a formulation of an integrated, process-based model to simultaneously reproduce 155 

hydrological and tracer response dynamics and to track temporally variable water age distributions in the system. The above 

points allow us to, at least partially, explore several unresolved questions how different factors may or may not contribute to 

the apparent underestimation of water ages by seasonally variable tracers, including potential effects of uncertainties arising 

from short data records, spatial aggregation and the use of oversimplified time-invariant, lumped models. More specifically, 

we here test the hypothesis that 18O as tracer generally and systematically cannot detect tails in water age distributions and 160 

that this truncation leads to systematically younger water age estimates than the use of 3H.  

2 Study site 

The Neckar River basin in South-West Germany has an area of ~13,000 km2. The elevation in the basin ranges from 122 m at 

the outlet in the north to about 1019 m in the South (Fig. 1a; Table 1). Following the elevation gradient, the landscape is 

characterized by terrace-like elements and undulating hills with wide valleys used as grass- and croplands in lower regions, in 165 
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particular in the northern parts of the Neckar Basin, and increasingly steep and narrow forested valleys towards the southern 

parts (Fig. 1c). Long-term mean annual precipitation (P) reaches ~909 mm yr-1, with considerable spatial variability ranging 

from ~660 mm yr-1 in the lower parts of the basin to over 1500 mm yr-1 at high elevations in the southwest (Fig. 1b). With a 

long-term mean temperature of about 8.9 ℃, potential evaporation (EP) around ~870 mm yr-1and an aridity index (IA) (i.e., IA 

= EP/P) IA ~0.98 the basin is characterized by a temperate-humid climate, where snow cover can be present for several weeks 170 

in the winter months. 

3 Data  

3.1 Data  

Daily hydro-meteorological data were available for the period 01/01/1970 – 31/12/2016. As the forcing data of the hydrological 

models, daily precipitation and daily mean air temperature were obtained from stations operated by the German Weather 175 

Service (DWD). Precipitation was recorded at 16 stations and temperature measurements were available at 12 stations (Fig. 1) 

in or close to the study basin. Daily mean discharge data for the period 01/01/1970 – 31/12/2016 at the outlet of the Neckar 

basin at Rockenau station were provided by the German Federal Institute of Hydrology (BfG). In addition, data of daily mean 

discharge for the same time period from three sub-catchments within the Neckar basin (Fig.1) at the gauges Kirchentellinsfurt 

(C1; 2324 km2), Calw (C2; 584 km2) and Untergriesheim (C3; 1827 km2) were available from the Environmental Agency of 180 

the Baden-Württemberg region (LUBW). 

Long-term volume-weighted monthly δ18O data in precipitation was available for the period 01/01/1978 – 31/12/2016 at the 

Stuttgart station. At the sampling gauge, a monthly accumulation bottle was filled with the collected daily precipitation, and 

all collected water was mixed together. Therefore, the water samples of precipitation reflect the volume-weighted monthly 

isotopic composition. Then, a monthly isotope sample bottle for stable isotope (i.e., 18O) was filled with 50 ml precipitation 185 

water from the corresponding monthly accumulation bottle. All precipitation samples were tightly sealed and stored in a dark 

room at ~4℃ before analysis. Monthly stream water samples were collected at Schwabenheim, close to the Rockenau discharge 

station, by the BfG for the period of 01/10/2001 – 31/12/2016 (Schmidt et al. 2020; Königer et al. 2022). Note that the available 

data do not represent instantaneous grab samples but bulk samples from mixed daily samples. River water was sampled 

automatically by samplers (SP III-XY-36, Maxx Meb- und Probenahmetechnik GmbH, Germany), which contained 36 bottles 190 

(each with a volume of 2.5 L). Every 30 minutes, 50 ml river water was pumped into one bottle (48 subsamples per day). A 

new bottle was filled every 24 h with the same procedure. All daily river water samples were stored in the sample compartment 

at ~4℃ and were subsequently combined into monthly samples in the laboratory of BfG. This means the stream water samples 

reflect a non-flow-weighted monthly average isotopic composition. The stable isotopes ratios were analyzed with dual-inlet 

mass spectrometry and a laser-based cavity ring-down spectrometer (L2120-i/L2130-i, Picarro Inc.) at Helmholtz Zentrum 195 

München, Germany. When changing from dual-inlet mass spectrometry to cavity ring-down spectrometry, the long-term 

precision of the analytical systems (±0.15 ‰ and ±0.1 ‰, respectively, for δ18O) was ensured (Stumpp et al. 2014; Reckerth 
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et al., 2017). 

Long-term monthly 3H data in precipitation were obtained for the period 01/01/1978 – 31/12/2016 at Stuttgart station (same 

station as 18O data in precipitation; Schmidt et al., 2020). For the purpose of establishing robust initial conditions for the model 200 

experiment (see section 4.2) the tritium record in precipitation was reconstructed for the preceding 1970-1977 period by bias 

correcting data from the sampling station Vienna, available from the Global Network of Isotopes in Precipitation which is a 

joint database of the International Atomic Energy Agency (IAEA) and the World Metrological Organization (WMO) 

(Supplementary Material Fig. S1). The precipitation for tritium data was sampled based on the same method as that for 18O in 

precipitation which means that the precipitation samples for tritium also reflect the volume-weighted monthly isotopic 205 

composition. Stream water samples for tritium were collected based on the same method as that for as 18O in stream. Therefore, 

tritium stream water samples also reflect non-volume-weighted monthly average isotopic compositions. The tritium stream 

water samples are not influenced by water release from nuclear power stations. All water samples were analyzed for tritium 

concentrations by the BfG Environmental Radioactivity Laboratory using liquid scintillation counters (Ultima Gold LLT) with 

a 2-sigma analytical uncertainty (Schmidt et al. 2020). 210 

Land use types of the catchments are determined using the CORINE Land Cover data set of 2018 

(https://land.copernicus.eu/pan-european/corine-land-cover). The 90 m × 90 m digital elevation model of the study region (Fig. 

1a) was obtained from https://www.usgs.gov/ and used to derive the local topographic indices including height above nearest 

drainage (HAND) and slope. 

3.2 Data pre-processing 215 

For the subsequent model experiment (section 4.2), the study basin was stratified into four regions P1 – P4 that are 

characterized by distinct long-term precipitation pattern (hereafter: precipitation zones). In the following the procedure to infer 

these precipitation zones and to estimate the associated differences in δ18O and 3H input is described. 

3.2.1 Spatial distribution of precipitation and identification of precipitation zones 

To account, at least to some degree, for spatial heterogeneity in precipitation we stratified the Neckar River basin into 220 

precipitation zones that are each characterized by distinct average annual precipitation totals. Goovaerts (2000) and Lloyd 

(2005) showed that areal precipitation estimates informed by elevation data were often more accurate than those based on 

precipitation gauge observations alone. Thus, to interpolate and to estimate areal precipitation across the basin we used Co-

Kriging, considering elevation, as a preliminary analysis suggested lower errors. Finally, the individual precipitation estimates 

for each grid cell were used with K-means clustering to establish four clusters, representing the four precipitation zones P1 – 225 

P4 (see Fig. 1b). 

3.2.2 Spatial extrapolation of precipitation δ18O to precipitation zones 

Records of observed precipitation δ18O are available at one location close to the center of the Neckar Basin (Fig. 1). However, 
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it is well described (e.g. Kendall and Mcdonnell, 2012) that precipitation δ18O input can be subject to considerable spatial 

heterogeneity, largely controlled by topographic and meteorological influences. Stumpp et al. (2014) specifically identified 230 

latitude, elevation and temperature as the key factors controlling δ18O input heterogeneity in the greater study region. To at 

least partially account for these effects and to locally adjust δ18O input signals throughout the study basin, we made use of the 

sinusoidal isoscapes method (Allen et al., 2018, 2019). Briefly, this method exploits the seasonal pattern in δ18O precipitation 

signal by fitting sine functions to observed δ18O input signals for a large sample of locations:  

𝛿18𝑂𝑃(𝑡) = 𝑎𝑃 sin(2𝜋𝑡 − 𝜑𝑃) + 𝑏𝑃,                                                                (1) 235 

With aP [‰] the amplitude of the seasonal precipitation signal, bP [‰] a constant offset and φP [rad] the phase of the signal. 

For each of the three fitting parameters, i.e., aP, bP and φP, multiple regression relationships were previously developed (Allen 

et al., 2018). Depending on the fitting parameter, predictor variables included a selection of latitude, longitude, elevation, range 

of annual temperature range and mean annual precipitation (Allen et al., 2018). The relationships defined by these predictor 

variables then allow to estimate aP, bP and φP, and thus the seasonal signal of δ18OP for locations where no precipitation δ18O 240 

observations are available.  

Here, we adopted the method as described in the following. In a first step, we estimated the sine wave parameters for the time 

series of precipitation δ18O observed at the station Stuttgart, using the procedure described by Allen et al. (2018). Subsequently, 

we estimated the associated sine wave parameters aP, bP and φP in each of the four precipitation zones (P1 – P4; Supplementary 

Material Table S2) based on Eqs. (S1) - (S3) in the Supplement, using the above-described individual predictor variables, 245 

averaged for each precipitation zone (Supplementary Material Table S1). We then used the estimated sine wave parameters to 

construct an individual δ18OP sine wave for each precipitation zone (Eq.1). In a last step, we adjusted the observed δ18O input 

for the four precipitation zones by rescaling and bias correcting the observed δ18O signal according to the differences between 

the sine waves at the observation station and sine waves estimated for each precipitation zone, respectively (Supplementary 

Material Fig. S2).  250 

3.2.3 Spatial extrapolation of precipitation 3H to precipitation zones 

As for δ18O, it is well documented that 3H exhibits spatial heterogeneity that is to some extent controlled by geographical 

factors. It has been shown that the 3H concentration in precipitation increases with latitude, with highest concentrations in 

polar regions (Rozanski et al., 1991). In addition, 3H concentrations in precipitation increase with elevation due to the 3H-

enriched upper troposphere and isotopic exchange between liquid water and atmospheric moisture, depleting 3H in lower 255 

tropospheric layers (Tadros et al., 2014). Considering the above effects, we established a multiple linear regression relationship 

between 3H concentrations in precipitation observed at 15 multiple locations across Germany (Supplementary Material Fig. 

S3) as available through the WISER database (IAEA and WMO, 2022; Schmidt et al., 2020), and their corresponding elevation 

and latitude, respectively (Supplementary Material Fig. S4). We then used this relationship to adjust the 3H precipitation input 

for the four precipitation zones according to their corresponding average latitude and elevation estimate: 260 
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𝐻𝑃(𝑡)3 = −0.75(𝐿𝑃 − 𝐿𝑜) − 0.002(𝐸𝑃 − 𝐸𝑜) + 𝐻𝑜
3 ,                                                 (2) 

where 3HP is the latitude- and elevation-adjusted tritium precipitation concentration for each precipitation zone (P1 – P4), 3Ho 

is the tritium precipitation concentration observed at the Stuttgart station, LP and EP are the mean latitude and elevation, 

respectively, of each precipitation zone and Lo and Eo are the latitude and elevation, respectively, of the Stuttgart station. 

4 Methods 265 

The experiment to test the hypothesis that the use of δ18O data systematically leads to truncated water age distributions 

and associated underestimations of water ages is designed and executed in a step-wise approach. 21 different scenarios of 

model types and spatial implementations thereof are sequentially calibrated and tested to reproduce observed δ18O and 3H 

signals in stream flow. For each of these models, several metrics of water age distributions resulting from the 2 independent 

calibration procedures, i.e., for δ18O and 3H, respectively, are then estimated and compared. As a baseline and to ensure 270 

comparability with previous studies, water ages are quantified with spatially lumped, time-invariant implementations of twelve 

commonly used SW/CO model scenarios (Table 2): sine-wave models using exponential (SW-EM) and gamma distributions 

as TTDs (SW-GM; only δ18O), lumped parameter convolution integral models using exponential (CO-EM) and gamma 

distributions as TTDs (CO-GM), two parallel reservoirs (CO-2EM), three parallel reservoirs (CO-3EM) as well as an 

exponential piston flow (CO-EPM) implementation. The above baseline scenarios are complemented by nine additional 275 

models on the basis of SAS-functions (Table 3). In order of increasing complexity, these include three spatially integrated 

formulations of a “pure” SAS-function approach with one storage component and based on observed stream flow (P-SAS), 

three implementations of a spatially integrated hydrological model with tracer routing based on SAS-functions (IM-SAS-L) 

as well as three spatially distributed implementations of the same integrated hydrological model in combination with SAS-

functions (IM-SAS-D).  280 

4.1 Models 

4.1.1 Sine-wave model (SW) 

As demonstrated by Małoszewski et al. (1983), sine waves fitted to δ18O precipitation and stream flow signals can be used to 

indicatively determine water ages. More specifically, the ratio of the amplitudes of the fitted sine waves, i.e. As/Ap, can be used 

together with the assumption of a shape of the TTD to estimate the associated MTT of a system. In the case of a gamma 285 

distribution as TTD, this is done according to (Kirchner, 2016): 

𝜏̅ = 𝛼𝛽,                                                                                       (3) 

with 

𝛽 =
1

2𝜋𝑓
√(𝐴𝑠 𝐴𝑝⁄ )

−2 𝛼⁄
− 1,                                                                       (4)  
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where 𝜏̅ is the MTT, α is a shape parameter, β is a scale parameter and f here is the frequency for the seasonal δ18O signal, 290 

i.e., f = 1 yr-1. Here we analyze the two cases α =1 (SW-EM) and 0.5 (SW-GM). Note that with α = 1, the gamma distribution 

is equivalent to an exponential distribution. The sine wave model is a simplification of a convolution integral model and can 

be directly derived from that. For a more detailed description of the method and underlying assumptions we refer to McGuire 

and McDonnell (2006) and Kirchner (2016).  

4.1.2 Time-invariant, lumped parameter convolution integral model (CO) 295 

While the sine wave approach requires regular cyclic signals of tracer composition, i.e., sine waves fitted to the observations, 

convolution integral models make direct use of the observed tracer data (e.g. Kreft and Zuber, 1978). Tracer composition in 

the system output can thus be estimated based on a convolution operation of the tracer composition in the system input together 

with an a priori assumption of a TTD (e.g. Maloszewski and Zuber, 1982; Kirchner et al., 2001): 

 300 

𝐶𝑜(𝑡) =  ∫ 𝑔(𝜏)𝐶𝑖(𝑡 − 𝜏)𝑒−𝜆𝜏 𝑑𝜏
∞

0
,                                                                 (5) 

Where Co(t) is the tracer composition of the system output (here: stream flow) at time t, Ci (t – τ) is the tracer composition of 

the system input (here: precipitation) at any previous time t – τ, λ is the radioactive decay constant (λ = 0.00015 d-1 for 3H and 

λ = 0 d-1 for stable isotopes) and g(τ) is the distribution of transit times τ. Here, we used gamma distributions as basis for a 

flexible and general formulation of TTDs in the different CO scenarios tested in this study: 305 

 

𝑔(𝜏) = ∑ 𝜂𝑓𝑖
𝜏𝛼−1

𝛽𝑖
𝛼Γ(𝛼)

𝑒
(

−𝜏

𝜂𝛽𝑖
+

1

𝜂
−1)𝑁

𝑖=1       for τ ≥ τm(1 – η), g(τ) = 0 otherwise                                  (6) 

With the α and βi being the shape and scale parameters, respectively, fi the fraction of the contribution of the ith reservoir, so 

that ∑fi = 1 and η the ratio of the exponential volume to the total volume. For a single exponential TTD (CO-EM) with α =1, 

N = 1, η = 1 and f1 = 1, β1 was the only calibration parameter. The two parallel exponential TTD model (CO-2EM) with α =1, 310 

N = 2, η = 1 and f2 = 1 – f1, required β1, β2 and f1 as calibration parameters, while the three parallel exponential TTD model 

(CO-3EM) with α =1, N = 3, η = 1 and f3 = 1 – f1 – f2, required β1, β2, β3 as well as f1 and f2 as calibration parameters. The 

exponential piston flow model (CO-EPM) with α =1, N = 1 and f1 = 1 was characterized by the two calibration parameters β1 

and η. In contrast, the Gamma distribution model (CO-GM), with N = 1, η = 1 and f1 = 1, used both, α and β1 as free calibration 

parameters.  315 

The MTTs associated with the above parameters in the individual model implementations are then obtained with Eq. (7).  

𝜏̅ = ∑ 𝑓𝑖𝛼𝛽𝑖
𝑁
𝑖=1                                                                                    (7) 

For more detailed description of the method and the individual shapes of TTDs considered here, refer to McGuire and 

McDonnell (2006). 
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4.1.3 SAS-function models (P-SAS, IM-SAS) 320 

The storage-age selection function (SAS) concept as outlined by Rinaldo et al. (2015) requires the explicit tracking of water 

and tracer storage volumes. The age compositions of water fluxes are then sampled from the age composition in the associated 

storage volume. Two alternative and frequently used approaches to account for the evolution of water storage volumes were 

explored here: firstly, a “pure” SAS-function model in which the observed stream flow was used to account for changes in 

water storage volumes (P-SAS) and secondly, an integrated process-based hydrological model that generates stream flow and 325 

other fluxes in the system (IM-SAS). Water ages, their distributions, and the associated moments thereof were then estimated 

by tracking water and tracer fluxes through the models. 

 

Hydrological model 

The hydrological component of the “pure” SAS-function model (P-SAS) was implemented as described in Benettin et al. 330 

(2017). This model consists of one single storage volume, which receives observed precipitation P as input and releases 

observed stream flow as output. Evaporation EA from that storage is modelled following the simplifying assumption that there 

is negligible storage change over the entire 47-year study period (01/01/1970 – 31/12/2016), as expressed by: 

𝐸𝐴(𝑡) = 𝐸𝑝(𝑡)(
�̅�−�̅�

𝐸𝑝̅̅ ̅̅
)                                                                                 (8) 

WithP andQ being long-term mean daily precipitation P (mm d-1) and discharge Q (mm d-1), respectively, andEp the long-335 

term mean daily potential evaporation Ep (mm d-1). 

In contrast, the water storage fluctuations and fluxes in the IM-SAS approach were modelled based on a previously developed, 

process-based model, based on the DYNAMIT modular modelling scheme (Hrachowitz et al., 2013, 2021). Briefly, this 

hydrological model consists of a suite of storage components and associated water fluxes between them. The influence of 

functionally different landscape elements, i.e. forest, grass-/cropland and flat valley bottoms, for brevity hereafter referred to 340 

as wetland, is represented by parallel hydrological response units (HRU), linked by a common storage component representing 

the groundwater system (Fig. 2), as previously implemented and successfully tested in many contrasting environments (e.g. 

Gao et al., 2014; Gharari et al., 2014; Euser et al., 2015; Nijzink et al., 2016; Prenner et al., 2018; Hanus et al., 2021). Briefly, 

precipitation P (mm d-1) falling on days with temperatures below threshold temperature Tt (oC), is accumulated as snow Psnow 

(mm d-1) in the snow storage Ssnow (mm). On days with temperatures higher than that, precipitation enters the system as rainfall 345 

Prain (mm d-1) and, based on a simple degree-day approach, water is released from Ssnow as snow melt Msnow (mm d-1), controlled 

by melt factor Cmelt (mm d-1 oC-1; e.g. Gao et al., 2017; Girons Lopez et al., 2020). Rain water is then routed through the 

interception storage Si (mm). With Ei (mm d-1) as interception evaporation at the potential evaporation rate, effective 

precipitation Pre (mm d-1) generated by overflow once the maximum interception capacity (Simax) is exceeded, together with 

Msnow, enters the unsaturated root-zone Su (mm). From Su water can then be released as vapor via a combined soil evaporation 350 

and transpiration flux Ea (mm d-1). Drainage of liquid water from Su can either recharge the groundwater Ss (mm) over a 

percolation flux Rperc (mm d-1) and a faster preferential recharge Rpref (mm d-1). Alternatively, it can be routed via Ruf (mm d-1) 
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to a faster responding component Sf (mm) from where it is directly released to the stream as Qf (mm d-1), representing lateral 

preferential flow. Rain and snow melt entering the wetland HRU directly reach Su. Soil moisture levels in the wetland Su are 

further sustained by a fraction of groundwater Rcap (mm d-1) that is upwelling into Su from Ss (e.g., Hulsman et al., 2021a). The 355 

detailed equations of the model are provided as Table S3 in the Supplementary Material. 

 

 

Tracer transport model 

δ18O and 3H were routed through the above-described storage components of both the P-SAS and the IM-SAS (Fig. 2) models 360 

by sampling the observed (i.e. Q in P-SAS) and modeled outflow volumes (i.e. Ea in P-SAS; all outflows in IM-SAS) that 

leave the individual components at each time step t (d) (e.g. Msnow, Rperc, Ea, etc.) from the individual water volumes of different 

age T (d) that are stored in the associated storage component (e.g. Ssnow, Su, etc.) at each time step according to a SAS function. 

The distribution of water volumes of different ages in each storage component, i.e., the residence time distribution RTD, 

depends on the past sequence of inflows I (mm d-1) and outflows O (mm d-1) and therefore varies over time. As a consequence 365 

of being sampled from RTDs that evolve over time, both, inflows I and outflows O are correspondingly characterized by water 

age distributions (or transit time distributions TTD) that change over time. A straightforward implementation of this SAS 

concept is facilitated by the formulation of age-ranked storages ST(T,t) (mm). As emphasized by Benettin et al. (2017), ST(T,t) 

describes “at any time t the cumulative volumes of water in a storage component as ranked by their age T”. Correspondingly, 

the total inflow (I) into as well as the total outflow volumes (O) from different storages can be expressed in terms of their 370 

cumulative, age-ranked volumes IT(T,t) and OT(T,t) (mm d-1). At any time, closing the resulting water age balance for each 

storage component j (e.g. Ssnow, Su, etc.) also leads to an updated age-ranked storage ST,j (T,t) for that component, formulated 

as (Benettin et al., 2015a; Botter et al., 2011; Harman, 2015; Van Der Velde et al., 2012): 

𝜕𝑆𝑇,𝑗(𝑇,𝑡)

𝜕𝑡
+

𝜕𝑆𝑇,𝑗(𝑇,𝑡)

𝜕𝑇
= ∑ 𝐼𝑇,𝑛,𝑗(𝑇, 𝑡) − ∑ 𝑂𝑇,𝑚,𝑗(𝑇, 𝑡)𝑀

𝑚=1
𝑁
𝑛=1 ,                                              (9) 

Where ∂ST/∂T is the aging process of water in storage. Here, the water age balance (Eq.7) was formulated individually for 375 

each storage reservoir j, also accounting for different numbers N of storage component inflows I (e.g. Prain, Msnow, Rperc) and 

numbers M of outflows O (e.g., Rperc, Rpref, Ea) (Fig. 2), similar to previous studies (e.g. Hrachowitz et al., 2021). For a daily 

modelling time step, it can in the water age balance be assumed that precipitation P(t) that is falling on day t is characterized 

by an age T = 0. This implies for the age ranked inflow IT,P,j(0,t) = PT(0,t) = P(t). Note, that all other age ranked inflows IT,n,j(T,t) 

that enter a storage component are equivalent to the corresponding age ranked outflows OT,m,j(T,t) that leave a “higher” storage 380 

component. 

Depending on the total volume of outflow Om,j(t) and the cumulative distribution of ages Po,m,j(T,t) of that flow, an age-ranked 

outflow OT,m,j(T,t) for each flux m released from each storage component j can be defined as:  

𝑂𝑇,𝑚,𝑗(𝑇, 𝑡) = 𝑂𝑚,𝑗(𝑡)𝑃𝑜,𝑚,𝑗(𝑇, 𝑡),                                                                 (10) 

While the outflow Om,j(t) from any storage component j is computed for each time step t by the hydrological model described 385 
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above, the associated Po,m,j(T,t) cannot be assumed to be known as it is controlled by the temporally evolving distribution of 

water ages present in that storage component ST,j(T,t) at t. However, the temporally variable Po,m,j(T,t) can be inferred for each 

time step t by defining for each storage j and for each outflow m released from j a SAS function ωo,m,j together with its 

cumulative form Ωo,m,j. These functions then describe how the water volumes of different ages, stored in component j at time 

t, i.e. ST,j(T,t), are sampled and combined into the corresponding total outflow volume Om,j(t): 390 

𝑃𝑜,𝑚,𝑗(𝑇, 𝑡) = Ω𝑜,𝑚,𝑗(𝑆𝑇,𝑗(𝑇, 𝑡), 𝑡),                                                                 (11) 

 

The probability density function po,m,j(T,t) associated with the cumulative distribution of ages Po,m,j(T,t), then represents the 

transit time distribution TTD of that outflow and can be written as:  

𝑝𝑜,𝑚,𝑗(𝑇, 𝑡) = 𝜛𝑜,𝑚,𝑗(𝑆𝑇,𝑗(𝑇, 𝑡), 𝑡)
𝜕𝑆𝑇,𝑗

𝜕𝑇
,                                                             (12) 395 

Conservation of mass dictates that  

Ω𝑜,𝑚,𝑗(𝑆𝑇,𝑗(𝑇, 𝑡) → 𝑆𝑗(𝑡), 𝑡) = 1,                                                                  (13) 

Where Sj (mm) is the total volume of water stored in component j at time t. The resulting need to rescale ωo,m,j for each time 

step was here avoided by instead normalizing and therefore bounding the age ranked storage to the interval [0,1] according to 

𝑆𝑇,𝑛𝑜𝑟𝑚,𝑗(𝑇, 𝑡) =
𝑆𝑇,𝑗(𝑇,𝑡)

𝑆𝑗(𝑡)
,                                                                         (14) 400 

Note that ST,norm,j also represents the RTD of storage component j at time t. 

For the P-SAS model implementation in this study, we used power law distributions with one parameter to sample streamflow 

(kQ) and evaporation (kE), respectively, as described by Benettin et al. (2017). In contrast, we used uniform distributions in the 

form of ω = const. as SAS function in each storage component in the IM-SAS model implementations as previously shown to 

be effective in many studies (e.g. Birkel et al., 2011; van der Velde et al., 2015; Benettin et al., 2015b, 2017; Ala-Aho et al., 405 

2017; Kuppel et al., 2018; Rodriguez et al., 2018). The latter implies random sampling and the assumption that each storage 

component is fully mixed and that there is no preference for sampling younger or older water. However, note that due to distinct 

storage capacities and time-scales of the individual storage components, the “combined” SAS functions of all storage 

components will not lead to an overall fully mixed system response. Uniform SAS functions were here chosen over other 

shapes, such as beta-distributions (e.g. van der Velde et al., 2012; Hrachowitz et al., 2021), as they do not need additional 410 

model parameters and avoid the need for explicit calculation of TTDs at each model time step to route tracers through the 

model (Benettin et al., 2015b), thereby drastically reducing computer memory requirements and computational time (Benettin 

et al., 2022). 

To adequately damp tracer input signals, suitable system storage volumes have to be defined as calibration parameters. In the 

P-SAS implementation the parameter Stot is used, reflecting the initial total system storage (e.g. Benettin et al., 2017). In 415 
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contrast, the IM-SAS implementations made use of additional and hydrologically passive storage volumes (e.g. Christophersen 

and Wright, 1981; Birkel et al., 2010; Hrachowitz et al., 2015, 2016), which physically represents groundwater volumes below 

the river bed, as illustrated by Zuber (1986; Fig.1 therein). Such a passive water storage volume Ss,p (mm), characterized by 

dSs,p/dt = 0, was thus added as calibration parameter to the active groundwater storage Ss (Fig. 2). While the outflow Qs from 

the groundwater storage is exclusively regulated by the temporally varying storage volume in Ss (Supplementary Material Eq. 420 

S9), the tracer and age composition of that outflow is also randomly sampled from the total groundwater storage volume Ss,tot 

= Ss + Ss,p. 

The δ18O and 3H concentrations were then routed through each individual storage component according to (e.g. Harman, 2015; 

Benettin et al., 2017): 

𝐶𝑜,𝑚,𝑗(𝑡) = ∫ 𝐶𝑠,𝑗(𝑆𝑇,𝑗(𝑇, 𝑡), 𝑡)𝜔𝑜,𝑚,𝑗(𝑆𝑇,𝑗(𝑇, 𝑡), 𝑡)𝑒−𝜆𝑇 𝑑𝑆𝑇
𝑆𝑗

0
,                                           (15) 425 

Where Co,m,j is the tracer concentration in outflow m from storage component j at time t, Cs,j is the tracer concentration of water 

in storage at time t and λ is the radioactive decay constant (λ = 0 d-1 for δ18O and λ = 0.00015 d-1 for 3H). 

4.2 Model implementation  

4.2.1 Spatially lumped model implementation 

The original argument that the use of seasonally variable tracers’ underestimates water ages was exclusively based on lumped, 430 

time-invariant implementations of sine-wave and convolution integral models (Stewart et al., 2010). For a baseline comparison 

and to check whether the above conclusion would also have been reached for our study basin using the same methods, we here 

similarly implemented the sine-wave (SW-EM, SW-GM) and convolution integral (CO-EM, CO-GM, CO-2EM, CO-3EM, 

CO-EPM) in a spatially lumped way. For this baseline case the catchment average tracer input was estimated as the spatially 

weighted mean from the four precipitation zones P1 – P4 as described in section 3.2. The calibration parameters of the CO 435 

implementations are shown in Table 2. 

The “pure” SAS-model (P-SAS; Table 3) and the spatially lumped implementation of the integrated model (IM-SAS-L) were 

also forced with the same spatially averaged input. In addition, the spatial fractions of the grassland and wetland HRUs for 

IM-SAS-L, respectively, were set to 0 and the entire study basin therefore represented by one HRU which is equivalent to the 

forest HRU described in distributed model, similar to many traditional lumped formulations of process-based conceptual 440 

models (Bouaziz et al., 2021; Clark et al., 2008; Fenicia et al., 2006; Fovet et al., 2015; Seibert et al., 2010). This 

implementation has 11 calibration parameters (Table 3).  

4.2.2 Spatially distributed model implementation 

To balance the need for spatial detail to some extent with the adverse effects of increased parameter uncertainty (e.g. Beven, 

2006) and computational capacity (in particular for the calculation of TTDs), we here implemented the integrated model in 445 
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parallel (IM-SAS-D) in the four precipitation zones P1 – P4 and forced it with the corresponding input (e.g. P, δ18O and 3H) 

for each precipitation zone as described in section 3.2. Each precipitation zone was further discretized (1) into 100 m elevation 

zones for a stratified representation of the snow storage Ssnow (e.g. Mostbauer et al., 2018) and (2) into three HRUs, i.e., forest, 

grassland, wetland (Fig.2; e.g. Gharari et al., 2014; Hanus et al., 2021). Rain Prain and melt water Msnow from the different 

elevation zones was aggregated according to their associated spatial weights in each elevation zone. This total liquid water 450 

input was then routed through the three parallel HRUs. The classification into the three HRUs was based on the metric Height-

above-nearest-drainage (HAND; Gharari et al., 2011) and land cover. While landscape elements with HAND < 5 m were 

classified as wetland, all other parts of the landscape were classified as forest or grassland according to land-use data. In total, 

there are therefore 12 individual, parallel model components, i.e., three HRUs in each of the four precipitation zones, not 

counting the elevation zones for the snow module. All flux and storage variables of the 12 components are weighted according 455 

to their areal fractions. While each of the three HRUs was characterized by individual parameters (e.g. Gao et al., 2016; Prenner 

et al., 2018), the same parameter values were used in all four precipitation zones in distributed moisture accounting approach 

(e.g. Ajami et al., 2004; Euser et al., 2015; Hulsman et al., 2021b; Roodari et al., 2021). Overall, the spatially distributed 

implementation has 19 model parameters, including five global parameters (Tt, Cmelt, Ca, Ks and Ss,p) that are identical for each 

HRU and 14 HRU-specific parameters (Table 3; Fig.2).     460 

4.3 Model calibration and post-calibration evaluation 

The models were run at a daily time step, whereby the observed volume-weighted monthly tracer concentration in precipitation 

was used as model input for each day of that month together with the daily data of precipitation. Model performance was 

evaluated based on the Mean Square Error (MSE) as error metric. The time-invariant, lumped convolution integral models, 

using uniform prior parameter distributions as shown in Table 2, were individually calibrated to the observed δ18O (calibration 465 

strategy Cδ
18

O; Table 2) and 3H stream water concentrations (C3
H), respectively. In contrast, a multi-objective calibration 

approach was applied for the integrated IM-SAS models to simultaneously reproduce stream flow volumes and tracer 

concentrations thereof (e.g. 3H and/or δ18O). Briefly, the model parameters were calibrated by using Borg_MOEA algorithm 

(Borg Multi-objective evolutionary algorithm; Hadka and Reed, 2013) and based on uniform prior distributions (Table 3). The 

model performances were evaluated based on the models’ ability to simultaneously reproduce multiple signatures of stream 470 

flow as well as signatures of tracer dynamics as shown in Table 3. The sets of pareto optimal solutions obtained from the 

calibration procedures were then retained as acceptable solutions for the subsequent analysis. To compare the water age 

distributions (i.e., TTDs and RTDs) and thus to test the research hypothesis, different calibration strategies – Cδ
18

O,Q, C3
H,Q and 

Cδ
18

O,
3
H,Q – were adopted (Table 3). While in strategy Cδ

18
O,Q the models were calibrated to simultaneously reproduce signatures 

of stream flow and δ18O, C3
H,Q combined the stream flow signatures with 3H. In strategy Cδ

18
O,

3
H,Q the model was finally 475 

calibrated to simultaneously reproduce the six stream flow signatures, δ18O, and 3H dynamics. For each strategy, all 

performance metrics were also combined into an overall performance metric based on the Euclidian distance (DE), where DE 

= 0 indicates a perfect fit. To find a somewhat balanced solution in absence of more detailed information all individual 
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performance metrics were here equally weighted (e.g., Hrachowitz et al., 2021; Hulsman et al., 2021b): 

 480 

𝐷𝐸 = √1

2
(

∑ (𝐸𝑀𝑆𝐸,𝑄,𝑛)
2𝑁

𝑛=1

𝑁
+

∑ (𝐸𝑀𝑆𝐸,𝑡𝑟𝑎𝑐𝑒𝑟,𝑚)
2𝑀

𝑚=1

𝑀
),                                                    (16) 

 

Where 𝑁 = 6  is the number of performance metrics with respect to stream flow (𝐸𝑀𝑆𝐸,𝑄,𝑛 ) and 𝑀  is the number of 

performance metrics for tracers (𝐸𝑀𝑆𝐸,𝑡𝑟𝑎𝑐𝑒𝑟,𝑚) in each combination (e.g. 𝑀=1 for Cδ
18

O,Q, and C3
H,Q, 𝑀=2 for Cδ

18
O,

3
H,Q). Note 

that the different units and thus different magnitudes of residuals introduce some subjectivity in finding the most balanced 485 

overall solution according to DE (Eq. 16). However, a preliminary sensitivity analysis with varying weights for the individual 

performance metrics in DE suggested limited influence on the overall results and is thus not further reported here.    

After a warm-up period 01/01/1978 – 30/09/2001 the models were calibrated for the 01/10/2001 – 31/12/2009 period. The 

calibration period was chosen so that observations of all three calibration variables, i.e., Q, 3H and δ18O, are available for the 

entire calibration period to allow a consistent comparison. The long model warm-up period was deemed necessary to 490 

meaningfully approximate the model initial conditions due to the potential and a priori unknown relevance of old water in the 

study basin, and thus to avoid underestimation of water ages inferred from 3H data. The pareto optimal solutions (parameter 

sets) of the Neckar basin model were then used to test the model in the post-calibration evaluation period 01/01/2010 – 

31/12/2016. In addition, the model was tested for its ability to represent spatial differences in the hydrological response by 

evaluating it against streamflow observations in three sub-catchments (C1 – C3) of the Neckar without further re-calibration 495 

whereby each one of them largely represents the hydrological response from one of the precipitation zones (Fig. 1). The water 

age distributions, i.e., TTDs and RTDs, extracted from the individual models and calibration strategies were then estimated 

based on the corresponding sets of pareto optimal solutions obtained for each calibration strategy. 

5 Results 

5.1 Model performance  500 

The stream tracer responses of the lumped baseline models were found to be broadly consistent with the available observations 

(Table 4). For the SW models (scenarios 1, 2) in particular the sine wave fitted to the stream water δ18O observations provides 

a robust characterization of the observed signal with MSEδ
18

O = 0.121 and 0.144 ‰ for calibration and model evaluation 

periods, respectively (Supplementary Material Fig. S5). Similarly, the CO models (scenarios 3, 5, 7, 9, 11) reproduced the 

overall pattern of seasonal fluctuations and the degree of dampening of the δ18O response (Supplementary Material Fig. S6). 505 

The best performing model, the CO-3EM model, was characterized by MSEδ
18

O = 0.171 and 0.191 ‰ for the calibration and 

model evaluation periods, respectively while, in comparison, the CO-EM implementation with exhibited considerably higher 

errors with MSEδ
18

O = 0.327 and 0.432 ‰ (Table 4). When used with 3H data (scenarios 4, 6, 8, 10, 12), the CO models do 
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capture the general decrease in the magnitude of stream water 3H concentrations although fluctuations at shorter timescales 

are not well reproduced (Supplementary Material Fig. S7). The CO-2EM model gives the best performance with MSE3
H = 510 

5.171 and 3.964 TU2 for the calibration and evaluation periods, respectively, while the CO-EPM model resulted in MSE3
H = 

5.926 and 5.115 TU2 (Table 4). It is also noted that the models already mimic the 3H response well in the 1978 – 2001 pre-

calibration model warm-up period.  

The P-SAS implementations (scenarios 13 – 15; Table 5; Supplementary Material Fig. S8-S9) show a somewhat higher skill 

to reproduce the dampening of δ18O response with MSEδ
18

O = 0.069 – 0.078 ‰ for the calibration and 0.215 – 0.231‰ for the 515 

evaluation periods, respectively, as well as the general decrease in the magnitude of stream water 3H with MSE3
H < 3 TU2. In 

contrast to the above, the implementations of the integrated model IM-SAS (Table 5) aim to not only to reproduce the δ18O or 

3H stream signals, but to additionally and simultaneously describe the hydrological response (Table 5). Both, the lumped IM-

SAS-L (scenario 16; Supplementary Material Fig. S10a, b) and the distributed IM-SAS-D (scenario 19; Fig. 3a, b) reproduce 

the seasonal fluctuations as well as the degree of dampening of the δ18O signals with MSEδ
18

O = 0.079 – 0.083 ‰ for the 520 

calibration and 0.273 – 0.332 ‰ for the evaluation periods similar to or better than the baseline SW/CO models. The IM-SAS 

models do also describe the evolution of the 3H stream signals rather well (scenarios 17 and 20). With MSE3
H < 3 TU2, IM-

SAS-L (Supplementary Material Fig. S11) and IM-SAS-D (Fig. 4) do not only outperform the baseline models with respect to 

the overall magnitude of 3H, but do, in spite of somewhat underestimating the magnitude of seasonal amplitudes, also provide 

a better representation of these intra-annual fluctuations. Similar to the SW/CO baseline models, the IM-SAS implementations 525 

also very well capture the overall decline of the stream water 3H levels in the 1978 – 2001 pre-calibration model warm-up 

period. The simultaneous calibration to the hydrological response and the δ18O and 3H stream signals (scenarios 18 and 21) 

led to a comparable model skill to reproduce the tracer signals. In addition to the tracer concentrations, all IM-SAS 

implementations do also reproduce the main features of the hydrological response (Table 5). More specifically, the modelled 

hydrographs in particular describe well the timing of peaks as well as the shape of recessions, although in some cases peak 530 

flows were underestimated and low flows overestimated as shown for scenario 21 in Figure 5 (for scenarios 16 – 20 see 

Supplementary Material Figs. S12 – S16). The resulting in MSEQ remains ≤ 0.336 mm2 d-2 across all IM-SAS implementations 

(scenarios 16 – 21). Crucially, the models also reproduce well the other observed stream flow signatures such as the flow 

duration curves (MSEFDCQ ≤ 0.047 mm2 d-2; Fig. 5d), the seasonal runoff coefficients (MSERC ≤ 0.008; Fig. 5e) and the 

autocorrelation functions (MSEACQ ≤ 0.007; Fig. 5f). The model, calibrated on the overall response of the Neckar basin, also 535 

exhibited considerable skill to represent spatial differences in the hydrological response by reproducing observed stream flow 

in the three sub-catchments (C1 – C3) similarly well (Fig.6) without any further re-calibration.  

5.2 Model parameters 

Parameters of the SW/CO baseline models (scenarios 1 – 12) directly define the shapes of parametric TTDs and thus the 

associated metrics of water age, such as MTT following Eqs. (3 – 7). The CO models representing 3H signals (scenarios 4, 6, 540 

8, 10, 12) are characterized by values of parameters β1, β2 and β3 that are by a factor of up to ~ 10 higher than the same 
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parameters of models calibrated to δ18O signals (Table 2). For example, β1 = 513 d for the CO-EM in scenario 3 and 3795 d in 

scenario 4. 

The individual parameters of the P-SAS and IM-SAS model implementations (scenarios 13 – 21), in contrast, do not directly 

define parametric TTDs nor can they be readily and directly be linked to water ages. However, it has been previously shown 545 

that the sizes of water storage volumes is an important control on water ages (e.g. Harman, 2015) and that in particular total 

storage volumes, represented by parameter Stot in P-SAS, and the hydrologically passive storage volumes, represented by 

parameter SS,p in IM-SAS models, are key to regulate in particular older water ages in many systems (e.g. Hrachowitz et al., 

2016). Calibration of P-SAS to δ18O in scenario 13 suggested Stot ~ 15595 mm while calibration of the lumped IM-SAS-L to 

δ18O and stream flow (Cδ
18

O,Q) in scenario 16 led to a moderately well identifiable range of this parameter Ss,p ~ 4107 – 10029 550 

mm across all pareto optimal solutions and in the same order of magnitude as P-SAS (Fig. 7a, Table 3). Reflecting the water 

storage capacity in the unsaturated root zone, which is an important control on younger water ages (Hrachowitz et al., 2021), 

the parameter SumaxF was found to range between ~ 314 – 415mm (Fig. 7b, Table 3) for the same IM-SAS-L scenario. The 

calibration of the same models to 3H (scenarios 14, 17) resulted in a similar parameter ranges for Stot ~ 16638mm, Ss,p ~ 3924 

– 9339 mm (Fig. 7a) as well as, albeit slightly lower, SumaxF ~236 – 355 mm (Fig. 7b). The similarities between these two 555 

scenarios are also reflected in the parameter ranges obtained from the simultaneous calibration to δ18O and 3H (Cδ
18

O,
3
H,Q) in 

scenarios 15 and 18. The calibration of the distributed IM-SAS-D model following all the three calibration strategies in 

scenarios 19 – 21, resulted in values for Ss,p ~ 3270 – 9011 mm (Fig. 7c) that are broadly in the similar ranges as for IM-SAS-

L (Ss,p ~ 3924 – 13676 mm). In contrast, the distinction into the individual HRUs led to clear differences between SumaxF, SumaxG 

and SumaxW (Figs. 7d-f), reflective of the different hydrological functioning of these HRUs. Nevertheless, the area-weighted 560 

average of these parameters comes close to the equivalent parameter from the lumped model implementation (SumaxF). The 

general consistency of these parameters obtained from the different calibration strategies is exacerbated by the limited 

differences in the most balanced solutions (smallest DE) between the different scenarios. For example the most balanced 

solutions of Ss,p fall between ~ 4000 – 5000 mm for all IM-SAS scenarios 16 – 21 (Fig. 7a, c). All other parameters, which are 

less clearly related to water ages, exhibit different levels of variation across the individual scenarios yet not following any clear 565 

and systematic pattern (Table 3). 

5.3 Water age distributions 

Based on a δ18O amplitude ratio As /Ap = 0.21 (Table 2), the results of the SW models (scenarios 1, 2) suggest a system that is 

characterized by rather young stream water with MTT ~ 0.7 – 1.8 yr, depending on the choice of TTD (Table 6; Fig. 8). The 

TTDs obtained from the CO models calibrated to δ18O (scenarios 3, 5, 7, 9, 11) are broadly consistent with that, suggesting 570 

MTT ~ 1.4 – 2.4 yr. These TTDs suggest mean water ages that are up to ~ 9 yr lower than estimates from CO models calibrated 

to 3H (scenarios 4, 6, 8, 10, 12) with MTT ~ 9.4 – 10.4 yr (Table 6; Fig. 8). For higher percentiles the differences in water ages 

can even reach more than 20 years (Table 6). Correspondingly, the fractions of water younger than 3 months, F(T < 3 m), 

exhibit considerable differences of -2 – 22% points between δ18O and 3H inferred estimates, which further increase to 
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differences of 30 – 64% for F(T < 3 yr).  575 

In contrast, from the implementations of the P-SAS and IM-SAS models in scenarios 13 – 21, it can be clearly seen that the 

stream water ages inferred from δ18O are across most percentiles by a factor of around 10 higher than those from SW and CO 

models, resulting in volume-weighted average MTT ~ 11 – 17 yr over the modelling period (Table 7; Fig. 9). Similarly, all 

water fractions below 20 years are substantially lower for the P-SAS and IM-SAS models than for SW and CO models. The 

most pronounced difference is observed at F(T < 5 yr) that reaches 38 – 57% for SAS-functions models and 91 – 100% for 580 

SW and CO, which equals to a difference of more than 50%. As such, these water age estimates from δ18O in SAS-function 

models (scenarios 13, 16, 19) are not only very similar to the estimates from 3H in these models (scenarios 14, 17, 20) but δ18O 

suggests, against the expectations, even slightly older water than 3H does. More specifically, while δ18O results in stream water 

MTT 11 -17 yr (scenarios 13, 16, 19), the 3H-based estimates reach MTT ~ 11 – 13 yr (scenarios 14, 17, 20) and thus up to 

five years younger (Table 7; Fig. 9). The differences between δ18O and 3H water ages from individual P-SAS and IM-SAS 585 

model implementations (scenarios 13 – 21) are similar over all percentiles with ΔTTδ
18

O-
3
H, on average, ~ 1.4 yr and not 

exceeding ~ 5.5 yr. Accordingly, the fractions of water of any given age up to T < 20 years is ~ 1 – 8 % higher for 3H than for 

δ18O, suggesting higher fractions of old water modelled with δ18O (Table 7). Equivalent pattern and comparable magnitudes 

are found for the combined use of δ18O and 3H in scenarios 15, 18 and 21. 

An explicit comparison between the lumped IM-SAS-L (scenarios 16 – 18) and the distributed IM-SAS-D (scenarios 19 – 21) 590 

also suggests a good correspondence between the respective inferred water ages for both tracers. While IM-SAS-L generates 

MTT ~ 11.2– 17.4 years, the MTT obtained from IM-SAS-D reach ~ 12.8 – 15.6 years (Table 7, Fig. 9). Besides the MTT, 

also the differences in water ages across all percentiles is minor and reaches a maximum of 4.6 years at the 75th percentile. 

Accordingly, the fractions of water with ages T < 20 yr exhibit only marginal differences between the lumped (IM-SAS-L) and 

distributed model (IM-SAS-D) implementations. It is noted that these overall water ages from IM-SAS-D for the entire Neckar 595 

basin emerge from the aggregation of TTDs of the four individual precipitation zones P1 – P4 (Supplementary Material Figure 

S31-33 and Table S6), which are characterized by pronounced differences with MTT ranging from ~ 8 – 10 years in P4 and ~ 

18 – 22 years in P2, depending on the scenario. 

The consistency between water ages inferred from δ18O and 3H, respectively, in all SAS-function model scenarios is further 

illustrated by the direction and magnitude of change in water age distributions as a consequence of changing wetness conditions. 600 

In particular during wet-up and wet periods, a marked variability of daily TTDs can be observed, with young water fractions 

F(T < 3 m) ranging between ~ 20 – 65% for δ18O-based estimates and ~ 25 – 70% for 3H (Fig. 10a, b). Less variability in daily 

TTDs is found under drying and dry conditions with generally F(T < 3 m) in the range of ~ 1 – 20%, with only very few 

outliers > 30%. Overall, the volume-weighted average TTDs for wet conditions suggest slightly older water inferred from δ18O 

with a median water age of ~ 3 year and F(T < 3 m) ~ 30%, for wet conditions than from 3H, for which a median age of ~ 1 605 

year and F(T < 3 m) ~ 40 % were found (Fig. 10d). This is in opposite to dry conditions for which the differences between 

δ18O and 3H-derived water age estimates become mostly negligible (Fig. 10d).     

With P-SAS and IM-SAS models, not only MTT/TTD in streams can be derived but also in any fluxes/storages (i.e., 
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transpiration flux Ea, ground water storage). An even more pronounced young water variability in daily TTDs was found for 

the transpiration flux Ea leaving the unsaturated root zone storage Su in the IM-SAS models (scenarios 16 – 21). As shown in 610 

Figure 11a, the transpiration TTDs inferred from δ18O suggest a median transpiration age during wet conditions of ~ 2 – 40 

days and F(T < 3 m) ~ 60 – 100%. This variability shifts to median ages between ~ 30 – 100 days and F(T < 3 m) ~ 30 – 95% 

for dry conditions. This pattern of variability in daily TTDs in wet and dry periods is very closely matched by the estimates 

based on 3H (Fig. 11b). Overall, the volume-weighted average TTDs of transpiration suggest median ages of around 14 days 

for wet conditions and between 35 days (3H) and 70 days (δ18O) for dry conditions (Fig. 11d).   615 

The modelled groundwater, in comparison, was found to be characterized by substantially less temporal variability in TTDs 

and older water ages (Fig. 12). The TTDs inferred from both, δ18O and 3H, are similar and characterized by a median age of ~ 

10 years under both, wet and dry conditions. While F(T < 3 m) of the groundwater largely remains < 1%, around 20 – 25 % of 

the groundwater is older than 20 years.     

6 Implications, limitations and unresolved questions  620 

What can we learn from the above? We believe the results obtained in this study have several implications for the utility of 

different tracer and model types, as described in detail below.    

6.1 The individual roles of the choices of tracers and models for underestimation of water ages  

The overall magnitude of water ages here estimated from time-invariant, lumped SW and CO models in combination with δ18O 

reach MTTs of ~ 2 years (Table 6, Fig. 8). These values fall within the age ranges reported for comparable model experiments 625 

with seasonally variable tracers in many other catchments world-wide (see McGuire and McDonnell, 2006; Godsey et al., 

2009; Hrachowitz et al., 2009; Stewart et al., 2010 and references therein). Similarly, the water ages estimated with the same 

CO models in combination with 3H are with MTTs ~ 10 yrs by a factor of ~ 5 higher (Table 6, Fig. 8), and also well reflect the 

findings of previous studies, many of which suggest 3H-inferred catchment MTTs of ~ 10 – 15yr (Stewart et al., 2010 and 

references therein). This suggests that the Neckar basin does not exhibit unusual or unexpected water age characteristics. By 630 

themselves, these results would therefore lend further supporting evidence for the interpretation provided by Stewart et al. 

(2010) and, crucially, lead us to the same conclusion, that the use of δ18O and comparable seasonally variable tracers truncate 

stream water ages.  

However, and in stark contrast, the estimates of water age obtained from all P-SAS and IM-SAS model implementations in 

this study, i.e., scenarios 13 – 21, are similar to each other irrespective of the tracer used. Water ages estimated from δ18O are, 635 

with MTT > 11.4 yr, not only substantially older than those inferred from the SW and CO models (scenarios 1 – 3, 5, 7, 9, 11), 

but, most importantly, similar to those inferred from 3H in P-SAS and IM-SAS models, which reach MTT ~ 11 – 13 yr (Table 

7, Fig. 9). These water ages highlight the importance of old water in the Neckar basin, similar to what is suggested by the use 

of 3H in CO models (scenarios 4, 6, 8, 10, 12). 
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It is important to note that the IM-SAS and, to a lesser degree, P-SAS models can simultaneously reproduce several signatures 640 

of the hydrological response together with the δ18O and 3H stream water signals. They therefore provide a more holistic 

description of physical transport processes in the system (Table 7, Fig. 3 – 5) than the SW and CO models, which mimic one 

single tracer signal and thus one isolated variable at a time. In addition, the P-SAS and IM-SAS model parameters that are 

most linked to tracer circulation, e.g. Stot, Ss,p and Sumax (Fig. 7), exhibit little difference when obtained from calibration to δ18O 

or 3H, respectively. This implies that both, δ18O and 3H, provide similar information about how tracers are routed through the 645 

model and how water is stored in and released from the system. As a consequence, also the simultaneous representation of all 

three types of variables under consideration, i.e., the hydrological response as well as the δ18O and 3H stream signals, in these 

models is consistent with the observed data (scenarios 18, 21).  

The above is further corroborated by how water ages in the Neckar basin respond to changing wetness conditions. Although 

not identical, δ18O and 3H-inferred daily TTDs exhibit nevertheless broad agreement in the directions and magnitudes of change 650 

in response to changing wetness conditions (Fig. 10). Changes in stream flow TTDs in IM-SAS are not primarily caused by 

changes of water ages within individual storage components. In particular, the modelled water age distributions in the 

groundwater Ss show limited sensitivity to changing wetness conditions, with MTT varying between ~ 18 years in dry periods 

and ~ 17 years in wet periods (Fig. 12). The TTDs in the transpiration flux Ea, which are reflective of the water ages in the 

unsaturated root zone Su, exhibit with MTTs between ~ 0.20 and 0.12 years in dry and wet periods (Fig. 11), respectively, 655 

magnitudes and fluctuations over time that are similar to what has been previously reported in other studies (e.g., Hrachowitz 

et al., 2015; Soulsby et al., 2016; Visser et al., 2019; Birkel et al., 2020; Kuppel et al., 2020). However, the level of these age 

fluctuations alone is insufficient to explain the magnitude of change in stream flow TTDs, which can vary by several years. 

Instead, the temporal variability of stream flow TTDs is largely controlled by switches in the relative contributions of individual 

storage components to stream flow under different wetness conditions. Under increasingly wet conditions, considerably 660 

increasing proportions of comparably young water from SU contribute over shallow preferential flow pathways (SF) to stream 

flow, while the relative proportion of groundwater contributing to stream flow under such conditions is reduced (Hrachowitz 

et al., 2013). Both tracers, δ18O and 3H, generate these patterns in a corresponding way.   

Altogether, this suggests that the P-SAS and IM-SAS models and the resulting estimates of water ages inferred from both, 

δ18O and 3H, provide plausible descriptions of transport processes and thus water ages in the Neckar basin. Clearly, with current 665 

observation technology, it is impossible to know the real water age distribution at river basin scale. However, the water ages 

and their temporal variability inferred from both, δ18O and 3H using P-SAS and IM-SAS models are widely consistent. This is 

suggestive that it is not the use of δ18O per se that leads to truncation of TTDs, but rather that time-invariant, lumped 

convolution integral models are incapable of extracting sufficient information from δ18O signals. These results mirror anecdotal 

evidence from several previous studies (e.g., Hrachowitz et al., 2015, 2021; Ala-aho et al., 2017; Buzacott et al., 2020; Yang 670 

et al, 2021). Although no direct comparison with 3H data is provided in these studies, they demonstrated the potential of δ18O 

in SAS-based model approaches to estimate water age distributions with considerable fractions of water older than 5 – 10 years 

and Birkel et al. (2020) explicitly estimated MTTs of up to 18 years. Our results also strongly support the findings and general 
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conclusions of Rodriguez et al. (2021), who undertook a direct comparison of water ages inferred from δ18O and 3H. In their 

study for a small catchment and based on shorter tracer time series, i.e., 2 years, and a system that is characterized by rather 675 

low MTT of ~ 3 years, they found that although 3H led to higher MTTs than δ18O, the absolute difference between these ages 

estimates was with 0.2 years limited and even decreasing for higher percentiles of the water age distributions.    

We therefore argue that the evidence emerging from our results and the above considerations is strong enough to reject the 

hypothesis that δ18O as a tracer generally and systematically “cannot see water older than about 4 years” (Stewart et al., 2010, 

2012) and the corresponding tails in water age distributions, leading to underestimations of water ages. We further argue that 680 

previous underestimations of water ages are rather a consequence of the use of time-invariant, lumped parameter convolution 

integral model techniques that cannot resolve the information contained δ18O signals in a meaningful way for catchments with 

transient flow conditions. In contrast, the combined information using hydrological and tracer data and thus the consideration 

of transient flow conditions results in similar MTTs, independent of the used tracer. Note, that for this reason, time-variant 

implementations of convolution integral models that can describe transient conditions may hold the potential to similarly 685 

generate water age estimates from δ18O signals that reflect the results of the P-SAS and IM-SAS models tested here. 

However, and notwithstanding the rejection of the above hypothesis it is important to note that overall and in spite of the 

similarity between δ18O and 3H inferred water ages in the study basin on the basis of P-SAS and IM-SAS models, there may 

be no general equivalence between δ18O and 3H tracers. Instead, it is plausible to assume that differences will gradually increase 

with higher water ages. In systems characterized by water older than the water in the Neckar study basin, and where the 690 

amplitudes of the δ18O stream signal are attenuated to below the analytical precision, the water age estimates from δ18O will 

indeed become subject to increasing uncertainty up to the point where further attenuation and thus older water ages cannot be 

discerned anymore independent of modelling approaches. The specific magnitude of such a water age threshold remains 

difficult to quantify with the available data. However, given the results in the Neckar study basin, the question raised by Stewart 

et al. (2021), if δ18O allows to see “the full range of travel times”, can to some extent be answered: it can be assumed that, 695 

when used with a suitable model, δ18O contains sufficient information for a meaningful characterization of water ages in 

systems characterized by MTTs of at least ~15 – 20 years, which encompasses the vast majority of river basins so far analyzed 

in literature (see Stewart et al., 2010 and references therein). As a step forward, the original hypothesis above can, for future 

research, be reformulated into: δ18O-inferred water age estimates are subject to increasing uncertainty and bias when compared 

to 3H-inferred estimates when stream water MTTs of ~ 15 – 20 years are exceeded in systems characterized by increasingly 700 

old water.  

6.2 The role of spatial aggregation on underestimation of water ages  

In addition to the above, Kirchner (2016) demonstrated that the use of seasonally variable tracers with time-invariant, lumped 

parameter model approaches, i.e., SW and CO, has considerable potential to underestimate water ages due to spatial 

aggregation of heterogeneous MTTs in systems characterized by large spatial contrasts in MTTs. We could here not reproduce 705 

that exact experiment, as stream observations were available only at one location for each tracer. However, in the distributed 
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implementation of the IM-SAS-D model (scenarios 19 – 21), we nevertheless explicitly accounted, albeit to a limited degree, 

for heterogeneity in the system input variables as well as for potential differences in landscape types, as expressed by the three 

model HRUs. This resulted in different TTDs for the individual precipitation zones (Supplementary Material Figures S31-S33 

and Table S6) and elevation zones and HRUs therein (not shown). The comparison between the lumped IM-SAS-L (scenarios 710 

16 – 18) and the distributed IM-SAS-D models does not show major differences in their ability to reproduce the various 

hydrological signatures nor the δ18O and 3H stream signals (Table 5). Against evidence from various previous studies (e.g., 

Euser et al., 2015; Gao et al., 2016; Nijzink et al., 2016; Nguyen et al., 2022), this reflects to some degree the conclusion by 

Loritz et al. (2021), who found in a comparative analysis that distributed model implementations do not necessarily improve 

a model’s ability to reproduce the hydrological response as compared to spatially lumped formulations. In addition, the 715 

contrasts in water ages between the discretized model components, with MTTs reaching from ~ 8 to ~ 22 yrs in the individual 

precipitation zones, may not be sufficient to significantly affect basin overall MTTs. As a consequence, the results of IM-SAS-

L and IM-SAS-D also do not show major differences in the associated water age estimates, with MTTs ~ 11 – 17 yrs and 12 – 

16 yrs, respectively (Table 7, Fig. 9).  

How can this be interpreted? If significantly older ages were inferred from the distributed IM-SAS-D implementation, this 720 

would have provided strong supporting evidence for the role and effect of spatial heterogeneity on water ages as demonstrated 

by Kirchner (2016). However, the similar water ages inferred from the spatially lumped and distributed implementations, 

respectively, allow two possible but mutually contradicting interpretations. Either, it could indicate that the aggregation of 

spatial heterogeneity does not have any discernible effect on water ages inferred from the IM-SAS model in the study basin 

or, on the contrary, the spatial contrasts in water ages, limited by the spatial resolution of the model and the available data, 725 

were not sufficient to detect any significant differences. The evidence found here therefore remains inconclusive and further 

research is required to describe the role of the aggregation of spatial heterogeneity for estimates of water ages using IM-SAS 

type of models. 

For any estimates of water ages in this study – as in any other study – it is important to bear in mind that they are conditional 

on the available data and models used. Uncertainties can and do arise from both, data and from decisions taken in the modelling 730 

process (e.g., Beven, 2006; Kirchner, 2006). One challenge in this study was that precipitation δ18O and 3H compositions were 

only available at rather coarse spatial and temporal resolutions. We have used the best available information to spatially 

extrapolate the tracer precipitation data from the individual sampling stations to estimate their spatial variation across the 

Neckar basin including stations outside the study basin. The monthly δ18O and 3H distribution in precipitation within South-

Germany is generally similar (Stumpp et al. 2014; Schmidt et al. 2020); still, regional correction for δ18O might not be sufficient 735 

to explain local differences in δ18O precipitation data. A similar limitation applies to the temporal resolution of tracer 

composition in precipitation as only monthly information was available. However, as the available data nevertheless reflect 

the seasonal variation in δ18O and 3H precipitation input, the uncertainties arising can be assumed to largely affect the short-

term dynamics of tracers in the stream and thus rather young water ages, whereas the objective of our analysis was focused on 

the right tail of the water age distributions and thus on old ages. Notwithstanding these uncertainties, the overall model 740 
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performances with respect to the hydrological and tracer responses, suggest that the choice of input data and the model 

formulations led to model results that are largely consistent with the observed responses in the stream. The observation that 

there is little ambiguity in the results further suggests that the remaining uncertainties are unlikely to affect the overall 

interpretation and conclusions of this study.    

7 Conclusions 745 

δ18O and 3H are frequently used as tracers in environmental sciences to estimate age distributions of water. However, it has 

previously been argued that seasonally variable tracers, such as δ18O, fail to detect the tails of water age distributions and 

therefore substantially underestimate water ages as compared to radioactive tracers, such as 3H. In this study for the Neckar 

River basin in central Europe and based on a >20-year record of hydrological, δ18O and 3H data we systematically scrutinized 

the above postulate by comparing water age distributions inferred from δ18O and 3H with a total of 21 different model 750 

implementations. The main findings of our analysis are the following: 

(1) Water ages inferred from δ18O with commonly used time-invariant, sine wave (SW) and lumped parameter convolution 

integral models (CO) are with MTTs ~ 1 – 2 years substantially lower that those obtained from 3H with the same models, 

reaching MTTs ~ 10 years. 

(2) In contrast, the concept of SAS-functions in combination with hydrological models (P-SAS, IM-SAS) did not only allow 755 

simultaneous representations of water storage fluctuations together with δ18O and 3H stream signals, but water ages inferred 

from δ18O were with MTTs ~ 11 – 17 years much higher and even higher than inferred from 3H, which suggested MTTs ~ 11 

– 13 years.  

(3) Constraining P-SAS and IM-SAS model implementations individually with δ18O and 3H observations resulted in similar 

values for parameters that control water ages, such as the total storage Stot (P-SAS) or passive groundwater volumes Ss,p (IM-760 

SAS) In addition, δ18O and 3H-constrained models both exhibited limited differences in the magnitudes of water ages in 

different parts of the models as well as in the temporal variability of TTDs in response to changing wetness conditions. This 

suggests that both tracers lead to comparable descriptions of how water is routed through the system.   

(4) Based on the points above, we reject the hypothesis that δ18O as a tracer generally and systematically “cannot see water 

older than about 4 years” (Stewart et al., 2010, 2012) and that it truncates the corresponding tails in water age distributions, 765 

leading to underestimations of water ages.  

(5) Instead, our results provide evidence of broad equivalence of δ18O and 3H as age tracers for systems characterized by MTTs 

of at least 15 – 20 years.  

(6) The question to which degree aggregation of spatial heterogeneity can further adversely affect estimates of water ages 

remains unresolved as the lumped and distributed implementations of the IM-SAS model provided similar and thus 770 

inconclusive results. 

Overall, this study demonstrates that previously reported underestimations of water ages are most likely not a result of the use 
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of δ18O or other seasonally variable tracers per se. Rather, these underestimations can be largely attributed to the choices of 

model approaches which rely on assumptions not frequently met in catchment hydrology. Given the vulnerability of lumped, 

time-invariant parameter convolution integral approaches in combination with δ18O to substantially underestimate water ages 775 

due to transient flow conditions, spatial aggregation and potentially other, still unknown effects, we therefore strongly advocate 

to avoid the use of this model type in combination with seasonally variable tracers and to instead adopt SAS-based or other 

model formulations that allow for the representation of transient conditions.  
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Table1. Characteristics of the Neckar catchment in Germany 

Characteristics  

latitude (N) 48°02′00″-49°33′45″ 

longitude (E) 8°18′45″-10°18′45″ 

Area (km2) 13,041 

Average annual precipitation (mm yr-1) 909 

Average annual temperature (℃) 8.9 

Elevation range (m) 122-1019 
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Mean elevation (m) 569 

Slope range (°) 0-53 

Mean slope (°) 5.1 

Forest dominated land (%) 38.1 

Grass dominated land (%) 51.2 

Wetland (%) 10.7 

 

 

 1110 

 

Table 2. The 12 time-invariant, lumped SW/CO model scenarios here implemented for the Neckar study basin together with the associated calibration 

strategies, the individual calibration performance metric, the type of models as well as the prior parameter ranges and the optimal parameter value from 

calibration. SW indicates sine-wave models, CO indicates time-invariant, lumped parameter convolution integral models. EM represents an exponential TTD 

and GM indicates a gamma distribution TTD. 2EM indicates a two parallel linear reservoir model, 3EM indicates a three parallel linear reservoir model and 1115 
EPM indicates an exponential piston flow model. The calibration strategies show which variable a model was calibrated to using the Mean Square Error (MSE) 

with Cδ
18

O calibration to the observed stream water δ18O signal and C3
H calibration to observed stream water 3H. *) Note, that for SW models calibration 

involves least-square fits of sine waves to both, the precipitation and stream flow signals available. †) fixed to a value of 1. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

Model SW-EM SW-GM CO-EM CO-GM CO-2EM CO-3EM CO-EPM 

Signature 
Calibration strategy → 

Performance metric ↓ 
Cx

*) Cx
*) Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H 

Times series δ18O 𝑀𝑆𝐸𝛿18𝑂 • • • - • - • - • - • - 

Time series 3H 𝑀𝑆𝐸 𝐻3  - - - • - • - • - • - • 

Parameter Prior range  Optimal parameter value 

Ap (‰) -*) 2.69            

As (‰) -*) 0.57            

α (-) 0.1 – 2 - - 1†) 1†) 0.44 0.58 1†) 1†) 1†) 1†) 1†) 1†) 

β1 (d) 1 – 15000 - - 513 3795 2048 6086 16 84 11 66 662 3665 

β2 (d) 1 – 15000 - - - - - - 832 5388 12 112 - - 

β3 (d) 1 – 15000 - - - - - - - - 963 5299 - - 

f1 (-) 0 – 1   1†) 1†) 1†) 1†) 0.18 0.36 0.06 0.02 1†) 1†) 

f2 (-) 0 – 1   - - - - - - 0.12 0.34 - - 

η (-) 1 – 3 - - 1†) 1†) 1†) 1†-) 1†) 1†) 1†) 1†) 1.91 1.01 
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Table 3. The 9 P-SAS and IM-SAS model scenarios here implemented for the Neckar study basin together with the associated calibration strategies, the 

individual calibration performance metrics and the type of spatial implementation (lumped or distributed) as well as the associated prior parameter ranges and 

the ranges of the pareto optimal solutions from calibration. P-SAS indicates the model with one compartment as described in Benettin et al. (2017), and IM-

SAS indicates the integrated hydrological model based on SAS-functions. The symbols L and D indicate lumped and distributed model implementations, 1135 
respectively. The calibration strategies show which variables/signatures a model was simultaneously calibrated to using the Mean Square Error (MSE) with 

Cδ
18

O,Q simultaneous calibration to δ18O and six signatures of stream flow Q; C3
H,Q simultaneous calibration to 3H and the signatures of Q; Cδ

18
O,

3
H,Q the 

simultaneous calibration to δ18O, 3H and the signatures of Q. †) fixed to a value of 1. 
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Scenario 13 14 15 16 17 18 19 20 21 

Model P-SAS IM-SAS-L IM-SAS-D 

Implementation Lumped Distributed 

Signature 
Calibration strategy → 

Performance metric ↓ 
Cδ

18
O C3

H Cδ
18

O,
3

H Cδ
18

O,Q C3
H,Q Cδ

18
O,

3
H,Q Cδ

18
O,Q C3

H,Q Cδ
18

O,
3

H,Q 

Times series δ18O  𝑀𝑆𝐸𝛿18𝑂 • - • • - • • - • 

Time series 3H  𝑀𝑆𝐸 𝐻3  - • • - • • - • • 

Time series of stream flow (Q) 𝑀𝑆𝐸𝑄 - - - • • • • • • 

Time series of log(Q) 𝑀𝑆𝐸𝑙𝑜𝑔(𝑄) - - - • • • • • • 

Flow duration curve of Q 

(FDCQ) 
𝑀𝑆𝐸𝐹𝐷𝐶𝑄

 - - - • • • • • • 

Flow duration curve log(Q) 

(FDClog(Q)) 
𝑀𝑆𝐸𝐹𝐷𝐶𝑙𝑜𝑔(𝑄)

 - - - • • • • • • 

Seasonal runoff coefficient 

(RC) 
𝑀𝑆𝐸𝑅𝐶  - - - • • • • • • 

Autocorrelation function of Q 

(ACQ) 
𝑀𝑆𝐸𝐴𝐶𝑄

 - - - • • • • • • 

Parameter Prior range Optimal parameter value 

kE 0.1-1.0 1†) 1†) 1†) - - - - - - 

kQ 0.1-1.0 0.34 0.28 0.29-0.33 - - - - - - 

Stot (mm) 100-20000 15595 16638 7414-18245 - - - - - - 

Tt (
oC) -2.5-2.5 - - - -0.94-2.08 -0.88-1.75 -2.15-1.57 -1.84-1.81 -1.74-0.16 -1.92-1.54 

Cmelt (mmoC-1d-1) 1-5 - - - 2.32-4.42 1.67-3.96 1.79-3.77 2.30-4.89 1.56-3.25 1.23-4.10 

SimaxF (mm) 0.1-5 - - - 1.53-3.73 1.35-4.39 0.55-4.10 3.18-4.03 2.94-4.98 2.04-4.39 

SimaxG (mm) 0.1-5 - - - - - - 0.30-0.60 0.46-0.70 0.38-1.39 

Ca (-) 0.1-0.7 - - - 0.24-0.43 0.35-0.55 0.33-0.62 0.30-0.66 0.38-0.52 0.30-0.56 

SumaxF (mm) 50-500 - - - 314-415 236-355 233-464 355-438 301-441 352-485 

SumaxG (mm) 50-500 - - - - - - 161-199 152-287 173-297 

SumaxW (mm) 50-500 - - - - - - 56-149 89-149 85-148 

γF (-) 0.1-5 - - - 0.93-1.68 0.61-1.01 0.57-2.03 0.99-4.59 2.04-3.98 0.76-4.94 

γG (-) 0.1-5 - - - - - - 0.15-0.26 0.23-0.53 0.11-0.52 

γW (-) 0.1-5 - - - - - - 0.14-3.64 0.12-0.32 0.10-2.88 

D (-) 0-1 - - - 0.30-0.77 0.41-0.81 0.30-0.69 0.03-0.35 0.06-0.33 0.03-0.33 

CpmaxF (mm d-1) 0.1-4 - - - 1.04-2.03 0.98-1.83 1.05-2.62 0.91-3.19 0.94-3.66 1.37-3.72 

CpmaxG (mm d-1) 0.1-4 - - - - - - 0.74-1.80 0.22-1.17 0.93-2.13 

Crmax (mm d-1) 0-4 - - - - - - 0.00-0.31 0.02-1.06 0.01-0.98 

KfF (d
-1) 0.2-5 - - - 0.27-2.99 0.24-1.52 0.31-3.79 0.21-3.03 0.21-0.70 0.50-4.21 

KfG (d-1) 0.2-5 - - - - - - 0.21-4.04 0.25-0.41 0.25-3.66 

Ks (d
-1) 0.002-0.2 - - - 0.04-0.19 0.05-0.18 0.05-0.18 0.05-0.17 0.03-0.14 0.05-0.17 

Ss,p (mm) 100-20000 - - - 4107-10029 3924-9339 4078-13676 4278-9011 3270-4622 4150-8568 
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Table 4. Performance metrics of the 12 time-invariant, lumped SW/CO model implementations for the 2001 – 2009 calibration period (cal.) and the 2010 – 1150 
2016 model evaluation period (val.). For brevity only the values for the most balanced solution are shown here. *) The MSE values provided for Cx describe 

the sine wave fits of both, the precipitation and stream flow δ18O signals, respectively. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

Model SW-EM SW-GM CO-EM CO-GM CO-2EM CO-3EM CO-EPM 

Calibration strategy → Cx Cx Cδ
18

O C3
H Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H Cδ
18

O C3
H 
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Performance metric ↓ 

𝑀𝑆𝐸𝛿18𝑂 
cal. 3.850/0.121*) 0.327 - 0.204 - 0.171 - 0.171 - 0.254 - 

val. 5.208/0.144*) 0.432 - 0.192 - 0.192 - 0.191 - 0.683 - 

𝑀𝑆𝐸 𝐻3  cal. - - - 5.903 - 5.791 - 5.171 - 5.170 - 5.926 

val. - - - 5.155 - 4.597 - 3.964 - 4.000 - 5.115 

 

 

 1155 

 

 
Table 5. Performance metrics of the 9 P-SAS and IM-SAS model scenarios for the 2001 – 2009 calibration period (cal.) and the 2010 – 2016 model evaluation 

period (val.). For brevity only the values for the most balanced solution, i.e., lowest DE (Eq. 16) are shown here. The ranges of all performance metrics for the 

full set of pareto optimal solutions for the multi-objective calibration cases (Scenarios 15 – 21) are provided in the Table S5 in supplement.  1160 

Scenario  13 14 15 16 17 18 19 20 21 

Model   P-SAS  IM-SAS-L IM-SAS-D 

Implementation  Lumped Distributed 

Calibration strategy → 

Performance metric ↓ 
 Cδ

18
O C3

H Cδ
18

O,
3
H Cδ

18
O,Q C3

H,Q Cδ
18

O,
3
H,Q Cδ

18
O,Q C3

H,Q Cδ
18

O,
3
H,Q 

𝑀𝑆𝐸𝛿18𝑂 
cal. 0.069  - 0.078  0.083 - 0.118 0.079 - 0.114 

val. 0.231 - 0.215 0.332 - 0.273 0.273 - 0.475 

𝑀𝑆𝐸 𝐻3  cal. - 2.828 2.847  - 2.972 2.823 - 2.920 2.981 

val. - 1.717 1.710 - 2.389 2.285 - 2.357 2.450 

𝑀𝑆𝐸𝑄 cal. - - - 0.202 0.299 0.308 0.228 0.263 0.317 

val. - - - 0.224 0.297 0.329 0.251 0.283 0.336 

𝑀𝑆𝐸𝑙𝑜𝑔(𝑄) cal. - - - 0.120 0.158 0.174 0.130 0.171 0.161 

val. - - - 0.120 0.148 0.150 0.127 0.201 0.165 

𝑀𝑆𝐸𝐹𝐷𝐶𝑄
 cal. - - - 0.058 0.024 0.073 0.022 0.017 0.025 

val. - - - 0.103 0.022 0.142 0.043 0.065 0.059 

𝑀𝑆𝐸𝐹𝐷𝐶𝑙𝑜𝑔(𝑄)
 cal. - - - 0.011 0.011 0.047 0.006 0.019 0.009 

val. - - - 0.015 0.009 0.047 0.009 0.050 0.018 

𝑀𝑆𝐸𝑅𝐶  cal. - - - 0.004 0.005 0.007 0.003 0.006 0.003 

val. - - - 0.004 0.004 0.005 0.003 0.008 0.003 

𝑀𝑆𝐸𝐴𝐶𝑄
 cal. - - - 0.003 0.002 0.003 0.002 0.001 0.001 

val. - - - 0.008 0.002 0.001 0.005 0.002 0.007 
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Table 6. Metrics of stream flow TTDs derived from the 12 SW/CO model scenarios with the different associated calibration strategies based on different, 

where Cδ
18

O indicates calibration to δ18O, C3
H calibration to 3H. The TTD metrics represent the best fits of the respective time-invariant TTD. The water 1175 

fractions are shown as the fractions of below a specific age T, i.e. F(T<age). The columns with absolute difference Δ summarize the differences in TTDs from 

the same models calibrated to δ18O and 3H, respectively. The subscripts indicate the scenarios that are compared (e.g., Δ3,4 compares scenarios 3 and 4). *Note 

that the fraction of water younger than 3 months F(T<3m) is comparable to the fraction of young water as suggested by Kirchner (2016)  

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 Δ3,4 Δ5,6 Δ7, 8 Δ9, 10 Δ11, 12 

Model SW-EM SW-GM CO-EM CO-GM CO-2EM CO-3EM CO-EPM Absolute difference 

ΔTTδ
18

O-
3

H 

ΔF(T<x)δ
18

O-
3

H 
Calibration strategy → 

TTD metrics ↓ 
Cx Cx Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H Cδ
18

O C3
H Cδ

18
O C3

H 
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 Mean (yr) 0.7 1.8 1.4 10.4 2.4 9.7 1.9 9.5 2.1 9.4 1.8 10 -9.0 -7.3 -7.6 -7.3 -8.2 

P
er

ce
n

ti
le

s 

(y
r)

 

10th 0.1 < 0.1 0.1 1.1 <0.1 0.3 <0.1 <0.1 <0.1 0.9 1.0 1.1 -1.0 -0.2 0.0 -0.8 -0.1 

25th 0.2 0.2 0.4 3.0 0.2 1.3 0.2 0.3 0.2 2.8 1.1 2.9 -2.6 -1.1 -0.1 -2.6 -1.8 

50th (median) 0.5 0.8 1.0 7.2 1.0 5.0 1.1 3.6 1.3 7.3 1.5 7 -6.2 -4.0 -2.5 -6.0 -5.5 

75th 1.0 2.3 1.9 14.4 3.2 13.1 2.7 13.8 3.1 15.0 2.2 13.9 -12.5 -9.9 -11.1 -11.9 -11.7 

90th 1.7 4.8 3.2 26.3 6.8 25.4 4.8 27.3 5.6 25.6 3.0 23.1 -23.1 -18.6 -22.5 -20.0 -20.1 

W
at

er
 f

ra
ct

io
n
s 

(%
) 

F(T<3 m)* 29 29 16 2 28 10 26 25 25 3 0 2 14 18 1 22 -2 

F(T<6 m) 49 41 30 5 38 14 34 34 32 6 0 5 25 24 0 26 -5 

F(T<1 yr) 74 55 51 9 50 21 47 40 44 10 13 9 42 29 7 34 4 

F(T<3 yr) 98 81 88 25 74 39 78 48 74 26 90 26 63 35 30 48 64 

F(T<5 yr) 100 91 97 38 85 50 91 55 88 38 99 39 59 35 36 50 60 

F(T<10 yr) 100 98 100 62 95 68 99 68 98 60 100 63 38 27 31 38 37 

F(T<20 yr) 100 100 100 85 100 85 100 84 100 84 100 86 15 15 16 16 14 
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Table 7. Metrics of stream flow TTDs derived from the 9 P-SAS and IM-SAS model scenarios with the different associated calibration strategies, where Cδ

18
O 

indicates calibration to δ18O, C3
H calibration to 3H, while Cδ

18
O,Q, C3

H,Q and Cδ
18

O,
3
H,Q indicate multi-objective, i.e. simultaneous calibration to combinations of 

δ18O, 3H and stream flow. The TTD metrics represent the mean of all volume-weighted daily streamflow TTDs for the modelling period 01/10/2001 – 

31/12/2016 from the most balanced solutions (i.e. lowest DE). The values in brackets indicate the 5th/95th percentiles of TTDs representing the pareto optimal 

solutions. The mean TT was estimated by fitting Gamma distributions to the volume-weighted mean TTDs of each scenario. The water fractions are shown 1185 
as the fractions of below a specific age T, i.e. F(T<age). The columns with absolute difference Δ summarize the differences in TTDs from the most balanced 

solutions of the same models calibrated to δ18O and 3H, respectively. The subscripts indicate the scenarios that are compared (e.g., Δ13,14 compares scenarios 

13 and 14). *Note that the fraction of water younger than 3 months F(T<3m) is comparable to the fraction of young water suggested by Kirchner (2016). 

Scenario 13 14 15 16 17 18 19 20 21 Δ13,14 Δ16,17 Δ19, 20 

Model P-SAS IM-SAS-L IM-SAS-D Absolute difference 

ΔTTδ
18

O-
3

H 

ΔF(T<x)δ
18

O-
3

H 

Calibration strategy → 

TTD metrics ↓ 
Cδ

18
O C3

H Cδ
18

O,
3

H Cδ
18

O,Q C3
H,Q Cδ

18
O,

3
H,Q Cδ

18
O,Q C3

H,Q Cδ
18

O,
3

H,Q 

 Mean (yr) 11.4 11.0 11.0 
17.4 

(16.9/21.1) 

11.9 

(11.5/21.3) 

11.2 

(9.9/16.8) 

15.6 

(12.0/19.9) 

13.2 

(13.2/21.1) 

12.8 

(11.1/18.6) 
0.4 5.5 2.4 

P
er

ce
n

ti
le

s 
 

(y
r)

 

10th 0.0 0.0 0.0 
0.5 

(0.0/0.1) 

0.5 

(0.0/0.1) 

0.4 

(0.0/0.1) 

0.3 

(0.0/0.0) 

0.3 

(0.0/0.0) 

0.3 

(0.0/0.1) 
0.0 0.0 0.0 

25th 0.4 0.2 0.2 
2.1 

(0.1/0.4) 

1.9 

(0.1/1.2) 

1.5 

(0.1/1.7) 

2.1 

(0.1/0.2) 

1.5 

(0.1/0.2) 

1.4 

(0.2/0.4) 
0.2 0.2 0.6 

50th (median) 3.2 2.4 2.5 
9.0 

(9.8/15.9) 

6.5 

(3.6/11.7) 

5.7 

(4.8/11.6) 

8.6 

(4.7/10.9) 

6.7 

(1.6/5.8) 

6.6 

(5.4/12.3) 
0.7 2.5 1.9 

75th 13.7 12.5 12.5 
22.2 

(25.1/28.3) 

17.6 

(17.1/27.7) 

16.3 

(14.7/25.0) 

20.8 

(18.0/26.9) 

18.8 

(14.3/18.0) 

17.8 

(16.4/26.7) 
1.2 4.6 2.0 

90th 33.4 33.4 32.7 
31.3 

(32.0/34.0) 

29.2 

(27.3/33.8) 

28.6 

(25.2/31.8) 

31.1 

(28.2/33.1) 

30.4 

(26.3/28.9) 

29.9 

(27.1/32.9) 
0.0 2.1 0.7 

W
at

er
 f

ra
ct

io
n
s 

(%
) 

F(T<3 m)* 22 26 26 
18 

(23/29) 

23 

(19/38) 

21 

(15/33) 

16 

(28/36) 

22 

(26/43) 

23 

(20/29) 
-5 -5 -6 

F(T<6 m) 27 32 32 
21 

(25/31) 

29 

(22/43) 

30 

(18/36) 

20 

(30/38) 

27 

(30/47) 

27 

(23/32) 
-5 -8 -7 

F(T<1 yr) 34 39 39 
24 

(26/33) 

32 

(24/44) 

35 

(19/37) 

22 

(31/39) 

30 

(33/49) 

29 

(25/35) 
-5 -8 -8 

F(T<3 yr) 49 53 52 
31 

(31/37) 

39 

(31/49) 

42 

(22/43) 

30 

(34/45) 

37 

(40/53) 

37 

(31/42) 
-4 -8 -7 

F(T<5 yr) 57 60 60 
38 

(33/41) 

46 

(35/53) 

49 

(24/51) 

38 

(38/51) 

44 

(47/58) 

44 

(36/48) 
-3 -8 -6 

F(T<10 yr) 69 71 71 
52 

(41/50) 

59 

(41/62) 

62 

(46/64) 

53 

(46/62) 

58 

(60/68) 

58 

(46/62) 
-2 -7 -5 

F(T<20 yr) 82 83 83 
71 

(55/65) 

77 

(52/78) 

79 

(65/78) 

74 

(59/78) 

76 

(75/81) 

77 

(61/79) 
-1 -6 -2 
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Figure 1. (a) Elevation of the Neckar catchment with discharge and hydro-meteorological stations as well as the water sampling locations used in this study, 

(b) the spatial distribution of long-term mean annual precipitation in the Neckar catchment and the stratification into four distinct precipitation zones P1 – P4 

(black outline), and the red outlines indicate three sub-catchments (C1: Kirchentellinsfurt, C2: Calw, and C3: Untergriesheim) within the Neckar basin, (c) 1195 
hydrological response units classified according to their land-cover and topographic characteristics. 
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Figure 2. Model structure of the integrated model, discretized into three parallel hydrological response units HRU, i.e. forest, grassland and wetland in each 

precipitation zone P1 – P4. The light blue boxes indicate the hydrologically active individual storage volumes. The dark blue box indicates the hydrologically 1200 
passive storage volume Ss,p. The arrow lines indicate water fluxes and model parameters are shown in red. All symbols are described in Table S4 in the 

Supplementary Material. 

SuF

EaF

Ca

SumaxF

γF

EiF

P,T

Tt

SfF

SiF
SsnowF

Prain PsnowSimaxF Cmelt

PreF MsnowF
PeF

RpercF RprefF

D
RuF

RufF

CpmaxF KfF

QfF

SuG

EaG

Ca

SumaxG

EiG

P,T

Tt

SfG

SiG
SsnowG

Prain Psnow

Cmelt

PreG MsnowG
PeG

RpercG

RuG

RufG

CpmaxG
KfG

QfG

SuW

EaW

Ca

SumaxW

P,T

Tt

SsnowW

Prain Psnow

Cmelt

MsnowW

PeW

Rcap

Crmax
QfW

Ss
Ks

Qs

γG γW

Qm

Forest-dominated land Grass/Crop-dominated land Wetland

SimaxG

Ssp

RufW



41 
 

 
Figure 3. The time series of stream δ18O reproduced by model IM-SAS-D based on simultaneous calibration to δ18O and the streamflow signatures, i.e. 

calibration strategy Cδ
18

O,Q (scenario 19) and Cδ
18

O,
3
H,Q (scenario 21), for the model calibration and evaluation periods. (a) Observed δ18O signals in precipitation 1205 

(light grey dots; size of dots indicates the precipitation volume) and observed stream δ18O signals (orange dots) as well as the most balanced, i.e. lowest DE, 

modelled δ18O signal in the stream (green dots) for scenario 10 and the 5th/95th percentile of all retained pareto optimal solutions obtained from calibration 

strategy Cδ
18

O,Q (green shaded area), (b) zoom-in of observed and modelled δ18O signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 10, 

(c) Observed δ18Osignals in precipitation and in stream same as (a), and the modelled stream δ18Osignals (relatively darker green dots) for scenario 12 and the 

5th/95th percentile of all retained pareto optimal solutions obtained from calibration strategy Cδ
18

O,
3
H,Q (light green shaded area), (d) zoom-in of observed and 1210 

modelled δ18O signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 12. 
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Figure 4. Time series of stream 3H reproduced by model IM-SAS-D based on simultaneous calibration to 3H and the streamflow signatures, i.e. calibration 

strategy C3
H,Q (scenario 20) and Cδ

18
O,

3
H,Q (scenario 21), for the model calibration and evaluation periods. (a) Observed 3H signals in precipitation (light blue-

purple dots; size of dots indicates associated precipitation volume) and in streamflow (pink dots) as well as the modelled 3H stream signal based on the most 1215 
balanced solution, i.e. lowest DE ( purple dots), and the 5th/95th inter-quantile range of all retained pareto optimal solutions obtained from calibration strategy 

C3
H,Q (purple shaded area) for scenario 11, (b) zoom-in of observed and modelled 3H signals for the 01/01/2007 – 31/12/2012 period for scenario 11, (c) 

Observed 3H signals in precipitation and in stream same as (a), and the modelled stream 3H signals (relatively darker purple dots) for scenario 12 and the 

5th/95th percentile of all retained pareto optimal solutions obtained from calibration strategy Cδ
18

O,
3
H,Q (light purple shaded area), (d) zoom-in of observed and 

modelled 3H signals in the stream for the 01/01/2007 – 31/12/2012 period for scenario 12. 1220 
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Figure 5. Hydrograph and selected hydrological signatures reproduced by IM-SAS-D, following a simultaneous calibration to the hydrological response, δ18O 1225 
and 3H (Cδ

18
O,

3
H,Q; scenario 21). (a) Time series of observed daily precipitation; observed and modelled (b) daily stream flow (Q), where the red line indicates 

the most balanced solution, i.e., lowest DE, and the red shaded area the 5th/95th inter-quantile range obtained from all pareto optimal solutions; (c) stream flow 

zoomed-in to the 01/01/2007 – 31/12/2012 period; (d) flow duration curves (FDCQ), (e) seasonal runoff coefficients (RCQ) and (f) autocorrelation functions 

of stream flow (ACQ) for the calibration period. Blue lines indicate values based on observed streamflow (Qo), red lines are values based on modelled stream 

flow (Qm) representing the most balanced solutions, i.e., lowest DE and the red shaded areas show the 5th/95th inter-quantile ranges obtained from all pareto 1230 
optimal solutions. 
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Figure 6. Selected model performances in the 01/01/2010 – 31/12/2016 validation period of the overall Neckar basins against the model performance in 1235 
uncalibrated sub-catchment (a) Kirchentellinsfurt (C1), (b) Calw (C2) and (c) Untergriesheim (C3) based on Scenario 19. The dots indicate all Pareto-optimal 

solutions in the multi-objective model performance space. The shades from dark to light indicate the overall model performance based on the Euclidean 

Distance DE, with the black solutions representing the overall better solutions (i.e. smaller DE) 

 

 1240 

 
Figure 7 Pareto-optimal distributions of selected parameters of the IM-SAS models (i.e., IM-SAS-L, IM-SAS-D) shown as the associated empirical 

cumulative distribution functions (lines). Light green shades indicate scenario 16, light purple shades indicate scenario 17 and light brown shades indicate 

scenario 18 in (a) and (b); relatively darker green shades indicate scenario 19, relatively darker purple shades indicate scenario 20 and relatively darker brown 

shades indicate scenario 21 in (c) - (f). The dots indicate the parameter values associated with the most balanced solution, i.e. lowest DE. 1245 
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Figure 8. Stream flow TTDs derived from the 12 SW/CO model scenarios with the different associated calibration strategies based on different lumped, time-

invariant models. The TTDs represent the best fits of the respective time-invariant TTD. Green shades represent the TTDs inferred from δ18O (from lighter to 

darker for scenarios 1, 2, 3, 5, 7, 9, 11) in (a) and (b); the purple shades represent TTDs inferred from 3H (from lighter to darker for scenario 4, 6, 8, 10 and 

12); the black dots in (b) indicate the mean transit time for each model scenario.  1255 

(a)

(b)
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Figure 9. Stream flow TTDs derived from the 9 model scenarios with the different associated calibration strategies of P-SAS (scenarios 13 – 15), IM-SAS-L 

scenarios 16 – 18) and IM-SAS-D model implementations (scenarios 19 – 21). The TTDs represent the volume weighted average daily TTDs for the modelling 

period 01/10/2001 – 31/12/2016. Green shades represent the TTDs inferred from δ18O (from lighter to darker for scenario 13, 16, 19), the purple shades 

represent TTDs inferred from 3H (from lighter to darker for scenario 14, 17, 20), the brown lines represent TTDs inferred from combined δ18O and 3H (brown 1260 
shades from lighter to darker for scenario 15, 18, 21); the black dots in (b) indicate the mean transit time for each model scenario. Note that the mean transit 

time was estimated by fitting Gamma distributions to the volume-weighted mean TTDs of each individual scenario. 
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(a)

(b)
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Figure 10. Daily streamflow (Q) TTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenarios 19 – 21), based on 

(a) calibration strategy Cδ
18

O,Q (scenario 19), (b) calibration strategy C3
H,Q (scenario 20) and (c) calibration strategy Cδ

18
O,

3
H,Q (scenario 21). The line colors 

represent the transition between dry and wet periods. Panel (d) shows the volume weighted average TTDs for the wet and dry periods, respectively. The light 1270 
shades represent calibration strategy Cδ

18
O,Q (scenario 19), the intermediate shades indicate calibration strategy C3

H,Q (scenario 20) and the dark shades are 

calibration strategy Cδ
18

O,
3
H,Q (scenario 21). For illustrative purposes, also the fraction of water younger than 3 months F (T < 3 m) is indicated. 
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Figure 11. Daily transpiration (Ea) TTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenarios 19 – 21), based on 

(a) calibration strategy Cδ
18

O,Q (scenario 19), (b) calibration strategy C3
H,Q (scenario 20) and (c) calibration strategy Cδ

18
O,

3
H,Q (scenario 21). The line colors 

represent the transition between dry and wet periods. Panel (d) shows the volume weighted average TTDs for the wet and dry periods, respectively. The light 

shades represent calibration strategy Cδ
18

O,Q (scenario 19), the intermediate shades indicate calibration strategy C3
H,Q (scenario 20) and the dark shades are 1280 

calibration strategy Cδ
18

O,
3
H,Q (scenario 21). For illustrative purposes, also the fraction of water younger than 3 months F (T < 3 m) is indicated. 
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Figure 12. Daily groundwater (Ss) RTDs extracted from the most balanced model solutions of the IM-SAS-D implementations (scenarios 19 – 21), based on 1285 
(a) calibration strategy Cδ

18
O,Q (scenario 19), (b) calibration strategy C3

H,Q (scenario 20) and (c) calibration strategy Cδ
18

O,
3
H,Q (scenario 21). The line colors 

represent the transition between dry and wet periods. Panel (d) shows the volume weighted average RTDs for the wet and dry periods, respectively. The light 

shades represent calibration strategy Cδ
18

O,Q (scenario 19), the intermediate shades indicate calibration strategy C3
H,Q (scenario 20) and the dark shades are 

calibration strategy Cδ
18

O,
3
H,Q (scenario 21). For illustrative purposes, also the fraction of water younger than 3 months F (T < 3 m) is indicated. 
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