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Abstract. Performance criteria play a key role in the calibration and evaluation of hydrological models and have been 

extensively developed and studied, but some of the most used criteria still have unknown pitfalls. This study set out to 

examine counterbalancing errors, which are inherent to the Kling-Gupta Efficiency (KGE) and its variants. A total of nine 15 

performance criteria – including the KGE and its variants, as well as the Nash-Sutcliffe Efficiency (NSE) and the refined 

version of the Willmott’s index of agreement (dr) – were analysed using synthetic time series and a real case study. Results 

showed that, assessing a simulation, the score of the KGE and some of its variants can be increased by concurrent over- and 

underestimation of discharge. These counterbalancing errors may favour bias and variability parameters, therefore preserving 

an overall high score of the performance criteria. As bias and variability parameters generally account for 2/3 of the weight 20 

in the equation of performance criteria such as the KGE, this can lead to an overall higher criterion score without being 

associated to an increase in model relevance. We recommend using (i) performance criteria that are not or less prone to 

counterbalancing errors (NSE, dr, modified KGE, non-parametric KGE, Diagnostic Efficiency) in a multi-criteria 

framework, and/or (ii) scaling factors in the equation to reduce the influence of relative parameters. 

  25 
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1 Introduction 

Hydrological models are fundamental to solve problems related to water resources. They help characterising hydrosystems 

(Hartmann et al., 2014), predicting floods (Kauffeldt et al., 2016; Jain et al., 2018) and managing water resources (Muleta 

and Nicklow, 2005). A lot of research efforts are thus dedicated to improve the reliability, the robustness and the relevance 

of such models. Improvements can be made by working on (i) input data, (ii) model parameters and structure, (iii) 30 

uncertainty quantification, and also (iv) model calibration (Beven, 2019). In this study, we focus on the proper use of 

performance criteria for calibrating and evaluating hydrological models – an important part that can easily be overlooked 

(Jackson et al., 2019). 

A performance criterion aims to evaluate the goodness-of-fit of a model to an observed data. It is generally expressed as a 

score, for which the best value corresponds to a perfect fit between predictions and observations. In hydrology, the Nash-35 

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) is still one of the most commonly used criteria (Kling et al., 2012), 

although the past decade has seen a gain in popularity of alternatives (Clark et al., 2021), e.g. the Kling-Gupta Efficiency 

(KGE) (Gupta et al., 2009). Many authors have pointed out the inherent limitations of using performance criteria, especially 

the fact that a single score metric cannot reflect all relevant hydrological aspects of a model (Gupta et al., 2009). The use of a 

multi-criteria framework is thus often emphasised to quantify different aspects of a model (Clark et al., 2021; Moriasi et al., 40 

2015; Gupta et al., 1998; Jackson et al., 2019; van Werkhoven et al., 2009; Knoben et al., 2019; Althoff and Rodrigues, 

2021; Ritter and Muñoz-Carpena, 2013; Krause et al., 2005; Legates and McCabe Jr., 1999), alongside a scientific 

evaluation of the results (Biondi et al., 2012). Knoben et al. (2019), Althoff and Rodrigues (2021) and Clark et al. (2021) 

pointed out that modellers should carefully think about which aspects they consider the most important in their hydrological 

model and how to evaluate them. 45 

Performance criteria also have shortcomings at a distinctive level. A number of studies have identified several limitations of 

the NSE: (i) the contribution of the normalised bias depends of the discharge variability of the basin, (ii) discharge variability 

is inevitably underestimated because the NSE is maximised when the variability equals the correlation coefficient, which is 

always smaller than unity, and (iii) mean flow is not a meaningful benchmark for highly variable discharges (Gupta et al., 

2009; Willmott et al., 2012). The KGE aims to address these limitations but also has its own issues (Gupta et al., 2009). 50 

Santos et al. (2018) identified pitfalls when using the KGE with a prior logarithmic transformation of the discharge. Knoben 

et al. (2019) warned against directly comparing NSE and KGE scores as the KGE has no inherent benchmark. Ritter and 

Muñoz-Carpena (2013) and Clark et al. (2021) showed that NSE and KGE scores can be strongly influenced by few data 

points, resulting in substantial uncertainties on the predictions. 

What is not fully addressed yet is the trade-off between individual components (Wöhling et al., 2013) and especially the 55 

impact of counterbalancing errors induced by bias and variability parameters, which are integrated in many performance 

criteria. While accurate bias and variability are desired aspects of hydrological models, sometimes good evaluations may 

accidentally result from negative and positive values cancelling each other (Jackson et al., 2019; Massmann et al., 2018). 
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This can be particularly detrimental to model calibration and evaluation, as it generates an increase in criterion score without 

necessarily being associated to a better model relevance. Some performance criteria naturally address this problem by using 60 

absolute or squared error values, but other criteria such as the KGE and its variants do not, as they use relative errors. The 

aim of this study is to assess the extent to which criteria scores can be trusted for calibrating and evaluating hydrological 

models when predictions have concurrent over- and underestimated values. The influence of counterbalancing errors is 

evaluated on nine performance criteria including the NSE and the KGE. This selection is far being from exhaustive but 

includes widely used and recently proposed KGE variants, as well as more traditional criteria such as the NSE or the refined 65 

version of the Willmott’s index of agreement (dr) for comparison purpose. We first use synthetic time series to highlight the 

counterbalancing errors mechanism. Second, we show how counterbalancing errors can impair the interpretation of 

hydrological models in a real case study. Finally, we provide some recommendations about the use of scaling factors and the 

choice of appropriate performance criteria to nullify or reduce the influence of counterbalancing errors. 

2 Performance criteria 70 

2.1 Parameters description 

All the performance criteria considered in this study are based on the same or similar statistical indicators, which are first 

described to avoid repetition. 

We use 𝑥𝑜(𝑡) and 𝑥𝑠(𝑡) to refer to observed and simulated values of calibration variable 𝑥 at a specific time step 𝑡. 𝑟 and 𝑟𝑠 

correspond to the Pearson and the Spearman rank correlation coefficients (Freedman et al., 2007), respectively. 75 

𝛽 is the ratio between the mean of simulated values 𝜇𝑠 and the mean of observed values 𝜇𝑜: 

 𝛽 =
𝜇𝑠
𝜇𝑜

 (1) 

𝛽𝑛 corresponds to the bias (mean error) normalised by the standard deviation of observed values 𝜎𝑜: 

 𝛽𝑛 =
𝜇𝑠 − 𝜇𝑜
𝜎𝑜

 (2) 

𝛼 is the ratio between the standard deviation of simulated values 𝜎𝑠 and the standard deviation of observed values 𝜎𝑜: 

 𝛼 =
𝜎𝑠
𝜎𝑜

 (3) 

𝛾 is the ratio between the coefficient of variation of simulated values (𝐶𝑉𝑠 = 𝜎𝑠/𝜇𝑠) and the coefficient of variation of 

observed values (𝐶𝑉𝑜 = 𝜎𝑜/𝜇𝑜): 80 

 
𝛾 =

𝐶𝑉𝑠
𝐶𝑉𝑜

 (4) 

𝐵𝑟𝑒𝑙  and |𝐵𝑎𝑟𝑒𝑎| (Schwemmle et al., 2021) are based on the Flow Duration Curve (FDC). 𝐵𝑟𝑒𝑙(𝑖) is defined as the relative 

bias of the simulated and observed flow duration curves at the exceedance probability 𝑖: 
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𝐵𝑟𝑒𝑙 =

𝑥𝑠(𝑖) − 𝑥𝑜(𝑖)

𝑥𝑜(𝑖)
 (5) 

where 𝑥𝑠(𝑖) and 𝑥𝑜(𝑖) correspond to the simulated and observed values of calibration variable at exceedance probability 𝑖. 

𝐵𝑟𝑒𝑙  is the mean of 𝐵𝑟𝑒𝑙(𝑖) when looking at 𝑛 observations: 

 

𝐵𝑟𝑒𝑙 =
1

𝑛
∑𝐵𝑟𝑒𝑙

𝑖=1

𝑖=0

(𝑖) (6) 

|𝐵𝑎𝑟𝑒𝑎| is calculated as follows: 85 

 
|𝐵𝑎𝑟𝑒𝑎| = ∫ |𝐵𝑟𝑒𝑠(𝑖)|

1

0

𝑑𝑖 (7) 

with 𝐵𝑟𝑒𝑠 the residual bias: 

 𝐵𝑟𝑒𝑠 = 𝐵𝑟𝑒𝑙(𝑖) − 𝐵𝑟𝑒𝑙  (8) 

𝛼𝑁𝑃 (Pool et al., 2018) is also based on the FDC: 

 
𝛼𝑁𝑃 = 1 −

1

2
∑ |

𝑥𝑠(𝐼(𝑘))

𝑛𝜇𝑠
−
𝑥𝑜(𝐽(𝑘))

𝑛𝜇𝑜
|

𝑛

𝑘=1

 (9) 

where 𝐼(𝑘)  and 𝐽(𝑘)  stand for the time steps of the 𝑘𝑡ℎ  largest discharge for the simulated and observed time series, 

respectively. 

As 𝛽, 𝛽𝑛 and 𝐵𝑟𝑒𝑙  all represent the bias, they are therefore designed as “bias parameters” in this study. 90 

2.2 Score calculation 

A total of nine performance criteria are analysed in this study: the NSE, KGE, 2012-version of the KGE or modified KGE 

(KGE’), 2021-version of the KGE (KGE’’), non-parametric KGE (KGENP), Diagnostic Efficiency (DE), Liu-Mean 

Efficiency (LME), Least-squares Combined Efficiency (LCE) and dr. The value considered as the best score is equal to one 

for all criteria, except for the DE, for which it is equal to zero. 95 

The NSE (Nash and Sutcliffe, 1970) is a normalised variant of the Mean Squared Error (MSE) and compares a prediction to 

the observed mean of the target variable: 

 
𝑁𝑆𝐸 = 1 −

∑(𝑥𝑠(𝑡) − 𝑥𝑜(𝑡))
2

∑(𝑥𝑜(𝑡) − 𝜇𝑜)
2

 (10) 

Gupta et al. (2009) algebraically decomposed the NSE into correlation, variability, and bias components: 

 𝑁𝑆𝐸 = 2𝛼𝑟 − 𝛼2 + 𝛽𝑛
2 (11) 

The Kling-Gupta Efficiency (KGE) was proposed by Gupta et al. (2009) as an alternative to the NSE. The optimal KGE 

corresponds to the closest point of the three-dimensional Pareto front – of 𝛼, 𝛽 and 𝑟 – to the ideal value of [1; 1; 1]: 100 

 𝐾𝐺𝐸 = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝑟 − 1)2 (12) 
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A modified Kling-Gupta Efficiency was proposed by Kling et al. (2012). The coefficient of variation is used instead of the 

standard deviation to ensure that bias and variability are not cross-correlated: 

 𝐾𝐺𝐸′ = 1 − √(𝛾 − 1)2 + (𝛽 − 1)2 + (𝑟 − 1)2 (13) 

Tang et al. (2021) proposed another variant (KGE’’) by using the normalised bias instead of 𝛽 to ensure that the score is not 

overly sensitive to mean values – 𝜇𝑜 or 𝜇𝑠 – close to zero (Santos et al., 2018; Tang et al., 2021): 

 𝐾𝐺𝐸″ = 1 − √(𝛼 − 1)2 + 𝛽𝑛
2 + (𝑟 − 1)2 (14) 

Pool et al. (2018) cautioned against the implicit assumptions of the KGE – data linearity, data normality and absence of 105 

outliers – and proposed a non-parametric alternative (KGENP) for limiting their impact. The non-parametric form of the 

variability is calculated using the Flow Duration Curve (FDC) and the Spearman rank correlation coefficient is used instead 

of the Pearson correlation coefficient: 

 𝐾𝐺𝐸𝑁𝑃 = 1 − √(𝛼𝑁𝑃 − 1)
2 + (𝛽 − 1)2 + (𝑟𝑆 − 1)

2 (15) 

In a similar way, Schwemmle et al. (2021) used FDC-based parameters to account for variability and bias in another KGE 

variant: the Diagnostic Efficiency. This criterion is based on constant, dynamic and timing errors and aims to provide a 110 

stronger link to hydrological processes (Schwemmle et al., 2021): 

 
𝐷𝐸 = √𝐵𝑟𝑒𝑙

2
+ |𝐵𝑎𝑟𝑒𝑎|

2 + (𝑟 − 1)2 (16) 

In this study, we used a Normalised Diagnostic Efficiency (DE’) so that the best error score equals to one for facilitating the 

comparison with other performance criteria: 

 
𝐷𝐸′ = 1 − √𝐵𝑟𝑒𝑙

2
+ |𝐵𝑎𝑟𝑒𝑎|

2 + (𝑟 − 1)2 (17) 

Liu (2020) proposed another alternative, the Liu-Mean Efficiency, to improve the simulation of extreme events. The LME 

thus aims to address the underestimation of variability of the KGE, which is still a concern despite being not as severe as 115 

with the NSE (Gupta et al., 2009; Mizukami et al., 2019): 

 𝐿𝑀𝐸 = 1 − √(𝑟𝛼 − 1)2 + (𝛽 − 1)2 (18) 

Lee and Choi (2022) proposed the Least-squares Combined Efficiency to address the shortcomings of the LME identified by 

Choi (2022): (i) an infinite number of solutions for the maximum score, and (ii) a inclination to overestimate high flows and 

underestimate low flows. The LCE is based on the least-squares statistics combined from both-way regression lines 𝑟𝛼 and 

𝑟/𝛼: 120 

 𝐿𝐶𝐸 = 1 − √(𝑟𝛼 − 1)2 + (𝑟/𝛼 − 1)2 + (𝛽 − 1)2 (19) 

Willmott et al. (2012) proposed a refined version of Willmott’s index of agreement, which aim to address the issues 

associated with the NSE (Jackson et al., 2019): 

https://doi.org/10.5194/hess-2022-380
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



6 

 

 

𝑑𝑟 =

{
 
 

 
 1 −

∑|𝑥𝑠(𝑡) − 𝑥𝑜(𝑡)|

2∑|𝑥𝑜(𝑡) − 𝜇𝑜|
 𝑤ℎ𝑒𝑛   ∑|𝑥𝑠(𝑡) − 𝑥𝑜(𝑡)| ≤ 2∑|𝑥𝑜(𝑡) − 𝜇𝑜|

2∑|𝑥𝑜(𝑡) − 𝜇𝑜|

∑|𝑥𝑠(𝑡) − 𝑥𝑜(𝑡)|
− 1  𝑤ℎ𝑒𝑛   ∑|𝑥𝑠(𝑡) − 𝑥𝑜(𝑡)| > 2∑|𝑥𝑜(𝑡) − 𝜇𝑜|

 (20) 

3 Synthetic time series 

3.1 Generating synthetic time series with homothetic transformations 

A simulation performance can be assessed in terms of bias, variability and timing errors (Gupta et al., 2009). Bias and 125 

variability errors correspond to a difference in volume and amplitude of discharges. Timing errors correspond to a shift in 

time. We created a synthetic hydrograph corresponding to one flood event as the reference (observed) time series. We also 

generated synthetic transformations – of the reference time series – with different errors on bias and variability 

corresponding to time series simulated by a model. We did not consider any timing errors as our aim is to assess 

counterbalancing errors induced by bias and variability parameters. Synthetic transformations were generated by multiplying 130 

the reference time series by a coefficient 𝜔: 

 𝑄𝑠(𝑡) = 𝑄𝑜(𝑡) ∗ 𝜔 (21) 

where 𝑄𝑠(𝑡)  stands for the transformed discharge at the time 𝑡 , 𝑄𝑜(𝑡)  the reference discharge at the time 𝑡  and 𝜔  a 

coefficient. 𝜔 values were sampled between -0.36 and 0.36 at a defined interval of 0.002 on a logarithmic scale to ensure a 

fair distribution between underestimated ( 𝜔 < 1 ) and overestimated ( 𝜔 > 1 ) transformations. This results in 361 

transformations evenly distributed around the 𝜔 = 1 homothety, which corresponds to the reference time series (i.e. absence 135 

of transformation). We defined 𝜔 bounds such that the transformed peak discharge roughly ranges from half (𝜔 = 0.437) to 

twice (𝜔 = 2.291) compared to the reference time series. Note that 𝜔 homotheties still induce small timing errors – which 

were considered negligible – because the correlation coefficients (𝑟  and 𝑟𝑠 ) also slightly account for the shape of the 

transformation. 
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 140 

Figure 1: Synthetic hydrograph corresponding to two flood events. 

 

To study counterbalancing errors induced by bias and variability parameters, we generated time series that consist of two 

successive flood events and considered all possible combinations of the 361 transformations for the simulated time series 

(Fig. 1). This results in a total of 3612 = 130321  transformations with two flood events, including (i) a “perfect” 145 

transformation with 𝜔 = 1 for both flood events, (ii) “Bad-Good” (BG) or “Good-Bad” (GB) transformations when 𝜔 = 1 

for only one out of the two flood events, and (iii) “Bad-Bad” (BB) transformations when 𝜔 ≠ 1 for both flood events. The 

performance of the transformations – with regards to the reference time series – were evaluated using the nine performance 

criteria presented in Sect. 2. 

3.2 Identifying counterbalancing errors on a straightforward example 150 

Figure 2 presents two hydrographs extracted from the set of transformations: (i) a BB model with the combination [𝜔1 =

0.75;𝜔2 = 1.2], and (ii) a BG model with the combination [𝜔1 = 0.75; 𝜔2 = 1]. The BG model stands as a better model 

because it perfectly reproduces the second flood event and is identical to the BB model on the first flood (𝜔1 = 0.75). 

Nevertheless, the KGE and its variants – KGE’, KGE’’, KGENP, DE’, LME and LCE – all favour the BB model, whereas 

only the NSE and the dr evaluate the BG model as better (Fig. 3a). 155 
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Figure 2: Synthetic examples extracted from the set of transformations. The first and second flood events of the “Bad-Bad” and 

“Bad-Good” transformations were shifted with [𝝎𝟏 = 𝟎. 𝟕𝟓;𝝎𝟐 = 𝟏. 𝟐] and [𝝎𝟏 = 𝟎. 𝟕𝟓;𝝎𝟐 = 𝟏] combinations, respectively. 

 

The investigation of the components of the criteria (Fig. 3b) reveals how a seemingly better model (i.e. the BG model) can 160 

have a lower score than expected. Bias parameters are systematically better for the BB model, with 0.98 over 0.88 for 𝛽, -

0.02 over -0.08 for 𝛽𝑛 and -0.04 over -0.12 for 𝐵𝑟𝑒𝑙. Timing parameters are systematically better for the BG model, with 

0.99 over 0.96 for 𝑟 and 0.99 over 0.98 for 𝑟𝑠. Variability parameters are mixed: (i) 𝛼 favours the BB model with 1.01 over 

0.89, (ii) 𝛾 favours the BG model with 1.01 over 1.04, (iii) 𝛼𝑁𝑃 slightly favours the BG model with 0.94 over 0.93, and (iv) 

|𝐵𝑎𝑟𝑒𝑎| is equal for both models. 𝑟𝛼 and 𝑟/𝛼 parameters are better for the BB model. 2𝛼𝑟 is better for the BG model. 165 

 

Figure 3: (a) Score of the BB and BG transformations according to the different performance criteria. (b) Values of the 

parameters used in the calculation of the performance criteria. 
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𝛽, 𝛽𝑛, 𝐵𝑟𝑒𝑙, 𝛼, 𝑟𝛼 and 𝑟/𝛼 parameters all provide a better evaluation of bias and variability for the BB model. Concurrent 170 

over- and underestimation of discharges over the time series result in a good water balance: close to 1 for 𝛽 and 𝐵𝑟𝑒𝑙  and 0 

for 𝛽𝑛. Depending on the criterion, the variability parameter can also affect the score in a similar counter-intuitive manner. 𝛼 

is heavily impacted by the counterbalance, whereas it seems mitigated for 𝛾, 𝛼𝑁𝑃 and |𝐵𝑎𝑟𝑒𝑎|. The timing parameters (𝑟 and 

𝑟𝑠) have an expected score that favour the BG model. However, the score difference on timing errors between BB and BG 

models is very small (0.03 at best for 𝑟). The impact on the overall score is thus minimised compared to the one induced by 175 

bias and variability parameters, which can be cumulated (e.g. both 𝛽 and 𝛼 counterbalancing errors in the KGE) or have a 

larger difference – up to 0.12 for 𝛼. Counterbalancing errors can thus result in better values for bias and variability, which 

increase the overall score. In this case, the highest score may not be the most appropriate indicator of model relevance. 

The largest differences in score appear for the LME and the LCE criteria as all their parameters are affected by 

counterbalancing errors (𝛽, 𝑟𝛼 and 𝑟/𝛼). The KGE and the KGE’’ also show significant differences as they accumulate the 180 

counterbalancing errors of 𝛼 and 𝛽. The KGE’ demonstrates a smaller difference than the KGE due to the use of 𝛾. Both 

FDC-based criteria KGENP and DE’ show the smallest differences due to 𝛼𝑁𝑃 and |𝐵𝑎𝑟𝑒𝑎|, which have a nearly equal value 

for both BB and BG models. The NSE has a slightly better score on the BG model, while the difference is more pronounced 

on dr. 

This example demonstrates how relative error metrics can cancel out each other and affect the design and the evaluation of 185 

hydrological models. The counterbalancing errors especially affect bias parameters (𝛽, 𝛽𝑛 and 𝐵𝑟𝑒𝑙) but also the variability 

parameter 𝛼. 

3.3 Exploring counterbalancing errors with synthetic transformations 

Figure 4 shows the score distribution of the synthetic set of hydrographs presented in Sect. 3.1. For each value of 𝜔1, the 

minimum and maximum criteria scores of the transformations resulting from all combinations with 𝜔2 provide the dashed 190 

envelope of the score distribution, with the maximum transformation score at the top (1 corresponding to a perfect model), 

and the worst at the bottom. The transformations corresponding to the BG models (with 𝜔2 = 1) are represented by the 

black line. All transformations included in the dashed envelope can be identified as “Bad-Bad” models, except when 𝜔1 = 1 

or 𝜔2 = 1 (black line). 
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 195 

Figure 4: Score of each transformation for all [𝝎𝟏; 𝝎𝟐] combinations by performance criteria. 

 

It is obvious that the KGE and its variants – KGE’, KGE’’, KGENP, DE’, LME and LCE – always evaluate one or several 

BB models as better than the BG model for a same 𝜔1 value, except for 𝜔1 = 1. On the other hand, the NSE and the dr 

correctly identify the BG model as the best transformation for all combinations of [𝜔1; 𝜔2], i.e. the black line is always 200 

above the dashed envelope. The envelope of the KGE, KGE’ and KGE’’ criteria are similar, but they do not display the same 

difference between the best scores and the scores of the BG models. These differences are smaller for the latter two because 

the KGE’ is based on 𝛾 instead of 𝛼, and the KGE’’ is based on 𝛽𝑛 instead of 𝛽, for which it is demonstrated in Sect. 3.2 that 

they both soften counterbalancing errors. The envelope of the LCE criterion looks like that of the KGE. However, the 

difference between the best scores and the scores of the BG models is much higher. This is likely due to the nature of the 205 
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equation consisting in 3 parameters affected by counterbalancing errors (𝛽, 𝑟𝛼 and 𝑟/𝛼). The LME criterion has a very 

distinctive envelope, for which the maximum score of 1 is reached for a lot of BB models, even when both 𝜔1 and 𝜔2 are 

different from 1. This can be explained by the interaction between 𝑟 and 𝛼 that leads to an infinite number of solutions 

(Choi, 2022). The KGENP and the DE’ (FDC-based criteria) both shows similar envelopes with a break point near the 

maximum transformation score in both ways around 𝜔1 = 1. This is especially pronounced for the DE’, for which the BG 210 

model is nearly the best model between 𝜔1 = 0.83 and 𝜔1 = 1.17. These results show that counterbalancing errors can 

happen on a large range of parameters, and when using the KGE or its variants, there is a possibility for the more meaningful 

model (i.e. BG model) to have a lower score than a “compensated” or “Bad-Bad” model. 

 

Figure 5: Graph of each [𝝎𝟏; 𝝎𝟐] combination identified as the best transformation by each performance criteria. The NSE and 215 

the dr black lines coincide at 𝝎𝟐 = 𝟏. 
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Figure 5 shows the value of 𝜔2 corresponding to the best evaluation for a given 𝜔1, by performance criteria. As identified 

above, the NSE and the dr both evaluate the BG models as the best transformations (NSE and dr black lines coincide at 𝜔2 =

1, Fig. 5). Counterbalancing errors are apparent for the KGE and its variants. For 𝜔1 ≠ 1, best transformations are always 220 

BB models and follow two conditions: (i) if 𝜔1 < 1 then 𝜔2 > 1, and (ii) if 𝜔1 > 1 then 𝜔2 < 1. This means that, in this 

case, such performance criteria will always be flawed towards concurrent under- and overestimation of discharges in a 

transformation. 

4 Real case study 

To highlight how counterbalancing errors can affect the assessment of hydrological models on a real case study, we used two 225 

different modelling approaches: artificial neural networks (ANN) and reservoir models. The simulations of karst spring 

discharges of both models were evaluated on the same 1-year validation period. To clearly highlight the problem, we 

deliberately chose a reservoir simulation that is noticeably affected by counterbalancing errors – yet still realistic. Further 

information on the modelling approaches, the input data, the calibration strategy and the simulation procedure can be found 

in Cinkus et al. (2022). 230 

4.1 Study site 

The Unica springs are the outlet of a complex karstic system influenced by a network of poljes. The recharge area is about 

820 km2 and is located in a moderate continental climate with a strong snow influence. Recharge comes from both (i) 

allogenic infiltration from two sub-basins drained by sinking rivers, and (ii) autogenic infiltration through a highly karstified 

limestone plateau (Gabrovšek et al., 2010; Kovačič, 2010; Petric, 2010). The network of connected poljes constitutes a 235 

common hydrological entity that induces a high hydrological variability in the system, and long and delayed high discharges 

at the Unica springs (Mayaud et al., 2019). The limestone massif can reach a height of 1800 m above sea level and has 

significant groundwater resources (Ravbar et al., 2012). A polje downstream of the springs can flood when the Unica 

discharge exceeds 60 m3 s-1 for several days. If the flow reaches 80 m3 s-1, the flooding can reach the gauging station and 

influence its measurement. The flow data are from the gauging station in Unica-Hasberg (ARSO, 2021a). Precipitation, 240 

height of snow cover, and height of new snow data are from the meteorological stations in Postojna and Cerknica (ARSO, 

2021b). Temperature and relative humidity data are from the Postojna station. Potential evapotranspiration is calculated from 

the Postojna station data with the Penman-Monteith formula (Allen et al., 1998). 

4.2 Modelling approaches 

The first modelling approach is based on Convolutional Neural Networks (CNN) (LeCun et al., 2015), which is a specific 245 

type of ANN that is powerful in processing image-like data but also very useful for processing sequential data. The model 

consists of a single 1D Convolutional layer with a fixed kernel size of three and an optimised number of filters. This layer 
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was complemented by a Max-Pooling layer a Monte-Carlo dropout layer with 10% dropout rate and two dense layers. The 

first dense layer has an optimised number of neurons and the second a single output neuron. We programmed our models in 

Python 3.8 (van Rossum, 1995), using the following frameworks and libraries: BayesOpt (Nogueira, 2014), Matplotlib 250 

(Hunter, 2007), Numpy (van der Walt et al., 2011), Pandas (Reback et al., 2021; McKinney, 2010), Scikit-Learn (Pedregosa 

et al., 2018), TensorFlow 2.7 (Abadi et al., 2016) and its Keras API (Chollet et al., 2015). 

The second modelling approach is a reservoir model, which is a conceptual representation of a hydrosystem consisting of 

several reservoirs that are supposed to be representative of the main processes involved. We used the adjustable modelling 

platform KarstMod (Mazzilli et al., 2019). The model structure consists of one upper reservoir for simulating soil and 255 

epikarst processes (including a soil available water capacity), and two lower reservoirs corresponding to matrix and conduits 

compartments. A very reactive transfer function from the upper reservoir to the spring is used to reproduce very fast flows 

occurring in the system. 

4.3 Impact of counterbalancing errors on model evaluation 

Figure 6a shows the results of the two hydrological models on Unica springs. The models have overall good dynamics and 260 

succeed to reproduce the observed discharges. Regarding high flow periods, both models show a small timing error, inducing 

a delay in the simulated peak flood. The two first flood events (February-March 2017) are slightly underestimated by the 

ANN model while the first peak is overestimated by the reservoir model. Although having a similar volume estimate, the 

third flood event (May 2017) is better simulated by the ANN model because (i) the timing error is less important and (ii) the 

recession period is accurate. The last flood event (September 2017) comprise a small peak followed by a very high and long-265 

lasting flood. Both models fail to account for the small peak. The following important flood event is highly overestimated by 

the reservoir model, while being nicely simulated by the ANN model – despite the small underestimation and timing error. 

The small flood events (mid-January, mid-April, early and late June 2017) are better simulated by the ANN model than the 

reservoir model. The ANN model simulates them satisfactorily, except for the second one, where the simulated discharges 

are overestimated. The reservoir model does not simulate the first two events at all and largely overestimates the last two, in 270 

addition to timing errors. Both models can be improved during recession and low flow periods. The ANN model is rather 

close to the observed discharges but seems to be too sensitive to precipitation (continuous oscillations). On the other hand, 

the reservoir model shows no oscillations but either overestimates or underestimates the observed discharges. In general, the 

ANN model can be described as better because it is closer to the observed values in the high and low flow periods. Some 

events are not well simulated by both models (e.g. the May 2017 flood), which may be due to uncertainties in the input data. 275 
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Figure 6: (a) Observed and simulated spring discharge time series on the validation period. (b) Relative difference between 

simulated and observed discharge on the validation period. 

 

This visual assessment is confirmed only by few performance criteria: the NSE, dr and KGENP. These criteria evaluate the 280 

ANN model as better, although the performances of both models are quite close for the dr. However, the KGE and most its 

variants (except the KGENP) all favour the reservoir model over the ANN model – sometimes by a large margin. It is 

interesting to note how similar these results are to those of the synthetic example (Fig. 3a). Looking at the values of the 

equations’ parameters, we find that bias parameters are systematically better for the reservoir model, with 1 over 0.92 for 𝛽, 

0 over -0.06 for 𝛽𝑛 and -0.07 over 0.18 for 𝐵𝑟𝑒𝑙 . Timing errors are systematically better for the ANN model, with 0.95 over 285 

0.92 for 𝑟 and 0.94 over 0.83 for 𝑟𝑠. Variability parameters favour the reservoir model with 1.1 over 0.78 for 𝛼, 1.1 over 0.85 

for 𝛾, 0.22 over 0.3 for |𝐵𝑎𝑟𝑒𝑎|, and a very close better value by 0.005 on the 𝛼𝑁𝑃  parameter. In summary, all bias and 

variability parameters have better values for the reservoir model, while timing and shape parameters are better for the ANN 

model. 
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 290 

Figure 7: (a) Score of the ANN and reservoir models according to the different performance criteria. (b) Values of the parameters 

used in the calculation of the performance criteria. 

 

As the KGE and its variants are generally composed of equally-weighted bias, variability and timing, their overall score is 

heavily affected by compensation effects – except in the case of a large error on one parameter. In our case, all parameters 295 

have similar errors, which results in a better KGE for the reservoir model compared to the ANN model. This applies to all 

the KGE variants except the KGENP where the error on 𝑟𝑠 is significant, resulting in a better score for the ANN model. The 

LME score is extremely high (0.99) for the reservoir model, which is probably due to the compensation of 𝑟 and 𝛼 identified 

by Choi (2022). Also, using 𝛾 instead of 𝛼 for assessing the variability seems to lower counterbalancing errors. 

Figure 6b shows that there is a consistent greater or equal overestimation of the reservoir model compared to the ANN 300 

model, except for the May-June period where the difference is small and insignificant compared to the February or 

September events. The underestimated values are similar for both approaches, except when the reservoir model 

overestimates the flooding events. Interestingly, the cumulative sum of the absolute bias error between simulated and 

observed values is smaller for the ANN model (1394 m3) than the reservoir model (1611 m3), but still the relative bias and 

variability parameters are better for the reservoir model. This observation highlights how counterbalancing errors can impair 305 

the evaluation of hydrological models: seemingly better parameters values (bias and variability) that increase criteria scores 

are not necessarily associated with an increase in model relevance. 

5 Recommendations 

The aim of this paper is primarily to raise awareness among modellers. Performance criteria generally comprise several 

aspects of the characteristics of a model into a single value, which can lead to an inaccurate assessment of said aspects. 310 

Ultimately, all criteria have their flaws and should be carefully selected with regards to the aim of the model. 
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5.1 Use of relevant performance criteria 

Table 1 summarises the presence and impact of counterbalancing errors, as well as the advantages and drawbacks (as 

reported in other studies) of the different performance criteria. The recommendations on counterbalancing errors are based 

on the results of this research – i.e. synthetic and real case studies. The KGE and all its variants are affected by 315 

counterbalancing errors with varying degrees of intensity: (i) mildly impacted (+) for the KGE’, KGENP and DE, (ii) 

moderately impacted (++) for the KGE, KGE’’ and LCE, and (iii) strongly impacted (+++) for the LME. In this study, the 

NSE and dr stand out as clearly better since they have no counterbalancing errors. However, they have other drawbacks that 

are not associated with counterbalancing errors but still important to consider. We thus recommend using performance 

criteria that are not or less prone to counterbalancing errors (NSE, dr, KGE’, KGENP, DE), preferably in a multi-criteria 320 

framework to better quantify the different aspects of a hydrological model and further reduce the uncertainties inherent to 

each performance criterion. 

 

Table 1: Presence and impact of counterbalancing errors (CE) on the assessment of model performance of different performance 

criteria. The impact of CE is denoted as null (/), mild (+), moderate (++), or strong (+++). 325 
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Criterion Year 
Affected 
by CE 

Impact 
of CE 

Advantages Drawbacksa 

KGE 2009 Yes ++ Variability is not underestimated (Gupta et al., 2009) 

Still slight underestimation of high 

discharges (Gupta et al., 2009) 

Bias and variability are cross correlated 
(Kling et al., 2012) 

Implicit assumptions of data linearity, 

data normality and absence of outliers 
(Pool et al., 2018) 

No inherent benchmark (Knoben et al., 
2019) 

Not suited to logarithmic transformation 

of discharge (Santos et al., 2018) 

KGE' 2012 Yes + 
Bias and variability are not cross correlated (Kling et al., 

2012) 
 

KGE'' 2021 Yes ++ 
The score is not overly sensitive to mean values close to zero 

(Santos et al., 2018; Tang et al., 2021) 
 

KGENP 2018 Yes + 

Reduce the impact of implicit assumptions of data linearity, 

data normality and absence of outliers by using non-
parametric parameters (Pool et al., 2018) 

 

DE 2021 Yes + 
Aims to provide a stronger link to hydrological processes 
(Schwemmle et al., 2021) 

 

LME 2020 Yes +++ Improve the simulation of extreme events (Liu, 2020) 

Infinite number of solutions for the 
maximum score (Lee and Choi, 2022) 

Inclination to overestimate high flows and 

underestimates low flows (Lee and Choi, 
2022) 

LCE 2022 Yes ++ 
Improve the simulation of extreme events (Lee and Choi, 

2022) 
 

NSE 1970 No /  

The contribution of βn depends on the 

variability (Gupta et al., 2009) 

Variability is underestimated (Gupta et 

al., 2009) 

The benchmark is inappropriate for highly 
variable discharges (Gupta et al., 2009) 

dr 2012 No / 
Address the shortcomings of the NSE (Jackson et al., 2019, 
Willmott et al., 2012) 

 

aKGE drawbacks may likely apply to KGE variants, but this hasn't been studied extensively 
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5.2 Use of scaling factors 

The assessment of the hydrological models in the real case study shows how concurrent over- and underestimation can 

generate counterbalancing errors on bias and variability parameters. For the case study considered in this paper, the ANN 

model, although offering a better simulation, is evaluated as – sometimes considerably – worse than the reservoir model, 

because it slightly underestimates the total volume. This has a great impact on the overall score, as the KGE and its variant 330 

are calculated with both bias and variability parameters accounting for 2/3 of the overall criterion score. 

While the overall balance (bias) may be a desired feature in a model, we showed that a good value may be accidental and 

result from counterbalancing errors. The common use of the KGE neglects one of the original proposals which is to weight 

the parameters 𝛽, 𝛼 and 𝑟 in the equation. Gupta et al. (2009) proposed an alternative equation for adjusting the emphasis on 

the different aspects of a model: 335 

 
𝐾𝐺𝐸𝑠 = 1 −√[𝑠𝛼(𝛼 − 1)]

2 + [𝑠𝛽(𝛽 − 1)]
2
+ [𝑠𝑟(𝑟 − 1)]

2 (22) 

with 𝑠𝑟 , 𝑠𝛽 and 𝑠𝛼  the scaling factors of 𝑟, 𝛽 and 𝛼, respectively. By default, these factors are equal to 1, which induces a 

weight of 1/3 on the parameter in absolute value (𝑟) and 2/3 on the parameters in relative values (𝛽, 𝛼). To the best of our 

knowledge, only Mizukami et al. (2019) ever considered changing the scaling factors when using the KGE. We suggest to 

carefully consider such scaling factors for the calibration and the evaluation of hydrological models using the KGE and its 

variants. Depending on the purpose of the model, they can help to emphasise particular aspects of a model or reduce the 340 

influence of relative parameters and counterbalancing errors. 

Figure 8 shows how emphasising absolute parameters with scaling factors helps to reduce the influence of counterbalancing 

errors for the KGE (Fig. 8a) and its most used variant KGE’ (Fig. 8b). The default value (1-1-1) – corresponding to scaling 

factors of 1 for 𝑟, 1 for 𝛼 (KGE) or 𝛾 (KGE’) and 1 for 𝛽, respectively – is compared to other factor combinations with 

different ratios between absolute and relative parameters. The 1:2 ratio (1-2-2) increases counterbalancing errors as the 345 

emphasis is on the relative parameters, while the 2:1, 3:1, 4:1, and 5:1 ratios decrease counterbalancing errors. The ANN 

model is evaluated as better with the 4:1 ratio for the KGE and the 3:1 ratio for the KGE’, highlighting that the KGE’ is less 

sensitive to counterbalancing errors. This also shows how the score of a performance criterion and by extension its 

interpretation can be radically different depending on the parameters used in the equation. This is why a multi-criteria 

framework can strengthen the evaluation of models and reduce the uncertainties of performance criteria scores. 350 
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Figure 8: (a) KGE and (b) KGE’ scores of the ANN and reservoir models (Fig. 6a) according to different scaling factors. The y-

axis numbers correspond to the scaling factors of the timing, variability and bias parameters, with the default being 1-1-1. 

6 Conclusion 

This study sets out to explore the influence of counterbalancing errors and raise awareness among modellers about the use of 355 

performance criteria for calibrating and evaluating hydrological models. A total of nine performance criteria (NSE, KGE, 

KGE’, KGE’’, KGENP, DE, LME, LCE and dr) are analysed. The investigation of synthetic time series and real hydrological 

models shows that concurrent over- and underestimation of multiple parts of a discharge time series may favour bias and 

variability parameters. This especially concerns the bias parameters (𝛽, 𝛽𝑛 and 𝐵𝑟𝑒𝑙) as their values are all influenced by 

counterbalancing errors in both synthetic time series and the real case study. On the other hand, the impact of 360 

counterbalancing errors on the variability parameters seems to depend on the time series: only the value of 𝛼 is influenced in 

the synthetic time series, while the values of all variability parameters (𝛼, 𝛾, |𝐵𝑎𝑟𝑒𝑎| and 𝛼𝑁𝑃) are influenced in the real 

hydrological models. As bias and variability parameters generally account for 2/3 of the weight in the equation of certain 

performance criteria, this can lead to an overall higher criterion score without being associated to an increase in model 

relevance. This is especially concerning for the KGE and its variants, as they generally use relative parameters for evaluating 365 

bias and variability in hydrological models. These findings highlight the importance of carefully choosing a performance 

criterion adapted to the purpose of the model. Recommendations also include to use scaling factors to emphasise different 

aspects of a hydrological model and reduce the influence of relative parameters on the overall score of the performance 

criterion. Further research could explore the appropriate values of scaling factors to use, depending on the modelling 

approach and the purpose of the study. 370 
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Code and data availability 

We provide complete scripts for reproducing the results on the synthetic time series (Sect. 3), as well as ANN model code 

and KarstMod .properties file (reservoir model) on GitHub (Cinkus and Wunsch, 2022). Unica spring discharge time series 

and meteorological data are available from the Slovenian Environment Agency (ARSO, 2021a, b). 
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