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Abstract. The energy and water vapor exchange between the land surface and atmospheric boundary layer plays a critical 15 

role in regional climate simulations. This paper implemented a hybrid data assimilation and machine learning framework 

(DA-ML method) into the Weather Research and Forecasting (WRF) model to optimize surface soil and vegetation 

conditions. The hybrid method can integrate remotely sensed leaf area index (LAI), multi-source soil moisture (SM) 

observations, and land surface models (LSMs) to accurately describe regional climate and land-atmosphere interactions. The 

performance of the hybrid method on the regional climate was evaluated in the Heihe River Basin (HRB), the second largest 20 

endorheic river basin in Northwest China. The results show that the estimated sensible (H) and latent heat (LE) fluxes from 

the WRF (DA-ML) model agree well with the large aperture scintillometer (LAS) observations. Compared to the WRF (OL), 

the WRF (DA-ML) model improved the estimation of evapotranspiration (ET) and generated a spatial distribution consistent 

with the ML-based watershed ET (ETMap). The proposed WRF (DA-ML) method effectively reduces air warming and 

drying biases in simulations, particularly in the oasis region. The estimated air temperature and specific humidity from WRF 25 

(DA-ML) agree well with the observations. In addition, this method can simulate more realistic oasis-desert boundaries, 

including wetting and cooling effects and wind shield effects within the oasis. The oasis-desert interactions can transfer 

water vapor to the surrounding desert in the lower atmosphere. In contrast, the dry and hot air over the desert is transferred to 

the oasis from the upper atmosphere. The results show that the integration of LAI and SM will induce water vapor 

intensification and promote precipitation in the upstream of the HRB, particularly on windward slopes. In general, the 30 

proposed WRF (DA-ML) model can improve climate modeling by implementing detailed land characterization information 

in basins with complex underlying surfaces. 
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1 Introduction 

Land-atmosphere interactions are an essential component of the hydrological cycle and factors that influence climate 35 

change (Nelli et al., 2020; Zhou et al., 2022). Terrestrial components, such as soil and vegetation, play a crucial role in 

atmospheric processes, such as changes in evapotranspiration (ET), which affect the water vapor content in the atmosphere 

(Gentine et al., 2019; Sawada et al., 2015; Wu et al., 2023). Soil and vegetation processes directly affect surface water vapor 

transport and energy circulation, particularly in the arid vegetated area (Erlandsen et al., 2017; Gao et al., 2008; Liu et al., 

2018a; Zhang et al., 2017a, 2019; Zhao et al., 2021). Such surface variability affects the available energy distribution at the 40 

land surface and has additional effects on the sensible and latent heat fluxes (H and LE), surface temperature, and water 

vapor (Sawada et al., 2015; Wen et al., 2012). Although land surface models (LSMs) have been improved incrementally in 

the past decades, it is still challenging to effectively couple LSMs with atmospheric models to improve the description of 

land-atmosphere interactions (Chen and Dudhia, 2001; Liu et al., 2021). The success of the coupling depends not only on the 

sophisticated physical processes of the LSMs, but also on soil and vegetation characteristics and the accurate 45 

characterization of the water vapor fluxes at the land-atmosphere interface (Gentine et al., 2019; Zhang et al., 2021b, 2022). 

The development of earth observation technology has provided important opportunities to study land-atmosphere 

interactions using the data assimilation (DA) method (Liang et al., 2021). The Land Data Assimilation System (LDAS) has 

been widely developed and applied in recent years under various hydrological and vegetation conditions (Wu et al., 2022; 

Xia et al., 2019). It uses remotely sensed observations to constrain model physical processes and empirical parameters to 50 

improve water-energy-carbon flux simulations (Tian et al., 2022; Zhao and Yang, 2018). A series of studies have assimilated 

satellite-retrieved leaf area index (LAI), land surface temperature (LST), soil moisture (SM), and microwave brightness 

temperature observations into LSMs and improved simulations of ET, runoff, and gross primary productivity (GPP) (Ahmad 

et al., 2022; He et al., 2020b, 2021; Ling et al., 2019; Seo et al., 2021; Xie et al., 2017; Xu et al., 2019, 2021). In addition, 

DA can improve the initial conditions of regional climate models (RCMs) and enhance the capability of the models in 55 

simulating land-atmosphere interactions (Pan et al., 2017; Yi et al., 2021). Several studies have also shown that the 

assimilation of air pressure, air temperature, humidity, wind speed, and lightning observations into the Weather Research and 

Forecasting (WRF) model can improve the simulation of atmospheric state variables and the accuracy of weather prediction 

(Campo et al., 2009; Cazes Boezio and Ortelli, 2019; Comellas Prat et al., 2021; Grzeschik et al., 2008; Pilguj et al., 2019). 

Machine learning (ML) algorithms have been increasingly applied in earth and environmental modeling studies to 60 

predict land surface variables at various spatial and temporal scales (Jung et al., 2020; Reichstein et al., 2019; Xu et al., 

2018). Compared to physical models, ML technology can fluently and accurately establish non-linear and complex 

relationships between diverse independent variables (Koppa et al., 2022; Nearing et al., 2018). Thus, ML-based approaches 

can create beneficial pathways for knowledge discovery in process models based on extensive data (Moosavi et al., 2021; 

Reichstein et al., 2019). The main improvements are focused on model approximation, parameterization, bias correction, and 65 

hybrid modeling (Brajard et al., 2020; He et al., 2022; Jia et al., 2021; Xu et al., 2014; Zhao et al., 2019). Several studies 
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have shown that the integration of the DA and ML methods can enhance the reliability of predictions and reduce simulation 

errors by including physical information in observed data (Brajard et al., 2020; Buizza et al., 2022; Forman and Xue, 2017; 

Gottwald and Reich, 2021; He et al., 2022). Forman and Xue (2017) integrated a ML model (as a measurement operator) 

into a DA system to improve the estimation of snow water equivalent. Zhao et al. (2019) used a physics‐constrained ML 70 

method to improve the LE estimates. He et al. (2022) proposed a hybrid model that can integrate remotely sensed LAI and 

multi-source SM observations to improve the estimation of ET within the coupled DA and ML framework. In general, the 

hybrid DA and ML approach was used in land surface modeling, but it is neglected in regional climate simulations. 

The Heihe River Basin (HRB) is a typical endorheic river basin in the arid and semi-arid regions of Northwest China 

(Li et al., 2013). The upstream mountain region is mainly covered by alpine meadow and Qinghai spruce, has a complex 75 

topography, and receives abundant precipitation. The midstream oasis of the HRB is mainly characterized by irrigated 

croplands, while the downstream oasis is characterized by riparian forests, and at the periphery of the oasis is vast desert (Xu 

et al., 2020). In the HRB, precipitation is the main water resource input in mountainous areas and determines the growth of 

vegetation in the oasis region, as well as supporting urban and population development (Li et al., 2018, 2021). Precipitation, 

snow, and permafrost changes in the upstream mountains can affect mountain runoff and SM, evaporation, groundwater 80 

table in the mid- and downstream oases. Strong land-atmosphere interactions in the HRB affect the water and energy 

exchange between the surface and atmosphere and influence the sustainability of the oasis (Gao et al., 2008; Pan et al., 

2021b). The oasis-desert local circulation in the HRB can lead to the microclimate features in oasis-desert areas, which 

include the cooling and wetting effect and wind shield effect of the oasis, and the humidity inversion effect within the 

surrounding desert (Liu et al., 2020). 85 

In recent decades, several comprehensive experiments have been implemented over the HRB to study land-atmosphere 

interactions, including the Heihe River Basin Field Experiment (Hu et al., 1994), Watershed Allied Telemetry Experimental 

Research (WATER) (Li et al., 2009), and Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (Li et al., 

2013). In recent years, many mesoscale climate models and high-resolution computational fluid dynamics (CFD) models 

have been used to analyze the effects of land-atmosphere interactions on the regional climate (Liu et al., 2018a, 2020; Xie et 90 

al., 2018; Zhang et al., 2017a, 2021a). Zhang et al. (2017a) added an irrigation scheme to the WRF model and identified 

strong cooling and wetting effects on irrigated cropland in the midstream of the HRB. Liu et al. (2020) investigated the 

oasis-desert microclimate effects based on an improved CFD model and found that the oasis had a cold and wet island effect 

and wind shield effect. Zhang et al. (2021b) applied the WRF-Hydro model in the HRB and emphasized the role of lateral 

flow in the regional precipitation circulation. These studies illustrate that mesoscale climate models can be used as essential 95 

tools to better understand regional climate and land-atmosphere interactions in the HRB. However, the advantages of 

improving the representation of soil and vegetation processes in affecting regional climate via the coupled DA and ML 

framework have not been fully exploited, especially in basins with complex underlying surfaces. Therefore, this study aims 

to investigate the improvement of the hybrid DA and ML framework for regional climate and land-atmosphere interactions 

in the HRB based on the WRF model and to further reveal its physical mechanisms. 100 
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The goals of this study were to (1) couple the hybrid DA and ML (DA-ML) framework to the WRF model and improve 

the estimation of LAI and SM; (2) validate the H and LE with the large aperture scintillometer (LAS) observations and 

compare the ET estimates with the ML-based watershed ET; (3) investigate the performance of the air temperature and 

specific humidity estimates and evaluate the effects of the hybrid framework on near-surface atmospheric conditions in the 

mid- and downstream oasis regions; and (4) discuss the effects of the hybrid framework on weed speed and precipitation in 105 

the HRB. 

2 Study area and dataset 

The HRB (37.7°–42.7 °N, 97.1°–102.0 °E) is the second largest endorheic river basin in Northwest China and has an 

area of approximately 143,000 km2, and the elevation ranges from 800 to 5000 m (Figure 1). The annual precipitation is 

approximately 400 mm, and it gradually decreases from the upstream region of the HRB (south) to the downstream region 110 

(north). Land cover types exhibit spatial zonation in the HRB. The upstream region is a typical mountainous environment, 

including extensive alpine meadows, a few Qinghai spruces, glaciers, snow, and permafrost. The midstream region is 

spatially composed of oasis-desert ecosystems, and irrigated cropland is the main component of the oasis in this area. The 

downstream region of the HRB is covered mainly by desert and riparian ecosystems (Populus euphratica and tamarisks). 

Water vapor transport in this region is predominantly controlled by mid-latitude westerly and polar northerly winds (Pan et 115 

al., 2021b). As a result, precipitation over the HRB shows strong spatial variability, with more than 70% occurring in the 

upstream mountains (Wang et al., 2018a, b). Nine fluxes and meteorological stations selected in the Heihe integrated 

observatory network were used for comparison with the model results (Figure 1). Among them, the Arou, Dashalong, and 

Hulugou stations in the upstream region of the HRB are covered by alpine meadows, while the Daman, Wetland, and 

Huazhaizi stations in the midstream region are covered by irrigated cropland, wetlands, and desert, respectively. The 120 

Sidaoqiao, Mixed forest, and Desert stations in the downstream regions are covered by Populus euphratica, tamarisk, and 

desert, respectively. More details on the in-situ information and measurement instruments can be found in Chen et al. (2014), 

Li et al. (2013), and Liu et al. (2018b). 



5 

 

 

Figure 1: (a) Land surface elevation, (b) meteorological stations and land cover types in the study area. The blue and black solid 125 
lines represent the river and the boundary of the HRB, respectively. 

To provide a high-resolution land cover and soil texture dataset that matched the WRF simulation period, the regional 

land cover and soil texture product generated by Zhong et al. (2014) and Song et al. (2016) with a spatial resolution of 30 m 

was employed. These datasets were downloaded from the National Tibetan Plateau Data Center (TPDC) (Pan et al., 2021a) 

(https://data.tpdc.ac.cn/en/). The elevation data were generated by NASA's Shuttle Radar Topography Mission (SRTM3, 90 130 

m), which was obtained from the Geospatial Data Cloud (http://www.gscloud.cn/). The assimilated LAI data were retrieved 

from the Global Land Surface Satellite (GLASS) product with a spatial resolution of 1 km (Xiao et al., 2014; 

http://www.glass.umd.edu/). Daily LAI observations were generated by linearly interpolating the original 8-day GLASS LAI 

product. The GLASS product has been demonstrated to have better accuracy than Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) and provides time-space 135 

continuous LAI estimation (Xiao et al., 2014). The daily Soil Moisture Active Passive (SMAP) SM product 

(https://appeears.earthdatacloud.nasa.gov/), with a spatial resolution of 9 km, was integrated into the hybrid framework. 

In this study, SM observations from the eco-hydrological wireless sensor networks (WSN) in the up- and midstream of 

the HRB are used as an independent validation to evaluate the SM estimates from the WRF (DA-ML). The validation SM 

dataset in the upstream regions was mainly covered by grassland and obtained by averaging SM observations from 40 nodes. 140 

There are 9 network nodes installed in the LAS source area at Daman station that measured SM at the depths of 10 cm every 

5 minutes (Che et al., 2019; Liu et al., 2018) (https://data.tpdc.ac.cn/en/). The half-hourly H was measured by the LAS 
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instrument in Arou, Daman, and Sidaoqiao sites. LE in these sites was obtained as the residual method of the energy balance 

equation (Liu et al., 2016a). Compared to eddy covariance (EC) observations, scintillometer provided kilometer-scale H and 

LE and is widely used for the validation of remote sensing products and model simulations (Zheng et al., 2023). ETMap is a 145 

ML-based watershed ET product (daily/1 km) based on EC observations, remote sensing data, meteorological data, and the 

random forest method (Xu et al., 2018). The retrieved ET from the ETMap agrees well with the LAS observations. The 

multi-site averaged R2, root mean square error (RMSE), and mean absolute percentage error (MAPE) values are 0.68, 0.85 

mm day-1, and 20.27%, respectively. These results confirm that the ETMap can effectively validate watershed ET 

simulations. In this study, nine automatic weather station (AWS) observations were used to validate the WRF meteorological 150 

simulations. The AWS variables at each station include the wind speed/direction, air temperature/humidity, precipitation, air 

pressure, four-component radiation, soil heat flux, and soil temperature/moisture profile, etc. (Liu et al., 2018b). The data 

recorded at these stations were obtained from the Heihe integrated observatory network released by the TPDC (Liu et al., 

2018b). The locations of the stations are shown in Figure 1. Among them, the Hulugou weather station observations are 

produced by Chen et al. (2014). Precipitation datasets from the China Meteorological Forcing Dataset (CMFD) (He et al., 155 

2020a) and atmospheric forcing data (AFD) in the HRB (Pan et al., 2014) were compared with the WRF (DA-ML) 

simulations. These datasets were obtained from the TPDC. The CMFD generates a gridded meteorological dataset with a 

spatial resolution of 0.1° and a temporal resolution of 3 h by fusing observations from 740 operational stations of the China 

Meteorological Administration. Pan et al. (2014) generated gridded atmospheric forcing data using the WRF model over the 

HRB at an hourly 0.05° resolution. These datasets have been widely used as input data for various models as well as for 160 

environmental and climate change analyses (Xu et al., 2019; Zhang et al., 2016). 

3 Methodology 

3.1 WRF model setup 

The advanced research WRF model version 4.0.3 (Skamarock et al., 2019) was used in this study. The WRF is a state-

of-the-art numerical weather and climate model designed by the National Center for Atmospheric Research (NCAR) for 165 

meteorological research and numerical weather predictions (Wang et al., 2021). The model source code is available at the 

official repository for WRF (https://github.com/wrf-model/WRF). The model domain covering the HRB consisted of two-

way nested domains with 9 km and 3 km grid spacing. Only the simulation results for the 3 km grid were used in this study 

(Figure 1). This high-resolution setting excludes the uncertainty of the cumulus parameterization and thus simulates the soil-

precipitation feedback more realistically (Prein et al., 2015). In the vertical direction, 28 vertical sigma levels from the 170 

surface to 50 hPa were used. The atmospheric lateral boundary conditions in the WRF model were provided by the ERA5 

reanalysis data set with a 0.25° spatial resolution and hourly temporal resolution 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). It is widely used in WRF simulations and provides 

boundary and initial conditions (Liu et al., 2021; Ma et al., 2022). The land cover, soil texture, elevation, and GLASS LAI 
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dataset were resampled to 3 km to be consistent with the model simulation resolution. The physical parameterization 175 

schemes selected in this study included the Rapid Radiative Transfer Model longwave and shortwave radiation scheme 

(Mlawer et al. 1997), Thompson microphysics scheme (Thompson et al., 2008), Mellor–Yamada–Janjic planetary boundary 

layer scheme (Janjic, 1994), and Noah-MP land surface scheme (Yang et al., 2011). The time step was 30 s, and the time 

resolution of the model output was hourly. Further details regarding the WRF model setup are presented in Table 1. The 

dynamic vegetation parameterization scheme was turned on in the Noah-MP model to generate dynamic LAI simulations. 180 

We resampled the spatial resolution of the WRF simulations to 1 km with the bilinear interpolation method for comparison 

with the station observations. 

Table 1: WRF model setup. 

Simulation period May to September, 2015 

Horizontal grid spacing 9 km (100 × 181 grid points), 3 km (181 × 220 grid points) 

Vertical levels 28 sigma-levels 

Forcing data ERA5 (0.25°, hourly) 

Spin-up time April (one month) 

Longwave radiation RRTM scheme (Mlawer et al., 1997) 

Shortwave radiation RRTM scheme (Mlawer et al., 1997) 

Microphysics (MP) Thompson scheme (Thompson et al., 2008) 

Planetary boundary layer (PBL) Mellor–Yamada–Janjic scheme (Janjic, 1994) 

Surface layer Eta similarity scheme (Janjic, 1994) 

Land surface model (LSM) Noah-MP land surface model (Yang et al., 2011) 

3.2 Hybrid model 

In this study, the hybrid model proposed by He et al. (2022) based on the DA and ML methods was incorporated into 185 

the WRF model to improve the LAI, SM, and ET simulations. The hybrid approach relies on the DA method to update the 

vegetation dynamics of the Noah-MP model and the ML method to construct a three-layer SM surrogate model. Compared 

with the direct assimilation of coarse-resolution remotely sensed SM, the hybrid model can improve the estimation of SM 

and ET on the heterogeneous land surface. This is because in-situ SM profile observations are used to construct an ML-based 

surrogate model to improve SM and ET estimation on complex underlying surfaces. 190 

In the DA part, the remotely sensed LAI was assimilated using the ensemble Kalman filter (EnKF) method to update 

the leaf biomass (LFMASS) and optimize the specific leaf area (SLA) in the Noah-MP model. LAI is estimated as the 

product of leaf biomass predictions and SLA (LAI = LFMASS × SLA) in the Noah-MP model. Model ensembles were 

generated by adding normally distributed random errors to the model states (LFMASS) and parameters (SLA). The ensemble 

size is set as 40 to ensure an accurate approximation of the error covariances while maintaining computational efficiency 195 

(Seo et al., 2021). Normally distributed errors with a mean of zero and a standard deviation of 10 g m-2 were added to the 
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LFMASS (Ahmad et al., 2022; Xu et al., 2021). The standard deviation of the SLA was set to 10% of the default parameter 

(Xu et al., 2021). Further, a uniform observation error standard deviation of 0.1 (-) was added to the remotely sensed LAI 

(He et al., 2022; Xu et al., 2021). These relevant statistical values have been widely used in previous LAI DA studies 

(Ahmad et al., 2022; Ling et al., 2019; Rahman et al., 2022). 200 

In the ML part, the normalized soil texture (ST), land cover (LC), air temperature and humidity (Ta and RH), wind 

speed (U), precipitation (P), solar radiation (Rs), LAI, and SM observations were used to construct the SM surrogate model. 

ST, LC, Ta, RH, U, P, Rs, and LAI are the predictor variables. The in-situ SM profile observations (from 19 automatic 

weather stations) and SMAP SM products in the HRB are used as target variables to train and test the SM surrogate model. 

The extreme gradient boosting (XGBoost) method was chosen in the SM surrogate model to improve multi-layer SM 205 

simulations. The first layer (the top 0.1 m) of in-situ SM observations and SMAP SM were trained to establish the surface 

layer ML model. The averaged second (0.1–0.4 m) and third (0.4–1.0 m) layers of in-situ SM observations were used to 

construct the root zone ML models. The SM observations at different depths were averaged to be consistent with the Noah-

MP model soil layer. The number of SM training samples in the first, second, and third layers are 9824, 7804, and 7793, 

respectively. A ten-fold testing method is employed to examine the performance of each ML method. In each fold, 90% of 210 

the training samples are used to train the model, and the remaining 10% of the data is used to test the model. The SM 

surrogate model can consider the effects of midstream irrigation events and downstream shallow groundwater tables on SM 

and improve Noah-MP ET estimates. More details regarding this method can be found in He et al. (2022). 

The coupled land-atmosphere DA-ML system consists of two steps. In the first step, the meteorological forcing data 

were generated from the WRF model at time t. Then, the meteorological forcing data and initial states were input into the 215 

Noah-MP model to simulate the LAI, SM, and ET. In the second step, the hybrid DA-ML method was used to update the 

LAI and SM estimates in the Noah-MP model at time t + 1. In this step, the LAI is updated by the DA method, and the SM is 

updated via the ML-based surrogate model. The updated soil and vegetation conditions were re-fed into the WRF model and 

affected the atmospheric structure and state. Eventually, the WRF model and the DA-ML method are coupled at the daily 

scale through the cycles of step one and two. The flowchart of the hybrid DA and ML method coupled with the WRF model 220 

is shown in Figure 2. 



9 

 

 

Figure 2: (a) Details of the hybrid DA and ML method, and (b) flowchart of the coupling with the WRF model. 

Two experiments were conducted using the WRF model to investigate the effects of the DA-ML method. These two 

experiments consisted of an experiment under natural conditions without DA and ML [WRF (OL)], and another experiment 225 

implementing DA and ML [WRF (DA-ML)]. The simulation covered the period of vegetation growing season (from April 1 

to September 30, 2015), and the first month was used for the spin-up. The computation details about the WRF (OL) and 

WRF (DA-ML) are shown in Table A1. The differences between the WRF (DA-ML) and WRF (OL) simulations were used 

to investigate the effects of LAI and SM integration. The root mean square deviation (RMSD) and coefficient of 

determination (R2) statistical metrics were used to evaluate the performance of the WRF (DA-ML) model,  230 
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where Pi and Oi are the predicted and observed values at time step i, respectively. P  and O  represents the mean values of 

Pi and Oi. 

4 Results and discussion 235 

4.1 Validation of the hybrid model 

Figure 3 shows the monthly averaged LAI estimates from the WRF (OL), WRF (DA-ML), and GLASS products. As 

indicated, the WRF model failed to capture the magnitude and seasonality of the LAI. This is because the simulation of LAI 

dynamics in Noah-MP is controlled by the planting date, harvest date, and growing degree days in the cropland (Liu et al., 

2016). In addition, inaccurate specification of the SM saturation, Vcmax25, and Clapp-Hornberger b parameter affects 240 

photosynthesis and biomass accumulation in vegetation (Cuntz et al., 2016; Levis et al., 2012). All these parameters are site-

specific and empirical, and cannot be easily applied across regions. The assimilation systematically increased LAI during the 

growing season, and a significant increment in LAI was observed in mid-summer (June-August). The seasonal pattern of the 

WRF (DA-ML) was more consistent with that of the GLASS LAI than the WRF model, which indicates that the WRF (DA-

ML) provides essential information for modeling vegetation dynamics. The simulated LAIs from WRF (OL) in the cropland, 245 

grassland, forest, and shrubland areas were 1.12, 1.05, 1.49, and 0.33 m2 m-2, respectively, all of which were lower than that 

of the GLASS LAI. After assimilation, the simulated bias of the LAI from WRF (DA-ML) in the HRB can be reduced from 

0.94 to 0.11 m2 m-2. The results also show that the WRF (DA-ML) systematically overestimates the LAI, especially in the 

cropland. This is because, in addition to LAI assimilation, the integration of multi-source SM observations also affects the 

LAI dynamics. 250 
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Figure 3: Seasonal variations of the LAI estimates for cropland, grassland, forest, and shrubland in the HRB. 

The SM estimates from the WRF (OL) and WRF (DA-ML) are validated over the up- and midstream WSN in Figure 4. 

The SM estimates from the WRF model were markedly lower than WSN observations for cropland because the impacts of 

irrigation events on SM estimates are not fully considered in the Noah-MP model (He et al., 2022; Zhang et al., 2020). The 255 

Noah-MP model also slightly underestimates SM in the upstream regions because it ignores the effects of dense root systems 

and soil organic matter on SM estimation (Chen et al., 2012; Sun et al., 2021). As anticipated, SM predictions from the WRF 

(DA-ML) are closer to the measurements than those of WRF. WRF (DA-ML) SM retrievals indicate a reasonable response 

to the precipitation and irrigation events in the midstream cropland. Similarly, the WRF (DA-ML) SM dynamics show a 

characteristic response to precipitation in the upstream regions. The results also indicate that the SM simulations from the 260 

WRF (DA-ML) model are hard to capture the observed peak values. This is because the prediction accuracy of ML methods 

is limited by the training data set. This also means that if the model is applied under extremely wet conditions with sparse 

training data, the performance of the hybrid model will decrease as the number of training samples decreases. In general, the 

WRF (DA-ML) can use the information contained in remotely sensed LAI and multi-source SM observations to improve 

land surface conditions. 265 
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Figure 4: The time series of SM estimates from the WRF (OL) and WRF (DA-ML) models against the up- and midstream WSN 

observations in 2015. 

Figure 5 shows the spatial patterns of the averaged LAI and SM estimates from May to September 2015. The WRF 

simulation significantly underestimated the LAI, particularly in the up- and midstream vegetation areas of the HRB. In 270 

addition, it underestimated the SM in the mid- and downstream vegetation regions. The integration of LAI and SM into the 

WRF model improved the estimation of leaf biomass and SM, and increased LAI and SM in the HRB. The maps of 

estimated LAI and SM from the DA-ML method consistently resembled the rainfall, vegetation cover, irrigation event, and 

shallow groundwater table features (Xu et al., 2018, 2020). The precipitation in the upstream mountains, irrigation in the 

midstream oasis, and shallow groundwater in the downstream oasis enhance SM and provide the necessary water supply for 275 

vegetation growth (Li et al., 2022). Figure 5 also shows the LAI and SM differences between the WRF (DA-ML) and WRF 

(OL) simulations. The maximum LAI (SM) difference from the WRF (DA-ML) and WRF (OL) reaches approximately 2.24 

m2 m-2 (0.16 m3 m-3) and is present in the midstream oasis of HRB. The difference between the WRF (OL) and WRF (DA-

ML) was due to the effects of irrigation and crop growth. Similarly, this difference in the downstream oasis is a result of the 

shallow water table as well as the growth of riparian forests. In the upstream alpine meadows, the LAI simulated by the 280 

WRF (DA-ML) was greatly increased compared to that of the WRF (OL). However, the SM enhancement in the WRF (DA-

ML) was not significant due to the sufficient precipitation in mountainous areas. 
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Figure 5: The LAI and SM estimates from the WRF (OL) and WRF (DA-ML) models during the growing season in 2015, and the 

average difference in the LAI and SM between the WRF (DA-ML) and WRF (OL) [WRF (DA-ML) minus WRF (OL)]. 285 

4.2 Sensible and latent heat fluxes 

Figure 6 compares the daily H and LE estimates from the WRF (OL) and WRF (DA-ML) models with the LAS at the 

Arou, Daman, and Sidaoqiao sites. As indicated, the retrieved H and LE from the WRF (DA-ML) model agree well with the 

observations, and mainly fall around the 1:1 line. The WRF (DA-ML) model performs better than the WRF (OL) model 

because of the improved LAI and SM simulations. The statistics of turbulent heat flux estimates at the three sites are 290 

summarized in Table 2. The three-site-averaged RMSD of daily H and LE predictions for the WRF (OL) model are 53.61 

and 63.73 W m−2, respectively. The WRF (DA-ML) model decreases the abovementioned RMSDs by 43.74% and 23.98%. 

The relatively low RMSD values indicate that the WRF (DA-ML) model can accurately estimate turbulent heat fluxes over 

different sites with contrasting environmental conditions. The results also show that the simulated H and LE of the WRF 

(DA-ML) model are still higher and lower than the observed values at the Sidaoqiao site. This is because the spatial 295 
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representation of the model simulation (3 km) is inconsistent with the LAS measurements (path length: 2350 m). This 

mismatch will introduce uncertainty in the validation results, especially in heterogeneous land surfaces (Zhang et al., 2022). 

The LE measurements of the LAS instrument are obtained from the residuals of the surface energy balance equation, which 

may lead to uncertainties in the LE observations. In addition, the higher surface heterogeneity and complex hydrological 

processes in the downstream oasis affect the training accuracy of the ML method, which further affects the performance of 300 

the WRF (DA-ML) model (He et al., 2022). 

  

Figure 6: Scatterplot of daily sensible and latent heat flux estimates from the WRF (OL) and WRF (DA-ML) models versus 

measurements at the Arou, Daman, and Sidaoqiao sites. 

Table 2: Statistical indices of daily H and LE estimates from the WRF (OL) and WRF (DA-ML) models at the Arou, Daman, and 305 
Sidaoqiao sites. 

Site  
H  LE 

WRF (OL) WRF (DA-ML)  WRF (OL) WRF (DA-ML) 

Arou 
R2 (-) 0.49 0.53  0.46 0.67 

RMSD (W m-2) 39.57 29.72  47.21 43.52 

Daman 
R2 (-) 0.16 0.52  0.18 0.65 

RMSD (W m-2) 59.74 23.18  61.06 49.69 

Sidaoqiao 
R2 (-) 0.19 0.48  0.12 0.56 

RMSD (W m-2) 61.53 37.59  82.93 52.13 

Three-site- R2 (-) 0.28 0.51  0.25 0.63 
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average RMSD (W m-2) 53.61 30.16  63.73 48.45 

 

Figure 7 shows the spatial distribution of ET estimates from the WRF (OL), WRF (DA-ML), and ETMap over the HRB. 

The results indicate that the ET values from the WRF model were underestimated, especially in the midstream oasis region, 

which was mainly because the WRF model underestimated the SM and LAI (see Figure 3 and 4) during the growing season. 310 

Compared with the WRF (OL) model, the WRF (DA-ML) method improves the estimation of ET and the spatial distribution 

is consistent with that of ETMap because of the effective information contained in the remote sensing LAI and multi-source 

SM observations. The estimation of ET in the WRF (OL) is sensitive to SM and vegetation dynamics, especially in semi-arid 

regions. Therefore, the WRF (DA-ML) model will produce more improvements in the mid- and downstream oasis regions 

compared to the WRF (OL) model. The spatial patterns of ET from the DA-ML method showed a significant gradient from 315 

wet to dry owing to variations in precipitation and vegetation cover. In the upstream regions of the HRB, the spatial pattern 

of retrieved ET was mainly controlled by precipitation and vegetation cover. The ET values were higher in areas with 

heavier precipitation and denser vegetation. In the midstream region, the spatial pattern of ET was well aligned with the 

oasis caused by crop growth and irrigation. Meanwhile, the ET values were higher in the downstream oasis because of 

shallow water tables and transpiration from riparian forests (Xu et al., 2018, 2020). The sparsely vegetated areas covered by 320 

desert and Gobi in the mid- and downstream regions had the lowest ET values. The results show that the integration of 

remotely sensed LAI and multi-source SM observations is essential for studying land-atmosphere water vapor fluxes (ET) 

because of the realistic land surface conditions. 

 

Figure 7: Spatial distribution of evapotranspiration estimates obtained from the WRF (OL), WRF (DA-ML), and ETMap during 325 
the growing season in 2015. 
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4.3 Air temperature and specific humidity 

The monthly averaged 2 m air temperature and specific humidity from the WRF (OL), WRF (DA-ML), and 

corresponding observations at nine sites are shown in Figure 8 and 9. As indicated, the WRF model overestimated 

(underestimated) the air temperature (specific humidity) in the HRB, especially in the midstream oasis (Daman and Wetland 330 

stations), which was mainly because the WRF model underestimated the SM and LAI (see Figure 3 and 4) in the HRB. 

Compared to the WRF model, the WRF (DA-ML) simulated seasonal cycles of air temperature and specific humidity at the 

nine sites were closer to the measurements, which was because the integration of remotely sensed LAI and multi-source SM 

observations improves the estimation of vegetation dynamics and SM, decreases the air temperature, and increases the 

specific humidity. The increased specific humidity was due to the enhanced evaporation from the soil and stronger 335 

transpiration from the expanded vegetation cover. Simultaneously, evaporation absorbs a large amount of energy, thereby 

reducing the air temperature (Wen et al., 2012). The discrepancy between the WRF (OL) and WRF (DA-ML) was amplified 

in the middle of the growing season (June, July, and August) due to dense growing vegetation and higher SM caused by 

several irrigation events. After integrating LAI and SM, the simulated air temperature and specific humidity values from the 

Daman station decreased and increased by approximately 1.75 K and 1.86 g kg-1, respectively. But for Sidaoqiao, the air 340 

temperature and specific humidity decrease and increase by about 0.59 K and 0.41 g kg-1, respectively.  The results show that 

the midstream artificial oasis exhibits a stronger cold and wet island effect than the downstream natural oasis. The estimated 

air temperature and specific humidity increased from May to July and decreased from August to September. The specific 

humidity estimated at Daman exhibited significant seasonal variations due to irrigation events and crop phenology. 
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 345 

Figure 8: Monthly averaged air temperature simulations from the WRF (OL) and WRF (DA-ML) versus the observations at nine 

sites in 2015 (error range denotes the standard deviation). 
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Figure 9: Monthly averaged specific humidity simulations from the WRF (OL) and WRF (DA-ML) versus the observations at nine 

sites in 2015 (error range denotes the standard deviation). 350 

Table 3 and 4 further compare the simulated air temperature and specific humidity with the same variables from the 

station observations. The WRF (OL) results show a dry bias in the HRB region, which is reduced by the simulation of the 

WRF (DA-ML). The statistical metrics (i.e., R2 and RMSD) of the daily air temperature and specific humidity estimates 

from the WRF (OL) and WRF (DA-ML) methods are shown in Table 3 and 4. For the nine sites, the average RMSD of the 

air temperature (specific humidity) estimates from the WRF (DA-ML) was 1.41 K (0.82 g kg-1), which was 21.23% (24.07%) 355 

lower than the RMSD of 1.79 K (1.08 g kg-1) from the WRF model. 

Table 3: Averaged air temperature and R2 and RMSD of the WRF (OL) and WRF (DA-ML) compared with the measurements at 

the nine sites. 

Study site 
 WRF (OL)  WRF (DA-ML) 

Obs Sim R2 (-) RMSD (K)  Sim R2 (-) RMSD (K) 

Arou 281.48 282.15 0.87 1.48  281.44 0.89 1.11 

Dashalong 276.32 277.76 0.84 1.97  276.56 0.86 1.75 
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Hulugou 279.01 280.06 0.86 1.33  279.05 0.90 1.21 

Daman 290.75 292.91 0.84 2.36  291.16 0.88 1.52 

Wetland 292.49 293.99 0.90 1.98  292.29 0.92 1.31 

Huazhaizi 292.09 292.64 0.91 1.33  291.94 0.94 1.12 

Sidaoqiao 295.84 296.12 0.92 1.80  295.53 0.94 1.47 

Mixed forest 295.68 296.31 0.92 1.83  295.32 0.93 1.56 

Desert 296.30 296.79 0.93 2.04  295.77 0.95 1.61 

Average 288.88 289.85 0.89 1.79  288.78 0.91 1.41 

Table 4: Averaged specific humidity and R2 and RMSD of the WRF (OL) and WRF (DA-ML) compared with the measurements 

at the nine sites. 360 

Study site 
 WRF (OL)  WRF (DA-ML) 

Obs Sim R2 (-) RMSD (g kg-1)  Sim R2 (-) RMSD (g kg-1) 

Arou 6.13 5.90 0.85 0.88  6.31 0.88 0.78 

Dashalong 5.33 4.78 0.87 0.83  5.42 0.88 0.71 

Hulugou 5.74 5.34 0.82 0.82  5.81 0.85 0.78 

Daman 7.97 6.12 0.74 2.26  7.98 0.82 1.04 

Wetland 7.09 5.94 0.81 1.55  7.57 0.84 1.03 

Huazhaizi 6.78 6.05 0.79 1.25  7.13 0.84 1.10 

Sidaoqiao 5.14 4.76 0.91 0.73  5.17 0.91 0.64 

Mixed forest 4.96 4.75 0.90 0.68  5.09 0.91 0.63 

Desert 5.17 4.73 0.91 0.75  5.09 0.91 0.65 

Average 6.03 5.37 0.84 1.08  6.17 0.87 0.82 

 

Figure 10 compares the spatial patterns of the air temperature and specific humidity maps from the WRF (OL) and 

WRF (DA-ML). Compared with the WRF (OL), significant differences were observed in the WRF (DA-ML). The 

integration of LAI and SM decreases air temperature and increases specific humidity in the vegetated area of the HRB, 

particularly in the midstream oasis region. The spatial distribution of specific humidity from the WRF (DA-ML) is consistent 365 

with the LAI and SM maps in Figure 5 and the ET map in Figure 7. The results show that the improved LAI and SM 

simulations lead to different land surface dynamic and thermal characteristics between the oasis and desert. This difference 

leads to oasis-desert interactions and produces microclimatic effects, including the cooling and wetting effects of the oasis. 

The average simulated air temperature from WRF (OL) and WRF (DA-ML) methods in the midstream oasis were 293.64 K 

and 291.32 K, respectively. In contrast, the near-surface air temperatures over the desert are approximately 294.13 K and 370 

293.54 K, respectively. The difference in air temperature between the oasis and desert areas indicates that the oasis areas 

represent a cold and wet island compared to the surrounding desert. This difference is amplified after the implementation of 

the DA-ML method. The significant wetting and cooling effects propagate in desert areas to a maximum distance of 

approximately 5-10 km from the edge of the oasis. In the midstream oasis, the dominant vegetation is irrigated cropland, and 
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the vegetation cover was only approximately 42% in the original WRF model; however, the vegetation cover was updated to 375 

approximately 70% in the WRF (DA-ML). The different land surface dynamic and thermal characteristics between the oasis 

and desert can produce oasis-desert interactions and enhance local circulation. The oasis-desert interactions create a water 

vapor flux from the oasis to the surrounding desert. This transport process is beneficial for increasing desert water vapor and 

maintaining the sustainability of desert vegetation (Li et al., 2016; Liu et al., 2020). A similar pattern was observed in the 

downstream oasis. However, because of the decreased SM and vegetation cover (Figure 5), the downstream oasis exhibited a 380 

weaker wet island effect. The results also indicated that enhanced vegetation transpiration increases specific humidity and 

reduces air temperature owing to increased LAI in the upstream region of the HRB. 

 

Figure 10: Spatial distribution of air temperature and specific humidity estimates from the WRF (OL) and WRF (DA-ML) during 

the growing season in 2015, and the average difference in air temperature and specific humidity between the WRF (DA-ML) and 385 
WRF (OL) [WRF (DA-ML) minus WRF (OL)]. The blue line indicates the mid- and downstream oasis vertical profile used in 

Figure 11 and 12. 

The above-mentioned findings show that the proposed WRF (DA-ML) method exhibits strong wetting and cooling 

effects in the mid- and downstream oasis. These wetting and cooling effect reduces the air warming bias and dry bias in the 
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simulation. Therefore, the WRF (DA-ML) simulation is much closer to the observations than the WRF (OL) simulation. 390 

Two vertical profiles were selected in Figure 10 to further analyze the effect of the DA-ML on the local climate in the mid- 

and downstream areas. The difference between the WRF (DA-ML) and WRF (OL) methods is used to represent the 

enhanced cooling and wetting effects after improving the LAI and SM simulations. As illustrated in Figure 11, the enhanced 

wetting and cooling effects of the midstream oasis were the strongest in the southern irrigated cropland and gradually 

decreased in the northern desert areas. The magnitudes of the surface wetting and cooling effects were consistent with the 395 

differences in LAI and SM estimates from the WRF (DA-ML) and WRF (OL). For example, the difference in LAI and SM 

peaks at 38.08°N and the wetting and cooling effects of midstream irrigated cropland were also stronger in this region. These 

results suggest that the wetting and cooling effects caused by irrigation and vegetation growth occur mainly in the oasis 

region and do not affect more distant non-oasis areas. Moreover, the wetting and cooling effects of the oasis were mainly 

concentrated in the boundary layer, gradually decreased from the land surface upward, and were replaced by slightly 400 

warming and drying effects. Such warming and drying effects may be related to the enhanced subsidence over the oasis. 

Similar results have been demonstrated in several previous studies (Liu et al., 2020; Wen et al., 2012; Zhang et al., 2017a, b). 

 

Figure 11: Mean vertical profile of differences in air temperature and specific humidity between the WRF (DA-ML) and WRF 

(OL) [WRF (DA-ML) minus WRF (OL)] and mean LAI and SM during the growing season in 2015 in the midstream oasis. The 405 
dashed and solid lines represent the WRF (OL) and WRF (DA-ML), respectively. The white shaded area represents the change in 

elevation. The orange bar represents the oasis area. 

Figure 12 shows the same wetting and cooling effects in the downstream oasis. Compared to the midstream irrigated 

cropland, the downstream oasis wetting and cooling effects were mainly influenced by the growth of riparian forests and 
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shallow groundwater tables. The wetting and cooling effects showed maximum values at 42.01°N owing to the strong LAI 410 

and SM shifts. The results also indicate that the wetting and cooling effects of the downstream oasis were weaker than those 

of the midstream oasis. By integrating LAI and SM, the air temperature in mid- and downstream oasis decreases by 0.96 and 

0.12 K and the specific humidity increases by 0.52 and 0.06 g kg-1, respectively. In general, the integration of the LAI and 

SM data can produce more realistic land surface conditions in the oasis region and lead to stronger wetting and cooling 

effects. 415 

 

Figure 12: Mean vertical profile of differences in air temperature and specific humidity between the WRF (DA-ML) and WRF 

(OL) [WRF (DA-ML) minus WRF (OL)] and mean LAI and SM during the growing season in 2015 in the downstream oasis. The 

dashed and solid lines represent the WRF (OL) and WRF (DA-ML), respectively. The orange bar represents the oasis area. 

4.4 Wind speed and precipitation 420 

The mean wind vectors at 10 m during the growing season from the WRF (OL) and WRF (DA-ML) in the mid- and 

downstream oases are shown in Figure 13. By comparing the simulated wind speeds in the oasis and the surrounding desert, 

we found that crops, shelterbelts, and residential areas in the midstream oasis produced a wind-shield effect. The wind speed 

within the oasis is less than that of the surrounding desert because the drag force of crops, shelterbelts, and residential areas 

reduces the wind speed and also changes the wind direction (Liu et al., 2020). In Figure 13, the heat transfer coefficient (Ch) 425 

from the WRF (DA-ML) was used to compare the surface roughness in the oasis with that of the surrounding desert. Ch is an 

important parameter for calculating the heat transfer between the land and atmosphere, and it is mainly related to the length 

of the surface roughness and the intensity of the stability of the atmospheric surface layer (Smedman et al., 2007). The 

results show that the Ch estimates are higher and reduce the wind speed in the midstream oasis compared to the surrounding 
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desert. Ozdogan et al. (2006) and Liu et al. (2020) also showed that crop growth enhanced the surface roughness and slow 430 

wind speed. Figure 13 also shows that the wind speed values from the WRF (DA-ML) scheme are slightly lower than those 

from the WRF (OL) scheme. The average wind speed in the midstream oasis was reduced from 1.92 m/s to 1.23 m/s by 

integrating the LAI and SM. As mentioned earlier, the different dynamic and thermal characteristics between the oasis and 

desert can produce oasis-desert interactions and generate local circulation, which drives the cold and moist airflow from the 

oasis to the surrounding desert in the lower atmosphere. As shown in Figure 13, area to the south of the midstream irrigated 435 

cropland is the Qilian Mountains whereas the area to the north is a large desert. Therefore, the southerly airflow generated by 

the midstream oasis weakened the background north wind. The mean wind vectors in the downstream oasis are shown in 

Figure 13. The wind speed in the downstream desert regions is slightly higher than in the oasis regions. The lower wind 

speed in the mid- and downstream oasis is helpful to plant growth, people’s survival environment, and the maintenance of 

the oasis and desert ecosystem (Wang and Cheng, 1999). The results also indicated that the wind vector in the downstream 440 

oasis was mainly controlled by the background northerly wind and the effects of LAI and SM integration on the wind vectors 

were weaker. 

 

Figure 13: (a and d) Mean heat transfer coefficient (Ch) from the WRF (DA-ML) and (b, c, e, and f) wind vectors at 10 m during 

the growing season from the WRF (OL) and WRF (DA-ML) in the midstream (top) and downstream (bottom) oasis. Colored 445 
contours indicate elevations above ground level and shading indicates the extent of the oasis. The black line is the boundary of 

HRB. 
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The integration of the LAI and SM affected the wind speed at the land surface and the local circulation through oasis-

desert interactions. Figure 14 shows the zonal mean vertical velocity and local meridional circulation in the midstream oases 

from the WRF (OL) and WRF (DA-ML). Compared with the flat topography of the downstream oasis, the topography of the 450 

midstream oasis generally varies from plains to mountains (from low to high altitude) from north to south. The surface 

dynamic and thermal characteristics of the oasis and surrounding desert differed significantly; therefore, strong horizontal 

temperature and humidity field gradients were observed at the intersection of the boundary layer of the mountains, oasis, and 

surrounding desert (Meng et al., 2015; Wen et al., 2012). The air humidity and vegetation cover in the midstream oasis were 

enhanced by integrating the LAI and SM, which resulted in stronger evaporation from irrigated cropland than from the 455 

surrounding desert.  As shown in Figure 14, the divergence of the lower atmosphere over the midstream oasis is enhanced, 

and the wet and cold air masses are transferred to the surrounding desert through advection, whereas the dry and hot air is 

transferred into the oasis from the upper atmosphere. In the upper atmosphere, the desert to oasis air masses enhance the 

background northerly winds, which promote atmospheric water vapor transport in the HRB. However, oasis-desert 

interactions are weaker in the downstream region (Figure A1) than in the midstream region under actual weather or climate 460 

conditions, which is attributed to the local circulation being weakened by stronger background northerly winds. Overall, the 

simulation of soil and vegetation characteristics can be improved by integrating LAI and SM and enhancing land-atmosphere 

interactions in mid- and downstream oases. 

 

Figure 14: The zonal mean vertical velocity and meridional circulation from the WRF (OL) and WRF (DA-ML) models during the 465 
growing season in 2015 in the midstream oasis. The white shaded area represents the change in elevation. The orange bar 

represents the oasis area. 
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Figure 15 exhibits the influence of the DA-ML on precipitation in the HRB. The results show that the integrated LAI 

and SM led to increased precipitation in the upstream regions of the HRB and that the spatial variation in precipitation was 

very heterogeneous. The increase in precipitation was mainly concentrated in the southeastern part of the HRB, where it 470 

reached approximately 1.5 mm day-1, which represented 32% of the simulated value of the WRF (OL) experiment. In 

contrast, precipitation increased insignificantly in the mid- and downstream oasis regions. The increased precipitation in the 

upstream region may have been due to the additional water vapor supply. Water vapor fluxes in the mountain areas and 

midstream oasis regions were enhanced by integrating the LAI and SM. Driven by background northerly winds (Figure 14), 

more water vapor fluxes from the midstream oasis region were carried to the upstream region. The wind speed and 475 

precipitation estimates in the upstream region (around Babao River Basin) are shown in Figure 15b and 15c. As shown, the 

WRF (DA-ML) enhanced the estimation of precipitation on windward slopes compared with valleys. After integrating the 

LAI and SM, land-atmosphere interactions are altered. The DA-ML increased the latent heat and decreases the sensible heat 

flux. The water vapor carried by the air masses and lifted on the sloped surface was more likely to condense and produce 

precipitation (Yue et al., 2021). In general, the DA-ML enhanced the precipitation estimates in the upstream mountain areas, 480 

mainly on windward slopes. 
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Figure 15: (a) Average difference in precipitation between the WRF (DA-ML) and WRF (OL) [WRF (DA-ML) minus WRF (OL)] 

in the Heihe River Basin and (b) the upstream region (around Babao River Basin) and (c) wind vectors at 10 m from the WRF 

(DA-ML) in the upstream region. The black line is the boundary of HRB. 485 

The simulated daily precipitation from the WRF (OL) and WRF (DA-ML) was compared with that of the AFD and 

CMFD references in Figure 16. Because the water vapor from the East Asian monsoon was blocked by the Tibetan Plateau, 

most of the precipitation was concentrated in the southeastern part of the Qilian Mountains. Figure 16 shows that the high 

precipitation zone of the HRB was mainly located in the mountainous areas below 39.5 °N due to orographic lifting and 

convection (Zhang et al., 2021b). The main precipitation events were consistent between the WRF (OL) and WRF (DA-ML). 490 

WRF (DA-ML) had higher precipitation in the southern domain because peak precipitation was enhanced and lesser 

precipitation events increased (red rectangles). Both the WRF (OL) and WRF (DA-ML) captured the temporal and spatial 

variability of precipitation well and were consistent with the reference data, indicating that the 3-km high-resolution grid 

contains information on topography-related heterogeneity and accurately estimates the precipitation distribution. The 

estimated precipitation in the upstream regions of the HRB was more consistent with the AFD reference but was 495 

overestimated by approximately 0.43 mm day-1 compared to the CMFD. The discrepancy between the precipitation 

estimated by the WRF and CMFD schemes occurred because the China Meteorological Administration sites fused by the 

CMFD product were mainly distributed at elevations below 3500 m (He et al., 2020a). Therefore, there are some 

uncertainties in the precipitation simulation of the CMFD products in high-altitude mountainous areas (Zhang et al., 2021b). 
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 500 

Figure 16: Comparisons of the daily precipitation estimates from the WRF (OL) and WRF (DA-ML) with the values from the 

AFD and CMFD references during the growing season in 2015. 

5 Conclusions 

In this paper, a hybrid data assimilation and machine learning framework (DA-ML approach) was proposed and 

implemented into the Weather Research and Forecasting (WRF) model to optimize the initialization of surface soil and 505 

vegetation variables. Remotely sensed leaf area index (LAI) and multi-source soil moisture (SM) observations (in-situ SM 

profile observations and remotely sensed SM products) were integrated into the WRF model to improve the soil and 

vegetation characteristics. The performance of the WRF (DA-ML) framework was tested in the Heihe River Basin (HRB) in 

northwestern China. The results indicated that the integration of remotely sensed LAI and multi-source SM into the WRF 

model improved the LAI, SM, and evapotranspiration (ET) estimates and regional climate and land-atmosphere interactions. 510 

The estimated sensible and latent heat fluxes from the WRF (OL) and WRF (DA-ML) models are validated with the large 

aperture scintillometer (LAS) observations at the Arou, Daman, and Sidaoqiao sites. For the WRF (DA-ML) approach, the 

three‐site‐averaged RMSDs of daily sensible and latent heat fluxes are 30.16 W m−2 and 48.45 W m−2, respectively, which 
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are 43.74% and 23.98% lower than those of WRF (OL). The results indicated that the WRF (DA-ML) method improved the 

estimation of ET and produced a spatial distribution that was consistent with the results of ETMap. 515 

Compared to the WRF model, the seasonal mean air temperature and specific humidity simulated by the WRF (DA-ML) 

at the nine sites were closer to the station measurements. For the WRF model, the nine-site-averaged root mean square 

deviation (RMSD) of the air temperature and specific humidity estimates was 1.79 K and 1.08 g kg-1. The WRF (DA-ML) 

reduces the aforementioned RMSDs by 21.23% and 24.07%. Strong wetting and cooling effects on vegetated areas were 

observed through the integration of LAI and SM, especially in the midstream oasis. The magnitude of the surface wetting 520 

and cooling effects corresponded well with the differences in the LAI and SM estimates from the WRF (DA-ML) and WRF 

(OL). These results indicate that the wetting and cooling effects gradually decrease from the land surface upwards and are 

replaced by slight warming and drying effects. 

The crops, shelterbelts, and residential areas in the midstream oasis produce a wind shield effect because of the stronger 

surface roughness. The different land surface dynamic and thermal characteristics between the oasis and desert can produce 525 

oasis-desert interactions and generate local circulation. In the lower atmosphere, wet and cold air masses are transferred to 

the surrounding desert by advection, while the dry and hot air over the desert is transferred to the oasis from the upper 

atmosphere. The results show that the integration of LAI and SM will induce water vapor intensification and promote 

precipitation in the upstream regions of the HRB. The WRF (DA-ML) simulation captured the temporal and spatial 

variability of precipitation well and was consistent with the reference data. The results indicate that the 3-km high-resolution 530 

grid can consider topographic information and produce accurate precipitation distribution estimates. 

Data availability 

ERA5 data for the WRF model is freely available via the European Centre for Medium-Range Weather Forecasts 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). The meteorological and flux observations, ETMap, China 

Meteorological Forcing Dataset (CMFD), and atmospheric forcing data (AFD) dataset in the HRB can be accessed from the 535 

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/). The assimilated LAI data are available on the Global Land 

Surface Satellite (GLASS) product (http://www.glass.umd.edu/). Soil moisture products can be downloaded from the Soil 

Moisture Active Passive (SMAP) product (https://appeears.earthdatacloud.nasa.gov/). The original WRF code can be 

obtained from the National Center for Atmospheric Research (NCAR) archive (https://github.com/wrf-model). 
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Appendix A 

Table A1: The computation details about the WRF (OL) and WRF (DA-ML). 

Method Computation time Code Processor Parallelization 

WRF (OL) 76 h Fortran 24-core 2.6 GHz 

Intel Xeon Gold 

Intel MPI 

(100 cores) WRF (DA-ML) 112 h Python and Fortran 

 

Figure A1: The zonal mean vertical velocity and meridional circulation from the WRF (OL) and WRF (DA-ML) models during 

the growing season in 2015 in the downstream oasis. The orange bar represents the oasis area. 555 
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