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Abstract. Deep learning (DL) models are popular but computationally expensive, machine learning (ML) models are old-

fashioned but more efficient. Their differences in hydrological probabilistic post-processing are not clear at the moment. This 

study conducts a systematic model comparison between the quantile regression forest (QRF) model and probabilistic long 

short-term memory (PLSTM) model as hydrological probabilistic post-processors. Specifically, we compare these two models 15 

to deal with the biased streamflow simulation driven by three kinds of satellite precipitation products in 522 sub-basins of 

Yalong River basin of China. Model performance is comprehensively assessed by a series of scoring metrics from the 

probabilistic and deterministic perspectives, respectively. In general, the QRF model and the PLSTM model are comparable 

in terms of probabilistic prediction. Their performance is closely related to the flow accumulation area of the sub-basin. For 

sub-basins with flow accumulation area less than 60,000 km2, the QRF model outperforms the PLSTM model in most of the 20 

sub-basins. For sub-basins with flow accumulation area larger than 60,000 km2, the PLSTM model has an undebatable 

advantage. In terms of deterministic predictions, the PLSTM model should be more preferred than the QRF model, especially 

when the raw streamflow is poorly simulated and used as an input. But if we put aside the model performance, the QRF model 

is more efficient in all cases, saving half the time than the PLSTM model. This study can deepen our understanding of ML and 

DL models in hydrological post-processing and enable more appropriate model selection in practice. 25 

 

Key words: Bias correction, long-short memory network, quantile regression forest, satellite precipitation, streamflow 

simulation. 
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1 Introduction 

By generalizing the physical processes, hydrologists or modelers abstract the hydrological mechanism into a series of 30 

numerical equations, which are collectively referred to as hydrological models (Sittner et al., 1969; Clark et al., 2015; Sivapalan, 

2018; Chawanda et al., 2020; Zhou et al., 2021). Hydrological models are widely used in rainfall-runoff simulation, flood 

forecasting, drought assessment, decision making, and water resources management (Corzo Perez et al., 2011; Tan et al., 2020; 

Wu et al., 2020; Gou et al., 2020,2021; Miao et al., 2022). Depending on the complexity of the model, hydrological models 

can be classified as conceptual (or lumped), semi-distributed, and distributed models (Beven, 1989; Jajarmizadeh et al., 2012; 35 

Khakbaz et al., 2012; Mai et al., 2022). Although current models simulate the hydrological processes well, they still suffer 

from multiple uncertainties, including input uncertainty, model structure and parameter uncertainty, and observation 

uncertainty (Nearing et al., 2016; Herrera et al., 2022). These uncertainties limit the accuracy of hydrological models (Honti 

et al., 2014; Sordo-Ward et al., 2016; Mai et al., 2022). Among them, input uncertainty is considered to be one of the largest 

sources of uncertainty. Precipitation, which is the driver of the water cycle, is the most important factor affecting streamflow 40 

simulation (Kobold and Sušelj, 2005). 

Precipitation information is mainly derived from gauge observations, radar precipitation estimates and satellite 

precipitation retrievals (Sun et al., 2018). Gauge stations and radar are limited by the station network density and topography, 

especially in remote areas such as mountainous regions and high altitudes (Sun et al., 2018; Chen et al., 2020). Satellite 

precipitation estimation is the most promising hydrological model input with high spatial and temporal resolution at present 45 

(Jiang and Bauer-Gottwein, 2019; Dembélé et al., 2020). Several research institutions have developed various satellite 

precipitation estimation products with different data sources and algorithms, such as the Integrated Multi-satellitE Retrievals 

for Global Precipitation Measurement Mission (GPM IMERG) products jointly developed by the National Aeronautics and 

Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) (Hou et al., 2013; Huffman et al., 2015), 

the Global Satellite Mapping of Precipitation (GSMaP) products developed by JAXA (Kubota et al., 2007, 2020), and the 50 

PDIR-Now product developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of 

California, Irvine (UCI) (Nguyen et al., 2020a, 2020b). However, there are still uncertainties in these products due to factors 

such as data sources and algorithms (Tian et al., 2009; Zhang et al., 2021a). And, the uncertainties are even amplified during 

the hydrological simulation (Cunha et al., 2012; Falck et al., 2015; Zhang et al., 2021b). This greatly limits the capability of 

satellite precipitation products for meteorological and downstream hydrological applications. 55 

The current study addresses the uncertainty of satellite precipitation input in hydrological modeling in two ways, namely, 

pre-processing and post-processing (Wang et al., 2009; Ye et al., 2015; Li et al., 2017; Dong et al., 2020; Shen et al., 2021; 

Zhang et al., 2022a). Here, pre-processing and post-processing we use the terminology of the hydrologic ensemble prediction 

experiment (HEPEX), where pre- and post-processing are distinguished before and after using the hydrological model 

(Schaake et al., 2007). That is, the precipitation input to the hydrological model and the streamflow output from the 60 

hydrological model are processed separately (Li et al., 2017). Hydrological pre-processing, also known as precipitation post-
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processing, is commonly used to obtain bias-corrected precipitation estimates by directly bias-correcting or fusing satellite 

precipitation estimates and gauge observations (Xu et al., 2020; Zhang et al., 2022a). The pre-processing mainly reduces the 

precipitation input uncertainty. The hydrological post-processing mainly uses the observed streamflow to correct the 

streamflow simulation or prediction (Ye et al., 2014; Tyralis et al., 2019). Hydrological post-processing not only reduces the 65 

effect of input uncertainty, or further reduces input uncertainty after hydrological pre-processing, but also reduces uncertainty 

caused by hydrological model structure and model parameters (Parrish et al., 2012; Kaune et al., 2020). Both hydrological pre-

processing and post-processing can be used to generate predictions in a deterministic or probabilistic way. Probabilistic 

hydrological post-processing is the objective of this study. 

In addition to the skewed distribution and heteroscedasticity, the streamflow time series have a strong autocorrelation 70 

(Herrera et al., 2022). According to this feature, there are two main types of methods used to perform hydrological post-

processing. One is the autoregressive model based on residuals. Its main idea is to use the simulation residuals as forecast 

factors for the error update. Typical methods are error reduction models based on autoregression (Li et al., 2015, 2016; Zhang 

et al., 2018). Another way is to use the idea of model output statistics (MOS) (Wang et al., 2009; Bogner and Pappenberger, 

2011). That is, the simulated streamflow is directly used as a forecasting factor to establish statistical relationships between 75 

simulations and observations. A representative approach of this type is the general linear model post-processor (GLMPP) 

(Zhao et al., 2011). 

In recent years, machine learning (ML) and deep learning (DL) algorithms have become powerful tools for hydrological 

modeling (Sit et al., 2020; Zounemat-Kermani et al., 2021; Shen and Lawson, 2021; Fang et al., 2022). For example, Long-

short memory (LSTM) models have been used to simulate streamflow in several gauged and ungauged basins in North America 80 

(Kratzert et al., 2018, 2019), the United Kingdom (Lees et al., 2021), and Europe (Nasreen et al., 2022). In addition to direct 

streamflow modeling, ML and DL algorithms can also be used as powerful hydrological post-processors for bias correction of 

streamflow simulation. For example, Frame et al. (2021) used LSTM to build a post-processor to correct the U.S. National 

Hydrologic Model and validated it on the CAMELS dataset containing 531 North American watersheds. The results showed 

that the LSTM post-processing significantly enhanced the output of the raw national hydrological model (Frame et al., 2021). 85 

Shen et al. (2022) used the random forest as a hydrological post-processor to enhance the simulation performance of the large-

scale hydrological model PCR-GLOBAL model at three hydrological stations in the Rhine basin. Compared to deterministic 

forecasts, probabilistic forecasts can provide more uncertainty information to improve our risk management. In terms of 

probabilistic modeling, Tyralis et al. (2019) compared the usability of the statistical model (e.g., quantile regression) and the 

machine learning algorithm (e.g., quantile regression forests) as hydrological post-processors on the CAMELS dataset. And 90 

the results showed that the quantile regression forests model outperformed the quantile regression model. Zhu et al. (2020) 

investigated the applicability of LSTM for probabilistic hydrological forecasting with a Gaussian process model. Similarly, 

Althoff et al. (2021) quantified the uncertainty of LSTM for hydrological modeling using stochastic deactivation of neurons. 

Li et al. (2021, 2022) quantified the uncertainty of LSTM for hydrological modeling using variational inference from a 

Bayesian perspective. All these individual models can quantify the uncertainty information. More recently, Klotz et al. (2022) 95 
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compared the application of dropout and three Gaussian mixture distribution models for uncertainty estimation in LSTM 

rainfall-runoff modeling. They found that the mixture density model outperformed the random dropout model, providing more 

reliable information on uncertainty. Both ML models and DL models have been successfully practiced in hydrological 

probabilistic post-processing. And some DL models have been compared and analyzed. However, there is no comparison 

between ML models and DL for hydrological probabilistic post-processing. DL models, while powerful, are often criticized 100 

for requiring large computational expenditures and time costs. ML models are more efficient but may perform poorly in 

comparison. However, we still do not know their differences in the field of hydrological probabilistic post-processing, such as 

the scope of application, model performance and computational efficiency. 

Therefore, in this study, we attempt to fully compare the comprehensive performance of the two most widely used ML 

and DL models for streamflow probabilistic post-processing applications. The two models chosen are quantile regression 105 

forests (QRF) and probabilistic LSTM (PLSTM), respectively. We aim at sub-basin-scale daily streamflow probabilistic post-

processing. In particular, a full model comparison is performed in a complex basin with 522 nested sub-basins in southwest 

China. Three sets of global satellite precipitation products are applied to generate uncorrected streamflow simulations. They 

are also used for single-feature and multi-feature input analysis. A variety of evaluation metrics are used to assess the proposed 

model performance, including probabilistic metrics for multi-point prediction and deterministic metrics for single-point 110 

prediction. The relationship between model performance and basin size is also analyzed according to the difference in the flow 

accumulation area of the sub-basin. This study can deepen our understanding of ML and DL models, and enable targeted model 

selection in practice. 

2 Study area and Data 

2.1 Study area 115 

The Yalong River (Fig. 1a) is a major tributary of the Jinsha River, which belongs to the upper reaches of the Yangtze 

River. The Yalong River basin is located between the Qinghai-Tibet Plateau and the Sichuan Basin. The Yalong River basin 

has a long and narrow shape (96° 52’–102° 48’ E, 26° 32’–33° 58’ N), with snow-capped mountains scattered in the upper 

reaches, surrounded by high mountain valleys in the middle reaches, and flowing into the Jinsha River in the lower reaches. It 

spans seven dimensional zones with complex climate types. The total length of the basin is about 1,570 km, and the total area 120 

is about 130,000 km2. The mean annual precipitation in the upstream and downstream is about 600 mm and 1,000 mm, 

respectively.  

Following the watershed division method of Du et al. (2017), the whole Yalong River basin is divided to serval sub-

basins with different catchment area. The key to sub-basin delineation is the minimum catchment area threshold, which is 

related to the total area of the basin, the model architecture complexity, the time scale and step size, the spatial resolution of 125 

the input data. Taking the above into consideration, the threshold is set to 100 km2 in this study. As a result, the Yalong River 
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basin is divided into 522 sub-basins (Fig. 1b). The location, elevation, area, flow accumulation area and flow direction of each 

sub-basin can be found in Table S1. 

 

Figure 1. (a) Study area and (b) 522 sub-basins (Zhang et al., 2022a). 130 

2.2 Data 

2.2.1 Gauge precipitation observations 

The 0.5-degree, daily precipitation observation data were obtained from the National Meteorological Information Center 

of the China Meteorological Administration (CMA-NMIC). The product was produced by interpolating gauge data from more 

than 2000 stations across China. This product has been verified to have high accuracy and has been widely applied to a variety 135 

of studies such as streamflow simulation, drought assessment, and water resources management (Gou et al., 2020, 2021; Zhang 

and Ye, 2021; Miao et al., 2022). In this study, the grid precipitation observations are used as a reference for the satellite-based 

precipitation products. Using the inverse distance weighting (IDW) method, they are interpolated to each sub-basin. And due 

to limited hydrological observatories, the streamflow of each sub-basin obtained from the calibrated hydrological model driven 
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by this product is also used as a reference for the satellite precipitation-driven streamflow simulation. Errors caused by factors 140 

such as interpolation are ignored. The selected study period is from January 1, 2003 to December 31, 2018. 

2.2.2 Global satellite precipitation estimates  

Three sets of the latest quasi-global satellite precipitation estimate products are selected. The first one is the Precipitation 

Estimate from Remotely Sensed Information using Artificial Neural Networks-Dynamic Infrared Rain Rate near real-time 

(PDIR-Now, hereafter, PDIR), which solely relies on infrared data. Therefore it has a very high spatiotemporal resolution (0.04 145 

degrees and 1 hour) and a very short delay time (1 hour), and it is a near real-time product without bias correction. The other 

two products are bias-adjusted products, IMERG Final Run version 6 (hereafter, IMERG-F) (Huffman et al., 2015, 2019) and 

Gauge-calibrated Global Satellite Mapping of Near real-time Precipitation product (GSMaP_Gauge_NRT_v6, hereafter, 

GSMaP) (Kubota et al., 2007, 2020), with a spatial resolution of 0.1 degrees. The selected study period is also from January 

1, 2003 to December 31, 2018. All these products are aggregated to the daily scale and interpolated to each sub-basin using 150 

IDW method. The three precipitation products represent different research institutions and algorithms. Also, they have been 

proven to have relatively good accuracy in our previous study (Zhang et al., 2021b). It should be noted that these products are 

selected as examples only and any other precipitation product can be used as an alternative. 

2.2.3 Other data 

In addition to precipitation observations and satellite precipitation products, other meteorological data, basin attributes, 155 

and streamflow observations are needed for hydrological modeling. The meteorological data (including temperature, wind 

speed, etc.) were also obtained from the CMA-NMIC, and they are used to drive the hydrological model together with 

precipitation. The streamflow observations (January 1, 2006 to December 31, 2015) were collected from four gauged 

hydrological stations in the Yalong River basin from the upstream to the downstream, namely Ganzi (GZ), Daofu (DF), Yajiang 

(YJ), and Tongzilin (TZL). These data were obtained from the Hydrological Yearbook of the Bureau of Hydrology. The 160 

National Aeronautics and Space Administration Shuttle Radar Topographic Mission (NASA SRTM) digital elevation model 

(DEM) data with a spatial resolution of 90 m was obtained from the Geospatial Data Cloud of China. The 1 km soil data was 

clipped from the China Soil Database issued by the Tibetan Plateau Data Center of China. The 1km land use data was obtained 

from the Resource and Environment Science and Data Center provided by the Institute of Geographical Sciences and Resources, 

Chinese Academy of Sciences. 165 

3 Methodology 

3.1 Overview 

The framework of this study is shown in Fig. 2. We adopt a two-stage streamflow post-processing approach. In the first 

stage, the hydrological model is calibrated and validated by hydrological station observations (Sect. 3.2.1). Then, we use the 
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observed precipitation to drive the calibrated hydrological model to generate streamflow reference for each sub-basin (Sect. 170 

3.2.2). And we use satellite precipitation to drive the model to generate uncorrected (raw) streamflow simulations (Sect. 3.2.3). 

In the second stage, we perform probabilistic post-processing of streamflow using the QRF model and the PLSTM model (Sect. 

3.3). In the last subsection, we describe the scoring metrics used in this study (Sect. 3.4). 

 

Figure 2. The framework of this study. 175 

3.2 Streamflow reference and uncorrected streamflow simulations 

3.2.1 Hydrological model setup, calibration and verification 

The purpose of this study is to post-process the streamflow simulations for all sub-basin outlets, and therefore 

corresponding references are needed. Due to the limited streamflow observations, we use streamflow simulations from the 

hydrological model driven by observed precipitation as a reference. To ensure that the results are reliable, we first use the 180 

collected streamflow observations from four hydrological stations to calibrate and validate the hydrological model.  

We choose a hydrological model named distributed time-variant gain model (DTVGM) for rainfall-runoff simulation. 

The DTVGM is a distributed, process-based model that uses the rainfall-runoff nonlinear relationship (Xia, 1991; Xia et al., 

2005). In each sub-basin, the runoff is calculated according to water balance. The kinematic wave equation is used for river 
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routing (Ye et al., 2013). The snowmelt process in the high-altitude regions of the basin is simulated by the degree-day method  185 

(Bormann et al., 2014). A detailed description of the model can be found in (Xia et al., 2005; Ye et al., 2010). 

Based on the length of the streamflow observation collected from hydrological stations (2006-2014, 9 years in total), we 

divide them into three periods: a one-year spin-up period (2006), a four-year calibration period (2007-2010), and a four-year 

validation period (2011-2014). We use Nash-Sutcliffe efficiency (NSE) as the objective and regionalize the parameters from 

upstream to downstream using manual tuning, while ensuring that the water balance coefficient converges to 1. The model 190 

calibration and validation are shown in Fig. S3. The NSE for the four gauged hydrological stations (GZ, DF, YJ, and TZL) are 

0.89, 0.91, 0.93, 0.79, and 0.79, 0.86, 0.87, and 0.59 for the calibration and validation periods, respectively. The relatively 

poor performance of TZL during the validation period (2011-2014) is due to the downstream reservoir construction that 

changes the natural streamflow process. The used hydrological model does not include a reservoir regulation module, but we 

believe that the model is able to reproduce the natural runoff process well, so the model is reliable. More importantly, the 195 

observed precipitation-driven streamflow simulation is viewed as a reference. And in the post-processing stage, only the 

precipitation input is changed to compare the performance of the post-processing model to resolve the input uncertainty. 

Therefore, the errors caused by the model structure and model parameters are neglected. 

3.2.2 Producing observed precipitation-driven streamflow simulation 

After model calibration and validation, to ensure the number of data samples for data-driven post-processing methods, 200 

we use the observed precipitation from 2003 to 2018 to drive the hydrological model. A 16-year streamflow simulation 

reference data in 522 sub-basin outlets is finally obtained. Streamflow from different sub-basins can also reflect hydrological 

processes of diverse climate types and scales. 

3.2.3 Producing satellite precipitation-driven uncorrected streamflow simulation 

The uncorrected streamflow simulations are also needed before post-processing. Here we use three different satellite 205 

precipitation products (2003-2018) to drive the hydrological model separately to obtain three different streamflow simulations 

(PDIR, IMERG-F and GSMaP). In addition, the equal weight average of the three outputs can be seen as a multi-model (All) 

simulation. We do this for two considerations, first, the model performance of two different post-processing models can be 

adequately compared in three different contexts. Secondly, the multi-model inputs can be used to compare the effects of model 

averaging and multi-dimensional features on the post-processing models. 210 

3.3 Hydrological post-processing procedure 

In this section, we present the two probabilistic post-processing models compared in this study. Flowcharts of the two 

post-processing models can also be found in the bottom panel of Fig. 2. The principles of the two models are briefly described 

in Sect. 3.3.1 and Sect. 3.3.2. Model setup, including feature selection, hyperparameters and experiments are in Sect. 3.3.3. 

The probabilistic members are generated by the post-processing model in Sect. 3.3.4. 215 
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3.3.1 QRF 

Random forests (RF) is an ensemble machine learning (ML) algorithm based on decision trees (Li et al., 1984; Breiman, 

2001). Three steps are required to implement the RF model. First, we start by splitting the total samples and sampling K 

subsamples for K individual decision trees. Then each decision tree makes its own prediction. Finally, multiple decision trees 

are averaged or voted to get the final prediction.  Compared to decision trees, random forests provide two additional 220 

randomness: (1) random sampling of samples, and (2) parallel integration of multiple decision trees. Therefore, the random 

forests can correct the inductive preferences induced by individual decision trees from falling into local optima, thus effectively 

preventing overfitting.  

However, the prediction made using RF regression is the conditional mean of the target variable. This means that the RF 

model will ignore the entire conditional probability distribution. By introducing quantiles, the RF model produces a variant of 225 

quantile regression forests (QRF) (Meinshausen and Ridgeway, 2006). The QRF model considers the distribution of the entire 

data by selecting different quantiles, and therefore is able to generate probabilistic members. A more detailed description of 

RF and QRF models can be found in Zhang et al. (2022a). QRF model has been widely used in several studies (Taillardat et 

al., 2016; Evin et al., 2021; Kasraei et al., 2021; Tyralis et al., 2019; Tyralis and Papacharalampous, 2021). 

3.3.2 PLSTM 230 

Long short-term memory (LSTM) network is one of the most famous recurrent neural networks (RNNs), and it is a 

representative of sequential deep learning (DL) algorithms (Staudemeyer and Morris, 2019). RNN models are designed to 

effectively utilize temporal information and have a wide range of applications in speech recognition and speech translation 

(Hori et al., 2018). However, the original RNN model is prone to gradient vanishing as the time series grows, leading to model 

failure to converge. LSTM effectively solves the gradient problem by introducing gate functions. The LSTM model has been 235 

widely used in various fields such as rainfall-runoff simulation and soil moisture simulation (Fang et al., 2017, 2022; Kratzert 

et al., 2018, 2019; Fang and Shen, 2020). The formulas of LSTM can be found in the previous studies (Fang et al., 2017; 

Kratzert et al., 2018; Staudemeyer and Morris, 2019). 

Similar to the RF model, the LSTM model can only make deterministic predictions and cannot provide probabilistic 

information. There are currently several methods in the literature to quantify the uncertainty of LSTM and thus give 240 

probabilistic predictions. In a recent study, Klotz et al. (2022) compared four different methods, including three mixture density 

networks (MDNs) and one Monte Carlo dropout (MCD) method. A mixture density is a probability density function created 

by combining multiple densities. In their studies, three forms of MDNs with different levels of complexity were adopted, 

namely, Gaussian mixture models (GMMs), Countable mixture of asymmetric Laplacians (CMAL) and Uncountable mixtures 

of asymmetric Laplacians (UMAL). MCD randomly changes the number of neurons through multiple experiments to obtain 245 

probabilistic outputs. The complexity of CMAL is between that of GMM and UMAL, and it achieved the best performance in 
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the study of Klotze et al. (2022). Therefore, we choose CMAL as a representative of PLSTM in this study. A detailed 

description of CMAL can be found in Klotz et al. (2022) and will not be repeated in this study. 

3.3.3 Model setup and experimental design 

Both post-processing models require input features. Here, to maintain the low complexity of the model, we select only 250 

the uncorrected streamflow as input features. Considering the autocorrelation of the streamflow (see Fig. S2), for the post-

processing on day t (Qt), we select the simulated streamflow for the first 9 days (𝑄௧ିଽ
௦, 𝑄௧ି଼

௦,…, 𝑄௧ିଵ
௦) and the simulated 

streamflow of that day (𝑄௧
௦) as the inputs. In the RF model, the input features are fed by temporal embedding. And in the 

LSTM model, the seq-length is set to 9. For both models, we select the streamflow reference on day t (𝑄௧
) as the target. In 

addition, since we used three different satellite precipitation products, the experiments are divided into a single-model 255 

experiment and a multi-model experiment (All). The information of each experiment is summarized in Table 1. 

Table 1. Experimental design. 

Streamflow simulation Model Input feature Dimension Target 

PDIR 
QRF 

𝑄௧ିଽ
௦, 𝑄௧ି଼

௦,…, 𝑄௧
௦

10 

𝑄௧
 

PLSTM 1 

IMERG-F 
QRF 10 

PLSTM 1 

GSMaP 
QRF 10 

PLSTM 1 

All 

(PDIR, IMERG-F, GSMaP) 

QRF 30 

PLSTM 3 

The training period is from 1 January 2003 to 31 December 2010. The validation period is from 1 January 2011 to 31 

December 2014. And the test period is from 1 January 2015 to 31 December 2018. 

We implement the QRF model using pyquantrf package (Jnelson18, 2022). We tuned three sensitive hyperparameters in 260 

the QRF model through grid search, finally set the number of trees (K) is 70, the number of non-leaf node splitting features is 

10, and the number of samples used for leaf node predictions (Nleaf) is 10. The other hyperparameters are set to default values.  

We implement the PLSTM model using NeuralHydrology package (Kratzert et al., 2022a). We follow the model 

architecture of Klotz et al. (2022), which contains an LSTM layer and a CMAL layer. Unlike the QRF model, the input data 

of the PLSTM model needs to be normalized. Here, by several comparisons, we use the normal quantile transform (Fig. S3). 265 

The model hyperparameters include the number of neurons in the LSTM layer (NLSTM), the number of components of the 

mixture density function (NMDN), the dropout rate, the learning rate, the epoch, and the batch size. For NMDN, we set it to 3, 
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which is the same as Klotz et al. (2022). We fine-tuned the other hyperparameters. The final learning rate is 0.0001, the dropout 

is 0.4, the epoch is 100, the batch size is 256, and the NLSTM is 256. 

Our computing platform is a workstation configured with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.9GHz and an 270 

RTX3090 GPU with 24G video memory. It is important to note that we model each sub-basin separately. This is because the 

PLSTM model generates probabilistic members with random sampling exceeding the GPU's video memory (see Sect. 3.3.4 

and Sect. 5.3). For consistency, the QRF model is also modelled locally. It takes approximately 12 hours to complete all 

PLSTM experiments. It takes about 6 hours to complete all QRF experiments. 

3.3.4 Producing probabilistic members 275 

For the QRF model, we equally sample 100 quantiles (0.005 to 0.995) for each basin and time step and bring them directly 

into the model to obtain the final probabilistic (100) members. For the PLSTM model, we first sample from the mixture 

distribution to get 10,000 sample points for each basin and time step. We then take the same 100 quantiles (0.005 to 0.995) 

from these sample points, remap them to original streamflow space using inverse quantile normal transformation, and finally 

produce the probabilistic (100) members. 280 

3.4 Performance measures 

We evaluate the two post-processing models from both probabilistic and deterministic perspectives. The scoring metrics 

are presented in Sect. 3.4.1 and Sect. 3.4.2, respectively. 

3.4.1 Probabilistic (multi-point) metrics 

The evaluation of probabilistic post-processing uses metrics that describe the accuracy, reliability, and sharpness. 285 

1) Continuous rank probability score (CRPS) 

The continuous rank probability score (CRPS) is widely used in probabilistic evaluations (Bröcker, 2012). For given 

probabilistic members, the CRPS calculates the difference between the cumulative distribution function (CDF) of the 

probabilistic members and the observation. It can be used for a comprehensive assessment of the accuracy, reliability and 

sharpness of probabilistic forecasts (Bröcker, 2012). The CRPS is also the basic metric for evaluating the goodness of 290 

probabilistic outputs in this study. For different thresholds focused on the evaluation of extreme events, we also chose threshold 

weighted CRPS (hereafter twCRPS, Gneiting and Ranjan, 2011; Zhao et al., 2022). The two metrics can be expressed as: 

𝐶𝑅𝑃𝑆 ൌ  ൫𝐹ሺ𝑄௧ሻ െ 𝑂ሺ𝑄௧ሻ൯
ଶ

𝑑𝑃௧
ஶ

ିஶ
          ሺ1ሻ 

𝑡𝑤𝐶𝑅𝑃𝑆 ൌ  ൫𝐹ሺ𝑄௧ሻ െ 𝑂ሺ𝑄௧ሻ൯
ଶ

𝜔ሺ𝑄ሻ𝑑𝑄௧
ஶ

ିஶ
         ሺ2ሻ 
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where 𝜔ሺ𝑄ሻ is a threshold weighted function and is calculated based on the threshold q (80%, 90% and 95% in this study). 295 

When Q ≥ q (or Q < q), 𝜔ሺ𝑄ሻ equals 1 (or 0) if. 𝑃௧ is a streamflow reference threshold; 𝑂ሺ𝑄௧ሻ is the CDF obtained from the 

probabilistic outputs for day t; 𝐹ሺ𝑄௧ሻ is the Heaviside function, and it can be expressed as: 

𝑂ሺ𝑄௧ሻ ൌ ൜
1, 𝑂  𝑄௧
0, 𝑂  𝑄௧

           ሺ3ሻ 

where 𝑂 is ith probabilistic members, and 𝑄௧ is the corresponding reference. The better performing model has both metrics 

(CRPS and twCRPS) closer to 0.  300 

We also used the CRPS score (CRPSS) to define the relative differences between the two post-processing models. For 

example, for QRF and PLSTM, the CRPSS can be calculated using the following Eq. (4): 

𝐶𝑅𝑃𝑆𝑆ொோி/ௌ்ெ ൌ ቀ1 െ
ோௌೂೃಷ

ோௌುಽೄಾ
ቁ ൈ 100%        (4) 

The CRPSS is greater than 0, indicating that the QRF model is better than the PLSTM model; conversely, the PLSTM 

model is better than the QRF model. 305 

2) Reliability diagram 

The reliability diagram is used to assess the conformity between the predicted probability and its observed frequency 

(Hartmann et al., 2002). A perfectly reliable prediction will match the diagonal line (1:1). A forecast point above (or below) 

the diagonal line indicates an underestimation (or overestimation). Here again, three thresholds (80%, 90%, and 95%) are 

chosen to better evaluate the reliability of heavy flood events (Yang et al., 2021). 310 

3) Sharpness 

Predict intervals are often used to describe the sharpness of probabilistic forecasts (Gneiting et al., 2007). The 50% and 

90% quantile intervals were chosen in this study. In addition, we calculated the coverage of the predict intervals over the 

observations. And we also selected serval metrics used in previous study (Klotz et al., 2022), including Mean absolute deviation 

(MAD), Standard deviation (STD) and Variance (VAR). 315 

3.4.2 Deterministic (single-point) metrics 

The widely used and standard scoring metrics (e.g., Nash-Sutcliffe efficiency, NSE and Kling-Gupta efficiency, KGE) 

are applied for assessing deterministic hydrological modeling (Nash and Sutcliffe, 1970; Kling et al., 2012). Two components 

(Pearson correlation coefficient, PCC and relative bias, RB) of NSE are also calculated to describe the consistency and 

systematic bias of the difference between simulation and observations, respectively. 320 

In addition, due to the seasonality, four metrics are selected to describe the different flow regimes, including the peak 

flow bias (FHV, Eq. (A3) in Yilmaz et al., 2008) (Yilmaz et al., 2008), the low-flow bias (FLV, Eq. (A4) in Yilmaz et al., 

2008), the flow duration curve bias (FMS, Eq. (A2) in Yilmaz et al., 2008), and mean peak time lag bias (in days) (PT, 

Appendix D in Kratzert et al., 2021). 
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4 Results 325 

4.1 Uncorrected streamflow simulations 

Figure 3 shows the spatial performance (NSE) of the streamflow simulations driven by three different satellite 

precipitation products and multi-model outputs equal-weighting averaging (All). Among the three satellite precipitation 

products, IMERG-F achieves the best model performance, followed by PDIR and GSMaP. PDIR performs poorly in the 

upstream and outlet regions of the basin. GSMaP differs significantly from streamflow reference in almost all sub-basins. 330 

Direct simple model averaging (SMA), which introduces biased information of PDIR and GSMaP, does little to improve model 

performance. 

 

Figure 3. The performance (Nash-Sutcliffe efficiency, NSE) of uncorrected (raw) streamflow simulation. The closer the NSE is to 1, the 
better the model performs. PDIR is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 335 

4.2 Probabilistic (multi-point) assessment 

The flow magnitudes in different sub-basins vary widely. Therefore, when we present the results for all sub-basins, we 

normalize the results for each sub-basin separately according to the probabilistic membership of all experiments. By doing so, 

the probabilistic members of all sub-basins are unified to the range of 0 to 1. 

4.2.1 CRPS and twCRPS overall performance 340 

In general, the performance (CRPS and twCRPS) of the QRF and PLSTM models is similar for all threshold conditions 

(Fig. 4). However, it is worth noting that the QRF model has more outliers in contrast to the PLSTM model. For different 

precipitation-driven streamflow inputs, the post-processing performance of the bias-corrected product (e.g., IMERG-F) is 

better than that of the near-real-time product (e.g., PDIR). In the category of bias-corrected products, IMERG-F gives better 

results than GSMaP. This indicates the value of bias correction of precipitation products as a pre-processing tool for 345 

hydrological simulations. At the same time, high-quality precipitation forcing is helpful for both streamflow simulation as well 

as probabilistic post-processing. The multi-model results (All) are similar to the best-performing single-model results 

https://doi.org/10.5194/hess-2022-377
Preprint. Discussion started: 21 November 2022
c© Author(s) 2022. CC BY 4.0 License.



14 
 

(IMERG-F). However, they are slightly worse than IMERG-F above the 90% threshold This suggests that the input of multiple 

models, especially when the single model performs poorly, may have a negative effect on the post-processing. 

 350 

Figure 4. The continuous rank probability score (CRPS) and twCRPS overall performance. The better performing model has both metrics  
closer to 0. PDIR is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 

4.2.2 CRPS spatial distribution 

In addition to their overall performance (Fig. 4), the QRF and PLSTM models exhibit similar spatial distributions (Fig. 

5). Compared to PDIR and GSMaP, IMERG-F and multi-model results achieve relatively good performance in most of the 355 

522 sub-basins. PDIR performs poorly in the middle and lower reaches of the basin. The third row of the figure (Fig. 5) shows 

that the difference between QRF and PLSTM is mostly within 10%. However, the introduction of multiple models increases 

the gap between them. 
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Figure 5. The continuous rank probability score (CRPS) and CRPS score (CRPSS) spatial distributions. The closer the CRPS  is to 0, the 360 
better the model performs. The CRPSS is greater than 0, indicating that the QRF model performs better than PLSTM; conversely, the 

PLSTM model performs better than QRF. PDIR is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 

4.2.3 The relationship between model performance and flow accumulation area 

The spatial variation of CRPS and CRPSS seems to be irregularly and scattered distributed. To further investigate the 

model difference, we analyze the relationship between CRPS, CRPSS and the flow accumulation area (FAA) of the sub-basin. 365 

The results are presented in Fig. 6. We can observe the interesting phenomenon that there is a scale effect in the performance 

of different models. In the sub-basins with flow accumulation area (FAA) less than 20,000 km2, the performance of QRF and 

PLSTM is disorderly scattered, with high and low CRPS values (Fig. 6a). But, as the flow accumulation area (FAA) of the 

sub-basin increases, the value of CRPS stabilizes when the FAA is greater than 20,000 km2.  
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 370 

Figure 6. The relationships between (a) continuous rank probability score (CRPS), (b) CRPS score (CRPSS) and (c) flow accumulation 
area (FAA). The closer the CRPS is to 0, the better the model performs. The CRPSS is greater than 0, indicating that the QRF model is 

better than the PLSTM model; conversely, the PLSTM model is better than the QRF model. PDIR is a near real-time product; IMERG-F 
and GSMAP are bias-adjusted products. 

In addition, there is also a very clear dividing line between the performance of the QRF and LSTM models (Fig. 6b). If 375 

we divide this scatter plot into four quadrants, quadrants 1,2 represent the QRF model better than the PLSTM model (blue 

number), and quadrants 3,4 represent the QRF model worse than the PLSTM model (red number). When the flow accumulation 

area (FAA) of the sub-basin is less than 60,000 km2, the QRF model is a little more dominant than the PLSTM model. But in 

sub-basins with flow accumulation area (FAA) greater than 60,000 km2, the PLSTM model shows overwhelming performance. 

This feature is most pronounced in the GSMaP-driven streamflow post-processing, followed by multi-model (All), IMERG-F 380 

and PDIR. 
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4.2.4 Reliability diagrams 

To distinguish the difference in model performance between the PLSTM model and the QRF model as the flow 

accumulation area (FAA) changes, we split the calculation of the reliability diagrams into two parts, one for the FAA less than 

60,000 km2 (Fig. 7) and one for the FAA greater than 60,000 km2 (Fig. 8). 385 

 

Figure 7. Reliability diagrams (a-c) and deviation (d-f) from 1:1 line between different models for sub-basins with flow accumulation area 
(FAA) less than 60,000 km2. PDIR is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 

Figure 7 shows the reliability plots of different models for sub-basins with flow accumulation area (FAA) less than 60,000 

km2 and their deviations from the diagonal (1:1 line). Also, we selected 80%, 90% and 95% quartiles of the observation as the 390 

threshold conditions, respectively. And the reliability plots are calculated by combing all streamflow simulations from 495 

sub-basins with FAA less than 60,000 km2. In general, the two post-processing methods perform close to each other. The QRF 

model (solid line) is slightly better than PLSTM (dashed line), with a relatively smaller deviation from the diagonal (1:1 line). 

All experiments have high reliability except for the one with PDIR-driven streamflow simulation as input. As the threshold 
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increases, the deviation of all experiments from the diagonal increases and the reliability level decreases. Among the different 395 

experiments, IMERG-F is the best. Multi-model (All) is close to IMERG-F but slightly worse. But they both show some degree 

of underestimation. The GSMaP is the second best and the PDIR the worst. The GSMaP and PDIR show some degree of 

overestimation. These results can also explain the differences in CRPS of different models. 

 

Figure 8. Same with Fig. 7, but for sub-basins with flow accumulation area (FAA) larger than 60,000 km2. PDIR is a near real-time 400 
product; IMERG-F and GSMAP are bias-adjusted products. 

Figure 8 shows the reliability plots of different models for sub-basins with flow accumulation area (FAA) larger than 

60,000 km2 and their deviations from the diagonal (1:1 line). Also, we selected 80%, 90% and 95% quartiles of the observation 

as the threshold conditions, respectively. And the reliability plots are calculated by combing all streamflow simulations from 

27 sub-basins with FAA greater than 60,000 km2. In general, the two post-processing methods show distinguishable differences 405 

in this case. The PLSTM (dashed line) is slightly better than QRF (solid line), possessing more points distributed around the 

diagonal (1:1 line). However, both models exhibit greater uncertainty in this case relative to the FAA of sub-basins smaller 

than 60,000 km2 (Fig. 7). As the threshold increases, the deviation of all experiments from the diagonal increases, the curve 
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becomes more oscillatory, and the reliability level is greatly reduced, especially in extreme cases (Fig. 8f, 95% quantile 

threshold). Similar to Fig. 7, among the different experiments, IMERG-F is still the best and Multi-model (All) is close to 410 

IMERG-F, but slightly worse. They all show more underestimation. The GSMaP is the second best and PDIR the worst. Except 

a few points, they show more overestimation. 

4.2.5 Sharpness 

In order to compare the model performance of PLSTM and QRF more comprehensively, this section further calculates 

the sharpness metrics for different experiments. The selected sharpness metrics include: mean absolute deviation (MAD), 415 

standard deviation (STD), variance (VAR), distance from 25% to 75% quantile (DIS25-75), distance from 5% to 95% quantile 

(DIS5-95), coverage of observations by 25% to 75% quantile (CO25-75), and coverage of observations by 5% to 95% quantile 

(CO5-95). In addition, to remove the effect of different flow regimes, all data are divided into a high flow season (May to 

October) and a low flow season (November to April). Sharpness metrics are calculated separately for each sub-basin. The 

mean results for all 522 sub-basins are presented in Table 2. 420 

Table 2. Sharpness metrics (Mean absolute deviation, MAD; Standard deviation, STD; Variance, VAR; Distance between the 0.25 and 
0.75 quantiles, DIS25-75; Distance between the 0.05 and 0.95 quantiles, DIS5-95; Coverage of observations between the 0.25 and 0.75 

quantiles, CO25-75; Coverage of observations between the 0.05 and 0.95 quantiles, CO5-95) for different models. The bold numbers indicate 
better performance in each group. 

Flow 
seasons 

Metric 
PDIR IEMRG-F GSMaP All 

QRF PLSTM QRF PLSTM QRF PLSTM QRF PLSTM

High-flow 
(May–Oct.) 

MAD 0.046 0.048 0.047 0.052 0.050 0.054 0.045 0.047 

STD 0.109 0.112 0.133 0.139 0.129 0.133 0.129 0.134 

VAR 0.013 0.014 0.020 0.021 0.018 0.019 0.018 0.020 

DIS25-75 0.0714 0.0703 0.0753 0.0757 0.0781 0.0785 0.0710 0.0687

DIS5-95 0.184 0.194 0.192 0.215 0.206 0.223 0.184 0.195 

CO25-75 (%) 51.5 50.1 76.9 76.0 64.2 62.8 73.3 71.4 

CO5-95 (%) 100 100 100 100 100 100 100 100 

Low-flow 
(Nov.–Apr.) 

MAD 0.0085 0.0100 0.0073 0.0094 0.0088 0.0104 0.0064 0.0069

STD 0.0264 0.0284 0.0280 0.0301 0.0305 0.0323 0.0258 0.0262

VAR 8.32 9.48 9.10 10.47 10.40 11.52 7.71 7.86 

DIS25-75 0.0121 0.0124 0.0099 0.0112 0.0121 0.0122 0.0086 0.0086

DIS5-95 0.033 0.039 0.029 0.037 0.036 0.042 0.026 0.027 

CO25-75 (%) 72.2 75.1 88.8 90.2 69.1 73.9 79.6 79.2 

CO5-95 (%) 100 100 100 100 100 100 100 100 

As can be found in Table 2, the QRF model obtained narrower quantile intervals for both high and low flows in the 425 

average of all 522 sub-basins, representing a higher sharpness of the QRF model. It is noteworthy that the QRF model performs 

both a narrower quantile interval and coverage of observations in the high-flow season. For the coverage of observations from 

the 25th to the 75th percentile (CO25-75), the QRF model is on average 1.5% higher than the PLSTM. However, the wider 
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quantile interval of PLSTM yields higher coverage of observations in the low-flow season. For the 25% to 75% quantile 

coverage of observations (CO25-75), the PLSTM is on average 2% higher than the QRF model. Surprisingly, the 5%-95% 430 

quantile interval obtained by the two post-processing methods contains 100% of the observations for both high and low flows 

in the average of all 522 sub-basins. 

4.2.6 Hydrograph and predict interval of two typical sub-basins 

Table 2 shows the average sharpness performance of all sub-basins. In this section, two typical sub-basins are selected as 

individual examples to explain in detail the performance differences between PLSTM and QRF models. Sub-basin No.10 and 435 

No.250 are from quadrant 4 and quadrant 2 of Fig. 6, respectively. The overall performance (CRPS) of the PLSTM model in 

sub-basin No.10 is better than that of the QRF, but it is worse than the QRF in sub-basin No.250. 

Figure 9 shows the hydrographs and two different quantile intervals for different experiments. Corresponding to Fig. 9, 

Table 3 shows a statistical summary of the indicators of quantile intervals and their coverage of observations. Similarly, in 

both cases, the QRF and PLSTM models exhibit smaller prediction uncertainty and present narrower quantile intervals in the 440 

low-flow season (Nov. to Apr.). While in the high-flow season (May to Oct.), the prediction uncertainty is larger. Moreover, 

the narrower uncertainty intervals in the low-flow season yielded higher coverage of observations. The difference is that in 

sub-basin No.10, the PLSTM model obtains a higher coverage of observations at the expense of some sharpness. It strikes a 

balance between the prediction interval and the coverage of observations, which results in a higher CRPS. In contrast, the QRF 

model suffers from systematic errors despite its narrower prediction interval. For example, the systematic underestimation of 445 

QRF-IMERG-F in the high-flow season results in lower CRPS relative to PLSTM. For sub-basin No.250 with a smaller flow 

accumulation area (FAA), its concentration time is short, the flow variation is more fluctuating and complicated, and the 

observation points are more scattered. Little precipitation events may also cause high pulse flow, which is also the main feature 

of flash flood disasters. Interestingly, in this case, the QRF wraps more observations with a narrower quantile interval, which 

results in higher CRPS for them. 450 

Table 3. Sharpness metrics (Distance between the 0.25 and 0.75 quantiles, DIS25-75; Distance between the 0.05 and 0.95 quantiles, DIS5-95; 
Coverage of observations between the 0.25 and 0.75 quantiles, CO25-75; Coverage of observations between the 0.05 and 0.95 quantiles, 

CO5-95) for different models in two typical sub-basins. The bold numbers indicate better performance in each group. 

ID Input Model 
High flow seasons (May–Oct.) Low flow seasons (Nov.–Apr.) 

DIS25-75 
(m3/s) 

DIS5-95

(m3/s)
CO25-75

(%)
CO5-95

(%)
DIS25-75

(m3/s)
DIS5-95 
(m3/s) 

CO25-75 
(%) 

CO5-95

(%)

10 

PDIR 
QRF 596.8 1491.5 28.8 60.9 113.4 232.6 40.0 76.1 

PLSTM 676.4 1765.9 33.0 68.6 124.7 345.1 56.4 97.0 

IEMRG-F 
QRF 634.5 1576.2 40.5 82.7 72.6 186.1 41.9 78.5 

PLSTM 670.7 1879.5 53.8 92.5 139.0 327.5 57.8 94.5 

GSMaP 
QRF 825.5 1755.8 39.3 71.3 125.1 275.8 41.8 68.0 

PLSTM 762.5 1921.5 33.4 81.9 130.0 398.4 46.3 82.8 

All QRF 669.6 1542.7 41.2 79.2 73.4 191.2 39.9 78.5 
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PLSTM 558.7 1444.1 46.1 83.3 84.3 214.2 59.4 84.0 

250 

PDIR 
QRF 0.88 2.53 38.32 80.57 0.12 0.43 82.21 97.24

PLSTM 0.73 2.34 32.47 75.68 0.14 0.50 86.76 96.28

IEMRG-F 
QRF 1.20 3.13 65.08 94.84 0.10 0.35 82.21 93.93

PLSTM 1.24 3.71 62.77 94.29 0.09 0.48 79.86 94.07

GSMaP 
QRF 1.20 3.12 57.07 92.93 0.13 0.47 79.86 98.62

PLSTM 1.26 3.35 58.29 92.26 0.13 0.49 85.38 97.79

All 
QRF 1.11 2.88 60.87 93.89 0.09 0.33 80.14 97.38

PLSTM 1.00 3.22 55.30 92.53 0.08 0.42 81.52 97.93
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Figure 9. Hydrographs and prediction intervals for two typical sub-basins. The CRPSS is greater than 0, indicating that the QRF model is 455 
better than the PLSTM model; conversely, the PLSTM model is better than the QRF model. OBS in figure indicates streamflow reference. 

PDIR is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 

4.3 Deterministic (single-point) assessment 

Although the post-processing model proposed in this study is probabilistic, decision-makers tend to prefer deterministic 

(single-point) prediction. Therefore, we utilize the average of the probability members as deterministic predictions to further 460 

compare the prediction accuracy of the models. Also, it can be viewed as a Post hoc model examination. 

4.3.1 Overall model performance 

Figure 10 shows the model performance of the streamflow simulations before post-processing (RAW), and after QRF 

and PLSTM post-processing for the 522 sub-basins. The metrics shown here include Pearson correlation coefficients (PCC), 

relative bias (RB), and Nash efficiency coefficients (NSE). Each sub-basin is calculated separately. Also, the means and 465 

medians of each metric across all 522 sub-basins are displayed in the first three columns (metric) in Table 4. It can be seen 

that both QRF and PLSTM are better than RAW, indicating the value of the proposed two post-processing models (Fig.10). 

For two post-processing models, PLSTM performs better than the QRF model across the board. 
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Figure 10. Boxplots of different model performance in 522 sub-basins. (a) Pearson correlation coefficient (PCC); (b) Relative bias (RB); 470 
and (c) Nash-Sutcliffe efficiency (NSE). The closer the NSE (PCC) is to 1, the better the model performs. The closer RB is to 0, the better 

the model performs. Note: PDIR is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 

https://doi.org/10.5194/hess-2022-377
Preprint. Discussion started: 21 November 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

4.3.2 Spatial distribution of model performance 

Figure 11 shows the spatial characteristics of the Nash-Sutcliffe efficiency (NSE) improvement for streamflow 

simulations obtained by model comparison. Compared to the raw simulations (RAW), QRF and PLSTM show large 475 

enhancements in almost all sub-basins. Among all precipitation-driven streamflow post-processing experiments, PLSTM-

GSMaP and QRF-GSMaP provide the most significant improvement in accuracy due to the poorer performance of the raw 

GSMaP-driven streamflow simulation. On the contrary, the post-processing models bring a smaller improvement in NSE 

values due to the better performance of the raw IMERG-F-driven streamflow simulations. Even, there is a slight regression in 

model performance in some sporadic sub-basins. Compared to PLSTM, the QRF model does not show its advantage of 480 

deterministic (single-point) estimation and is inferior to the PLSTM model in almost all sub-basins. The largest difference in 

model performance occurs in GSMaP, followed by PDIR, IMERG-F and multi-model (All). This indicates that the 

deterministic (single-point) estimation capability of the QRF model differs more from PLSTM for streamflow with poor raw 

simulation. 

 485 
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Figure 11. Individual sub-basin spatial Nash-Sutcliffe efficiency (NSE) improvement between (a) QRF and RAW, (b) PLSTM and RAW 
and (c) QRF and PLSTM in 522 sub-basins. Blue indicates sub-basins where the former model is better than the latter one, and red 

indicates sub-basins where the former model is worse than the latter one. The darker the color, the greater the difference. is a near real-
time product; IMERG-F and GSMAP are bias-adjusted products. 

4.3.3 Model difference between FFAs 490 

Similar to the analysis route in Fig. 6, based on the spatial distribution (Fig. 11), we further explore the relationship 

between the model performance and the flow accumulation area (FAA) of the sub-basin, and the results are shown in Fig. 12. 

As the flow accumulation area (FAA) of the sub-basin increases, the model performance also improves. From Fig. 12a, the 

same conclusion as Fig. 11 can be drawn, PLSTM is better than QRF. Especially when the flow accumulation area (FAA) of 

the sub-basin is more than 20,000 km2. The blue points (PLSTM) are distributed on top of the red points (QRF), and the red 495 

points are distributed on top of the black points (RAW). It can be seen from Fig. 12b that 20,000 km2 is also a threshold 

condition. When the flow accumulation area (FAA) of the sub-basin is larger than the threshold, the gap between PLSTM and 

QRF is narrowing as the FAA increases. This is most evident in IMERG-F-driven experiments. But for GSMaP, the increase 

of FAA has little effect on the gap between PLSTM and QRF. This suggests that highly biased information from raw 

streamflow simulation has a greater impact on the QRF than on the PLSTM model. 500 

 

Figure 12. The relationships between (a) Nash-Sutcliffe efficiency (NSE), (b) NSE improvement and flow accumulation area (FAA). The 
closer the NSE is to 1, the better the model performs. The NSE improvement larger than 0 indicates the former model is better than the 
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latter one, conversely, the former model is worse than the latter one. PDIR is a near real-time product; IMERG-F and GSMAP are bias-
adjusted products. 505 

4.3.4 High-flow, low-flow, and peak timing 

Table 4 summarizes the means and medians of integrated metrics and flow regime indicators of different models in 522 

sub-basins. The first three columns are the same as the metrics used in Fig. 10. Pearson correlation coefficient (PCC) and 

Relative bias (RB) can also be regarded as the components of Nash-Sutcliffe efficiency (NSE). In order to guarantee the 

robustness of the results, we also calculated another integrated indicator KGE. The KGE performed identically to NSE, 510 

confirming the superiority of the PLSTM model.  

Table 4. Summary of integrated metrics and flow regime indicators of different models in 522 sub-basins. The bold numbers indicate 
better performance in each group. 

Input Aggregation Model 
Metric 

PCC RB NSE KGE FHV FMS FLV PT 

PDIR 

Mean 

RAW 0.656 -0.02 -0.1 0.521 33.11 -5.3 -17.3 1.68

QRF 0.785 -0.19 0.558 0.621 -43.4 -9.85 3.143 1.441

PLSTM 0.851 0.032 0.712 0.755 -28.8 1.201 15.24 1.328

Median 

RAW 0.689 -0.05 0.19 0.572 24.77 -7.63 -12.5 1.692

QRF 0.815 -0.2 0.584 0.645 -44.6 -10.5 9.833 1.417

PLSTM 0.877 0.032 0.752 0.778 -29.6 0.978 19.13 1.273

IMERG-F 

Mean 

RAW 0.759 -0.06 0.389 0.664 10.92 -4.04 -14.3 1.459

QRF 0.808 -0.06 0.648 0.718 -35.3 4.268 -4.29 1.394

PLSTM 0.852 -0.01 0.715 0.765 -30.4 2.409 -5.05 1.282

Median 

RAW 0.785 -0.09 0.475 0.672 9.555 -6.35 -4.14 1.417

QRF 0.852 -0.07 0.706 0.739 -37.6 2.068 5.878 1.333

PLSTM 0.88 -0.01 0.761 0.788 -32.1 2.159 2.467 1.231

GSMaP 

Mean 

RAW 0.687 0.286 -0.92 0.308 88.82 8.465 -45.1 1.519

QRF 0.778 -0.19 0.545 0.61 -45.4 -11.2 15.94 1.703

PLSTM 0.848 0.043 0.703 0.741 -31.2 0.708 23.71 1.44

Median 

RAW 0.731 0.352 -0.62 0.393 82.86 12.08 -34.1 1.5 

QRF 0.809 -0.19 0.579 0.633 -48 -11.1 23.73 1.696

PLSTM 0.871 0.04 0.742 0.762 -32.3 1.037 26.36 1.417

All 

Mean 

RAW 0.733 0.059 0.154 0.603 34.38 2.332 -15.5 1.456

QRF 0.803 -0.06 0.637 0.704 -38.8 3.494 8.635 1.532

PLSTM 0.846 -0.01 0.703 0.76 -32.3 4.855 10.27 1.44

Median 

RAW 0.771 0.042 0.306 0.664 30.53 2.228 -4.74 1.417

QRF 0.849 -0.07 0.695 0.727 -42.3 1.317 14.96 1.542

PLSTM 0.871 -0.003 0.749 0.781 -33.8 4.436 13.83 1.417
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The last four columns are flow-related indicators. Overall, the PLSTM model is still the best, except for the low-flow bias 515 

(FLV). The QRF model is the best model for simulating low flow. Nonetheless, as can be seen from the high-flow bias (FHV), 

both the two post-processing models are limited in their ability to handle flood peaks. Regardless of the streamflow simulations 

driven by either precipitation product, the bias of the flood peak changes from an overestimation (RAW) to an underestimation 

(Post-processing). In addition, there is a certain degree of deviation in the simulations of peak time. Flood peaks have always 

been a challenging problem in hydrological simulation, which also confirms the necessity of probabilistic post-processing. 520 

4.3.5 Hydrograph of two typical sub-basins 

 

Figure 13. Hydrographs simulated by different models for two typical sub-basins. OBS in figure indicates the streamflow reference. PDIR 
is a near real-time product; IMERG-F and GSMAP are bias-adjusted products. 
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Same as Fig. 9, we still selected the same two typical sub-basins to compare the deterministic post-processing ability of 525 

different models (Fig. 13). For the uncorrected runoff simulations (RAW), except for the performance of the IMERG-F product 

in sub-basin No.10, the other precipitation-driven simulations present overestimation in both sub-basins, which also 

contributed to the poor NSE values. After QRF and PLSTM post-processing, the streamflow simulation performance is 

significantly improved. But it also causes an underestimation of the flood peak. Compared with PLSTM, the QRF model 

underestimates the flood peak more severely. This is also the main reason why the QRF model is inferior to the PLSTM model. 530 

It is also consistent with the high flow simulation bias in Table 4. 

5 Discussion 

5.1 Simulated and observed streamflow reference 

Unlike previous studies, the post-processing in this study is for subbasin-scale streamflow from 522 sub-basins in a nested 

basin. Their flow accumulation areas (FAAs) range from 100 km2 to 120,000 km2. In order to perform the streamflow post-535 

processing for the 522 sub-basins, the corresponding streamflow observation should be obtained. However such data are not 

available. Therefore we use the streamflow simulations from the calibrated hydrological model driven by observed 

precipitation. In fact, by doing so, the best post-processing model performance can only be infinitely close to the given 

reference. So, the post-processing we do is an imitation of the streamflow reference. This is not exactly consistent with the 

post-processing of the real streamflow. However, what we have done is use the generated reference to test the performance of 540 

post-processing models. Thus doing so also accomplished our goal. In future studies, the performance of the different post-

processing models can be fully compared in more informative basins. However, we believe that our dataset is also very rare 

in the current community, so we make it open along with this study to allow other researchers to test different algorithms using 

the same dataset and compare it to the benchmark of this study (Zhang et al., 2022b). 

5.2 Model comparison in this study 545 

In this study, we compared two probabilistic post-processing models, the PLSTM and the QRF models. The QRF model 

is representative of traditional machine learning algorithms based on decision trees and ensemble learning. The PLSTM model 

was chosen based on the CMAL-LSTM model, proposed by Klotz et al. (2022). In their study, the CMAL-LSTM model 

achieved the best model performance, which is why we chose it. They also selected two other mixture density networks and a 

Monte Carlo dropout-based probabilistic method. Besides, there are some other probabilistic forecasting methods, such as 550 

variational inference methods (Li et al., 2021), and GANs methods (Pan et al., 2021). It is unrealistic to compare all methods 

in one study. In a growing community, new methods can be incorporated to brainstorm and continuously improve the 

performance of post-processing models in future studies. 

Another thing that may affect the robustness of the results is the imbalance in the number of sub-basins. A flow 

accumulation area (FAA) of 60,000 km2 is a threshold condition in the 522 sub-basins we studied. Above and below 60,000 555 
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km2, there is a large difference in model performance between the two probabilistic post-processing models. However, among 

the 522 sub-basins selected, only 27 sub-basins (5.2%) have a flow accumulation area (FAA) greater than 60,000 km2, while 

all other sub-basins (94.8%) have a flow accumulation area (FAA) less than 60,000 km2. This may affect the robustness of the 

results, such as more discrete scatters in the reliability diagrams (Fig. 5). The comparison of the PLSTM and QRF models in 

a larger number and more balanced basins can further increase the robustness of our results as well as improve our 560 

understanding of the different post-processing models (Kratzert et al., 2022b). 

5.3 Global model and local model 

In previous studies using the LSTM model, the best practice obtained is the global LSTM model. That is, one LSTM 

model is used for all data sets and the entire study area. The results of these studies show that the global LSTM model performs 

better than the local model (Kratzert et al., 2019b; Fang et al., 2022). Moreover, the global LSTM model is able to achieve 565 

good results in ungauged basins (Kratzert et al., 2019a). In our study, we aim at streamflow probabilistic post-processing in 

522 sub-basins. In the process of PLSTM to generate probabilistic outputs, for the robustness of the results, we first randomly 

sample 10,000 times in each basin and at each time step, and then obtain the final probabilistic members after taking 100 

quantiles. For 522 sub-basins, a total of 522×4×365×10000 = 7,621,200,000 samples are required for a 4-year test period. We 

used a single-card RTX3090 GPU with 24G of video memory for this study, but the amount of sampling required is much 570 

larger than the memory of our device. We therefore chose to train a local model for each sub-basin in this study. Future 

comparisons of the global and local models can be tested on devices with enough video memory, such as clusters or 

supercomputers containing multi-card GPUs. However, for post-processing in ungauged basins, Frame et al. (2021) give us 

the insight that the global LSTM model may give poorer post-processing results in these areas. This is due to the effect of 

basin area and flow regime. Therefore, for the objective of this study, post-processing uncorrected precipitation-driven 575 

streamflow simulations, the performance of the global model may be more influenced by the spatial distribution of biases. 

5.4 Predictors or input features 

In order to keep the model complexity and computational cost low, the predictor selected for this study is only one variable, 

the streamflow. However, more variables are available as predictors, including other meteorological variables, such as 

temperature and wind speed (Frame et al., 2021). These variables are also used to force hydrological models (Jiang et al., 580 

2022). In addition, basin attributes are important predictors, especially in the global model. In previous studies, all of these 

variables have been shown to help the model to vary degrees (Jiang et al., 2022). For post-processing, there are also studies 

that use model state variables and other output variables as predictors for experiments (Frame et al., 2021). Basins-related 

attributes can provide us with local information, which is particularly helpful for simulations in ungauged areas. State variables 

or other output variables can give us information about the hydrological model, which also be considered as hybrid modeling. 585 

This increases the physical interpretability of the post-processing framework (Razavi, 2021; Tsai et al., 2021). However, biased 
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precipitation-driven hydrologic models generate state variables and outputs that are often biased as well. Whether this is helpful 

for streamflow post-processing is unknown and needs to be further explored. 

5.5 Predictors or input features 

In this study, only a single hydrological model (DTVGM) is used to simulate streamflow obtained from different 590 

precipitation drivers to increase the diversity of post-processing experiments. Also, this excludes other two uncertainty sources, 

e.g., model structure and parameters. Therefore, the present study focuses on post-processing model comparisons for input 

uncertainties. In addition to input uncertainty, hydrologic model structure and parameter uncertainty are also important sources 

of uncertainty (Herrera et al., 2022; Mai et al., 2022). Future post-processing model comparisons can be performed using a 

multiple hydrological model approach to analyze model structure and model parameter uncertainties (Ghiggi et al., 2021; Troin 595 

et al., 2021; Mai et al., 2022). 

5.6 Extreme events 

Through comparative analysis and visualization, it can be found that both PLSTM and QRF models have some limitations 

in handling extreme events. Even, the QRF model performs a bit worse. This is because the QRF model is based on decision 

trees. The model prediction is performed by a historical analogy search. That is, the random forests model first finds the most 600 

similar samples in the training samples, and then the similar samples of the leaf nodes of multiple decision trees are averaged 

to obtain the final predictions (Li and Martin, 2017). There is no doubt that the limited sample, especially for extreme events, 

determines that it is not able to solve the prediction of extreme events very well. Not to mention that for post-processing 

extreme events that have never happened in history, the nature of QRF dictates that it is powerless. Fortunately, this can be 

improved by introducing extra parametric hybrid methods (e.g., a mix of RF and extreme-value distribution). Attempts that 605 

have occurred include a combination of QRF and extended generalized Pareto distributions (Taillardat et al., 2019). However, 

this class of hybrid approaches introduces additional complexity to the model and more hyperparameters that need to be 

calibrated. The PLSTM model is also limited by the sample size of extreme events, but it outperforms the QRF model in terms 

of these extreme events. It is a sign that the deep neural network is stronger than the decision tree class of traditional machine 

learning models. Compared to the historical analogy search of the QRF model, the LSTM model is able to make “true” 610 

predictions by neuronal computation based on predictors. And, the PLSTM model chosen in this study belongs directly to the 

mixture density networks. Their parameters are learned directly by neural network optimization (e.g., gradient descent 

algorithm). We believe this can be further improved by introducing more predictors and other distribution functions that are 

more specific to extreme events. 
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5 Conclusions 615 

We conduct a series of well-designed experiments comparing a machine learning model (quantile regression forests, QRF) 

and a deep learning model (probabilistic long short-term memory network, PLSTM) for streamflow probabilistic post-

processing. By driving the calibrated hydrological model with observed precipitation and three satellite precipitation products 

respectively, we generated streamflow reference and biased streamflow simulations, and used them to construct a standard 

dataset containing 522 sub-basins. Post-processing model performance is fully assessed through probabilistic and deterministic 620 

metrics.  

In conclusion, decision-tree models based on historical search (including random forest but not limited to it) have limited 

ability to predict extreme values, but their low complexity and high parallelism makes them more efficient. Deep learning 

models (including PLSTM but not limited to it) fit the extreme values better by a deeper network. The performance will be 

stronger when more predictors are fed. But it comes at the cost of more computational resources. Model comparison improves 625 

our knowledge and understanding of the models. The use and development of different models requires the user to choose 

according to their needs and capabilities. 

The empirical findings of this study between the two post-processing models are summarized below. 

(1) The probabilistic assessment indicates that the QRF and PLSTM models perform comparably. Their model differences 

are closely related to the flow accumulation area (FAA) of the sub-basin and there is a scale effect. The threshold condition is 630 

60,000 km2.  When the FAA of the sub-basin is less than the threshold, the QRF model performs better than the PLSTM model 

in most cases. When the FAA of the sub-basin is larger than the threshold, the PLSTM model should be preferred. 

(2) The deterministic assessment shows that the PLSTM model outperforms the QRF model. The PLSTM model captures 

high-flow process and flow duration curve better than the QRF model. The latter tends to underestimate the high-flow process. 

However, both models underestimate flood peaks due to the problem of sparse samples of extreme events. 635 

(3) For the input uncertainties introduced by the different satellite precipitation products, both models are able to reduce 

their impact on the streamflow simulation. However, the multi-feature experiments do not further improve the performance of 

the post-processing models. On the contrary, model performance degrades due to the mixing of highly biased inputs. 

The results of both post-processing models and the constructed standard dataset of this study are made available through 

Zenodo repository (https://zenodo.org/record/7187505) (Zhang et al., 2022b). We expect more models to be compared by 640 

standard datasets and eventually enrich the model zoo of hydrological probabilistic post-processing. 

 

Data and code availability. The GPM IMERG Final Run is free available at GES DISC (https://gpm.nasa.gov/node/3328). 

The PDIR data can be freely download from CHRS Data Portal (http://chrsdata.eng.uci.edu/). The GSMaP data is publicly 

available (at https://sharaku.eorc.jaxa.jp/GSMaP/index.htm). The CMA precipitation observation is provided by the National 645 

Meteorological Information Center of China Meteorological Administration. The soil types are free available at 

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/. The land use 
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data is free available from Chinese National Tibetan Plateau Third Pole Environment Data Center at 

http://data.tpdc.ac.cn/en/data/a75843b4-6591-4a69-a5e4-6f94099ddc2d/. The DEM data is free available at  

https://www.gscloud.cn/. The QRF model code is available at Github repository (https://github.com/jnelson18/pyquantrf) 650 

(Jnelson18, 2022). The PLSTM model code is available at Github repository 

(https://github.com/neuralhydrology/neuralhydrology) (Kratzert et al., 2022a). The dataset and results of this study are 

available at Zenodo repository (https://zenodo.org/record/7187505) (Zhang et al., 2022b). 
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