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Abstract. Deep learning (DL) and machine learning (ML) are widely used in hydrological modelling, which plays a critical 

role in improving the accuracy of hydrological predictions. However, the trade-off between model performance and 

computational cost has always been a challenge for hydrologists when selecting a suitable model, particularly for probabilistic 15 

post-processing with large ensemble members. This study aims to systematically compare the quantile regression forest (QRF) 

model and countable mixtures of asymmetric Laplacians long short-term memory (CMAL-LSTM) model as hydrological 

probabilistic post-processors. Specifically, we evaluate their ability in dealing with biased streamflow simulations driven by 

three satellite precipitation products across 522 nested sub-basins of the Yalong River basin in China. Model performance is 

comprehensively assessed using a series of scoring metrics from both probabilistic and deterministic perspectives. Our results 20 

show that the QRF model and the CMAL-LSTM model are comparable in terms of probabilistic prediction, and their 

performance are closely related to the flow accumulation area (FAA) of the sub-basin. The QRF model outperforms the 

CMAL-LSTM model in most sub-basins with smaller FAA, while the CMAL-LSTM model has an undebatable advantage in 

sub-basins with FAA larger than 60,000 km2 in the Yalong River basin. In terms of deterministic predictions, the CMAL-

LSTM model is preferred, especially when the raw streamflow is poorly simulated and used as input. However, setting aside 25 

the differences in model performance, the QRF model with 100-member quantiles demonstrates a noteworthy advantage by 

exhibiting a 50% reduction in computation time compared to the CMAL-LSTM model with the same ensemble members in 

all experiments. As a result, this study provides insights into model selection in hydrological post-processing and the trade-

offs between model performance and computational efficiency. The findings highlight the importance of considering the 

specific application scenario, such as the catchment size and the required accuracy level, when selecting a suitable model for 30 

hydrological post-processing. 
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1 Introduction 35 

By generalizing the physical processes, hydrologists or modelers abstract the hydrological mechanism into a series of 

numerical equations, collectively known as hydrological models (Sittner et al., 1969; Clark et al., 2015; Sivapalan, 2018; 

Chawanda et al., 2020; Zhou et al., 2021). Hydrological models are widely used for rainfall-runoff simulation, flood 

forecasting, drought assessment, decision making, and water resource management (Corzo Perez et al., 2011; Tan et al., 2020; 

Wu et al., 2020; Gou et al., 2020, 2021; Miao et al., 2022). Depending on the complexity, hydrological models can be classified 40 

as lumped, semi-distributed, and distributed models (Beven, 1989; Jajarmizadeh et al., 2012; Khakbaz et al., 2012; Mai et al., 

2022a, 2022b). Although current models simulate the hydrological processes well, they still suffer from multiple uncertainties, 

including input uncertainty, model structure and parameter uncertainty, and observation uncertainty (Nearing et al., 2016; 

Herrera et al., 2022). These uncertainties limit the accuracy of hydrological models (Honti et al., 2014; Sordo-Ward et al., 

2016; Mai et al., 2022a, 2022b). Among these various sources, input uncertainty is considered  one of the largest sources of 45 

uncertainty. Hence, precipitation, which is the driver of the water cycle, is the most important factor affecting streamflow 

simulation (Kobold and Sušelj, 2005). 

Precipitation information is mainly derived from gauge observations, radar estimates, satellite retrievals and reanalysis 

products (Sun et al., 2018). Gauge stations and radars are limited by the density of their network and by topography, especially 

in remote areas such as mountainous regions and high altitudes (Sun et al., 2018; Chen et al., 2020). Reanalysis requires 50 

assimilation of the observations from multiple sources and therefore cannot be obtained in real time. Satellite precipitation 

estimates are available in near-real-time and have shown valuable potentials for applications in regions where ground 

measurements are scarce (Jiang and Bauer-Gottwein, 2019; Dembélé et al., 2020). Over the past decades, several research 

institutions have developed various satellite precipitation estimation products with different data sources and algorithms. For 

example, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement Mission (GPM IMERG) products 55 

jointly developed by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration 

Agency (JAXA) (Hou et al., 2013; Huffman et al., 2015), the Global Satellite Mapping of Precipitation (GSMaP) products 

developed by JAXA (Kubota et al., 2007, 2020), and the Precipitation Estimate from Remotely Sensed Information using 

Artificial Neural Networks-Dynamic Infrared Rain Rate near real-time (PDIR-Now, hereafter, PDIR) product developed by 

the Centre for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) (Nguyen et al., 60 

2020a, 2020b). However, uncertainties persist in these products due to various factors, including data sources and algorithms. 

Additionally, the coarse resolution still limits their use for small basins, i.e., those with an area smaller than 200 km2 (Tian et 

al., 2009; Zhang et al., 2021a). Moreover, these uncertainties are further propagated during the hydrological simulation (Cunha 
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et al., 2012; Falck et al., 2015; Zhang et al., 2021b), significantly restricting their effectiveness in downstream hydrological 

applications. 65 

Satellite precipitation introduces notable uncertainties in hydrological modelling. Various strategies, such as 

meteorological pre-processing and hydrological post-processing, have emerged to address this challenge (Schaake et al., 2007; 

Wang et al., 2009; Ye et al., 2014, 2015; Li et al., 2017; Dong et al., 2020; Shen et al., 2021; Zhang et al., 2022a). 

Meteorological pre-processing predominantly focuses on achieving bias-corrected precipitation estimates. This is often 

realized by fusing satellite precipitation data with ground observations to mitigate input uncertainty (Xu et al., 2020; Zhang et 70 

al., 2022a). Conversely, hydrological post-processing leverages observed streamflow to rectify simulations or predictions, 

providing an additional layer of refinement, especially if the meteorological pre-processing stage falls short. Both these 

strategies can be employed for deterministic and probabilistic predictions (Ye et al., 2014; Tyralis et al., 2019). Given the 

inherent autocorrelation in streamflow time series, two main methods stand out for hydrological post-processing. The first 

method employs autoregressive models anchored on residuals, using these residuals as predictors to adjust forecast errors (Li 75 

et al., 2015, 2016; Zhang et al., 2018). The second method employs the Model Output Statistics (MOS) concept, leveraging 

simulated streamflow as a primary predictor to establish statistical relationships between simulations and observations (Wang 

et al., 2009; Bogner and Pappenberger, 2011; Zhao et al., 2011; Bellier et al., 2018). 

In recent years, machine learning (ML) and deep learning (DL) algorithms have emerged as powerful tools in 

hydrological modelling (Sit et al., 2020; Zounemat-Kermani et al., 2021; Shen and Lawson, 2021; Fang et al., 2022). ML 80 

comprises a broad range of algorithms, with commonly used models such as random forest, support vector machines, and 

clustering methods. DL, a specialized subset of ML, emphasizes algorithms modelled on the architecture of artificial neural 

networks, including models like convolutional neural networks, recurrent neural networks, and long short-term memory 

networks. In this study, we use the term "ML models" to refer to non-DL models, while specifically designating "DL models" 

to refer to models based on deep learning techniques. In the hydrological field, both random forest (RF) and long short-term 85 

memory (LSTM) models are widely used and considered state-of-the-art approaches for various tasks and applications. The 

RF model and its probabilistic variant, the QRF model, have demonstrated capabilities in bias correction and streamflow 

simulation (Shen et al, 2022; Tyralis et al., 2019; Zhang and Ye, 2021). For example, Shen et al. (2022) used the RF model as 

a hydrological post-processor to enhance the simulation performance of the large-scale hydrological model PCR-GLOBAL 

(PCRaster Global Water Balance) model at three hydrological stations in the Rhine basin. Tyralis et al. (2019) compared the 90 

usability of the statistical model (e.g., quantile regression) and the machine learning algorithm (e.g., quantile regression forests) 

as hydrological post-processors on the CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. 

And the results showed that the quantile regression forests model outperformed the quantile regression. In the context of bias 

correction applications, RF models have also exhibited superior performance compared to other machine models (Zhang and 

Ye, 2021). The LSTM model, on the other hand, has gained widespread recognition as leading choice in hydrological 95 

applications (Kratzert et al., 2018, 2019). For example, LSTM models have been used to simulate streamflow in a number of 

gauged and ungauged basins in North America (Kratzert et al., 2018, 2019), the United Kingdom (Lees et al., 2021), and 
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Europe (Nasreen et al., 2022). Frame et al. (2021) utilized LSTM to develop a post-processor that can effectively improve the 

accuracy of the U.S. National Hydrologic Model. They validated the performance of the proposed post-processor on the 

CAMELS dataset, which consists of 531 watersheds across North American. By integrating with Gaussian models (Zhu et al., 100 

2020), stochastic deactivation of neurons (Althoff et al., 2021), and Bayesian perspective (Li et al., 2021, 2022), LSTM further 

solidified its reputation for delivering reliable probabilistic predictions. More recently, Klotz et al. (2022) compared the use of 

dropout and three Gaussian mixture density models for uncertainty estimation in LSTM rainfall-runoff modelling. They found 

that the mixture density model outperformed the random dropout model and provided more reliable probabilistic information.  

While both RF and LSTM models have seen significant advancements and widespread application, a thorough 105 

comparative analysis specifically within the context of hydrological probabilistic post-processing is yet to be undertaken. 

Through their hierarchical feature learning, DL models, especially LSTMs, can autonomously extract insights from raw 

hydrological data, capturing long-term dependencies and patterns without extensive feature engineering. In contrast, with ML 

models like RF, effort is often required to select relevant features to adequately represent the data. Additionally, DL models 

can effectively leverage massive datasets, leading to enhanced generalization and improved accuracy in hydrological 110 

prediction tasks. On the other hand, ML models may face limitations in capturing intricate patterns from large hydrological 

datasets. Notwithstanding pieces of evidence, it is essential to conduct a direct and focused comparison between RF and LSTM 

models in the specific context of hydrological probabilistic post-processing to better understand their respective strengths and 

limitations, such as the scope of application, model performance and computational efficiency. 

Hydrological probabilistic post-processing represents a big-data task with the involvement of large datasets and a 115 

substantial number of ensemble members. The complex relationships between input and output variables in hydrological 

systems necessitate advanced modelling techniques to achieve accurate and reliable predictions. Therefore, in this study, we 

attempt to comprehensively compare the performance of the two most widely used ML and DL models for streamflow 

probabilistic post-processing: quantile regression forests (QRF) and countable mixtures of asymmetric Laplacians LSTM 

(CMAL-LSTM), at a sub-basin scale daily streamflow, respectively. In particular, a full model comparison is performed in a 120 

complex basin with 522 nested sub-basins in southwest China. Three sets of global satellite precipitation products are applied 

to generate uncorrected streamflow simulations. The three precipitation products represent different algorithms. Also, they 

have been proven to have relatively good accuracy in our previous study (Zhang et al., 2021b). These satellite precipitation 

products are compared across two scenarios: single-product and multi-product simulations, both used as input features for 

streamflow post-processing. A variety of evaluation metrics are used to assess the performance of the proposed models, 125 

including probabilistic metrics for multi-point prediction and deterministic metrics for single-point prediction. Additionally, 

the study also analyze the relationship between model performance and basin size by considering the disparity in the flow 

accumulation area of the sub-basins. Through a comparative analysis of QRF and CMAL-LSTM models in hydrological 

probabilistic post-processing, this study aims to provide clarity on their respective merits and drawbacks. The insights garnered 

will also guide the selection of other ML and DL methodologies with similar model architectures. 130 
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The rest of paper is organized as follows: In Sect.2, we introduce the study area and data. In Sect.3, we present the post-

processing models, experimental design and evaluation metrics. Sect. 4 presents the streamflow results before and after post-

processing with different experiments. In Sect. 5, we discuss the interpretation of post-processing model differences, as well 

as their limitations. Finally, the conclusions are summarized at the end of this article. 

2 Study area and Data 135 

2.1 Study area 

The Yalong River (Fig. 1a) is a major tributary of the Jinsha River, which belongs to the upper reaches of the Yangtze 

River. The Yalong River basin is located between the Qinghai-Tibet Plateau and the Sichuan Basin. The Yalong River basin 

has a long and narrow shape (96° 52’–102° 48’ E, 26° 32’–33° 58’ N), with snow-capped mountains scattered in the upper 

reaches, surrounded by high mountain valleys in the middle reaches, and flowing into the Jinsha River in the lower reaches. It 140 

spans seven dimensional zones with complex climate types. The total length of the basin is about 1,570 km, and the total area 

is about 130,000 km2. The mean annual precipitation of the basin is about 800 mm. 

Following the watershed division method of Du et al. (2017), Yalong River basin is divided into nested 522 sub-basins 

with catchment areas ranging from 100 km2 to 127,164 km2 (Fig. 1b). The key to sub-basin delineation is the minimum 

catchment area threshold (100 km2 in this study), which is related to the total area of the basin, the model architecture 145 

complexity, the step size and the spatial resolution of the input data. Location, elevation, area, flow accumulation area and 

flow direction of each sub-basin can be found in Table S1. 



6 
 

 
Figure 1. (a) Study area and (b) 522 sub-basins (Zhang et al., 2022a). 

2.2 Data 150 

2.2.1 Gauge precipitation observations 

The 0.5-degree, daily precipitation observation data were obtained from the National Meteorological Information Centre 

of the China Meteorological Administration (CMA-NMIC). The product was produced by interpolating gauge data from more 

than 2000 stations across China. This product has been proven to be highly accurate and has been widely applied to a variety 

of studies such as streamflow simulation, drought assessment, and water resource management (Gou et al., 2020, 2021; Zhang 155 

and Ye, 2021; Miao et al., 2022). In this study, the gridded precipitation observations are used as a reference for the satellite-

based precipitation products. Using the inverse distance weighting (IDW) method, the gridded precipitation observations are 

resampled to each sub-basin. This resampling process aims to obtain the sub-basin average precipitation amount, which serves 

as the forcing input for hydrological simulations. Errors caused by resampling are ignored. And due to limited hydrological 

stations, the streamflow of each sub-basin obtained from the calibrated hydrological model driven by this product is also used 160 

as a reference for the satellite precipitation-driven streamflow simulations. The selected study period is from January 1, 2003 

to December 31, 2018. 
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2.2.2 Global satellite precipitation estimates  

Three sets of the latest quasi-global satellite precipitation estimation products are selected. The first one is PDIR product, 

which solely relies on infrared data. It has a very high spatiotemporal resolution (0.04 degree and 1 hour) and a very short 165 

delay time (1 hour). The other two products are bias-adjusted products, IMERG Final Run version 6 (hereafter, IMERG-F) 

(Huffman et al., 2015, 2019) and Gauge-calibrated GSMaP product (GSMaP_Gauge_NRT_v6, hereafter, GSMaP) (Kubota et 

al., 2007, 2020), with a spatial resolution of 0.1 degree. The selected study period is also from January 1, 2003 to December 

31, 2018. All these products are aggregated to the daily scale and resampled to each sub-basin using IDW. It should be noted 

that these products are selected as examples only and any other precipitation product can be used as an alternative. 170 

2.2.3 Other data 

In addition to precipitation gauge observations and satellite precipitation products, hydrological modelling requires other 

meteorological data such as: temperature, wind speed and evaporation. The meteorological data were also obtained from the 

CMA-NMIC and were used to drive the hydrological model together with precipitation. In addition, watershed attributes, 

including elevation, soils and land use are also important parts of accurate hydrologic modelling. The National Aeronautics 175 

and Space Administration Shuttle Radar Topographic Mission (NASA SRTM) digital elevation model (DEM) data with a 

spatial resolution of 90m was obtained from the Geospatial Data Cloud of China. The 1 km soil data was clipped from the 

China Soil Database issued by the Tibetan Plateau Data Centre of China. The 1 km land use data was obtained from the 

Resource and Environment Science and Data Centre provided by the Institute of Geographical Sciences and Resources, 

Chinese Academy of Sciences. Finally, streamflow observations are used to calibrate and validate the hydrologic model. The 180 

streamflow observations (January 1, 2006 to December 31, 2015) were collected from four gauged hydrological stations in the 

Yalong River basin from the upstream to the downstream, namely Ganzi (GZ), Daofu (DF), Yajiang (YJ), and Tongzilin (TZL) 

(Fig. 1a). And they were obtained from the Hydrological Yearbook of the Bureau of Hydrology.  

3 Methodology 

The framework of this study is shown in Fig. 2. We adopt a two-stage streamflow post-processing approach. In the first 185 

stage (Sect. 3.1), the hydrological model is calibrated and validated by hydrological station observations. Then, we use the 

observed precipitation to drive the calibrated hydrological model to generate streamflow references for each sub-basin. And 

we use satellite precipitation to drive the model to generate uncorrected (raw) streamflow simulations. In the second stage 

(Sect. 3.2), we perform probabilistic post-processing of the streamflow using the QRF and the CMAL-LSTM models. In the 

last subsection (Sect. 3.3), we describe the evaluation metrics that are used in this study. 190 
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Figure 2. Framework of this study. 

3.1 Streamflow reference and uncorrected streamflow simulations 

The purpose of this study is to post-process the streamflow simulations for all sub-basin outlets, and therefore 

corresponding references are needed. Due to the limited streamflow observations, we use streamflow simulations from the 195 

hydrological model driven by observed precipitation as a reference. To ensure that the results are reliable, we first use the 

collected streamflow observations from four hydrological stations to setup, calibrate and validate the hydrological model.  

We choose distributed time-variant gain model (DTVGM), a process-based hydrological model that uses the rainfall-

runoff nonlinear relationship (Xia, 1991; Xia et al., 2005) for simulation. In each sub-basin, runoff is calculated according to 

Eq. (1).  200 

𝑃𝑃𝑡𝑡 + 𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑡𝑡+1 + 𝐸𝐸 + 𝑅𝑅𝑠𝑠,𝑡𝑡 + 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 + 𝑅𝑅𝑔𝑔,𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑡𝑡+1 + 𝐾𝐾𝑒𝑒 ∙ 𝐸𝐸𝑃𝑃𝑡𝑡 + 𝑔𝑔1( 𝐴𝐴𝐴𝐴𝑢𝑢,𝑡𝑡
𝐶𝐶∙𝐴𝐴𝑊𝑊𝑢𝑢

)𝑔𝑔2 ∙ 𝑃𝑃𝑡𝑡 + 𝐾𝐾𝑟𝑟 ∙ 𝐴𝐴𝐴𝐴𝑢𝑢,𝑡𝑡 + 𝐾𝐾𝑔𝑔 ∙ 𝐴𝐴𝐴𝐴𝑔𝑔,𝑡𝑡  (1) 

where 𝑡𝑡 is the time step; 𝑃𝑃, E and 𝐸𝐸𝑃𝑃 are precipitation, actual evapotranspiration and potential evapotranspiration, respectively; 

𝑅𝑅𝑠𝑠, 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝑅𝑅𝑔𝑔 are surface runoff, interflow runoff and groundwater runoff, respectively; 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝑊𝑊 are soil moisture 

(mm) and field soil moisture (mm), respectively; 𝑢𝑢 and 𝑔𝑔 are the upper and lower soil layers, respectively; 𝐾𝐾𝑒𝑒 , 𝐾𝐾𝑟𝑟  and 𝐾𝐾𝑔𝑔 are 
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evapotranspiration, interflow and groundwater runoff coefficients, respectively; 𝑔𝑔1 and 𝑔𝑔2 are factors describing the non-linear 205 

rainfall-runoff relationship; and 𝐶𝐶 is the land cover parameter. 

The kinematic wave equation is used for river routing (Ye et al., 2013). The snowmelt process in the high-altitude regions 

of the basin is simulated by the degree-day method (Bormann et al., 2014). A detailed description of the DTVGM model can 

be found in Xia et al. (2005) and Ye et al. (2010). 

Based on the length of the streamflow observation collected from hydrological stations (2006-2014), we divide the 210 

streamflow time series into three periods: a one-year spin-up period (2006), a four-year calibration period (2007-2010), and a 

four-year validation period (2011-2014). We use Nash-Sutcliffe efficiency (NSE) as the objective and regionalize the 

parameters from upstream to downstream using manual tuning, while ensuring that the water balance coefficient (the ratio of 

simulated streamflow to observed streamflow) converges to 1. Specifically, the regional parameters are evaluated and adjusted 

sequentially, moving from upstream to downstream of the hydrological stations. Initially, the regional parameters are fixed in 215 

the upstream station, ensuring their consistency throughout the region. Then, the focus shifts to adjusting the regional 

parameters between the upstream and downstream stations. This sequential process continues until the parameter 

regionalization is completed across all four stations. The model calibration and validation are shown in Fig. S1 in the 

supplement. The NSE for the four gauged hydrological stations (GZ, DF, YJ, and TZL) are 0.89, 0.91, 0.93, 0.79, and 0.79, 

0.86, 0.87, and 0.59 for calibration and validation periods, respectively. In the remaining part of this study, the hydrological 220 

model is fixed and we mainly post-process the streamflow bias introduced by satellite precipitation, disregarding other sources 

of uncertainty such as model structure, DEM and other forcing data. 

After model calibration and validation, to ensure the number of data samples for data-driven post-processing methods, 

we use the observed precipitation from 2003 to 2018 to drive the hydrological model. A 16-year streamflow simulation 

reference data for 522 sub-basin outlets is obtained. Streamflow from different sub-basins can also reflect hydrological 225 

processes of diverse climate types and scales. 

In the final step, we utilize the three satellite precipitation products, namely PDIR, IMERG-F, and GSMaP, to drive the 

hydrological model over the period of 2003-2018. As a result, three raw simulations, PDIR-driven, IMERG-F-driven, and 

GSMaP-driven are generated. Furthermore, the equally weighted average of these three raw simulations can be regarded as a 

multi-product driven simulation referred to as “All” in the following sections of this study. There are two main reasons for 230 

considering the multi-product simulation (All) as a reference. The first reason for considering "All" as a reference is to allow 

for a comprehensive comparison of the model performance of the two post-processing models in different contexts, utilizing 

multiple input scenarios. This robust assessment evaluates the capabilities of the models across various satellite precipitation 

products. The second reason is to examine the effects of the model averaging method and the multi-dimensional features on 

the post-processing models. By comparing the models' performance with multiple inputs, the study assesses the impact of 235 

incorporating different sources of information and the potential benefits of using a combination of satellite precipitation 

products. The experimental design is described in the following Sect. 3.2. 
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3.2 Post-processing model and experimental design 

The two post-processing models selected are the QRF model (Meinshausen and Ridgeway, 2006) and the CMAL-LSTM 

model (Klotz et al., 2022). The QRF model was chosen because it enables us to analyse the distribution of the entire data based 240 

on different quantiles, and it has been previously used in several studies (Taillardat et al., 2016; Evin et al., 2021; Kasraei et 

al., 2021; Tyralis et al., 2019; Tyralis and Papacharalampous, 2021). The CMAL-LSTM model is a combination of an LSTM 

model and a CMAL mixture density function, which allows it to provide information about prediction uncertainties. To the 

best of our knowledge, these two models currently considered state-of-the-art in ML and DL for hydrological probabilistic 

modelling (Tyralis et al., 2019; Zhang and Ye, 2021; Klotz et al., 2022). Readers who wish to delve into more comprehensive 245 

details about each mentioned model are strongly encouraged to refer to the original papers. 

To manage the complexity of the models, only the uncorrected (raw) streamflow simulations are chosen as input features. 

Based on the autocorrelation characteristic of the streamflow, as depicted in Fig. S2 of the supplement, the post-processing for 

day 𝑡𝑡 (𝑄𝑄𝑡𝑡) involves selecting the simulated streamflow for the previous 9 days (𝑄𝑄𝑡𝑡−9𝑠𝑠𝑠𝑠𝑠𝑠, 𝑄𝑄𝑡𝑡−8𝑠𝑠𝑠𝑠𝑠𝑠,…, 𝑄𝑄𝑡𝑡−1𝑠𝑠𝑠𝑠𝑠𝑠) as well as the simulated 

streamflow for the current day (𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠) as inputs. In the QRF model, the input features are fed by temporal embedding. And in 250 

the CMAL-LSTM model, the sequence length is set to 9. For both models, we select the streamflow reference (𝑄𝑄𝑡𝑡
𝑟𝑟𝑒𝑒𝑟𝑟) on day 

𝑡𝑡 as the target. In addition, since we used three different satellite precipitation products, the experiments are divided into a 

single-product experiment and a multi-product experiment (All). The information for each experiment is summarized in Table 

1. The training period is from 1 January 2003 to 31 December 2010. The validation period is from 1 January 2011 to 31 

December 2014. And the test period is from 1 January 2015 to 31 December 2018. 255 

Table 1. Experimental design. 
Streamflow simulation Model Input feature Target 

PDIR 
QRF 

𝑄𝑄𝑡𝑡−9𝑠𝑠𝑠𝑠𝑠𝑠, 𝑄𝑄𝑡𝑡−8𝑠𝑠𝑠𝑠𝑠𝑠,…, 𝑄𝑄𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 

10 

𝑄𝑄𝑡𝑡
𝑟𝑟𝑒𝑒𝑟𝑟 

CMAL-LSTM 1 

IMERG-F 
QRF 10 

CMAL-LSTM 1 

GSMaP 
QRF 10 

CMAL-LSTM 1 

All 

(PDIR, IMERG-F, GSMaP) 

QRF 30 

CMAL-LSTM 3 

We implemented the QRF model using pyquantrf package (Jnelson18, 2022). We tuned three sensitive hyperparameters 

in the QRF model by grid search, finally setting the number of trees (K) to 70, the number of non-leaf node splitting features 

to 10, and the number of samples used for leaf node predictions (Nleaf) to 10. All other hyperparameters were set to default 

values.  260 
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We implemented the CMAL-LSTM model using NeuralHydrology package (Kratzert et al., 2022). We followed the 

model architecture of Klotz et al. (2022), which contains an LSTM layer and a CMAL layer. In contrast to the QRF model, 

the input data of the CMAL-LSTM model needs to be normalized. Here, by several comparisons, we used the normal quantile 

transform method (Fig. S3 in the supplement). The hyperparameters of the model include the number of neurons in the LSTM 

layer (NLSTM), the number of components of the mixture density function (NMDN), the dropout rate, the learning rate, the epoch, 265 

and the batch size. NMDN, is set to 3, which follows Klotz et al. (2022). The other hyperparameters are also fine-tuned such that 

the final learning rate is set to 0.0001, the dropout to 0.4, the epoch to 100, the batch size to 256, and the NLSTM to 256. 

For the QRF model, 100 percentiles (0.005 to 0.995) were equally sampled for each basin and time step and fed directly 

into the model to obtain the final probabilistic (100) members. For the CMAL-LSTM model, first 10,000 sample points for 

each basin and time step by sampling from the mixture distribution were generated and the same 100 percentiles (0.005 to 270 

0.995) from these sample points were extracted and remapped to the original streamflow space using inverse quantile normal 

transformation, where finally the probabilistic members were produced. 

Our computing platform is a workstation configured with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.9GHz and an 

RTX3090 GPU with 24G video memory. It is important to note that each sub-basin was modelled separately due to the GPU's 

video memory limitation in the random sampling process of the CMAL-LSTM model. For consistency, the QRF model was 275 

also modelled locally. The computational time was approximately 12 hours to complete all CMAL-LSTM and 6 hours to 

complete all QRF experiments. 

3.3 Performance evaluation 

In this section the two post-processing models are evaluated from both probabilistic and deterministic perspectives. These 

evaluation metrics are presented in Sect. 3.3.1 and Sect. 3.3.2, respectively. 280 

3.3.1 Probabilistic (multi-point) metrics 

We followed the criterion for probabilistic predictions proposed by Gneiting et al. (2007) and the aim is to maximize the 

sharpness of the prediction distributions subject to reliability. We both use scoring rules and diagnostic graphs to assess 

reliability and sharpness holistically. 

The continuous rank probability score (CRPS) is a widely used scoring measure that assesses reliability and sharpness 285 

simultaneously (Gneiting et al., 2007; Bröcker et al., 2012). For given probabilistic prediction members, the CRPS calculates 

the difference between the cumulative distribution function (CDF) of the probabilistic prediction members and the observations. 

We also used a weighted version of CRPS (threshold weighted CRPS, twCPRS), which is commonly used to give more weight 

to extreme cases (Gneiting and Ranjan, 2011). These two metrics can be expressed as follows: 

𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶(𝐹𝐹, 𝑥𝑥) = ∫ {𝐹𝐹(𝑦𝑦) − 𝟏𝟏(𝑦𝑦 ≥ 𝑥𝑥)}2𝑑𝑑𝑦𝑦∞
−∞          (2) 290 

𝑡𝑡𝑡𝑡𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶(𝐹𝐹, 𝑥𝑥) = ∫ {𝐹𝐹(𝑦𝑦) − 𝟏𝟏(𝑦𝑦 ≥ 𝑥𝑥)}2𝜔𝜔(𝑦𝑦)𝑑𝑑𝑦𝑦∞
−∞         (3) 
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where 𝜔𝜔(𝑦𝑦) is a threshold weighted function and is calculated based on the threshold 𝑞𝑞 (80%, 90% and 95% percentiles of 

observations in this study). When 𝑦𝑦 ≥ q (𝑦𝑦 < q), 𝜔𝜔(𝑦𝑦) equals 1 (0). 𝑥𝑥 represents the observations, i.e., the streamflow reference. 

𝐹𝐹(𝑦𝑦) is the CDF obtained from the probabilistic members for the corrected streamflow. 𝟏𝟏(𝑦𝑦 ≥ 𝑥𝑥) is the Heaviside step 

function. The better performing model has both metrics (𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶 and 𝑡𝑡𝑡𝑡𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶) closer to 0.  295 

The CRPS skill score (𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶) is also used to define the relative differences between the two post-processing models. 

For QRF and CMAL-LSTM, the 𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶 can be calculated as: 

𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶𝑄𝑄𝑄𝑄𝑄𝑄/𝐶𝐶𝑊𝑊𝐴𝐴𝐶𝐶−𝐶𝐶𝐿𝐿𝐿𝐿𝑊𝑊 = �1 − 𝐶𝐶𝑄𝑄𝐶𝐶𝐿𝐿𝑄𝑄𝑄𝑄𝑄𝑄
𝐶𝐶𝑄𝑄𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝐶𝐶𝐿𝐿𝐿𝐿𝐶𝐶

� × 100%      (4) 

A 𝐶𝐶𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶 greater than 0 indicates that the QRF model is better than the CMAL-LSTM model, and vice versa. 

The reliability diagram serves as a diagnostic graph to assess the agreement between predicted probabilities and observed 300 

frequencies (Jolliffe and Stephenson, 2012). It plots the observed frequencies of events against the predicted probabilities, 

specifically plotting the cumulative distribution function (CDF) of the streamflow reference as a function of the forecasted 

probability. The diagram helps to evaluate the reliability of probabilistic forecasts by comparing the predicted probabilities of 

events with their corresponding observed relative frequencies. Ideally, in a perfectly reliable forecast, if the predicted 

probability of a specific event is, for example, 30%, then the observed relative frequency of that event should also be around 305 

30%. Consequently, the reliability diagram would show a distribution of points lying along the diagonal line, indicating a 

consistent alignment between predicted probabilities and observed frequencies across various probability levels. However, in 

practice, there may be deviations from perfect reliability. Points on the reliability diagram above the diagonal line suggest that 

the observed relative frequency is higher than the predicted probability, indicating an underprediction phenomenon. On the 

other hand, points below the diagonal line indicate that the observed relative frequency is lower than the predicted probability, 310 

indicating an overprediction phenomenon. Here again, three thresholds (80%, 90% and 95%) are chosen to better evaluate the 

reliability of extreme cases (Yang et al., 2021). 

Sharpness refers to the precision or tightness of a probabilistic prediction, capturing how closely the predicted probability 

distributions align with the observations. Essentially, a sharp forecast indicates that the predicted uncertainties are relatively 

narrow and closely resemble the observed data points, reflecting a more accurate representation of the true uncertainty in the 315 

predictions. A sharp probabilistic output corresponds to a low degree of variability in the predictive distribution. To evaluate 

the sharpness of probabilistic predictions, prediction intervals are commonly employed (Gneiting et al., 2007). For this study, 

the 50% and 90% percentile intervals were chosen. Furthermore, to establish the relationships between predictive distributions 

and observations, we assessed the coverage of the prediction intervals over the observations. The average Euclidean distance 

of the 25% and 75% probabilistic members is adopted as the sharpness metric (DIS25-75) for the 50% prediction interval, and 320 

the 5% and 95% probabilistic members were used to compute the sharpness metric (DIS5-95) for the 90% prediction intervals. 

The ratio of the number of observations in the prediction intervals to the total number of observations was used as the coverage 

of observations (CO25-75 and CO5-95). In addition, three additional metrics used in a previous study (Klotz et al., 2022) are also 
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employed to calculate the sharpness metric for the full probabilistic members, including mean absolute deviation (MAD), 

standard deviation (STD) and variance (VAR). 325 

3.4.2 Deterministic (single-point) metrics 

The widely used Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and Kling-Gupta efficiency (KGE) (Gupta 

et al., 2009; Kling et al., 2012) are applied for assessing the deterministic model performance. In addition, two components of 

NSE, namely Pearson correlation coefficient (PCC) and relative bias (RB) are calculated to assess the temporal consistency 

and systematic bias of the difference between simulations and observations, respectively. Furthermore, to account for the 330 

seasonality of the flow regime, four metrics are selected to characterize the different aspects of flow regimes, including the 

peak flow bias (FHV, Eq. (A3) in Yilmaz et al., 2008), low-flow bias (FLV, Eq. (A4) in Yilmaz et al., 2008), flow duration 

curve bias (FMS, Eq. (A2) in Yilmaz et al., 2008), and mean peak time lag bias (in days) (PT, Appendix D in Kratzert et al., 

2021). These metrics provide a comprehensive assessment of model performance across different flow conditions and facilitate 

a more accurate evaluation of model ability to reproduce the hydrological processes. 335 

4 Results 

4.1 Uncorrected streamflow simulations 

Figure 3 shows the spatial distribution of NSE for streamflow simulations in 522 sub-basins, driven by three different 

satellite precipitation products and multi-product outputs using the equally-weighted averaging (All). Among the three satellite 

precipitation products, IMERG-F achieves the best model performance, followed by PDIR and GSMaP. PDIR performs poorly 340 

in the upstream and outlet regions of the basin. GSMaP exhibits significant deviations from the streamflow reference in almost 

all sub-basins. The quality of that precipitation product plays a crucial role in streamflow performance with the same 

hydrological model configuration. For example, the presence of a high precipitation bias in GSMaP, as observed in Fig. S4f 

of the supplement, has significant implications for streamflow simulations. This bias leads to correspondingly high biases in 

the streamflow simulations, as depicted in Fig. 8b. Consequently, the streamflow simulations driven by GSMaP exhibit the 345 

lowest NSE values among the three products, as shown in Fig. 3c and Fig. 8c. The performance of PDIR-driven streamflow is 

mainly influenced by the poor temporal variability (PCC) against observations (Fig. S4a in the supplement and Fig. 8a). 

Equally-weighted averaging (All) that incorporates biased information from PDIR and GSMaP has an insignificant impact on 

improving model performance. 
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 350 
Figure 3. The NSE of uncorrected streamflow simulation for the 522 sub-basins. 

4.2 Probabilistic (multi-point) assessment 

The flow magnitudes in different sub-basins vary widely. Therefore, in the presented results for each sub-basin the results 

are normalized separately according to the probabilistic membership of all experiments. By doing so, the probabilistic members 

of all sub-basins are mapped to the range between 0 and 1. 355 

4.2.1 CRPS overall performance 

Overall, the QRF and CMAL-LSTM models demonstrate similar performance in terms of CRPS and twCRPS across all 

threshold conditions (as shown in Fig. 4 and Fig. S5). However, it is noteworthy that the QRF model exhibits more outliers 

compared with the CMAL-LSTM model, indicating that the latter is more stable across sub-basins. When it comes to different 

precipitation-driven streamflow inputs, the IMERG-F-QRF and IMERG-F-CMAL-LSTM experiments have median CRPS 360 

values of 0.0197 and 0.0199, respectively, for 522 sub-basins; the GSMaP-QRF and GSMaP-CMAL-LSTM experiments have 

median CRPS values of 0.024 and 0.0241, respectively; the PDIR-QRF and PDIR-CMAL-LSTM experiments have median 

CRPS values of 0.0287 and 0.0292, respectively. The results show that IMERG-F performs better than GSMaP, and both bias-

corrected products outperform the near real-time product PDIR in post-processing performance. The results of the multi-

product approach (All) are close to those of IMERG-F, but better than those of PDIR and GSMaP. As the threshold conditions 365 

increase, the performance of the multi-product approach is slightly worse than that of IMERG-F (Fig. S5). This suggests that 

introducing features that perform well in a model, such as IMERG-F driven raw streamflow, can improve the performance of 

post-processing models, but introducing features that perform poorly, such as GSMaP and PDIR driven raw streamflow, can 

worsen the performance of post-processing model. The results indicate that the QRF and CMAL-LSTM models can 

automatically perform feature filtration, but cannot completely avoid learning from disruptive information. Using IMERG-F 370 

driven raw streamflow as input, the post-processing models perform better than when driven by the other two products as input 

features, which is related to the quality of IMERG-F features. In terms of temporal correlation and bias, IMERG-F is the 
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optimal product. The raw streamflow simulation of GSMaP performs worse than PDIR, but the post-processing model 

performs better than PDIR. The reason is that comparing to PDIR, raw streamflow of GSMaP has higher temporal correlation 

and better autocorrelation skill as input features. This leads to PDIR being the worst-performing post-processing experiment 375 

among the selected datasets. 

 

Figure 4. The boxplot of CPRS for different post-processing experiments.  

In addition to their overall performance (Fig. 4), the QRF and CMAL-LSTM models exhibit similar spatial performance 

as it is reported in Fig. 5. Compared to PDIR and GSMaP, IMERG-F and multi-product results achieve relatively good 380 

performance in most of the 522 sub-basins. PDIR performs the worst, which inherently is attributed to its poorer input features, 

such as low autocorrelation skill of streamflow. The third row in the Fig. 5 (i.e., Fig. 5i–l) shows that the differences between 

QRF and CMAL-LSTM are mostly within 10%. However, the introduction of multi-product features increased the gap between 

them, indicating that CMAL-LSTM has an advantage over the QRF model in processing multi-dimensional features. In the 

PDIR experiment, the QRF model demonstrates superior performance in 68.2% of the sub-basins (356 out of 522), while the 385 

CMAL-LSTM model performs better in the remaining 31.8% of sub-basins. Regarding the experiments conducted on IMERG-

F, GSMaP, and multi-product (All), the proportions of QRF and CMAL-LSTM models are 65.5% and 34.5%, 54.2% and 

45.8%, and 64.6% and 35.4% respectively. 
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Figure 5. The spatial distribution of CRPS and CRPSS for different post-processing experiments. 390 

4.2.2 The relationship between model performance and flow accumulation area (FAA) 

To further investigate the differences between the two post-processing models, the relationship between the CRPS/CPRSS 

metrics and the FAA of sub-basins are presented in Fig. 6. Overall, the CRPS values of both post-processing models increases 

with increasing FAA, which is related to the streamflow amplitude of different sub-basins. Therefore, the relationship between 

the CRPSS score and the FAA as reported in Fig. 6e–h is of interest to compare the differences between the two post-processing 395 

models. It is observed that when the FAA is small, the QRF model performance is superior to the CMAL-LSTM model. 

However, as the FAA increases, the post-processing skill of the CMAL-LSTM model surpasses that of the QRF model. 

Additionally, the sub-basins are categorised, based on their size, into five intervals: less than 20,000 km2, 20,000–40,000 km2, 

40,000–60,000 km2, 60,000–100,000 km2, and greater than 100,000 km2. The corresponding number of sub-basins for each 

of the five intervals are 476, 15, 4, 13 and 14, respectively. The statistics of model performance in different FAA intervals are 400 
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summarized in Table 2. In sub-basins with FAA less than 20,000 km2, the QRF model shows a better performance. In the 

PDIR experiment, the QRF model has a higher CRPS value in 69.5% of sub-basins. In the IMERG-F, GSMaP, and multi-

product experiments, the percentage of sub-basins where the QRF model outperforms the CMAL-LSTM model are 69.7%, 

57.4%, and 67.2%, respectively. In sub-basins with FAA greater than 60,000 km2, the CMAL-LSTM model shows an absolute 

advantage. In the PIDR experiment, the CMAL-LSTM model has a higher CRPS value in 16 sub-basins. In the IMERG-F, 405 

GSMaP, and multi-product experiments, the number of sub-basins where the CMAL-LSTM model has a higher CRPS value 

are 24, 27, and 25, respectively. 

 
Figure 6. The relationships between (a–d) CRPS, (e–h) CRPSS and FAA.  

Table 2. The probabilistic performance of two post-processing models for different FAA intervals. The bold numbers indicate better 410 
performance in each group. 

FAA 
(104 km2) 

Number 
of sub-
basins 

PDIR IMERG-F GSMaP ALL 

QRF CMAL-
LSTM QRF CMAL-

LSTM QRF CMAL-
LSTM QRF CMAL-

LSTM 
< 2 476 331 145 332 144 273 203 320 156 
2–4 15 11 4 6 9 9 6 11 4 
4–6 4 3 1 1 3 1 3 4 0 

6–10 13 4 9 3 10 0 13 2 11 
> 10 14 7 7 0 14 0 14 0 14 
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4.2.3 Reliability and sharpness 

The reliability diagram is further used to diagnose the difference in post-processing model performance in terms of 

reliability. To distinguish the differences in model performance of the CMAL-LSTM and QRF models with the change of 

FAA, the calculation of the reliability diagram is divided into two parts. One part of the analysis focuses on sub-basins with a 415 

FAA less than 60,000 km2, as illustrated in Fig. 7a–c. This analysis combines all the streamflow predictions obtained from the 

495 sub-basins within this size range. The second part of the analysis focuses on sub-basins with a FAA greater than 60,000 

km2, as depicted in Fig. 7d–f. This analysis involves combining all the streamflow predictions from the 27 sub-basins within 

this size range. Overall, when the FAA is less than 60,000 km2, the performance of the two post-processing models is similar. 

The QRF model is slightly better than the CMAL-LSTM model. Except for the PDIR experiments, all experiments have a high 420 

reliability. As the threshold increases, all experiments show an increasing deviation from the diagonal line and a decrease in 

reliability. Moreover, when the FAA of sub-basin exceeds 60,000 km2, the reliability of the post-processing experiments 

declines and the CMAL-LSTM model performs slightly better than the QRF model, with more points distributed along the 

diagonal line. As the threshold increases, the curve becomes more oscillatory, resulting in a significant decrease in reliability. 

Especially under extreme conditions and as is shown in Fig. 7f, the difference between the two post-processing models is large, 425 

with the CMAL-LSTM performing relatively better. 
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Figure 7. Reliability diagrams. (a) 80%, (b) 90% and (c) 95% percentiles of observations for the sub-basins with FAA less than 60,000 

km2 and (d) 80%, (e) 90% and (f) 95% percentiles of observations for the sub-basins with FAA greater than 60,000 km2. 

Sharpness describes the variability properties of predictive distribution and can be used to assess the differences between 430 

post-processing models from the uncertainty estimation perspective. To eliminate the influence of different flow regimes, all 

data are divided into high-flow (May to October) and low-flow seasons (November to April). Sharpness metrics are calculated 

separately for each sub-basin. The average values of the metrics for all 522 sub-basins are listed in Table 3. The results show 

that, on average across all 522 sub-basins, the QRF model produces narrower prediction intervals than the CMAL-LSTM 

model during both high and low-flow seasons, indicating higher sharpness of the QRF model compared to CMAL-LSTM. 435 

This partially explains why the QRF model has higher CRPS values in most sub-basins. It is worth noting that the QRF model 

shows high coverage of the observations as well as narrower prediction intervals specifically during high flow seasons. The 

average coverage of observations for the 25th to 75th quantiles (CO25-75) is 1.5% higher for the QRF than for the CMAL-
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LSTM model. However, wider prediction interval of the CMAL-LSTM model results in higher coverage of observations 

during low flow seasons. The average coverage of observations for the 25th to 75th quantiles (CO25-75) is 2% higher for the 440 

CMAL-LSTM than for the QRF model. Interestingly, the 90% prediction intervals obtained by both post-processing methods 

contain 100% of the observations, based on the average values across all 522 sub-basins during both high and low-flow seasons. 

Table 3. Sharpness statistics in high-flow and low-flow seasons. The bold numbers indicate better performance in each group. 

Flow 
seasons Metric 

PDIR IMERG-F GSMaP All 

QRF CMAL-
LSTM QRF CMAL-

LSTM QRF CMAL-
LSTM QRF CMAL-

LSTM 

High-
flow 

(May–
Oct.) 

MAD 0.046 0.048 0.047 0.052 0.050 0.054 0.045 0.047 
STD 0.109 0.112 0.133 0.139 0.129 0.133 0.129 0.134 
VAR 0.013 0.014 0.020 0.021 0.018 0.019 0.018 0.020 

DIS25-75 0.0714 0.0703 0.0753 0.0757 0.0781 0.0785 0.0710 0.0687 
DIS5-95 0.184 0.194 0.192 0.215 0.206 0.223 0.184 0.195 

CO25-75 (%) 51.5 50.1 76.9 76.0 64.2 62.8 73.3 71.4 
CO5-95 (%) 100 100 100 100 100 100 100 100 

Low-
flow 

(Nov.–
Apr.) 

MAD 0.0085 0.0100 0.0073 0.0094 0.0088 0.0104 0.0064 0.0069 
STD 0.0264 0.0284 0.0280 0.0301 0.0305 0.0323 0.0258 0.0262 

VAR (10-4) 8.32 9.48 9.10 10.47 10.40 11.52 7.71 7.86 
DIS25-75 0.0121 0.0124 0.0099 0.0112 0.0121 0.0122 0.0086 0.0086 
DIS5-95 0.033 0.039 0.029 0.037 0.036 0.042 0.026 0.027 

CO25-75 (%) 72.2 75.1 88.8 90.2 69.1 73.9 79.6 79.2 
CO5-95 (%) 100 100 100 100 100 100 100 100 

4.3 Deterministic (single-point) assessment 

Although the post-processing model proposed in this study is probabilistic, decision-makers tend to prefer deterministic 445 

(single-point) prediction. Therefore, the average of the probability members is utilized as deterministic predictions to further 

compare the prediction accuracy of the models. Also, it can be viewed as a post hoc model examination. 

4.3.1 Overall model performance 

Figure 8 shows the performance evaluation of the streamflow simulations before (RAW) and after post-processing using 

the QRF and CMAL-LSTM models for 522 sub-basins. PCC, RB and NSE are used as performance metrics, with each sub-450 

basin being evaluated separately. The median and mean of each metric across all 522 sub-basins are computed and reported in 

the first three columns of Table 4. The results indicate that both post-processing models significantly improved the simulation 

performance over the uncorrected streamflow. However, the CMAL-LSTM model consistently outperforms the QRF model 

across the precipitation products and the sub-basins. 
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 455 
Figure 8. Boxplots of different model performance in 522 sub-basins. (a) PCC; (b) RB; and (c) NSE.  

Figure 9 illustrates the spatial characteristics of the NSE improvement in streamflow simulations obtained through model 

comparison. Compared to the raw simulations (RAW), both QRF and CMAL-LSTM models exhibit significant improvements 

in almost all sub-basins. Among all post-processing experiments, GSMaP-CMAL-LSTM and GSMaP-QRF provide the most 

significant improvement in accuracy due to the poorer performance of the raw GSMaP-driven streamflow simulations. 460 

Conversely, the absolute NSE improvement brought by post-processing models are relatively small for the IMERG-F-driven 

streamflow simulations, and even a slight performance decline in 14.8% of sub-basins is observed in the IMERG-F-QRF 

experiment (Fig 9b). Compared to CMAL-LSTM, the QRF model does not show its advantage of deterministic (single-point) 

estimation in almost all sub-basins. The maximum difference in model performance appears in GSMaP experiments, followed 
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by PDIR, IMERG-F and multi-product (All) experiments. This indicates that the deterministic (single-point) estimation ability 465 

of the QRF model differs significantly from the CMAL-LSTM model for streamflow with poor raw simulation. 

 
Figure 9. The spatial distribution of NSE improvement (𝑁𝑁𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶 − 𝑁𝑁𝐶𝐶𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟) between (a–d) QRF and RAW, (e–h) CMAL-LSTM and 

RAW and (i–l) QRF and CMAL-LSTM in 522 sub-basins.  

4.3.2 The relationship between model performance and flow accumulation area (FAA) 470 

Based on the spatial distribution shown in Fig. 9, the relationship between model performance and the flow accumulation 

area (FAA) of the sub-basin is further investigated, following a similar analysis approach as in Sect. 4.2.2 and Fig. 6. In Fig. 

10, we observe a consistent trend: as the FAA of the sub-basin increases, the performance of the model also increases. Notably, 

the CMAL-LSTM model consistently surpasses the QRF model across all experiments, which is further supported by the 

statistics in Table S2. However, as the FAA of sub-basin increase, the performance gap between the CMAL-LSTM model and 475 

QRF model begins to diminish, especially in the IMERG-F driven experiment. In contrast, for experiments such as PDIR, 

GSMaP and multi-product (All), and the increase in FAA has little effect on the performance difference between the CMAL-
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LSTM and QRF models. This suggests that highly biased information from raw streamflow simulation has a greater impact 

on the QRF than on the CMAL-LSTM model. 

 480 
Figure 10. The relationships between (a–d) NSE, (e–h) NSE improvement (𝑁𝑁𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶 − 𝑁𝑁𝐶𝐶𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟) and FAA.  

4.3.3 High-flow, low-flow, and peak timing 

Table 4 summarizes the means and medians of integrated metrics and flow regime indicators for the 522 sub-basins in 

different experiments. The first three columns of the table are the same as the metrics used in Fig. 8. PCC and RB are the 

components of Nash-Sutcliffe efficiency (NSE). In order to guarantee the consensus of the results, another integrated indicator 485 

KGE is also calculated. The KGE performs identical to NSE, confirming the superiority of the CMAL-LSTM model. The last 

four columns of the table are flow-related indicators. Overall, the CMAL-LSTM model remains the best, except for the low-

flow bias (FLV), where the QRF model is more effective. However, as indicated by the high-flow bias (FHV), both post-

processing models have limitations in handling flood peaks. Regardless of the precipitation product used to drive the 

streamflow simulations, the bias of the flood peak changes from an overestimation (RAW) to an underestimation (post-490 

processing). In addition, there is a certain degree of deviation in the simulations of peak time. Flood peaks have always posed 

a challenging problem in hydrological simulation due to many factors, such as spatial and temporal variability in rainfall 
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extreme, soil moisture conditions, and catchment characteristics (Brunner et al., 2019; Jiang et al., 2022). Furthermore, slight 

deviations can lead to significant discrepancies in flood risk assessments (Parodi et al., 2020). Given these challenges, it 

highlights the necessity of probabilistic post-processing. 495 

Table 4. Summary of integrated metrics and flow regime indicators of different models in 522 sub-basins. The bold numbers indicate 
better performance in each group. 

Input Aggregation Model 
Metric 

PCC RB NSE KGE FHV FMS FLV PT 

PDIR 

Mean 
RAW 0.656 -0.02 -0.1 0.521 33.11 -5.3 -17.3 1.68 
QRF 0.785 -0.19 0.558 0.621 -43.4 -9.85 3.143 1.441 

CMAL-LSTM 0.851 0.032 0.712 0.755 -28.8 1.201 15.24 1.328 

Median 
RAW 0.689 -0.05 0.19 0.572 24.77 -7.63 -12.5 1.692 
QRF 0.815 -0.2 0.584 0.645 -44.6 -10.5 9.833 1.417 

CMAL-LSTM 0.877 0.032 0.752 0.778 -29.6 0.978 19.13 1.273 

IMERG-F 

Mean 
RAW 0.759 -0.06 0.389 0.664 10.92 -4.04 -14.3 1.459 
QRF 0.808 -0.06 0.648 0.718 -35.3 4.268 -4.29 1.394 

CMAL-LSTM 0.852 -0.01 0.715 0.765 -30.4 2.409 -5.05 1.282 

Median 
RAW 0.785 -0.09 0.475 0.672 9.555 -6.35 -4.14 1.417 
QRF 0.852 -0.07 0.706 0.739 -37.6 2.068 5.878 1.333 

CMAL-LSTM 0.88 -0.01 0.761 0.788 -32.1 2.159 2.467 1.231 

GSMaP 

Mean 
RAW 0.687 0.286 -0.92 0.308 88.82 8.465 -45.1 1.519 
QRF 0.778 -0.19 0.545 0.61 -45.4 -11.2 15.94 1.703 

CMAL-LSTM 0.848 0.043 0.703 0.741 -31.2 0.708 23.71 1.44 

Median 
RAW 0.731 0.352 -0.62 0.393 82.86 12.08 -34.1 1.5 
QRF 0.809 -0.19 0.579 0.633 -48 -11.1 23.73 1.696 

CMAL-LSTM 0.871 0.04 0.742 0.762 -32.3 1.037 26.36 1.417 

All 

Mean 
RAW 0.733 0.059 0.154 0.603 34.38 2.332 -15.5 1.456 
QRF 0.803 -0.06 0.637 0.704 -38.8 3.494 8.635 1.532 

CMAL-LSTM 0.846 -0.01 0.703 0.76 -32.3 4.855 10.27 1.44 

Median 
RAW 0.771 0.042 0.306 0.664 30.53 2.228 -4.74 1.417 
QRF 0.849 -0.07 0.695 0.727 -42.3 1.317 14.96 1.542 

CMAL-LSTM 0.871 -0.003 0.749 0.781 -33.8 4.436 13.83 1.417 

5 Discussion 

5.1 Model comparison  

Previous studies have demonstrated that the quantile regression forests (QRF) approach outperforms other quantile-based 500 

models, such as quantile regression and quantile neural networks (Taillardat et al., 2016; Tyralis et al., 2019; Tyralis and 
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Papacharalampous, 2021). Additionally, recent research has indicated the effectiveness of mixture density networks based on 

the countable mixtures of asymmetric Laplacians models and long short-term memory networks (CMAL-LSTM) for 

hydrological probabilistic modelling (Klotz et al., 2022). In terms of reliability and sharpness evaluation for probabilistic 

prediction, CMAL-LSTM has been proven to achieve the best results compared to other models such as LSTM coupled with 505 

Gaussian mixture models, uncountable mixtures of asymmetric Laplacians models, and Monte Carlo dropout. These findings 

suggest that currently, QRF and CMAL-LSTM are the state of the art and the most effective machine learning and deep 

learning models for hydrological probabilistic modelling. In this study, we conducted a comprehensive evaluation of the 

performance of these two advanced data-driven models in the context of streamflow probabilistic post-processing. 

Our findings suggest that the QRF model outperformed the CMAL-LSTM model in terms of probability prediction in 510 

most sub-basins. And the performance difference between the two models was found to be associated with the catchment area 

of the sub-basins. The QRF model was superior in sub-basins with smaller catchment area, while the CMAL-LSTM model 

demonstrated better performance in larger sub-basins. However, when evaluated from a deterministic standpoint, the CMAL-

LSTM model achieved higher NSE scores than the QRF model across nearly all sub-basins. The authors believe that the 

primary reason for the inconsistency in model performance is due to the differences in their respective model structure. As 515 

illustrated in Fig. 2, the QRF model and the CMAL-LSTM model have dissimilar probabilistic procedure. 

First, the QRF model and the CMAL-LSTM model differ in their treatment of input features. Specifically, the QRF model 

utilizes time embedding to flatten time-series features as input for the model. In contrast, the CMAL-LSTM model is capable 

of better learning the temporal autocorrelation of input features due to the inherent time-series learning capabilities of LSTM. 

As a result, the CMAL-LSTM model is more responsive to the autocorrelation of uncorrected streamflow features compared 520 

to the QRF model. The results depicted in Fig. S6 in the supplement provide evidence to support the interpretation that the 

performance difference between the QRF model and the CMAL-LSTM model is related to the autocorrelation of input features. 

The CMAL-LSTM model performs better in the sub-basin No. 250, where streamflow feature autocorrelations are more 

skillful, than in sub-basin No. 10, where streamflow feature autocorrelation skills are lacking. 

Second, the QRF model and CMAL-LSTM differ in how they generate probabilistic members. The QRF model calculates 525 

the final probabilistic members by grouping them based on a predetermined number of quantiles (100 in this study). In contrast, 

the CMAL-LSTM model first specifies the form of the probabilistic distribution, then learns the parameters of the distribution 

using neural networks, and finally obtains the final probabilistic members by sampling. The QRF model produces an 

approximate and implicit probabilistic distribution, while the CMAL-LSTM model produces an accurate and explicit 

probabilistic distribution. Moreover, the predicted distribution from the CMAL-LSTM model using the mixture density 530 

function is more flexible. As a result, the QRF model produces narrower prediction intervals compared to the CMAL-LSTM 

model as is reported in Table 3. This is especially true when the sub-basin catchment area is smaller, and the streamflow 

amplitude is lower. This also explains the reason that the QRF model has higher sharpness in these cases compared to the 

CMAL-LSTM model. Figure S7 presents the hydrograph and prediction intervals in two randomly selected sub-basins as an 

example. In sub-basin No.10, the CMAL-LSTM model achieves a balance between the width of the prediction interval and 535 
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the observation coverage, which is more important for high-flow predictions and also explains why the CMAL-LSTM model 

has a higher CRPS value in the sub-basin with larger catchment area. In contrast, although the prediction interval of the QRF 

model is narrower, it is affected by systematic bias. For example, IMERG-F-QRF underestimates the peak flow in the high-

flow season, leading to its smaller CRPS value compared to the CMAL-LSTM model. For sub-basin No.250 with a smaller 

catchment area, its rainfall-runoff response is faster, and the fluctuation of streamflow is greater. Localized precipitation events 540 

can also cause large pulse flow, which is the main feature of flash floods. Therefore, there are relatively more extreme samples. 

In this case, the QRF model learns and captures more observations with narrower prediction intervals, resulting in a better 

CRPS value. 

Third, the QRF model and CMAL-LSTM model differ in their inference process. The QRF model utilizes a decision tree 

model as its base learner, which is a classification algorithm based on historical searches. Whereas, the CMAL-LSTM model 545 

uses a neural network with LSTM layer as its base learner, which is a more powerful fitting model. Due to the differences in 

model structure, the two models have different abilities to handle extreme events. When extreme event samples are limited, 

the QRF model tends to underestimate predictions due to its historical search-based approach. On the other hand, the CMAL-

LSTM uses the mixture density function for extrapolation. However, both post-processing models still underestimates 

streamflow extreme events. The QRF model exhibits a higher degree of underestimation in sub-basins with larger catchment 550 

areas, resulting in unsatisfactory performance compared to the CMAL-LSTM model in these regions. These discrepancies also 

lead to lower NSE scores for the QRF model across all sub-basins, as the squared term in the NSE metric increases the 

sensitivity to high-flow processes which is reported in Fig. S8 in the supplement. 

Furthermore, besides examining the differences in model performance, we investigated the effects of different input 

features on the post-processing model by using three different satellite precipitation products in this study. We observed a 555 

cascading impact on model performance in the rainfall-runoff and post-processing processes. Given a fixed hydrological 

model, in areas with a small catchment area, the response of streamflow to precipitation is quicker, and the quality of satellite 

precipitation products directly influences the quality of streamflow prediction through the rainfall-runoff process. The temporal 

correlation of satellite precipitation determines the temporal correlation of streamflow prediction. Deviations in satellite 

precipitation led to the biased streamflow prediction, which have a more significant effect on the NSE score of streamflow 560 

prediction. This explains the reason that IMERG-F is optimal and PDIR is superior to GSMaP. During the transfer process 

from raw streamflow to post-processed streamflow, the autocorrelation skill of the raw runoff dictates the performance of the 

streamflow post-processing model. This clarifies why IMERG-F is still optimal, but GSMaP is superior to PDIR. Based on 

the results of the multi-product experiment, we observed that the post-processing model can learn better features to a larger 

extent, however, it cannot completely filter out the information that affects the model accuracy. Regarding information 565 

filtering, the CMAL-LSTM model surpasses the QRF model. These findings suggest that although streamflow post-processing 

can enhance model performance, opting for the best quality product is still a prudent decision when multiple precipitation 

products are available, and it can also save more computing resources. Another strategy is to execute precipitation post-
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processing before the hydrological model, which can assist the model to better learn the features and ultimately improve model 

performance. 570 

5.2 Limitations and future work 

This study provides a systematic evaluation of QRF and CMAL-LSTM models in probabilistic streamflow post-

processing, yielding valuable insights and practical experience on model selection. However, there are still some deficiencies 

that need to be addressed in future research. The avenues for further investigations are summarized as follows. 

First, we used simulated streamflow driven by observed precipitation as a proxy for true streamflow. This study diverges 575 

from previous research by focusing on sub-basin scale streamflow post-processing in a nested basin comprised of 522 sub-

basins exhibiting varying flow accumulation areas, ranging from 100 km2 to 127,164 km2. To achieve the streamflow post-

processing for these 522 sub-basins, corresponding streamflow observations are required, but such data are not readily 

available. As an alternative, we employed streamflow simulations generated by a calibrated hydrological model driven by 

observed precipitation. This approach yields a post-processing model performance that closely approximates the given 580 

reference; however, it is not an exact representation of actual streamflow post-processing. Despite this limitation, the reference 

generated was used to evaluate the performance of various post-processing models. Future studies could conduct a more in-

depth comparison of different post-processing models in basins with more streamflow records. Nonetheless, our dataset 

remains scarce in the current community, and we have made it available along with this study to enable other researchers to 

evaluate and compare different methods against the benchmark presented in this study (Zhang et al., 2022b). 585 

Second, there exists data imbalance among the studied sub-basins. Among the selected 522 sub-basins, it can be observed 

that model performance is related to the catchment size. However, the number of sub-basins corresponding to each of the five 

intervals (100–20,000 km2, 20,000–40,000 km2, 40,000–60,000 km2, 60,000–100,000 km2, and greater than 100,000 km2) are 

476, 15, 4, 13 and 14, respectively. Only 5.2% of the sub-basins have a catchment area larger than 60,000 km2. This could 

potentially affect the generality of conclusions drawn. To address this limitation, more extensive and balanced datasets (such 590 

as Caravan, Kratzert et al., 2023) are needed to be utilized to achieve further validation of the research findings and a better 

understanding of different post-processing models. 

Third, the selection of input features and hydrological models could be extended. In order to maintain model complexity 

and keep computational costs low, this study only used one variable, uncorrected streamflow, as the predictor. However, there 

are more variables that can be used as predictors, including other meteorological variables such as temperature and wind speed 595 

(Frame et al., 2021). In addition, basin-related attributes can provide us with local information, which is particularly helpful 

for the prediction in ungauged areas. In previous studies, all of these variables have been shown to have varying degrees of 

contributions to the model (Jiang et al., 2022). For post-processing, there are also studies that use model state variables and 

other output variables as predictors (Frame et al., 2021), which can provide us with information about the hydrological 

processes and increase the physical interpretability of the post-processing framework (Razavi, 2021; Tsai et al., 2021). 600 

However, state variables and outputs generated by hydrological models tend to be biased due to inherent bias in the satellite 
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precipitation. It is unclear whether this is helpful for streamflow post-processing and requires further exploration. In terms of 

hydrological model selection, only the distributed time-variant gain model (DTVGM) was used to simulate streamflow from 

three different satellite precipitation products to increase the diversity of post-processing experiments. By doing so, the other 

two sources of uncertainty, namely, model structure and parameters, were eliminated, since the focus of this study was on 605 

comparing post-processing model with input uncertainty. It is worthing noting that in addition to input uncertainty, 

hydrological model structure and parameter uncertainty are also significant sources of uncertainty, as highlighted by Herrera 

et al. (2022) and Mai et al. (2022a, 2022b). For future post-processing model comparisons, we suggest adopting the approach 

of using multiple hydrological models to analyse the uncertainty of model structure and parameters (Ghiggi et al., 2021; Troin 

et al., 2021; Mai et al., 2022a, 2022b). 610 

Fourth, the post-processing models have limitations in handling streamflow extreme events, as observed through 

comparative analysis and visualization as reported in Table 4 and Fig. S8 in the supplement. The QRF model is based on a 

historical analogy search, wherein the model finds a group of similar samples and averages them at the leaf nodes to obtain 

the final prediction (Li and Martin, 2017). As a result, the limited number of samples, particularly for extreme events, hinders 

its ability to predict such events. However, this limitation can be addressed by introducing additional parameter mixing 615 

methods, such as combining QRF and extreme value distribution. Previous attempts, such as combining QRF and extended 

generalized Pareto distribution, have shown promising results (Taillardat et al., 2019). Nonetheless, these mixing methods add 

complexity to the model and require additional calibration of hyperparameters. The CMAL-LSTM model is also constrained 

by the number of extreme event samples, but its performance in these extreme events exceeds that of the QRF model. 

Additionally, the CMAL-LSTM model chosen in this study is a mixture density network and the corresponding parameters 620 

are directly learned through neural network optimization algorithms like gradient descent. The authors believe that collecting 

more data samples and introducing additional predictors and distribution functions for extreme events can lead to further 

improvements. 

Finally, it is important to constantly enhance and update the model comparison iteratively. The CMAL-LSTM model was 

selected based on its superior performance as proposed by Klotz et al. (2022). They also evaluated two other hybrid density 625 

networks and a probabilistic method using Monte Carlo dropout. Additionally, there are other probabilistic prediction methods 

such as the variational inference (Li et al., 2021) and generative adversarial networks (Pan et al., 2021). In a rapidly evolving 

community, new methods can be applied and tested to further improve the performance of streamflow post-processing in future 

research. 

6 Conclusions 630 

In this study, a series of well-designed experiments to compare the performance of two state-of-the-art models for 

streamflow probabilistic post-processing were conducted: a machine learning model (quantile regression forests) and a deep 

learning model (countable mixtures of asymmetric Laplacians long short-term memory network). Using observed precipitation 
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and three different satellite precipitation products to drive the calibrated hydrological model, we generated a large-sample 

dataset of 522 sub-basins with paired streamflow reference and biased streamflow simulations. We evaluated the model 635 

performance from both probabilistic and deterministic perspectives, including reliability, sharpness, accuracy, and flow regime, 

through intuitive case studies. These experiments established a path for understanding the model differences in probabilistic 

modelling and post-processing, provided practical experience for model selection, and extracted insights for model 

improvement. It also serves as a reference for establishing benchmark tests for model evaluation, including dataset construction 

and metrics selection. Furthermore, streamflow post-processing provides dependable data support for a range of downstream 640 

tasks, such as flood risk analysis, reservoir scheduling, and water resource management. The empirical findings of this study 

for the two post-processing models are summarized below. 

(1) Based on the probabilistic assessment, the QRF and CMAL-LSTM models exhibit comparable performance. 

However, their model differences are correlated with the flow accumulation area (FAA) of sub-basins. In cases where the 

catchment area of a sub-basin is small, the QRF model generates a narrower prediction interval, resulting in better CRPS scores 645 

compared to the CMAL-LSTM model in most sub-basins. Conversely, in larger sub-basins (over 60,000 km2 in this study), 

the CMAL-LSTM model outperforms the QRF model due to its ability to learn autocorrelation skills of features and capture 

more extreme values. 

(2) Based on the deterministic assessment, it can be concluded that the CMAL-LSTM model performs better than the 

QRF model in capturing high-flow process and flow duration curve. On the other hand, the QRF model tends to underestimate 650 

the high-flow process, resulting in worse NSE score across all sub-basins. Both models, however, have the issue of 

underestimating flood peaks due to sparse samples of extreme events. 

(3) The impact of the inherent uncertainties from different satellite precipitation products on streamflow simulations are 

reduced by both models. However, the performance of the post-processing models does not improve further in the multi-

product experiments. Instead, the inclusion of heavily biased inputs leads to a deterioration in model performance. 655 

Recommending the choice of a single precipitation product that is best suited to the task at hand is expected to safeguard the 

model performance and reduce the computational cost. 

(4) Given the performance of post-processing models, the authors believe that these models have the potential to be 

applied to other sources of uncertainty that affect hydrological modelling, such as model structure and parameter uncertainty. 

 660 

Data and code availability. The GPM IMERG Final Run is free available at GES DISC (https://gpm.nasa.gov/node/3328). 

The PDIR data can be freely download from CHRS Data Portal (http://chrsdata.eng.uci.edu/). The GSMaP data is publicly 

available (at https://sharaku.eorc.jaxa.jp/GSMaP/index.htm). The CMA precipitation observation is provided by the National 

Meteorological Information Centre of China Meteorological Administration. The soil types are free available at 

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/. The land use 665 

data is free available from Chinese National Tibetan Plateau Third Pole Environment Data Centre at 

http://data.tpdc.ac.cn/en/data/a75843b4-6591-4a69-a5e4-6f94099ddc2d/. The DEM data is free available at 
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https://www.gscloud.cn/. The QRF model code is available at Github repository (https://github.com/jnelson18/pyquantrf) 

(Jnelson18, 2022). The CMAL-LSTM model code is available at Github repository 

(https://github.com/neuralhydrology/neuralhydrology) (Kratzert et al., 2022). The dataset and results of this study are available 670 

at Zenodo repository (https://zenodo.org/record/7187505) (Zhang et al., 2022b). 
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