
Dear Editor and Reviewers: 

We are grateful for your consideration of our manuscript entitled “Comparing machine learning and deep 

learning models for probabilistic post-processing of satellite precipitation-driven streamflow simulation" 

[HESS-2022-377], and we also very much appreciate your constructive comments and useful suggestions, 

which have enabled us to improve the manuscript. All the comments we received on this study have been 

considered, and we present our reply to each of them separately. We hope the revised manuscript would 

satisfy you. 

 

Response to Editor 

Your submission was evaluated by three reviewers who provided helpful feedback during the discussion step 

but have also raised some concerns about parts of your study. Overall, reviewers’ ratings ranged from quite 

good, or even excellent, to rather poor mainly based on their respective backgrounds and experiences. 

However, among the other things that I see in your replies that you should revise, I suggest that the scientific 

significance of your study should be much improved. 

I release your paper under major revisions. When submitting the revised version, please upload also detailed 

point-by-point replies to the comments and concerns received so far, together with possible additional 

comments that can help evaluate your changes. 

Response: Thank you very much for your effort and suggestion. we have rewritten our abstract and most part 

of main text to improve the scientific significance of our study. 

Abstract. Deep learning (DL) and machine learning (ML) are widely used in hydrological post-

processing, which plays a critical role in improving the accuracy of hydrological predictions. 

However, the trade-off between model performance and computational cost has always been a 

challenge for hydrologists when selecting a suitable model, particularly for probabilistic post-

processing with large ensemble members. Moreover, it is unclear whether the performance 

differences between DL and ML models is significant in hydrological probabilistic post-processing. 

Therefore, this study aims to systematically compare the quantile regression forest (QRF) model and 

countable mixtures of asymmetric Laplacians long short-term memory (CMAL-LSTM) model as 

hydrological probabilistic post-processors. Specifically, we evaluate their ability in dealing with 

biased streamflow simulation driven by three satellite precipitation products across 522 sub-basins of 

Yalong River basin in China. Model performance is comprehensively assessed using a series of 

scoring metrics from both probabilistic and deterministic perspectives. Our results show that the QRF 

model and the CMAL-LSTM model are comparable in terms of probabilistic prediction, and their 

performance is closely related to the flow accumulation area (FAA) of the sub-basin. The QRF model 

outperforms the CMAL-LSTM model in most of the sub-basins with smaller FAA, while the CMAL-

LSTM model has an undebatable advantage in sub-basins with FAA larger than 60,000 km2 in Yalong 

River basin. In terms of deterministic predictions, the CMAL-LSTM model is preferred, especially 

when the raw streamflow is poorly simulated and used as an input. However, if we put aside the 

differences in model performance, the QRF model is more efficient than the CMAL-LSTM model in 

computation time in all experiments. As a result, this study provides insights into model selection in 

hydrological post-processing and the trade-offs between model performance and computational 

efficiency. The findings highlight the importance of considering the specific application scenario, such 

as the catchment size and the required accuracy level, when selecting a suitable model for 

hydrological post-processing. 

  



Response to Referee #1 

This study compares two post-processing methods of streamflow simulation obtained using different 

precipitation products based on satellite data. A comprehensive evaluation is performed on 522 sub-

catchments located in China to assess the performances in terms of reliability, sharpness, and various 

hydrological skills. The paper is well-written and complete, the figures are clear and the interpretations of 

the results are convincing. My recommendation is that the paper can be accepted for publication after minor 

corrections which are listed below. 

Response: Thank you for your positive comments. Each of your suggestions is very valuable to us as they 

have greatly improved the quality and readability of the manuscript. The following are point-by-point 

responses to these comments. 

 

l.44-46: I strongly disagree with this statement. There is no evidence that satellite precipitation estimation is 

the most promising hydrological model input. As an example, ERA5 is mostly driven by satellite data and is 

not able to reproduce most of the precipitation features at a high spatial resolution (Bandhauer et al., 2022; 

Reder et al., 2022), does not reproduce the strong relationships between precipitation characteristics and the 

topography in mountainous areas, underestimate hourly and daily extreme values and overestimate the 

number of wet days (Bandhauer et al., 2022). At high spatial and temporal resolutions, the assimilation of 

ground measurements and/or radar data is needed to reproduce extreme events (Reder et al., 2022). However, 

I agree that satellite precipitation estimation is valuable in regions where ground measurements are scarce. 

Bandhauer, Moritz, Francesco Isotta, Mónika Lakatos, Cristian Lussana, Line Båserud, Beatrix Izsák, Olivér 

Szentes, Ole Einar Tveito, and Christoph Frei. 2022. “Evaluation of Daily Precipitation Analyses in E-OBS 

(V19.0e) and ERA5 by Comparison to Regional High-Resolution Datasets in European Regions.” 

International Journal of Climatology 42 (2): 727–47. https://doi.org/10.1002/joc.7269. 

Bellier, Joseph, Isabella Zin, and Guillaume Bontron. 2018. “Generating Coherent Ensemble Forecasts After 

Hydrological Postprocessing: Adaptations of ECC-Based Methods.” Water Resources Research 54 (8): 

5741–62. https://doi.org/10.1029/2018WR022601. 

Reder, A., M. Raffa, R. Padulano, G. Rianna, and P. Mercogliano. 2022. “Characterizing Extreme Values of 

Precipitation at Very High Resolution: An Experiment over Twenty European Cities.” Weather and Climate 

Extremes 35 (March): 100407. https://doi.org/10.1016/j.wace.2022.100407. 

Response: We agree with your opinion on satellite precipitation products. We have weakened the statement 

here and highlight the significance of satellite precipitation estimation for remote areas. 

Precipitation information is mainly derived from gauge observations, radar precipitation estimates, 

satellite precipitation retrievals and reanalysis products (Sun et al., 2018). Gauge stations and radar 

are limited by the density of the station network and the topography, especially in remote areas such as 

mountainous regions and high altitudes (Sun et al., 2018; Chen et al., 2020). Reanalysis requires the 

assimilation of observations from multiple sources and therefore cannot be obtained in real time. 

Satellite precipitation estimates are available in near-real-time and have shown valuable potentials for 

applications in regions where ground measurements are scarce. (Jiang and Bauer-Gottwein, 2019; 

Dembélé et al., 2020). 

 

l.75: A more recent application of MOS method is provided by Bellier et al. (2018). 

Response: Thank you for sharing this more recent application of MOS method, we have added it to our 

reference. 

Another way is to use the idea of model output statistics (MOS) (Wang et al., 2009; Bogner and 

Pappenberger, 2011; Bellier et al., 2018). 

 



l.80: short memory: I guess that ‘term’ is missing between ‘short‘ and ‘memory’. 

Response: Thank you for pointing it out. We have fixed it. 

For example, long short-term memory (LSTM) models have been used to simulate streamflow in a 

number of gauged and ungauged basins in North America (Kratzert et al., 2018, 2019), the United 

Kingdom (Lees et al., 2021), and Europe (Nasreen et al., 2022). 

 

l.123: serval -> several. 

Response: Thank you for correcting this. It was a typo and we have rephrased this sentence. 

Following the watershed division method of Du et al. (2017), Yalong River basin is divided into 522 

sub-basins with catchment area ranging from 100 km2 to 127,164 km2 (Fig. 1b). 

 

l.195: “so the model is reliable”. Is it possible to rephrase the sentence to indicate that this is an assumption 

and not your personal judgement? As the authors do not provide evidence that the model is able to reproduce 

the natural runoff process (I understand that it is not possible), it would be fairer. 

Response: Thank you for your suggestion. Here, we would like to state that the calibrated hydrological model 

meets the needs of the subsequent study. With regard to reviewer 2's suggestion, we agree that deleting this 

could be a wiser choice and we have deleted this sentence. 

 

l.247: Klotze -> Klotz. 

Response: Thank you for correcting this. It was a typo and we have checked our text. 

 

l.255-256: The terms “single-model” and “multi-model” are a bit misleading, as I understand that the authors 

refer to precipitation products here. I suggest replacing them by “single-precipitation” product and “multi-

precipitation” or something similar. 

Response: Thank you for your suggestion. We have replaced “multi-model” by “multi-product” in our text. 

 

l.348: Missing dot after “threshold”. 

Response: Thank you for pointing out this minor error. We have rephrased this sentence. 

As the threshold conditions increase, the performance of the multi-product approach is slightly worse 

than that of IMERG-F (Fig. S5). 

 

l.448: “Little precipitation events”: I was not sure if the authors refer to localized precipitation events here, 

or with moderate intensities. Is it possible to be more specific? 

Response: Sorry for the confusing information. We want to refer to localized precipitation events. We have 

rephrased this sentence.  

For sub-basin No.250 with a smaller catchment area, its rainfall-runoff response is faster, and the 

fluctuation of streamflow is greater. Localized precipitation events can also cause large pulse flow, 

which is the main feature of flash floods. 

  



Response to Referee #2 

I reviewed the manuscript entitled “Comparing machine learning and deep learning models for probabilistic 

post-processing of satellite precipitation-driven streamflow simulation” by Zhang et al. The manuscript 

compares the uses of a machine learning method (QRF) and a deep learning method (PLSTM) for bias-

correction of streamflow simulations. The study uses the reference precipitation-driven streamflow as the 

reference for the bias-correction instead of the observed streamflow due to the data availability of the region. 

Overall, I have five major concerns. 

Response: Thank you very much for your time. And we are very grateful for the valuable comments and 

suggestions on our manuscript. Based on the concerns you mentioned, we have made thorough changes to 

our manuscript accordingly. We hope that our responses will satisfy you. 

Here, I would like to start by outlining the changes we have made in the revised manuscript. 

 We modified the abstract section to emphasize the scientific significance of the article. 

 We rewrote the methods section to shorten the introduction of post-processing models and to present 

the evaluation metrics and their implications in more detail. 

 We reorganized the structure of the Methods, Results, and Discussion sections to increase readability. 

 We rewrote the discussion section and focused on the interpretations of results. 

 We adjusted some of the figures and tables to highlight the results and reduce redundant information. 

 

 

Comment 1: Lack of interpretations on results 

This study used several statistics for model performance evaluation, namely the continuous rank probability 

score (CRPS), the weighted CRPS, the reliability diagram, and the sharpness. The figures/tables were used 

to demonstrate those statistics. My first and biggest concern is the lack of interpretation on the appearance of 

the figures/tables. For example, I am less familiar with the concept of a reliable diagram; after reading section 

4.2.4, I was still not able to understand what Figure 7 and 8 were showing. It seems that the optimum is to 

have lines following the diagonal line. But how to quantitatively define “close to the diagonal line”? If it is 

close then it is a reliable prediction. But what exactly is meant for “reliable prediction”? If a line is mostly 

located above (below) the diagonal line, it is an underestimation (overestimation) of what? Another example 

is the concept of sharpness. I was not able to understand this concept after reading lines 312-315 where the 

concept was introduced. After reading section 4.2.5, the section dedicated to the sharpness-related results, I 

was even more puzzled. The section compared the variability of the different streamflow estimations and it 

seems that if those statistics show smaller values (lower variability), then the model is better. Again, what is 

it better for and why? It is hard to interpret the meaning probably due to the lack of descriptions on those two 

methods (reliable diagram and sharpness). Rather than those, I also found the use of CRPS and twCRPS 

redundant (see the same pattern between panel a and c and b and d in Figure 4). The patterns of Figure 3 also 

need to be interpreted properly. 

Response: Thank you for your comments and suggestions. We provide point-by-point responses to the above 

comments according to the order of the articles.  



Comment 1.1 

The patterns of Figure 3 also need to be interpreted properly. 

Response: When using the same calibrated hydrological model, the quality of the precipitation product 

determines the performance of the streamflow simulation. Using observed precipitation as a reference, we 

calculated spatial metrics (Pearson correlation coefficient, PCC and Relative bias, RB) of three satellite 

precipitation products (see Fig. S4 below). 

Compared to PDIR and GSMaP, IMERG has both higher PCC and lower RB values. This explains its higher 

NSE values. Compared to PDIR, GSMaP suffers from larger biases (RB), resulting in its worse performance.  

Although GSMAP is a bias-corrected product, it is not guaranteed that it is superior to the near-real-time 

PDIR. This is because PDIR uses more advanced precipitation retrieval algorithms (Nguyen et al., 2020, 

2021). The Precipitation Estimations from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) Dynamic Infrared-Rain rate model (PDIR) utilizes climatological data to construct a dynamic 

cloud-top brightness temperature (Tb)——rain rate relationship. The algorithm is a machine learning method 

and uses historical observations to calibrate the model parameters during training process. No additional 

observations are required in the prediction period, so it is a near real-time product. 

The precipitation product quality plays a crucial role in streamflow performance with the same 

hydrological model configuration. The high precipitation bias in GSMaP (Fig. S4f in the supplement) 

leads to high biases in streamflow simulations (Fig. 8b), resulting in the lowest NSE values (Fig. 3c 

and Fig. 8c) of the three products. The performance of PDIR-driven streamflow is mainly influenced 

by the poor temporal variability (PCC) against observations (Fig. S4a in the supplement and Fig. 8a). 

 

Figure S4. The PCC and RB of three satellite precipitation estimations for 522 sub-basins. 



 

Figure 3. The NSE of uncorrected streamflow simulations for 522 sub-basins. 

 

 

Figure 8. Boxplots of different model performance in 522 sub-basins. (a) PCC; (b) RB; and (c) NSE. 



Comment 1.2 

This study used several statistics for model performance evaluation, namely the continuous rank probability 

score (CRPS), the weighted CRPS, the reliability diagram, and the sharpness. The figures/tables were used 

to demonstrate those statistics. My first and biggest concern is the lack of interpretation on the appearance of 

the figures/tables. For example, I am less familiar with the concept of a reliable diagram; after reading section 

4.2.4, I was still not able to understand what Figure 7 and 8 were showing. It seems that the optimum is to 

have lines following the diagonal line. But how to quantitatively define “close to the diagonal line”? If it is 

close then it is a reliable prediction. But what exactly is meant for “reliable prediction”? If a line is mostly 

located above (below) the diagonal line, it is an underestimation (overestimation) of what? Another example 

is the concept of sharpness. I was not able to understand this concept after reading lines 312-315 where the 

concept was introduced. After reading section 4.2.5, the section dedicated to the sharpness-related results, I 

was even more puzzled. The section compared the variability of the different streamflow estimations and it 

seems that if those statistics show smaller values (lower variability), then the model is better. Again, what is 

it better for and why? It is hard to interpret the meaning probably due to the lack of descriptions on those two 

methods (reliable diagram and sharpness). 

Response: Thank you for your very useful comments. We are very sorry for the deficient descriptions of the 

probabilistic metrics.  

In contrast to deterministic (single-point) predictions, probabilistic predictions (multi-point) of continuous 

variables take the form of predictive cumulative distribution functions. Therefore, the evaluation principle of 

probabilistic prediction is to compare the relationship between the probability distribution function and the 

observation (Gneiting et al., 2007). Developed from Murphy (1993), there are nine key attributes to assess 

forecast quality: bias, correlation, accuracy, skill, reliability, sharpness, resolution, discrimination, and 

uncertainty (Troin et al., 2021; Huang and Zhao, 2022). 

Table. Description of the nine key attributes to assess forecast quality (Murphy, 1993) 

Attributes Definition 

Bias Correspondence between mean forecast and mean observation 

Correlation Overall strength of the linear relationship between individual pairs of forecasts and 

observations 

Accuracy Average correspondence between individual pairs of forecasts and observations 

Skill Accuracy of forecasts of interest relative to accuracy of forecasts produced by 

standard of reference 

Reliability Correspondence between conditional mean observation and conditioning forecast, 

averaged over all forecast 

Sharpness Variability of forecasts as described by distribution of forecasts 

Resolution Difference between conditional mean observation and unconditional mean 

observation, averaged over all forecasts 

Discrimination 1 Correspondence between conditional mean forecast and conditioning observation, 

averaged over all observations 

Discrimination 2 Difference between conditional mean forecast and unconditional mean forecast, 

averaged overall observations 

Uncertainty Variability of observations as described by distribution of observations 

 

A common conclusion of the forecast verification literature is that there is no best verification approach 

combining all attributes sought in assessing a forecast. Gneiting et al. (2007) propose to evaluate predictive 

performance based on the paradigm of maximizing the sharpness of the prediction distributions subject 

to calibration (the same as reliability, Jolliffe and Stephenson, 2012). In other words, make sure the 

probabilistic forecasts are reliable, and then make them as sharp as possible. In addition to reliability and 

sharpness, scoring rules assign numerical scores to probabilistic forecasts and form attractive summary 

measures of predictive performance, in that they address reliability and sharpness simultaneously. Therefore, 

in this study, we followed these principles and selected CRPS, reliability diagram and sharpness as our 

probabilistic (multi-point) metrics. 



 CRPS is a widely used proper scoring rule that assesses reliability and sharpness simultaneously 

(Gneiting et al., 2007). For given probabilistic members, the CRPS calculates the difference between 

the cumulative distribution function (CDF) of the probabilistic members and the observations. The 

CRPS is a composite indicator, similar to the NSE. It can give us comprehensive evaluation results, and 

we use it as the main probabilistic metric. However, the decomposition of CRPS can provide additional 

information (Candille and Talagrand, 2005). For example, in our study, the QRF model outperforms the 

CMAL-LSTM model with a lower CRPS value. Perhaps because QRF is both reliable and sharp. Or is 

it just that QRF is more reliable than CMAL-LSTM. So, we further used reliability and sharpness 

metrics. 

 Reliability measures how closely the forecast probabilities of an event correspond to the actual chance 

of observing the event. The reliability diagram is a common graphical tool to evaluate and summarize 

this relationship. It consists of plotting observed frequencies against forecast probabilities. The 

reliability diagram groups the predictions into bins according to the probability (Forecast probability, 

horizontal axis). The frequency with which the event was observed to occur for this sub-group of 

predictions is then plotted against the vertical axis (Observed relative frequency). For perfect reliability 

the forecast probability and the observed relative frequency should be equal, and the plotted points 

should lie on the diagonal. For example, when the forecast states an event will occur with a probability 

of 25% then for perfect reliability, the observed relative frequency should occur on 25%. If a line is 

mostly located above the diagonal line, it is underestimation of probability (underprediction). For 

example, for a specific event, the forecasted probability is 0.4, but the observed relative frequency is 

0.6. The forecast underestimates the actual probability of occurrence. 

 Sharpness is the variability of forecasts as described by distribution of forecasts. For a set of 

probabilistic members, sharpness describes the dispersion of the probabilistic quantiles. If the prediction 

interval is smaller, the probabilistic prediction tends to be deterministic with smaller uncertainty. 

Therefore, if the statistic is smaller, and the dispersion is smaller, then the model is better. The 50% and 

90% quantile intervals are the most common choices in the literature. In Murphy’s definition, sharpness 

is only relevant for predictions, not observations. Focusing only on predictions makes sense, but is one-

sided. For example, a sharp prediction interval but misses almost any observation is meaningless. 

Therefore, some studies also use the coverage of observations by prediction intervals to supplement the 

evaluation. For example, Ajami et al. (2007) count the number of observations within the 95% 

prediction interval. Last but not least, the 50% and 90 prediction intervals can only calculate partial 

probabilistic members, not all quantile members. Therefore, consistent with previous study (Klotz et al., 

2022), we finally selected three additional metrics for all probabilistic quantiles, namely Mean absolute 

deviation (MAD), Standard deviation (STD) and Variance (VAR). 

In summary, we use numerical scores and diagnostic plots to explore specific properties of probabilistic 

predictions and make holistic evaluations. We have rewritten the evaluation metric part. 

We followed the criterion for probabilistic predictions proposed by Gneiting et al. (2007): to 

maximize the sharpness of the prediction distributions subject to reliability. We both use scoring rules 

and diagnostic graphs to assess reliability and sharpness holistically. 

The continuous rank probability score (CRPS) is a widely used proper scoring rule that assesses 

reliability and sharpness simultaneously (Gneiting et al., 2007). For given probabilistic members, the 

CRPS calculates the difference between the cumulative distribution function (CDF) of the probabilistic 

members and the observations. We also used a weighted version of CRPS (threshold weighted CRPS, 

twCPRS), which is commonly used to give more weight to extreme cases (Gneiting and Ranjan, 2011). 

These two metrics can be expressed as follows: 

𝐶𝑅𝑃𝑆(𝐹, 𝑥) = ∫ {𝐹(𝑦) − 𝟏(𝑦 ≥ 𝑥)}2𝑑𝑦
∞

−∞
         (2) 

𝑡𝑤𝐶𝑅𝑃𝑆(𝐹, 𝑥) = ∫ {𝐹(𝑦) − 𝟏(𝑦 ≥ 𝑥)}2𝜔(𝑦)𝑑𝑦
∞

−∞
       (3) 

where 𝜔(𝑦) is a threshold weighted function and is calculated based on the threshold q (80%, 90% 

and 95% percentiles of observations in this study). When 𝑦 ≥ q (𝑦 < q), 𝜔(𝑦) equals 1 (0). 𝐹(𝑦) is 

the CDF obtained from the probabilistic members for the corrected streamflow; 𝟏(𝑦 ≥ 𝑥) is the 

Heaviside function. The better performing model has both metrics (CRPS and twCRPS) closer to 0.  



The CRPS skill score (CRPSS) is also used to define the relative differences between the two post-

processing models. For QRF and CMAL-LSTM, the CRPSS can be calculated as: 

𝐶𝑅𝑃𝑆𝑆𝑄𝑅𝐹/𝑃𝐿𝑆𝑇𝑀 = (1 −
𝐶𝑅𝑃𝑆𝑄𝑅𝐹

𝐶𝑅𝑃𝑆𝑃𝐿𝑆𝑇𝑀
) × 100%        (4) 

A CRPSS greater than 0 indicates that the QRF model is better than the CMAL-LSTM model, and vice 

versa. 

The reliability diagram is used as diagnostic graph to assess the agreement between the predicted 

probability and the observed frequency (Jolliffe and Stephenson, 2003). Namely, if the predicted 

probability of a particular event is 30%, then the observed relative frequency should also be 30%. 

Ultimately, perfectly reliable predictions at multiple levels of probability result in a distribution along 

the diagonal line corresponding to the same levels of observed frequency. A point above (below) the 

diagonal line in the reliability diagram indicates that the observed relative frequency is higher (lower) 

than the predicted probability and that there is an underprediction (overprediction) phenomenon. Here 

again, three thresholds (80%, 90% and 95%) are chosen to better evaluate the reliability of extreme 

cases (Yang et al., 2021). 

Sharpness is a fundamental characteristic of predictive distributions. A sharp probabilistic output 

corresponds to a low degree of variability in the predictive distribution. To evaluate the sharpness of 

probabilistic predictions, prediction intervals are commonly employed (Gneiting et al., 2007). For this 

study, the 50% and 90% percentile intervals were chosen. Furthermore, to establish the relationships 

between predictive distributions and observations, we assessed the coverage of the prediction 

intervals over the observations. The average Euclidean distance of the 25% and 75% probabilistic 

members is adopted as the sharpness metric (DIS25-75) for the 50% prediction interval, and the 5% 

and 95% probabilistic members were used to compute the sharpness metric (DIS5-95) for the 90% 

prediction intervals. The ratio of the number of observations in the prediction intervals to the total 

number of observations was used as the coverage of observations (CO25-75 and CO5-95). In 

addition, three additional metrics used in a previous study (Klotz et al., 2022) are also employed to 

calculate the sharpness metric for the full probabilistic members, including mean absolute deviation 

(MAD), standard deviation (STD) and variance (VAR). 

Comment 1.3 

Rather than those, I also found the use of CRPS and twCRPS redundant (see the same pattern between panel 

a and c and b and d in Figure 4). 

Response: We understand your concern regarding possible redundancy. We agree that the similar patterns 

between CRPS and twCRPS results. CRPS is an integral over the whole range of values, while twCRPS is 

an integral over a partial range of values, which is a weighted version of the CRPS and gives more weight 

to the extreme cases. For this reason, even though the patterns are consistent, they guarantee more convincing 

results for different cases. 

We show the CRPS result in the main text (Fig. 4) and have moved the twCRPS results to supplementary 

material (Fig. S5). 



 

Figure 4. The boxplot of CRPS for different post-processing experiments. 

 

Figure S5. The boxplot of twCRPS for different post-processing experiments. 

 

Comment 2: Drainage area thresholds 

Comment 2.1 

The authors provided scatter plots between drainage areas and CRPS (CRPSS) in Figure 6. Two different 

drainage area thresholds (20,000 and 60,000 km2) were used to split the space of the plots for CRPS and 

CRPSS, respectively. I was not sure how those thresholds were selected. It seems that they are arbitrarily 

selected by the authors. Moreover, in the latter Figures 7 and 8, only 60,000 km2 was used as the threshold, 

while in Figure 12, 20,000 km2 was used again. I can’t see a clear reason for switching between thresholds.  

Response: Thank you very much for your comments and questions. This is a very important and critical 

question, and one that we struggled with in our analysis. 

The analysis of the relationship between model performance and drainage areas and the thresholds were 

intended to better compare the QRF model with the CMAL-LSTM model, as well as to provide insights for 

their application in streamflow post-processing. Regrading model performance and drainage areas, it would 

be very exciting if critical thresholds exited. A number of studies have given different thresholds for various 

basins. For example, Nijssen (2004) concluded that streamflow errors are large for small drainage area but 

decreased rapidly for drainage areas larger than about 50000 km2 the Ohio River basin. Mandapaka et al. 

(2009) showed that the radar-rainfall errors are spatially correlated with a correlation distance of about 20 

km in the central Oklahoma region. Nikolopoulos et al. (2010) showed the propagation of the rainfall error 

depends on the basin size and small watershed (< 400 km2) exhibited a higher ability in dampening the error 

than larger-sized watersheds in the Posina and Bacchiglione basins. 

Based on your reminder, we have rethought this issue carefully. We also used logarithmic axes to show the 

results (see Fig.6 and Fig.10). We acknowledge that the threshold is indistinguishable and that an explicit 

threshold may change with the choice of basins, which may not be very informative for readers. Therefore, 



we deleted the current threshold lines and added tables to list the number of sub-basins in different FAA 

intervals (Table 2 and Table S2). 

We express these patterns as more general conclusions. For example, the model performance is a function of 

the drainage area. In the probabilistic post-processing scenario, QRF model outperforms CMAL-LSTM 

model in most sub-basins with small drainage areas; as the drainage area increases, the CMAL-LSTM model 

slightly performs better compared to QRF model. 

 

Figure 6. The relationship between (a-d) CRPS, (e-h) CRPSS and FAA. 

 

Table 2. The probabilistic performance of two post-processing models for different FAA intervals. 

FAA 

(104 km) 

Number 

of sub-

basins 

PDIR IEMRG GSMAP ALL 

QRF 
CMAL-

LSTM 
QRF 

CMAL-

LSTM 
QRF 

CMAL-

LSTM 
QRF 

CMA

L-

LSTM 

< 2 476 331 145 332 144 273 203 320 156 

2–4 15 11 4 6 9 9 6 11 4 

4–6 4 3 1 1 3 1 3 4 0 

6–10 13 4 9 3 10 0 13 2 11 

> 10 14 7 7 0 14 0 14 0 14 

 



 

Figure 10. The relationship between (a-d) NSE, (e-h) NSE improvement and FAA. 

 

Table S2. The deterministic performance of two post-processing models for different FAA intervals. 

FAA 

(104 

km) 

Numb

er of 

sub-

basins 

PDIR IEMRG GSMAP ALL 

QRF 
CMAL-

LSTM 
QRF 

CMAL-

LSTM 
QRF 

CMAL-

LSTM 
QRF 

CMAL-

LSTM 

< 2 476 8 468 37 439 10 466 40 436 

2–4 15 0 15 2 13 0 15 2 13 

4–6 4 0 4 0 4 0 4 4 0 

6–10 13 0 13 0 13 0 13 0 13 

> 10 14 0 14 0 14 0 14 0 14 

 

  



Comment 2.2 

Rather than that, the authors mentioned in several locations that the statistics show dependencies on the 

drainage area. I don’t disagree that the patterns are not random (see Figure 6 and 12), but how do the authors 

explain those patterns? The current descriptions are merely on the appearance of the plots without convincing 

explanation. 

Response: This question is about the interpretation of the results. Probabilistic and deterministic post-

processing are two different tasks, so we explain them separately. 

The first scenario is the probabilistic post-processing task. Before interpreting the results, it is worth noting 

that CRPSS is a relative indicator. In fact, the difference between the QRF model and the CMAL-LSTM 

model is not very significant. This can also be found in the CRPS boxplot (see Fig. 4). The difference between 

the QRF model and the CMAL-LSTM model is mainly in the handing of extreme samples and temporal 

features. 

 

Figure 4. The boxplot of CRPS for different post-processing experiments. 

 When using the same input data (e.g., IEMRGF-driven uncorrected streamflow simulation), the 

differences between model performance are largely attributable to the models themselves. The QRF, a 

variant of RF, essentially is a decision tree-based classification algorithm. For a given quantile bin, it 

calculates the MSE between the predicted and actual samples based on a search of historical samples, 

resulting in outputs for each corresponding quantile. Therefore, for cases where the drainage area is 

large. The sample of extreme events is small, the prediction interval obtained by the QRF model is 

narrow (For sub-basin No.10, QRF: DIS25-75=596.8 m3/s; CMAL-LSTM: DIS25-75=676.4 m3/s) and 

underestimates the flow peak (For sub-basin No.10, QRF: CO25-75=28.8%; CMAL-LSTM: 33.0%). The 

QRF model only set 100 fixed quantiles. The CMAL-LSTM model firstly samples from the mixed 

distribution function and then set 100 quantiles. The CMAL-LSTM model infers much wider prediction 

interval. Last, we used a 10-day time series as features. The QRF model uses time embedding to stack 

the data and therefore cannot learn more data dynamics. The CMAL-LSTM model is able to learn more 

data dynamics because of its “gate” functions. In sub-basins with larger drainage area with high 

autocorrelation skill (e.g., sub-basin No.10), the CMAL-LSTM model architecture can perform better. 

 

 



 
Figure S6. Autocorrelation skill for two randomly selected sub-basins (No.10 and No.250) of different 

satellite precipitation driven simulation. (a) PDIR, (b) IMERG-F, and (c) GSMaP. 

 

 When using different input data (e.g., PDIR-driven vs. GSMaP-driven uncorrected streamflow 

simulations), the quality of input data determines the model performance. Compared to GSMaP, the 

PDIR-driven uncorrected streamflow simulations are less autocorrelated, although it has a higher NSE 

value.  

 
Figure S2. Streamflow autocorrelation skill with different previous time window. 

 

The second scenario is the deterministic post-processing task.  

 The main metric we use is the NSE. Due to the presence of the squared term in the NSE formula, the 

simulation error in the flood peak leads to worse NSE values. The model differences between QRF and 

CMAL-LSTM are manifested in the treatment of flow peaks and the data dynamics. The limitations of 

the QRF model for temporal features also result in its worse PCC performance (PCCQRF< PCCCMAL-

LSTM).  

 For sub-basins with different drainage areas, since the NSE improvement we used is an absolute value, 

the difference in model performance correlates with the performance of uncorrected streamflow 

simulations (raw NSE). If the raw NSE is poor, there is a lot of room for improvement in NSE; if the 

raw NSE is high, there is little room for improvement in NSE. 

 

We have condensed the above interpretation and added it to the discussion section (Sect. 5.1 Model 

comparison). But we have to admit that the current analysis is still rather superficial. Difficulties in explaining 

more general patterns may also result from basin imbalances. We will continue to explore related issues by 

using large-sample hydrology dataset (e.g., Caravan in Kratzert et al., 2023) in future research. 

 

5.1 Model comparison 

Previous studies have demonstrated that the quantile regression forests (QRF) approach outperforms 

other quantile-based models, such as quantile regression and quantile neural networks (Taillardat et 

al., 2016; Tyralis et al., 2019; Tyralis and Papacharalampous, 2021). Additionally, recent research 

has indicated the effectiveness of mixture density networks based on the countable mixtures of 

asymmetric Laplacians models and long short-term memory networks (CMAL-LSTM) for 

hydrological probabilistic modelling (Klotz et al., 2022). In terms of reliability and sharpness 



evaluation for probabilistic prediction, CMAL-LSTM has been proven to achieve the best results 

compared to other models such as LSTM coupled with Gaussian mixture models, uncountable 

mixtures of asymmetric Laplacians models, and Monte Carlo dropout. These findings suggest that 

currently, QRF and CMAL-LSTM may be the most effective machine learning and deep learning 

model for hydrological probabilistic modelling. In this study, we conducted a comprehensive 

evaluation of the performance of these two advanced data-driven models in the context of streamflow 

probabilistic post-processing. 

Our findings suggest that the QRF model outperformed the CMAL-LSTM model in terms of 

probability prediction in most sub-basins. And the performance difference between the two models 

was found to be associated with the catchment area of the sub-basins. The QRF model was superior in 

sub-basins with smaller catchment area, while the CMAL-LSTM model demonstrated better 

performance in larger sub-basins. However, when evaluated from a deterministic standpoint, the 

CMAL-LSTM model achieved higher NSE scores than the QRF model across nearly all sub-basins. 

The authors believe that the primary reason for the disparity in model performance is due to the 

differences in their respective model structure. As illustrated in Fig 2, the QRF model and the CMAL-

LSTM model have dissimilar probabilistic procedure. 

First, the QRF model and the CMAL-LSTM model differ in their treatment of input features. 

Specifically, the QRF model utilizes time embedding to flatten time-series features as input for the 

model. In contrast, the CMAL-LSTM model is capable of better learning the temporal autocorrelation 

of input features due to the inherent time-series learning capabilities of LSTM. As a result, the CMAL-

LSTM model is more responsive to the autocorrelation of uncorrected streamflow features compared 

to the QRF model. The results depicted in Fig. S6 in the supplement provide evidence to support the 

interpretation that the performance difference between the QRF model and the CMAL-LSTM model is 

related to the autocorrelation of input features. The CMAL-LSTM model performs better in the sub-

basin No. 250, where streamflow feature autocorrelations are more skillful, than in sub-basin No. 10, 

where streamflow feature autocorrelation skills are lacking. 

Second, the QRF model and CMAL-LSTM differ in how they generate probabilistic members. The 

QRF model calculates the final probabilistic members by grouping them based on a predetermined 

number of quantiles (100 in this study). In contrast, the CMAL-LSTM model first specifies the form of 

the probabilistic distribution, then learns the parameters of the distribution using neural networks, 

and finally obtains the final probabilistic members by sampling. The QRF model produces an 

approximate and implicit probabilistic distribution, while the CMAL-LSTM model produces an 

accurate and explicit probabilistic distribution. Moreover, the predicted distribution from the CMAL-

LSTM model using the mixture density function is more flexible. As a result, the QRF model produces 

narrower prediction intervals compared to the CMAL-LSTM model as is reported in Table 3. This is 

especially true when the sub-basin catchment area is smaller, and the streamflow amplitude is lower. 

This also explains the reason that the QRF model has higher sharpness in these cases compared to the 

CMAL-LSTM model. Figure. S7 presents the hydrograph and prediction intervals in two randomly 

selected sub-basins as an example. In sub-basin No.10, the CMAL-LSTM model achieves a balance 

between the width of the prediction interval and the observation coverage, which is more important 

for high-flow predictions and also explains why the CMAL-LSTM model has a higher CRPS value in 

the sub-basin with larger catchment area. In contrast, although the prediction interval of the QRF 

model is narrower, it is affected by systematic bias. For example, IMERG-F-QRF underestimates the 

peak flow in the high-flow season, leading to its smaller CRPS value compared to the CMAL-LSTM 

model. For sub-basin No.250 with a smaller catchment area, its rainfall-runoff response is faster, and 

the fluctuation of streamflow is greater. Localized precipitation events can also cause large pulse 

flow, which is the main feature of flash floods. Therefore, there are relatively more extreme samples. 

In this case, the QRF model learns and captures more observations with narrower prediction 

intervals, resulting in a better CRPS value. 

Third, the QRF model and CMAL-LSTM model differ in their inference process. The QRF model 

utilizes a decision tree model as its base learner, which is a classification algorithm based on 

historical searches. Whereas, the CMAL-LSTM model uses a neural network with LSTM layer as its 

base learner, which is a more powerful fitting model. Due to the differences in model structure, the 



two models have different abilities to handle extreme events. When extreme event samples are limited, 

the QRF model tends to underestimate predictions due to its historical search-based approach. On the 

other hand, the CMAL-LSTM uses the mixture density function for extrapolation. However, both post-

processing models still underestimates streamflow extreme events. The QRF model exhibits a higher 

degree of underestimation in sub-basins with larger catchment areas, resulting in unsatisfactory 

performance compared to the CMAL-LSTM model in these regions. These discrepancies also lead to 

lower NSE scores for the QRF model across all sub-basins, as the squared term in the NSE metric 

increases the sensitivity to high-flow processes which is reported in Fig. S8 in the supplement. 

Furthermore, besides examining the differences in model performance, we investigated the effects of 

different input features on the post-processing model by using three different satellite precipitation 

products in this study. We observed a cascading impact on model performance in the rainfall-runoff 

and post-processing process. Given a fixed hydrological model, in areas with a small catchment area, 

the response of streamflow to precipitation is quicker, and the quality of satellite precipitation 

products directly influences the quality of streamflow prediction through the rainfall-runoff process. 

The temporal correlation of satellite precipitation determines the temporal correlation of streamflow 

prediction. Deviations in satellite precipitation led to the biased streamflow prediction, which have a 

more significant effect on the NSE score of streamflow prediction. This explains the reason that 

IMERG-F is optimal and PDIR is superior to GSMaP. During the transfer process from raw 

streamflow to post-processed streamflow, the autocorrelation skill of the raw runoff dictates the 

performance of the streamflow post-processing model. This clarifies why IMERG-F is still optimal, 

but GSMaP is superior to PDIR. Based on the results of the multi-product experiment, we observed 

that the post-processing model can learn better features to a larger extent, however, it cannot 

completely filter out the information that affects the model accuracy. Regrading information filtering, 

the CMAL-LSTM model surpasses the QRF model. These findings suggest that although streamflow 

post-processing can enhance model performance, opting for the best quality product is still a prudent 

decision when multiple precipitation products are available, and it can also save more computing 

resources. Another strategy is to execute precipitation post-processing before the hydrological model, 

which can assist the model to better learn the features and ultimately improve model performance. 

Comment 3: Selection of typical sub-basins 

The manuscript dedicated two sections (4.2.6 and 4.3.5) for pilot analysis of two sub-basins. However, I can’t 

see a clear reason for having those pilot analyses. Nor do I see any convincing reason supporting that the two 

sub-basins chosen are “typical”. I don’t even know the definition of “typical” here. I think the authors need 

to address what had been shown by rendering such pilot analysis (the necessity of emphasizing analysis of 

the two sub-basins)? How do those analyses help to tell the story? Besides, please add in the methodology 

section the criteria of choosing the "typical" sub-basins. 

Response: We are very sorry for the misinformation caused by our terminology. Here, we want to show two 

“random” sub-basins for “typical” results. The selection criteria are based on the value of CRPSS (QRF vs. 

CMAL-LSTM). For a sub-basin with a larger drainage area, the CMAL-LSTM model outperforms the QRF 

model; for a sub-basin with a smaller drainage area, the QRF model outperforms the CMAL-LSTM model. 

Based on the above criteria, we randomly selected sub-basin No.10 and sub-basin No.250. Hydrographs and 

predict intervals are more familiar to hydrologists and tend to be chosen in most streamflow simulation 

studies. Hydrographs and predict intervals can also be used as a diagnostic plot to discover patterns in a long-

term streamflow time series as an additional perspective to complement the interpretation of the integrated 

indicators.  

Considering the completeness of the main text's results, we have moved these two sections to the supplement. 

  



Comment 4: Composition of the discussion section 

I found the current discussion section superficial, lacking the in-depth explanations on some critical 

observations from the result section. For example, in section 5.2, the authors mentioned that “In their study, 

the CMAL-LSTM model achieved the best model performance, which is why we chose it.”. But what was 

used in this study is PLSTM, not CMAL-LSTM by Klotz et al. (2022). Another example is the use of global 

vs. local models in section 5.3. The authors explain that they chose to train local models because they have 

limited computational resources. I don’t against either training one global model or several local models; I 

think it is just the choice of the users. But I found this content irrelevant to the science of this study. In my 

opinion, there are several observations from the result section that are worthy to explain. First, on the 

hydrological model performance, why are the headwater and the downstream catchments show worse 

performance than the other catchments (Figure 3)? Why is the gauge-adjusted GSMaP worse than the near-

real-time PDIR? Second, on the relative performance between QRF and PLSTM, why is QRF better than 

PLSTM in the probabilistic evaluation but the reversed situation shown in the deterministic evaluation? Third, 

on the dependency between metrics and drainage area. As it was mentioned in the previous comment, the 

patterns are not random. How do we interpret those patterns? Besides, I think it is too much to dedicate two 

sub-section (section 5.4 and 5.5) on future research directions. Consider merging them and making the writing 

concise. Discuss something valuable from your results rather than some general facts from literature. 

Response: We appreciate your suggestions and tips. We will respond to these points in specific comments 

below. And we have restructured our discussion section. 

 

Comment 4.1 

For example, in section 5.2, the authors mentioned that “In their study, the CMAL-LSTM model achieved 

the best model performance, which is why we chose it.”. But what was used in this study is PLSTM, not 

CMAL-LSTM by Klotz et al. (2022). 

Response: Sorry for this misleading information, we used the CMAL-LSTM model. We have replaced the 

PLSTM with the CMAL-LSTM throughout the text. 

 

Comment 4.2 

Another example is the use of global vs. local models in section 5.3. The authors explain that they chose to 

train local models because they have limited computational resources. I don’t against either training one 

global model or several local models; I think it is just the choice of the users. But I found this content 

irrelevant to the science of this study. 

Response: Thank you for your comment. This is an important issue and many studies have studied the 

difference between global and local models (e.g., Kratzert et al., 2019; Fang et al., 2022). For this reason, we 

will shorten it and include it in the methods section to inform the reader of our choice. 

Our computing platform is a workstation configured with an Intel(R) Xeon(R) Gold 6226R CPU @ 

2.9GHz and an RTX3090 GPU with 24G video memory. It is worth noting that we modelled each sub-

basin separately due to the random sampling process of the CMAL-LSTM model exceeding the GPU's 

video memory. For consistency, the QRF model was also modelled locally. 

 

Comment 4.3 

In my opinion, there are several observations from the result section that are worthy to explain. First, on the 

hydrological model performance, why are the headwater and the downstream catchments show worse 

performance than the other catchments (Figure 3)? Why is the gauge-adjusted GSMaP worse than the near-

real-time PDIR?  



Response: Thank you for your question. When using the same calibrated hydrological model, the quality of 

the precipitation product determines the performance of the streamflow simulation. Using observed 

precipitation as a reference, we calculated spatial metrics (Pearson correlation coefficient, PCC and Relative 

bias, RB) of three satellite precipitation products (see Fig. S4 below). 

Compared to PDIR and GSMaP, IMERG has both higher PCC and lower RB values. This explains its higher 

NSE values. Compared to PDIR, GSMaP suffers from larger biases (RB), resulting in its worse performance. 

Although GSMAP is a bias-corrected product, it is not guaranteed that it is superior to the near-real-time 

PDIR. This is because PDIR uses more advanced precipitation retrieval algorithms (Nguyen et al., 2020, 

2021). The Precipitation Estimations from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) Dynamic Infrared-Rain rate model (PDIR) utilizes climatological data to construct a dynamic 

cloud-top brightness temperature (Tb)——rain rate relationship. The algorithm is a machine learning method 

and uses historical observations to calibrate the model parameters during training process. No additional 

observations are required in the prediction period, so it is a near real-time product. 

Please see detailed response to comment 1.1. 

 

Second, on the relative performance between QRF and PLSTM, why is QRF better than PLSTM in the 

probabilistic evaluation but the reversed situation shown in the deterministic evaluation? Third, on the 

dependency between metrics and drainage area. As it was mentioned in the previous comment, the patterns 

are not random. How do we interpret those patterns? 

Response: Thank you for your question. The prediction interval obtained by the QRF model is narrow, 

resulting its better probabilistic performance. But the QRF model underestimates the flood peak, resulting its 

worse deterministic performance. For sub-basin with larger drainage area, high-flow process plays high 

contribution in performance evaluation, which the CMAL-LSTM model performed better than the QRF 

model. 

Please see response to comment 2.2 

 

Comment 4.4 

Besides, I think it is too much to dedicate two sub-section (section 5.4 and 5.5) on future research directions. 

Consider merging them and making the writing concise. Discuss something valuable from your results rather 

than some general facts from literature. 

Response: Thank you for your suggestions. We have restructured the discussion section. 

5.1 Model comparison 

5.2 Limitations and future work 

 

Comment 5: Presentation of materials and writing of the manuscript 

Comment 5.1 

I think the structure of the sections needs to be improved. Both the methodology and the result sections reach 

three hierarchical levels. Some sub-sections just have one paragraph. I can see a clear room to make the 

structure more concise by limiting it to only two hierarchical levels (see my detailed writing tips in the 

annotated manuscript).  

Response: Thank you for your suggestions and tips for our manuscript. Based on your suggestions, we have 

restructured the manuscript sections. 

3 Methodology 



3.1 Streamflow reference and uncorrected streamflow simulations 

3.2 Post-processing model and experimental design 

3.3 Performance evaluation 

3.3.1 Probabilistic (multi-point) metrics 

3.4.2 Deterministic (single-point) metrics 

4 Results 

4.1 Uncorrected streamflow simulations 

4.2 Probabilistic (multi-point) assessment 

4.2.1 CRPS overall performance 

4.2.2 The relationship between model performance and flow accumulation area 

4.2.3 Reliability and sharpness 

4.3 Deterministic (single-point) assessment 

4.3.1 Overall model performance 

4.3.2 The relationship between model performance and flow accumulation area 

4.3.3 High-flow, low-flow, and peak timing 

Comment 5.2 

In addition to that, writing of the manuscript needs to be improved significantly. I can identify grammatical 

issues and sentences with bad structure. Please pay specific attention to the tense (past vs. present), the use 

of articles, the use of plural vs. singular form, and the rules of using acronyms. 

Response: Thank you very much for your correction and careful review. We have carefully checked the text 

and correct errors. And, we have asked a native speaker to double-check our manuscript thoroughly. 

 

Comments in the annotated manuscript (selected) 

L125: “time scale and step size” Not sure what is the difference? Do you mean time resolution? 

Response: Sorry for the misleading information, here we mean computational step size. “time scale” and 

“step size” were repeated, we will delete “time scale”. 

Following the watershed division method of Du et al. (2017), Yalong River basin is divided into 522 

sub-basins with catchment area ranging from 100 km2 to 127,164 km2 (Fig. 1b). The key to sub-basin 

delineation is the minimum catchment area threshold (100 km2 in this study), which is related to the 

total area of the basin, the model architecture complexity, the step size and the spatial resolution of the 

input data. 

 

L175: “Figure 2. The framework of this study.” Why do we need the different background colors? 

Response: Thank you for your question. Different background colors are used to distinguish different sections. 

Due to the presence of the boxes, it is ok to delete them. 



 

Figure 2. Framework of this study. 

L184: “runoff is calculated according to water balance.” Could this be more specific? I think nearly all 

hydrological model calculate runoff based on water balance. 

Response: Runoff is calculated according to below equation. We have added it in the text. 

Pt + AWt = AWt+1 + g1(
AWu,t

C∙WMu
)g2 ∙ Pt + Kr ∙ AWu,t + Ke ∙ EPt + Kg ∙ AWg,t    

where t is the time step; P is the precipitation (mm); EP is the potential evapotranspiration (mm); AW 

and WM are soil moisture (mm) and field soil moisture (mm), respectively; u and g are the upper and 

lower soil layers, respectively; Ke, Kr and Kg are evapotranspiration, interflow and groundwater runoff 

coefficients, respectively; g1 and g2 are factors describing the non-linear rainfall-runoff relationship; 

and C is the land cover parameter. 

L194: “The us e hydrological model does …. Model structure and model parameters are neglected.” I would 

suggest to delete this part for two reasons. First, I think the NSE values are acceptable. Second, the writing 

here is not convincing, especially the first sentence "... but we believe..., so...". There is no "we believe" in 

science. Every statement needs support. I think a 0.59 of NSE is sufficient to prove that the model is 

acceptable. Deleting this part could be a wiser choice in my opinion. 

Response: Thank you for your suggestion. We agree with you that deleting this part could be a wiser choice, 

and we have deleted them. 

L218: “Three steps are required to implement … get the final prediction.” I suggest to delete this part. It is 

too detailed. This is an application of the well-known RF method, not a modification of the algorithm. So, 

there is no need to go to those well-known details of RF. 

Response: Thank you for your suggestion. We have rewritten this part to shorten the introduction of the two 

post-processing models. 

The two post-processing models selected are the QRF model (Meinshausen and Ridgeway, 2006) and 

the CMAL-LSTM model (Klotz et al., 2022). The QRF model was chosen because it enables us to 

analyse the distribution of the entire data based on different quantiles, and it has been previously used 



in several studies (Taillardat et al., 2016; Evin et al., 2021; Kasraei et al., 2021; Tyralis et al., 2019; 

Tyralis and Papacharalampous, 2021). The CMAL-LSTM model is a combination of an LSTM model 

and a CMAL mixture density function, which allows it to estimate prediction uncertainty. To the best of 

our knowledge, these two models currently considered state-of-the-art in ML and DL for hydrological 

probabilistic modelling. Detailed information about each model can be found in their original papers 

and will not be restated in this study. 

L293: Eq. 1. I found that the form here is not the same as the one in Bröcker (2012). Why? 

Response: Thank you for pointing it out. We have fixed this issue. 

L613: “We believe … more predictors” I don't think this can help. The key is to have some extreme 

observations. 

Response: We agree with you that having more extreme observations could be helpful. However, learning 

the rainfall-runoff process through predictors to achieve more accurate inference is also a direction to be 

explored. We have rephrased this sentence.  

We believe that collecting more data samples and introducing additional predictors and distribution 

functions for extreme events can lead to further improvements. 

L619: “standard dataset” How do you define "standard dataset"? What criteria need to be satisfied? 

Response: Sorry for the misleading terminology. What we want to show here is that our dataset is reusable 

for others. We have rephrased this sentence. 

Using observed precipitation and three different satellite precipitation products to drive the calibrated 

hydrological model, we generated a large-sample dataset of 522 sub-basins with paired streamflow 

reference and biased streamflow simulations. 

L622: “In conclusion, decision-tree …” This is a general fact of ML model, not the conclusion of this 

study. 

Response: Thank you for the comment. We have rewritten our conclusion part. 

In this study, a series of well-designed experiments to compare the performance of two state-of-the-art 

models for streamflow probabilistic post-processing were conducted: a machine learning model 

(quantile regression forests) and a deep learning model (countable mixtures of asymmetric Laplacians 

long short-term memory network). Using observed precipitation and three different satellite 

precipitation products to drive the calibrated hydrological model, we generated a large-sample dataset 

of 522 sub-basins with paired streamflow reference and biased streamflow simulations. We evaluated 

the model performance from both probabilistic and deterministic perspectives, including reliability, 

sharpness, accuracy, and flow regime, through intuitive case studies. These experiments established a 

path for understanding the model differences in probabilistic modelling and post-processing, provided 

practical experience for model selection, and extracted insights for model improvement. It also serves 

as a reference for establishing benchmark tests for model evaluation, including dataset construction 

and metrics selection. Furthermore, streamflow post-processing provides dependable data support for 

a range of downstream tasks, such as flood risk analysis, reservoir scheduling, and water resource 

management. The empirical findings of this study for the two post-processing models are summarized 

below. 

(1) Based on the probabilistic assessment, the QRF and CMAL-LSTM models exhibit comparable 

performance. However, their model differences are correlated with the flow accumulation area (FAA) 

of sub-basins. In cases where the catchment area of a sub-basin is small, the QRF model generates a 

narrower prediction interval, resulting in better CRPS scores compared to the CMAL-LSTM model in 

most sub-basins. Conversely, for larger sub-basins (over 60,000 km2 in this study), the CMAL-LSTM 

model outperforms the QRF model due to its ability to learn autocorrelation skills of features and 

capture extreme values. 



(2) Based on the deterministic assessment, it can be concluded that the CMAL-LSTM model performs 

better than the QRF model in capturing high-flow process and flow duration curve. On the other hand, 

the QRF model tends to underestimate the high-flow process, resulting in worse NSE score across all 

sub-basins. Both models, however, have the issue of underestimating flood peaks due to sparse samples 

of extreme events. 

(3) For the input uncertainties introduced by the different satellite precipitation products, both models 

are able to reduce their impact on the streamflow simulation. However, the performance of the post-

processing models does not improve further in the multi-product experiments. Instead, the inclusion of 

heavily biased inputs leads to a deterioration in model performance. Opting for a single precipitation 

product that is best suited to the task at hand is a more prudent approach to safeguard model 

performance and minimize computational cost, rather than using multiple precipitation products with 

varying degrees of quality. 

(4) Given the performance of post-processing models, the author believes they have the potential to be 

applied to other sources of uncertainty that affect hydrological modelling, such as model structure and 

parameter uncertainty. 

Other technical corrections 

Response: Thank you very much for your comments, suggestions and writing tips. We have adapted all 

proposed issues.  
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