S1 Conversion from actual to standard volumetric flow rate

(S1)
$$Q_{std} = Q_{actual} \frac{P_{actual} T_{std}}{P_{std} T_{actual}}$$

Where Q_{std} is the standard volumetric flow rate in standard liters per minute (SLPM), Q_{actual} is the measured volumetric flow rate in liters per minute (LPM), P_{actual} is the measured pressure (bar), and T_{actual} is the measured temperature (K). P_{std} and T_{std} were taken as 1 bar and 273.15 K - the standard pressure and temperature defined by the international union of pure and applied chemistry (IUPAC; (Ewing et al., 1994).

S2 Contaminants of emerging concern (CECs) analysis

LC separation of Ibuprofen (IBP) was conducted by using a mixture of methanol (MeOH) and 1% (V/V) formic acid (FA) solution as a mobile phase. The gradient program was as follows: constant 50% MeOH and 50% FA solution during 0.5 min,
then changes of 50–100% MeOH, 50–0% FA solution were taken in 0.5-8 min. 100% content of MeOH was kept until 10 min and then restored to 50% at 11 min. Constant 50% MeOH and 50% FA solution was kept for 4 min (11-15 min.). Electrospray mass data were acquired in the negative mode with a spray voltage of -4.2 kV. The source temperature was 500°C. N₂ was used as the curtain gas (setting 35), IonSource gas 1 (GS1 gas setting 60) and IonSource gas 2 (GS2 gas setting 40). MS/MS was performed using N₂ as collision gas (CAD gas setting 3). Other specific operating conditions are shown in Table S1.

5

Table S1. Optimized L	C-MS/MS parameters f	for IBP
-----------------------	----------------------	---------

	IBP ^a	IBP ^b
[M-1]/Fragment Ion (m/z)	205.1/159.1	205.1/161.1
Delustering potential DP (V)	-18	-18
Entrance potential EP (V)	-10	-10
Collision energy (rel. units)	-15	-15
Collision cell exit potential CXP (V)	-4	-4
Retention time (RT)	10.96	10.96

^a for quantitation. ^b for qualitative identification.

LC separation of Carbamazepine (CBZ) and Benzotriazole (BTR) was also conducted by using a mixture of methanol (MeOH) and 1% (V/V) formic acid (FA) solution as a mobile phase. The gradient program was as follows: constant 5% MeOH and 95% FA solution for 2 min, then changes of 5–100% MeOH, 95–0% FA solution were taken in 2–7 min. 100% content of MeOH was kept until 11 min and then restored to 5% at 13 min. Constant 5% MeOH and 95% FA solution was kept for 6 min

(13-19 min). Electrospray mass data were acquired in the positive mode with a spray voltage of 5.5 kV. The source temperature was 550°C. N₂ was used as the curtain gas (setting 30), IonSource gas 1 (GS1 gas setting 50) and IonSource gas 2 (GS2 gas setting 60). MS/MS was performed using N₂ as collision gas (CAD gas setting 10). Other specific operating conditions are

25

shown in Table S2.

	CBZ^{a}	CBZ ^a	BTR ^a	BTR ^b
[M+1]/Fragment Ion (m/z)	237.1/194.1	237.1/193.1	120.1/65.2	120.1/92.0
Delustering potential DP (V)	40	40	42	42
Entrance potential EP (V)	10.5	10.5	10.5	10.5
Collision energy (rel. units)	25	25	32	23
Collision cell exit potential CXP (V)	4	4	2.5	5.0
Retention time (RT)	10.5	10.5	9.24	9.24

Table S2. Optimized LC-MS/MS parameters for CBZ and BTR

^a for quantitation. ^b for qualitative identification.

30

35

S3 Synthetic effluent composition

Experiment	$[NH_4^+]$ (mg-N L ⁻¹)	[TKN] (mg L ⁻¹)	[NO ₃ ⁻] (mg-N L ⁻¹)	[TN] (mg L ⁻¹)	[DOC] (mg L ⁻¹)
FDO	2.46 ± 0.95	8.94 ± 0.66	1.53 ± 0.37	10.48 ± 0.88	41.61 ± 1.38
AI-LF ₁	1.83 ± 0.43	9.03 ± 0.21	0.12 ± 0.01	9.16 ± 0.21	41.50 ± 0.99
$AI-HF_1$	3.61 ± 0.49	8.20 ± 0.07	0.66 ± 0.09	8.88 ± 0.11	40.37 ± 1.49
AI-HF ₂	4.19 ± 0.29	8.42 ± 0.30	0.96 ± 0.41	9.39 ± 0.17	39.82 ± 0.69
AI-HF ₃	2.96 ± 0.44	7.66 ± 0.79	0.71 ± 0.04	8.37 ± 0.78	40.66 ± 3.35
AI-LF ₂	3.68 ± 0.51	8.30 ± 0.20	0.81 ± 0.14	9.12 ± 0.10	42.56 ± 1.59

Table S3. Basic parameters of the synthetic effluent – mean \pm SD

Table S4. Concentrations of emerging contaminants in the synthetic effluent – mean \pm SD

Experiment	[IBP] (µg L ⁻¹)	[CBZ] (µg L ⁻¹)	[BTR] (µg L ⁻¹)
FDO ^a	0.76 ± 0.03	1.66 ± 0.04	7.37 ± 2.24
$AI-LF_1$	1.45 ± 0.08	1.05 ± 0.05	9.48 ± 0.47
$AI-HF_1$	1.06 ± 0.14	0.91 ± 0.07	9.05 ± 0.43
AI-HF ₂	0.80 ± 0.09	1.08 ± 0.04	8.90 ± 0.44
AI-HF ₃	71.57 ± 6.97	1.24 ± 0.02	8.43 ± 0.25
AI-LF ₂	65.00 ± 3.78	2.25 ± 0.08	4.83 ± 0.30

^a In FDO, samples were taken and analyzed for only one replicate

55 S4 Volumetric water content (VWC) at various depths during the three main experiments

Fig. S1. VWC at a depth of 65 cm below soil surface (θ_{65}) during FDO, AI-LF₁ and AI-HF₁ (panels **a**, **b** and **c**, respectively). Gray areas symbolize DP, while green areas symbolize the air pulses.

Fig. S2. VWC at a depth of 105 cm below soil surface (θ_{105}) during FDO, AI-LF₁ and AI-HF₁ (panels **a**, **b** and **c**, respectively). Gray areas symbolize DP, while green areas symbolize the air pulses.

Fig. S3. VWC at a depth of 145 cm below soil surface (θ_{145}) during FDO, AI-LF₁ and AI-HF₁ (panels **a**, **b** and **c**, respectively). Gray areas symbolize DP, while green areas symbolize the air pulses.

70

60

65

S5 Infiltrated volumes and mean infiltration rates

Time (h)	0-24	24-48	48-72
Experiment	Infiltrated volun	ne in L (mean infiltratio	on rate in cm h ⁻¹)
FDO (1)	95 (20.30)	0 (0)	91 (19.44)
FDO (2)	151 (32.26)	0 (0)	81 (17.31)
AI-LF ₁	96 (20.51)	132 (28.20)	129 (27.56)
AI-HF ₁	111 (23.71)	97 (20.72)	67 (14.31)
AI-HF ₂	92 (19.66)	89 (19.01)	69 (14.53)
AI-HF ₃	103 (22.01)	71.5 (15.28)	54 (11.54)
AI-LF ₂	120 (25.64)	112.5 (24.03)	103 (22.01)

Table S5. Infiltrated volumes and mean infiltration rates throughout each experiment

Fig. S4. ORP vs. Ag/AgCl at depths of 25, 65, 105 and 145 cm below soil surface (panels **a**, **b**, **c**, and **d**, respectively) during FDO, AI-LF₁ and AI-HF₁.

Fig. S5. Surface head (SH) during FDO, AI-LF1 and AI-HF1.

S8 Dissolved oxygen (DO) during the three main experiments

Fig. S6. DO at depths of 25, 65, 105 and 145 cm below soil surface (panels **a**, **b**, **c**, and **d**, respectively) during FDO, AI-LF₁ and AI-HF₁.

Fig. S7. IBP concentration at a depth of 145 cm vs. the mean DO throughout the column, during FDO, AI-LF₁ and AI-HF₁. The concentration is normalized to the inlet concentration. Values below detection limit (DL) were regarded with DL/2. In FDO, samples were taken and analyzed for only one replicate

85 Table S6. Basic parameters of the effluent at a depth of 145 cm, normalized to the inlet concentration – mean ± SD

Experiment	[TKN] (-)	[NO ₃ ⁻] (-)	[TN] (-)	[DOC] (-)
FDO	0.51 ± 0.38	0.45 ± 0.74	0.50 ± 0.25	0.14 ± 0.08
AI-LF ₁	0.62 ± 0.30	2.13 ± 3.46	0.64 ± 0.28	0.23 ± 0.18
$AI-HF_1$	0.11 ± 0.13	5.63 ± 1.67	0.58 ± 0.13	0.05 ± 0.01
AI-HF ₂	0.15 ± 0.10	3.30 ± 1.92	0.47 ± 0.20	$\begin{array}{c} 90\\ 0.05\pm0.05\end{array}$
AI-HF ₃	0.65 ± 0.29	0.57 ± 1.29	0.64 ± 0.18	0.16 ± 0.06
AI-LF ₂	0.72 ± 0.34	0.26 ± 0.62	0.68 ± 0.25	0.37 ± 0.22

^a Values below the quantitation limit (QL) were regarded with QL/2.

Experiment	[IBP] (-)	[CBZ] ^b (-)	[BTR] ^b (-)
FDO ^c	0.77 ± 0.91	0.91 ± 0.02	0.79 ± 0.33
AI-LF ₁	0.52 ± 0.39	0.99 ± 0.14	0.99 ± 0.07
AI-HF ₁	0.12 ± 0.01	0.92 ± 0.13	0.81 ± 0.05
AI-HF ₂	0.16 ± 0.02	1.00 ± 0.11	0.91 ± 0.09
AI-HF3 ^d	0.89 ± 0.02	-	-
AI-LF ₂	0.84 ± 0.27	0.97 ± 0.03	0.94 ± 0.01

100 Table S7. Concentrations of CECs in the effluent at a depth of 145 cm, normalized to the inlet concentration – mean^a \pm SD

^a Values below the detection limit (DL) were regarded with DL/2.

110 ^b The first sample from each experiment (taken at t ~ 4.3 h) was excluded as an outlier since it showed much lower concentrations than the others, apparently due to retardation of CBZ and BTR as a result of their interactions with soil components.

^c In FDO, samples were taken and analyzed for only one replicate.

^d For AI-HF₃, CBZ and BTR samples were analyzed only at the inflow.

115 References

Ewing, M. B., Lilley, T. H., Olofsson, G. M., Ratzsch, M. T., and Somsen, G.: Standard quantities in chemical thermodynamics. Fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC Recommendations 1994), Pure Appl. Chem., 66, 533–552, https://doi.org/10.1351/pac199466030533, 1994.