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Supplementary Materials 27 

S1. Derivation of Eqs. (14a) - (15b) 28 

The dimensionless parameters are defined as: 𝐶𝑚1𝐷 =
𝐶𝑚1

𝐶0
, 𝐶𝑖𝑚1𝐷 =

𝐶𝑖𝑚1

𝐶0
, 𝐶𝑚2𝐷 =

𝐶𝑚2

𝐶0
, 29 

𝐶𝑖𝑚2𝐷 =
𝐶𝑖𝑚2

𝐶0
, 𝐶𝑤𝐷 =

𝐶𝑤

𝐶0
, 𝐶𝑖𝑛𝑗,𝐷 =

𝐶𝑖𝑛𝑗

𝐶0
, 𝐶𝑐ℎ𝑎,𝐷 =

𝐶𝑐ℎ𝑎

𝐶0
, 𝑡𝐷 =

|𝐴|𝑡

𝛼2
2𝑅𝑚1

, 𝑡𝑖𝑛𝑗,𝐷 =
|𝐴| 𝑡𝑖𝑛𝑗

𝛼2
2𝑅𝑚1

, 𝑟𝐷 =
𝑟

𝛼2
, 30 

𝑟𝑤𝐷 =
𝑟𝑤

𝛼2
, 𝑟𝑠𝐷 =

𝑟𝑠

𝛼2
, 𝑟0𝐷 =

𝑟0

𝛼2
, 𝜇𝑚1𝐷 =

𝛼2
2𝜇𝑚1

𝐴
, 𝜇𝑖𝑚1𝐷 =

𝛼2
2𝑅𝑚1𝜇𝑖𝑚1

𝑅𝑖𝑚1𝐴
, 𝜇𝑚2𝐷 =

𝛼2
2𝜇𝑚2𝑅𝑚1

𝐴𝑅𝑚2
, 𝜇𝑖𝑚2𝐷 =31 

𝛼2
2𝑅𝑚1𝜇𝑖𝑚2

𝑅𝑖𝑚2𝐴
 and 𝐴 =

𝑄

2𝜋𝐵𝜃𝑚1
. After the dimensionless transform, the governing equations become 32 

𝜕𝐶𝑚1𝐷

𝜕𝑡𝐷
=

𝜆

𝑟𝐷

𝜕2𝐶𝑚1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚1𝐷

𝜕𝑟𝐷
− 𝜀𝑚1(𝐶𝑚1𝐷 − 𝐶𝑖𝑚1𝐷)  33 

−𝜇𝑚1𝐷𝐶𝑚1𝐷, 𝑟𝑤𝐷 < 𝑟𝐷 ≤ 𝑟𝑠𝐷         (A1a) 34 

𝜕𝐶𝑖𝑚1𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚1(𝐶𝑚1𝐷 − 𝐶𝑖𝑚1𝐷) − 𝜇𝑖𝑚1𝐷𝐶𝑖𝑚1𝐷, 𝑟𝑤𝐷 < 𝑟𝐷 ≤ 𝑟𝑠𝐷,   (A1b) 35 

𝜕𝐶𝑚2𝐷

𝜕𝑡𝐷
=

𝜂

𝑟𝐷

𝜕2𝐶𝑚2𝐷

𝜕𝑟𝐷
2 −

𝜂

𝑟𝐷

𝜕𝐶𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷, (A1c) 36 

𝜕𝐶𝑖𝑚2𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) − 𝜇𝑖𝑚2𝐷𝐶𝑖𝑚2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷,    (A1d) 37 

where 𝜀𝑚1 =
𝜔1𝛼2

2

𝐴𝜃𝑚1
, 𝜀𝑖𝑚1 =

𝜔1𝛼2
2𝑅𝑚1

𝐴𝜃𝑖𝑚1𝑅𝑖𝑚1
, 𝜀𝑚2 =

𝜔2𝛼2
2𝑅𝑚1

𝐴𝜃𝑚2𝑅𝑚2
, 𝜀𝑖𝑚2 =

𝜔2𝛼2
2𝑅𝑚1

𝐴𝜃𝑖𝑚2𝑅𝑖𝑚2
 , 𝜂 =

𝜃𝑚1𝑅𝑚1

𝜃𝑚2𝑅𝑚2
 and 𝜆 =

𝛼1

𝛼2
. 38 

As for the boundary conditions at the well screen, a Heaviside step function will be 39 

employed to combine them at the injection and chasing phases: 40 

𝐶𝑤(𝑟𝑤, 𝑡) = 𝐶𝑖𝑛𝑗[𝐻(𝑡) − 𝐻(𝑡 − 𝑡𝑖𝑛𝑗)] + 𝐶𝑐ℎ𝑎𝐻(𝑡 − 𝑡𝑖𝑛𝑗), 𝑡 > 0,   (A2) 41 

where 𝐻(𝑡) is the Heaviside step function, 𝐶𝑤(𝑟𝑤, 𝑡) is concentration [ML-3] in the wellbore. 42 

The dimensionless initial conditions and dimensionless boundary conditions are 43 

𝐶𝑚1𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑖𝑚1𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=0 44 

= 𝐶𝑖𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=0 = 0, 𝑟𝐷 > 𝑟𝑤𝐷,       (A3a) 45 
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𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑖𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑟𝐷→∞ = 0, 𝑡𝐷 > 0,    (A3b) 46 

[𝐶𝑚1𝐷(𝑟𝐷 , 𝑡𝐷) − 𝜆
𝜕𝐶𝑚1𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 𝐶𝑖𝑛𝑗,𝐷(𝑡𝐷), 0 < 𝑡𝐷 ≤ 𝑡𝑖𝑛𝑗,𝐷,  (A4a) 47 

[𝐶𝑚1𝐷(𝑟𝐷 , 𝑡𝐷) − 𝜆
𝜕𝐶𝑚1𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

= 𝐶𝑐ℎ𝑎,𝐷(𝑡𝐷), 𝑡𝐷 > 𝑡𝑖𝑛𝑗,𝐷,    (A4b) 48 

𝐶w𝐷(𝑟𝑤𝐷, 𝑡𝐷) = 𝐶𝑖𝑛𝑗,𝐷[𝐻(𝑡𝐷) − 𝐻(𝑡𝐷 − 𝑡𝑖𝑛𝑗,𝐷)] + 𝐶𝑐ℎ𝑎,𝐷𝐻(𝑡𝐷 − 𝑡𝑖𝑛𝑗,𝐷).  (A4c) 49 

The dimensionless forms of Eqs. (7) - (8) are 50 

𝛽𝑖𝑛𝑗
𝑑𝐶𝑖𝑛𝑗,𝐷(𝑡𝐷)

𝑑𝑡𝐷
= 1 − 𝐶𝑖𝑛𝑗,𝐷(𝑡𝐷), 0 < 𝑡𝐷 ≤  𝑡𝑖𝑛𝑗,𝐷,     (A5a) 51 

𝛽𝑐ℎ𝑎
𝑑𝐶𝑐ℎ𝑎,𝐷(𝑡𝐷)

𝑑𝑡𝐷
= −𝐶𝑐ℎ𝑎,𝐷(𝑡𝐷), 𝑡𝐷 > 𝑡𝑖𝑛𝑗,𝐷,      (A5b) 52 

where 𝛽𝑖𝑛𝑗 =
𝑉𝑤,𝑖𝑛𝑗𝑟𝑤𝐷

𝜉𝑅𝑚1𝛼2
 and 𝛽𝑐ℎ𝑎 =

𝑉𝑤,𝑐ℎ𝑎𝑟𝑤𝐷

𝜉𝑅𝑚1𝛼2
. 53 

The dimensionless forms of Eqs. (12) - (13) are  54 

𝐶𝑚1𝐷(𝑟𝑠𝐷, 𝑡𝐷) = 𝐶𝑚2𝐷(𝑟𝑠𝐷, 𝑡𝐷), 𝑡𝐷 > 0,      (A6a) 55 

[𝜆
𝜕𝐶𝑚1𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

= [
𝜕𝐶𝑚2𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

, 𝑡𝐷 > 0,     (A6b) 56 

Conducting Laplace transform to Eqs. (A1a) - (A1b), one has 57 

𝑠𝐶𝑚̅1𝐷 =
𝜆

𝑟𝐷

𝜕2𝐶̅𝑚1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚1𝐷

𝜕𝑟𝐷
− 𝜀𝑚1(𝐶𝑚̅1𝐷 − 𝐶𝑖̅𝑚1𝐷) − 𝜇𝑚1𝐷𝐶𝑚̅1𝐷,    (A7a) 58 

𝑠𝐶𝑖̅𝑚1𝐷 = 𝜀𝑖𝑚1(𝐶𝑚̅1𝐷 − 𝐶𝑖̅𝑚1𝐷) − 𝜇𝑖𝑚1𝐷𝐶𝑖̅𝑚1𝐷,      (A7b) 59 

where the over bar represents the variable in Laplace domain; s is the Laplace transform 60 

parameter in respect to the dimensionless time 𝑡𝐷.  61 

Substituting Eq. (A7b) into Eq. (A7a), one has 62 

𝜆

𝑟𝐷

𝜕2𝐶̅𝑚1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚1𝐷

𝜕𝑟𝐷
− 𝐸1𝐶𝑚̅1𝐷 = 0, 𝑟𝑤𝐷 < 𝑟𝐷 ≤ 𝑟𝑠𝐷,     (A8) 63 

where 𝐸1 = 𝑠 + 𝜀𝑚1 + 𝜇𝑚1𝐷 −
𝜀𝑚1𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
. 64 

Conducting Laplace transform to Eqs. (A1c) - (A1d), one has 65 
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𝑠𝐶𝑚̅2𝐷 =
𝜂

𝑟𝐷

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 −

𝜂

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚̅2𝐷 − 𝐶𝑖̅𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚̅2𝐷,    (A9a) 66 

𝑠𝐶𝑖̅𝑚2𝐷 = 𝜀𝑖𝑚2(𝐶𝑚̅2𝐷 − 𝐶𝑖̅𝑚2𝐷) − 𝜇𝑖𝑚2𝐷𝐶𝑖̅𝑚2𝐷.      (A9b) 67 

Substituting Eq. (A9b) into Eq. (A9a), one has 68 

1

𝑟𝐷

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝐸2𝐶𝑚̅2𝐷 = 0, 𝑟𝐷 > 𝑟𝑠𝐷,       (A10) 69 

where 𝐸2 =
1

𝜂
(𝑠 + 𝜀𝑚2 + 𝜇𝑚2𝐷 −

𝜀𝑚2𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
). 70 

The boundary conditions in the Laplace domain are 71 

[𝐶𝑚̅1𝐷(𝑟𝐷 , 𝑠) − 𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

=
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
, 0 < 𝑡𝐷 ≤  𝑡𝑖𝑛𝑗,𝐷,   (A11a) 72 

[𝐶𝑚̅1𝐷(𝑟𝐷 , 𝑠) − 𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

=
𝛽𝑐ℎ𝑎𝐶𝑖𝑛𝑗,𝐷(𝑟𝑤𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠𝛽𝑐ℎ𝑎+1)
, 𝑡𝐷 > 𝑡𝑖𝑛𝑗,𝐷,   (A11b) 73 

𝐶𝑚̅1𝐷(𝑟𝑠𝐷, 𝑠) = 𝐶𝑚̅2𝐷(𝑟𝑠𝐷 , 𝑠), 𝑡𝐷 > 0,        (A11c) 74 

𝜆 [
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

= [
𝜕𝐶̅𝑚2𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

, 𝑡𝐷 > 0,     (A11d) 75 

𝐶𝑚̅2𝐷(𝑟𝐷, 𝑠)|𝑟𝐷→∞ = 0, 𝑡𝐷 > 0,         (A11e) 76 

The general solutions of Eq. (A8) and Eq. (A10) are respectively  77 

𝐶𝑚̅1𝐷 = 𝑁1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝑁2𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1), 𝑟𝑤𝐷 < 𝑟𝐷 ≤ 𝑟𝑠𝐷,   (A12a) 78 

𝐶𝑚̅2𝐷 = 𝑁3 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦2) + 𝑁4𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐵𝑖(𝑦2), 𝑟𝐷 > 𝑟𝑠𝐷,    (A12b) 79 

where 𝑦1 = (
𝐸1

𝜆
)

1/3

(𝑟𝐷 +
1

4𝜆𝐸1
); 𝑦2 = (𝐸2)1/3 (𝑟𝐷 +

1

4𝐸2
); 𝑁1, 𝑁2, 𝑁3 and 𝑁4 are constants 80 

which could be determined by the boundary conditions. 𝐴𝑖(∙) and 𝐵𝑖(∙) are the Airy functions of 81 

the first kind and second kind, respectively. 82 

Substituting Eq. (A12b) into Eq. (A11e), one has 83 

 𝑁4=0.           (A13) 84 

Substituting Eq. (A12a) into Eq. (A11a), one has 85 
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𝑁1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] + 𝑁2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) −86 

𝜆 (
𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] = 𝐹1,         (A14a) 87 

where 𝑦𝑤 = (
𝐸1

𝜆
)

1/3

(𝑟𝑤𝐷 +
1

4𝜆𝐸1
), and 𝐹1 =

1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
. 88 

Substituting Eq. (A12a) into Eq. (A11b), one has 89 

𝑁1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] + 𝑁2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) −90 

𝜆 (
𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] = 𝐹2,         (A14b) 91 

where 𝐹2 =
𝛽𝑐ℎ𝑎𝐶𝑖𝑛𝑗,𝐷(𝑟𝑤𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠𝛽𝑐ℎ𝑎+1)
. 92 

Conducting Laplace transform on Eq. (A4c), one has 93 

𝐶𝑤̅𝐷(𝑟𝑤𝐷 , 𝑠) = 𝐶𝑖𝑛𝑗,𝐷
1−𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
, 𝑟𝐷 = 𝑟𝑤𝐷,   (A14c) 94 

Thus, Eqs. (A14a)-( A14c) could be combined as the following equation 95 

𝑁1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] + 𝑁2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) −96 

𝜆 (
𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] = 𝐹,    (A14d) 97 

where 𝐹 = 𝐶𝑖𝑛𝑗,𝐷
1−𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
. 98 

Substituting Eqs. (A12a) - (A12b) into Eq. (A11c), one has 99 

𝑁1 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝑦1𝑠) + 𝑁2𝑒𝑥 𝑝 (

𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝑦1𝑠) = 𝑁3 𝑒𝑥𝑝 (

𝑟𝑠𝐷

2
) 𝐴𝑖(𝑦2𝑠),  (A15) 100 

where 𝑦1𝑠 = (
𝐸1

𝜆
)

1/3

(𝑟𝑠𝐷 +
1

4𝜆𝐸1
); 𝑦2𝑠 = (𝐸2)1/3 (𝑟𝑠𝐷 +

1

4𝐸2
). 101 

Substituting Eqs. (A12a) - (A12b) into Eq. (A11d) yields 102 
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𝑁1𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦1𝑠)] + 𝑁2𝑒𝑥𝑝 (

𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦1𝑠) +103 

𝜆 (
𝐸1

𝜆
)

1/3

𝐵𝑖
′(𝑦1𝑠)] = 𝑁3𝑒𝑥𝑝 (

𝑟𝑠𝐷

2
) [

1

2
𝐴𝑖(𝑦2𝑠) + (𝐸2)1/3𝐴𝑖

′(𝑦2𝑠)],    (A16) 104 

where 𝐴𝑖
′(∙) and 𝐵𝑖

′(∙) are the derivative of the Airy functions of the first kind and second kind, 105 

respectively. 106 

The values of 𝑁1, 𝑁2, and 𝑁3 could be determined by solving Eqs. (A14d) - (A16): 107 

𝑁1 =
𝐹−𝐻2𝑁2

𝐻1
, 108 

𝑁2 =
𝐻3𝐻8𝐹−𝐻5𝐻6𝐹

𝐻1𝐻5𝐻7+𝐻2𝐻3𝐻8−𝐻2𝐻5𝐻6−𝐻1𝐻4𝐻8
, 109 

𝑁3 =
𝐻3𝐹

𝐻1𝐻5
−

𝐻2𝐻3𝑁2

𝐻1𝐻5
+

𝐻4𝑁2

𝐻5
, 110 

where 𝐻1 = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)], 111 

 𝐻2 = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)], 112 

 𝐻3 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝑦1𝑠), 𝐻4 = 𝑒𝑥 𝑝 (

𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝑦1𝑠), 𝐻5 = 𝑒𝑥𝑝 (

𝑟𝑠𝐷

2
) 𝐴𝑖(𝑦2𝑠), 113 

 𝐻6 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦1𝑠)], 114 

 𝐻7 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐵𝑖
′(𝑦1𝑠)],  115 

𝐻8 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) [

1

2
𝐴𝑖(𝑦2𝑠) + (𝐸2)1/3𝐴𝑖

′(𝑦2𝑠)], 116 

and 𝐹 = 𝐶𝑖𝑛𝑗,𝐷
1−𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
. Substituting the expressions of 𝑁1, 𝑁2, 𝑁3, 117 

and 𝑁4 into Eqs. (A12a) - (A12b), one could get the solutions of Eq. (14a) and Eq. (15a).  118 

Substituting Eqs. (A12a) - (A12b) into Eq. (A7b) and Eq. (A9b), one could get the solutions 119 

of Eq. (14b) and Eq. (15b) 120 
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𝐶𝑖̅𝑚1𝐷 =
𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
𝐶𝑚̅1𝐷, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,      (A17a) 121 

𝐶𝑖̅𝑚2𝐷 =
𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
𝐶𝑚̅2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷.       (A17b) 122 

In the injection phase, the values of 𝑁1 and 𝑁2 are modified into 𝑁1
′ and 𝑁2

′ as follows 123 

𝑁1
′ =

𝐹1−𝐻2𝑁2
′

𝐻1
′  and 𝑁2

′ =
𝐻3𝐻8𝐹1−𝐻5𝐻6𝐹1

𝐻1
′𝐻5𝐻7+𝐻2𝐻3𝐻8−𝐻2𝐻5𝐻6−𝐻1

′𝐻4𝐻8
, where 𝐻1

′ = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) 𝐴𝑖(𝑦𝑤). 124 

Substituting 𝑁1
′ and 𝑁2

′ into Eq. (A12a), one has 125 

𝐶𝑖̅𝑛𝑗,𝐷 = 𝑁1
′ 𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝑁2

′𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1), 𝑟𝐷 = 𝑟𝑤𝐷,    (A18) 126 

In the chasing phase, the values of 𝑁1 and 𝑁2 are modified into 𝑁1
′′ and 𝑁2

′′ as follows 127 

𝑁1
′′ =

𝐹2−𝐻2𝑁2
′′

𝐻1
′  , 𝑁2

′′ =
𝐻3𝐻8𝐹2−𝐻5𝐻6𝐹2

𝐻1
′𝐻5𝐻7+𝐻2𝐻3𝐻8−𝐻2𝐻5𝐻6−𝐻1

′𝐻4𝐻8
, and substituting 𝑁1

′′ and 𝑁2
′′ into Eq. 128 

(A12a), one has 129 

 𝐶𝑐̅ℎ𝑎,𝐷 = 𝑁1
′′ 𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝑁2

′′𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1), 𝑟𝐷 = 𝑟𝑤𝐷,   (A19) 130 

S2. Model with scale-dependent dispersivity: Derivation of Eqs. (17a) - (18b) 131 

Substituting Eq. (16) into Eq. (1c), the dimensionless form of the governing equations 132 

become 133 

𝜕𝐶𝑚2𝐷

𝜕𝑡𝐷
=

𝑘𝜂𝜕2𝐶𝑚2𝐷

𝜕𝑟𝐷
2 +

𝑘𝜂−𝜂

𝑟𝐷

𝜕𝐶𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚2𝐷, 𝑟𝑠𝐷 ≤ 𝑟𝐷 ≤ 𝑟0𝐷,(B2a) 134 

𝜕𝐶𝑚2𝐷

𝜕𝑡𝐷
=

𝜂

𝑟𝐷

𝜕2𝐶𝑚2𝐷

𝜕𝑟𝐷
2 −

𝜂

𝑟𝐷

𝜕𝐶𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚2𝐷, 𝑟𝐷 ≥ 𝑟0𝐷. (B1b) 135 

Similarly, one could obtain the dimensionless initial conditions and dimensionless boundary 136 

conditions, the expressions of the dimensionless initial conditions and dimensionless boundary 137 

conditions are the same with Eqs. (A3a) - (A6b), except that  138 

[𝜆
𝜕𝐶𝑚1𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

= [𝑘
𝜕𝐶𝑚2𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

.     (B2) 139 

In the formation zone, we could obtain the boundary condition at 𝑟𝐷 = 𝑟0𝐷 140 
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𝑘𝑟𝐷
𝜕𝐶𝑚2𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
=

𝜕𝐶𝑚2𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
, 𝑟𝐷 = 𝑟0𝐷,      (B3) 141 

Then conducting Laplace transform to Eqs. (B1a)- (B1b), one has 142 

𝑠𝐶𝑚̅2𝐷 = 𝑘𝜂
𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 +

𝑘𝜂−𝜂

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚̅2𝐷 − 𝐶𝑖̅𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚̅2𝐷, 𝑟𝑠𝐷 ≤ 𝑟𝐷 ≤ 𝑟0𝐷(B4a)  143 

𝑠𝐶𝑚̅2𝐷 =
𝜂

𝑟𝐷

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 −

𝜂

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚̅2𝐷 − 𝐶𝑖̅𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚̅2𝐷, 𝑟𝐷 ≥ 𝑟0𝐷 (B4b) 144 

Substituting Eq. (A9b) into Eqs. (B4a) - (B4b), one has 145 

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 +

𝑛

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝜀1

2𝐶𝑚̅2𝐷 = 0, 𝑟𝑠𝐷 ≤ 𝑟𝐷 ≤ 𝑟0𝐷,     (B5a) 146 

1

𝑟𝐷

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝜀1

2𝐶𝑚̅2𝐷 = 0, 𝑟𝐷 > 𝑟0𝐷.      (B5b) 147 

where 𝑛 = 1 −
1

𝑘
 and 𝜀1 = √

𝐸2

𝑘𝜂
. 148 

Similar to Eqs. (A11a) - (A11e) and Eq. (B2), the boundary conditions at wellbore and 149 

infinity in the Laplace domain are 150 

[𝐶𝑚̅1𝐷(𝑟𝐷 , 𝑠) − 𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

=
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
,      (B6a) 151 

[𝐶𝑚̅1𝐷(𝑟𝐷 , 𝑠) − 𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

=
𝛽𝑐ℎ𝑎𝐶𝑖𝑛𝑗,𝐷(𝑟𝑤𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠𝛽𝑐ℎ𝑎+1)
,     (B6b) 152 

𝐶𝑚̅1𝐷(𝑟𝑠𝐷, 𝑠) = 𝐶𝑚̅2𝐷(𝑟𝑠𝐷 , 𝑠),         (B6c) 153 

[𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

= [𝑘
𝜕𝐶̅𝑚2𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑠𝐷

,      (B6d) 154 

[𝑘𝑟𝐷
𝜕𝐶̅𝑚2𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟0𝐷

= [
𝜕𝐶̅𝑚2𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟0𝐷

,     (B6e) 155 

𝐶𝑚̅2𝐷(𝑟0𝐷, 𝑠) = 𝐶𝑚̅2𝐷(𝑟0𝐷 , 𝑠),        (B6f) 156 

𝐶𝑚̅2𝐷(𝑟𝐷, 𝑠)|𝑟𝐷→∞ = 0.          (B6g) 157 

The general solutions of Eq. (A8) and Eq. (B4) are respectively 158 
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𝐶𝑚̅1𝐷 = 𝒯1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝒯2𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1), 𝑟𝑤𝐷 < 𝑟𝐷 ≤ 𝑟𝑠𝐷,   (B7a) 159 

𝐶𝑚̅2𝐷 = 𝒯3𝑟𝐷
𝑚𝐾𝑚(𝜀1𝑟𝐷) + 𝒯4𝑟𝐷

𝑚𝐼𝑚(𝜀1𝑟𝐷), 𝑟𝑠𝐷 ≤ 𝑟𝐷 ≤ 𝑟0𝐷,     (B7b) 160 

𝐶𝑚̅2𝐷 = 𝒯5 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦3) + 𝒯6𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐵𝑖(𝑦3), 𝑟𝐷 > 𝑟0𝐷,    (B7c) 161 

where 𝑚 =
1

2𝑘
; 𝑦3 = (𝜀1)1/3 (𝑟𝐷 +

1

4𝜀1
); 𝒯1, 𝒯2, 𝒯3, 𝒯4, 𝒯5 and 𝒯6 are constants which could be 162 

determined by the boundary conditions; 𝐼𝑚and 𝐾𝑚 are the 𝑚𝑡ℎ-order modified Bessel functions 163 

of the first kind and second kind, respectively. 164 

Substituting Eq. (B6f) into Eq. (B7c), one has 165 

𝒯6 = 0.            (B8) 166 

Substituting Eq. (B7a) into Eq. (B6a), one has 167 

𝒯1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] + 𝒯2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) −168 

𝜆 (
𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] = 𝐹1.        (B9) 169 

Substituting Eq. (B7a) into Eq. (B6b), one has 170 

𝒯1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] + 𝒯2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) −171 

𝜆 (
𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] = 𝐹2,        (B10a) 172 

Similar to the treatment of Eq. (A14d), Eqs. (B9)-(B10a) could be combined as the 173 

following equation 174 

𝒯1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] + 𝒯2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) −175 

𝜆 (
𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] = 𝐹,        (B10b) 176 

where 𝐹 = 𝐶𝑖𝑛𝑗,𝐷
1−𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
. 177 
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Substituting Eqs. (B7a) - (B7b) into Eq. (B6c), one has 178 

𝒯1 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝑦1𝑠) + 𝒯2𝑒𝑥 𝑝 (

𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝑦1𝑠) = 𝒯3𝑟𝑠𝐷

𝑚𝐾𝑚(𝜀1𝑟𝑠𝐷) + 𝒯4𝑟𝐷
𝑚𝐼𝑚(𝜀1𝑟𝐷), (B11) 179 

Substituting Eqs. (B7a) - (B7b) into Eq. (B6d) yields 180 

𝒯1𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3
𝐴𝑖

′(𝑦1𝑠)] + 𝒯2𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3
𝐵𝑖

′(𝑦1𝑠)] =181 

−𝒯3𝑘𝜀1𝑟𝑠𝐷
𝑚+1𝐾𝑚−1(𝜀1𝑟𝑠𝐷) + 𝒯4𝑘{𝑚𝑟𝑠𝐷

𝑚−1𝐼𝑚(𝜀1𝑟𝐷) + 0.5𝜀1𝑟𝑠𝐷
𝑚 [𝐼𝑚−1(𝜀1𝑟𝐷) + 𝐼𝑚+1(𝜀1𝑟𝐷)]}, (B12) 182 

where 𝐾𝑚−1(∙) is the derivative of the 𝑚𝑡ℎ-order modified Bessel function of the second kind, 183 

𝐼𝑚−1(∙)  and 𝐼𝑚+1(∙) are the derivatives of the 𝑚𝑡ℎ-order modified Bessel function of the first 184 

kind. 185 

Substituting Eqs. (B7b)-( B7c) into Eq. (B6e) and Eq. (B6f) yields 186 

−𝒯3𝑘𝜀1𝑟0𝐷
𝑚+2𝐾𝑚−1(𝜀1𝑟0𝐷) + 𝒯4𝑘{𝑚𝑟0𝐷

𝑚 𝐼𝑚(𝜀1𝑟0𝐷) + 0.5𝜀1𝑟0𝐷
𝑚+1[𝐼𝑚−1(𝜀1𝑟0𝐷) +187 

𝐼𝑚+1(𝜀1𝑟0𝐷)]} = 𝒯5 [0.5𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦4) + 𝜀1

1/3
𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐴𝑖

′(𝑦4)],    (B13) 188 

𝒯3𝑟0𝐷
𝑚 𝐾𝑚(𝜀1𝑟0𝐷) + 𝒯4𝑟0𝐷

𝑚 𝐼𝑚(𝜀1𝑟0𝐷) = 𝒯5 𝑒𝑥𝑝 (
𝑟0𝐷

2
) 𝐴𝑖(𝑦4),    (B14) 189 

where 𝑦4 = (𝜀1)1/3 (𝑟0𝐷 +
1

4𝜀1
). 190 

The values of 𝒯1, 𝒯2, 𝒯3, 𝒯4, 𝒯5 and 𝒯6 could be determined by solving Eqs. (B8) - (B14), 191 

one has  192 

𝒯1 =
𝐹−𝑊2𝒯2

𝑊1
,  193 

𝒯2 =
𝑊1𝑊5

𝑊1𝑊4−𝑊2𝑊3
𝒯3 +

𝑊1𝑊6

𝑊1𝑊4−𝑊2𝑊3
𝒯4 −

𝑊3𝐹

𝑊1𝑊4−𝑊2𝑊3
, 194 

𝒯3 =
𝑊13𝑊15−𝑊12𝑊16

𝑊11𝑊16−𝑊13𝑊14
𝒯4, 195 

𝒯4 =
𝑊3𝐹(𝑊1𝑊8−𝑊2𝑊7)−𝑊7𝐹(𝑊1𝑊4−𝑊2𝑊3)

(𝑊1𝑊5Θ+𝑊1𝑊6)(𝑊1𝑊8−𝑊2𝑊7)−(𝑊1𝑊9Θ−𝑊1𝑊10)(𝑊1𝑊4−𝑊2𝑊3)
 and 𝒯5 =

𝑊14

𝑊16
𝒯3 +

𝑊15

𝑊16
𝒯4.  196 

where 𝑊1 = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)], 197 
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𝑊2 = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)], 198 

𝑊3 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝑦1𝑠), 𝑒𝑥 𝑝 (

𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝑦1𝑠), 𝑊5 = 𝑟𝑠𝐷

𝑚𝐾𝑚(𝜀1𝑟𝑠𝐷), 𝑊6 = 𝑟𝐷
𝑚𝐼𝑚(𝜀1𝑟𝐷),  199 

𝑊7 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦1𝑠)], 200 

𝑊8 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐵𝑖
′(𝑦1𝑠)], 201 

𝑊9 = −𝑘𝜀1𝑟𝑠𝐷
𝑚+1𝐾𝑚−1(𝜀1𝑟𝑠𝐷), 202 

𝑊10 = 𝑘{𝑚𝑟𝑠𝐷
𝑚−1𝐼𝑚(𝜀1𝑟𝐷) + 0.5𝜀1𝑟𝑠𝐷

𝑚[𝐼𝑚−1(𝜀1𝑟𝐷) + 𝐼𝑚+1(𝜀1𝑟𝐷)]}, 203 

𝑊11 = −𝑘𝜀1𝑟0𝐷
𝑚+2𝐾𝑚−1(𝜀1𝑟0𝐷), 204 

𝑊12 = 𝑘{𝑚𝑟0𝐷
𝑚 𝐼𝑚(𝜀1𝑟0𝐷) + 0.5𝜀1𝑟0𝐷

𝑚+1[𝐼𝑚−1(𝜀1𝑟0𝐷) + 𝐼𝑚+1(𝜀1𝑟0𝐷)]}, 205 

𝑊13 = 0.5𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦4) + 𝜀1

1/3
𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐴𝑖

′(𝑦4), 206 

𝑊14 = 𝑟0𝐷
𝑚 𝐾𝑚(𝜀1𝑟0𝐷), 𝑊15 = 𝑟0𝐷

𝑚 𝐼𝑚(𝜀1𝑟0𝐷), 𝑊16 = 𝑒𝑥𝑝 (
𝑟0𝐷

2
) 𝐴𝑖(𝑦4) and Θ =207 

𝑊13𝑊15−𝑊12𝑊16

𝑊11𝑊16−𝑊13𝑊14
 208 

In the injection phase, the values of 𝒯1 and 𝒯2 are modified into 𝒯1
′ and 𝒯2

′ as follows 209 

𝒯1
′ =

𝐹1−𝑊2
′𝒯2

′

𝑊1
′  , 𝒯2

′ =
𝑊1

′𝑊5

𝑊1
′𝑊4−𝑊2

′𝑊3
𝒯3

′ +
𝑊1

′𝑊6

𝑊1
′𝑊4−𝑊2

′𝑊3
𝒯4

′ −
𝑊3𝐹1

𝑊1
′𝑊4−𝑊2

′𝑊3
, 210 

where 𝑊1
′ = 𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) 𝐴𝑖(𝑦𝑤) , 𝑊2

′ = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) 𝐵𝑖(𝑦𝑤), 𝒯3

′ =
𝑊13𝑊15−𝑊12𝑊16

𝑊11𝑊16−𝑊13𝑊14
𝒯4

′, and 𝒯4
′ =211 

𝑊3𝐹1(𝑊1
′𝑊8−𝑊2

′𝑊7)−𝑊7𝐹1(𝑊1
′𝑊4−𝑊2

′𝑊3)

(𝑊1
′𝑊5Θ+𝑊1

′𝑊6)(𝑊1
′𝑊8−𝑊2

′𝑊7)−(𝑊1
′𝑊9Θ−𝑊1

′𝑊10)(𝑊1
′𝑊4−𝑊2

′𝑊3)
. 212 

Substituting 𝒯1
′ and 𝒯2

′ into Eq. (B7a), one has 213 

𝐶𝑖̅𝑛𝑗,𝐷(𝑟𝑤𝐷 , s) = 𝒯1
′ 𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝒯2

′𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1),    (B15) 214 

In the chasing phase, the values of 𝒯1 and 𝒯2 are changed into 𝒯1
′′ and 𝒯2

′′ as follows 215 

𝒯1
′′ =

𝐹2−𝑊2
′𝒯2

′′

𝑊1
′  , 𝒯2

′′ =
𝑊1

′𝑊5

𝑊1
′𝑊4−𝑊2

′𝑊3
𝒯3

′′ +
𝑊1

′𝑊6

𝑊1
′𝑊4−𝑊2

′𝑊3
𝒯4

′′ −
𝑊3𝐹2

𝑊1
′𝑊4−𝑊2

′𝑊3
, 216 
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where  𝒯3
′′ =

𝑊13𝑊15−𝑊12𝑊16

𝑊11𝑊16−𝑊13𝑊14
𝒯4

′′, 𝒯4
′′ =

𝑊3𝐹2(𝑊1
′𝑊8−𝑊2

′𝑊7)−𝑊7𝐹2(𝑊1
′𝑊4−𝑊2

′𝑊3)

(𝑊1
′𝑊5Θ+𝑊1

′𝑊6)(𝑊1
′𝑊8−𝑊2

′𝑊7)−(𝑊1
′𝑊9Θ−𝑊1

′𝑊10)(𝑊1
′𝑊4−𝑊2

′𝑊3)
. 217 

Substituting 𝒯1
′′ and 𝒯2

′′ into Eq. (B10a), one has 218 

𝐶𝑐̅ℎ𝑎,𝐷(𝑟𝑤𝐷, s) = 𝒯1
′′ 𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝒯2

′′𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1),    (B16) 219 

Substituting Eqs. (B7a) - (B7c) into Eq. (A1b) and Eq. (A1d), one has 220 

𝐶𝑖̅𝑚1𝐷 =
𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
𝐶𝑚̅1𝐷, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,      (B17a) 221 

𝐶𝑖̅𝑚2𝐷 =
𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
𝐶𝑚̅2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷.       (B17b) 222 

S3. The MIM model and solution in an aquifer-aquitard system 223 

S3.1 Mathematical model 224 

Assuming that advection, dispersion and sorption involved in the solute transport in the 225 

aquifer-aquitard system, the governing equations are 226 

𝜃𝑚1𝑅𝑚1

𝜕𝐶𝑚1

𝜕𝑡
=

𝜃𝑚1

𝑟

𝜕

𝜕𝑟
(𝑟𝛼1|𝑣𝑎1|

𝜕𝐶𝑚1

𝜕𝑟
) − 𝜃𝑚1𝑣𝑎1

𝜕𝐶𝑚1

𝜕𝑟
− 𝜔1(𝐶𝑚1 − 𝐶𝑖𝑚1) 227 

−𝜃𝑚𝜇𝑚1𝐶𝑚1 −
𝜃𝑢𝑚𝐷𝑢

2𝑏

𝜕𝐶𝑢𝑚

𝜕𝑧
|

𝑧=𝑏
+

𝜃𝑙𝑚𝐷𝑙

2𝑏

𝜕𝐶𝑙𝑚

𝜕𝑧
|

𝑧=−𝑏
, 𝑟𝑤 ≤  𝑟 ≤ 𝑟𝑠,   (C1a) 228 

𝜃𝑖𝑚1𝑅𝑖𝑚1
𝜕𝐶𝑖𝑚1

𝜕𝑡
= 𝜔1(𝐶𝑚1 − 𝐶𝑖𝑚1) − 𝜃𝑖𝑚1𝜇𝑖𝑚1𝐶𝑖𝑚1, 𝑟𝑤 ≤  𝑟 ≤ 𝑟𝑠,   (C1b) 229 

𝜃𝑚2𝑅𝑚2

𝜕𝐶𝑚2

𝜕𝑡
=

𝜃𝑚2

𝑟

𝜕

𝜕𝑟
(𝑟𝛼2|𝑣𝑎2|

𝜕𝐶𝑚2

𝜕𝑟
) − 𝜃𝑚2𝑣𝑎2

𝜕𝐶𝑚2

𝜕𝑟
− 𝜔2(𝐶𝑚2 − 𝐶𝑖𝑚2) 230 

−𝜃𝑚2𝜇𝑚2𝐶𝑚2 −
𝜃𝑢𝑚𝐷𝑢

2𝑏

𝜕𝐶𝑢𝑚

𝜕𝑧
|

𝑧=𝑏
+

𝜃𝑙𝑚𝐷𝑙

2𝑏

𝜕𝐶𝑙𝑚

𝜕𝑧
|

𝑧=−𝑏
, 𝑟 > 𝑟𝑠,   (C1c) 231 

𝜃𝑖𝑚2𝑅𝑖𝑚2
𝜕𝐶𝑖𝑚2

𝜕𝑡
= 𝜔2(𝐶𝑚2 − 𝐶𝑖𝑚2) − 𝜃𝑖𝑚2𝜇𝑖𝑚2𝐶𝑖𝑚2, 𝑟 > 𝑟𝑠,    (C1d) 232 

𝜃𝑢𝑚𝑅𝑢𝑚
𝜕𝐶𝑢𝑚

𝜕𝑡
= 𝜃𝑢𝑚𝐷𝑢

𝜕2𝐶𝑢𝑚

𝜕𝑧2
− 𝜔𝑢(𝐶𝑢𝑚 − 𝐶𝑢𝑖𝑚) − 𝜃𝑢𝑚𝜇𝑢𝑚𝐶𝑢𝑚, 𝑧 ≥ 𝑏, (C2a) 233 

𝜃𝑢𝑖𝑚𝑅𝑢𝑖𝑚
𝜕𝐶𝑢𝑖𝑚

𝜕𝑡
= 𝜔𝑢(𝐶𝑢𝑚 − 𝐶𝑢𝑖𝑚) − 𝜃𝑢𝑖𝑚𝜇𝑢𝑖𝑚𝐶𝑢𝑖𝑚, 𝑧 ≥ 𝑏    (C2b) 234 

𝜃𝑙𝑚𝑅𝑙𝑚
𝜕𝐶𝑙𝑚

𝜕𝑡
= 𝜃𝑙𝑚𝐷𝑙

𝜕2𝐶𝑙𝑚

𝜕𝑧2
− 𝜔𝑙(𝐶𝑙𝑚 − 𝐶𝑙𝑖𝑚) − 𝜃𝑙𝑚𝜇𝑙𝑚𝐶𝑙𝑚, 𝑧 ≤ −𝑏,   (C3a) 235 
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𝜃𝑙𝑖𝑚𝑅𝑙𝑖𝑚
𝜕𝐶𝑙𝑖𝑚

𝜕𝑡
= 𝜔𝑙(𝐶𝑙𝑚 − 𝐶𝑙𝑖𝑚) − 𝜃𝑙𝑖𝑚𝜇𝑙𝑖𝑚𝐶𝑙𝑖𝑚, 𝑧 ≤ −𝑏,    (C3b) 236 

where the subscripts “𝑢” and “𝑙” refer to the parameters in the upper and lower aquitard, 237 

respectively; the subscripts “𝑚” and “𝑖𝑚” refer to the parameters in the mobile and immobile 238 

regions, respectively; the subscripts ‘‘1’’ and “2” refer to the parameters in the skin and 239 

formation regions, respectively; 𝐶𝑚1 and 𝐶𝑖𝑚1 are the mobile and immobile concentrations [ML-3] 240 

of the skin zone, respectively; 𝐶𝑚2 and 𝐶𝑖𝑚2 are the mobile and immobile concentrations [ML-3] 241 

of the formation zone, respectively; 𝐶𝑢𝑚 and 𝐶𝑢𝑖𝑚 are the mobile and immobile concentrations 242 

[ML-3] of the upper aquitard, respectively; 𝐶𝑙𝑚 and 𝐶𝑙𝑖𝑚 are the mobile and immobile 243 

concentrations [ML-3] of the upper aquitard, respectively; t is time [T]; 𝑟 is the radial distance [L] 244 

from the center of the well; 𝑟𝑤 is radius of the well [L]; 𝑟𝑠 is the radial distance [L] from the 245 

center of the well to the outer radius of the skin zone; 𝑧 represents the vertical distance [L]; 𝑏 is 246 

the half of the aquifer thickness [L]; 𝛼1 and 𝛼2 represent the longitudinal dispersivities [L] in the 247 

skin and formation zones, respectively; 𝐷𝑢 and 𝐷𝑙 are the vertical dispersion coefficients [L2T-1] 248 

of the upper and lower aquitards, respectively; 𝑣𝑎1 and 𝑣𝑎2 represent the average radial pore 249 

velocity [LT-1] of the skin and formation zones, respectively; and 𝑣𝑎1 =
𝑢1

𝜃𝑚1
 and 𝑣𝑎1 =

𝑢2

𝜃𝑚2
; 𝑢1 250 

and 𝑢2 represent Darcian velocity [LT-1] of the skin and formation zones, respectively; 𝜇𝑚1,𝜇𝑖𝑚1, 251 

𝜇𝑚2, 𝜇𝑖𝑚2 𝜇𝑢𝑚, 𝜇𝑢𝑖𝑚, 𝜇𝑙𝑚 and 𝜇𝑙𝑖𝑚 are reaction rates for first-order biodegradation, or 252 

radioactive decay, or the first-order reaction rate [T-1], respectively; 𝜃𝑚1, 𝜃𝑖𝑚1,  𝜃𝑚2 and 𝜃𝑖𝑚2 253 

are the mobile and immobile porosities [dimensionless] , respectively; 𝜃𝑢𝑚,𝜃𝑢𝑖𝑚, 𝜃𝑙𝑚 and 𝜃𝑙𝑖𝑚 254 

are the mobile and immobile porosities [dimensionless], respectively; 𝑅𝑚1 = 1 +
𝜌𝑏𝐾𝑑

𝜃𝑚1
 and 255 

𝑅𝑖𝑚1 = 1 +
𝜌𝑏𝐾𝑑

𝜃𝑖𝑚1
 are regarded as retardation factors [dimensionless] for the mobile and immobile 256 

regions of the skin zone, respectively;  𝑅𝑚2 = 1 +
𝜌𝑏𝐾𝑑

𝜃𝑚2
 and 𝑅𝑖𝑚2 = 1 +

𝜌𝑏𝐾𝑑

𝜃𝑖𝑚2
 are regarded as 257 
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retardation factors [dimensionless] for the mobile and immobile regions of the aquifer, 258 

respectively; 𝑅𝑢𝑚 = 1 +
𝜌𝑏𝐾𝑑

𝜃𝑢𝑚
 and 𝑅𝑢𝑖𝑚 = 1 +

𝜌𝑏𝐾𝑑

𝜃𝑢𝑖𝑚
 are regarded as retardation factors 259 

[dimensionless] for the mobile and immobile regions of the upper aquitard, respectively; 𝑅𝑙𝑚 =260 

1 +
𝜌𝑏𝐾𝑑

𝜃𝑙𝑚
 and 𝑅𝑙𝑖𝑚 = 1 +

𝜌𝑏𝐾𝑑

𝜃𝑙𝑖𝑚
 could be regarded as retardation factors [dimensionless] for the 261 

mobile and immobile regions in the lower aquitard, respectively; 𝐾𝑑 is the equilibrium 262 

distribution coefficient for the linear sorption process [M-1L3]; 𝜌𝑏 is the bulk density [ML-3] of 263 

the aquifer material; 𝜔𝑎, 𝜔𝑢 and 𝜔𝑙 are the first-order mass transfer coefficients [T-1] of the 264 

aquifer, upper aquitard, and lower aquitard, respectively.  265 

Subject to the following initial and boundary conditions 266 

𝐶𝑚1(𝑟, 𝑡)|𝑡=0 = 𝐶𝑖𝑚1(𝑟, 𝑡)|𝑡=0 = 𝐶𝑚2(𝑟, 𝑡)|𝑡=0 = 𝐶𝑖𝑚2(𝑟, 𝑡)|𝑡=0 = 𝐶𝑢𝑚(𝑟, 𝑧, 𝑡)|𝑡=0 =267 

𝐶𝑢𝑖𝑚(𝑟, 𝑧, 𝑡)|𝑡=0 = 𝐶𝑙𝑚(𝑟, 𝑧, 𝑡)|𝑡=0 = 𝐶𝑙𝑖𝑚(𝑟, 𝑧, 𝑡)|𝑡=0 = 0, 𝑟 ≥ 𝑟𝑤,    (C4)  268 

𝐶𝑚2(𝑟, 𝑡)|𝑟→∞ = 𝐶𝑖𝑚2(𝑟, 𝑡)|𝑟→∞ = 𝐶𝑢𝑚(𝑟, 𝑧, 𝑡)|𝑟→∞ = 𝐶𝑢𝑖𝑚(𝑟, 𝑧, 𝑡)|𝑟→∞ =269 

𝐶𝑙𝑚(𝑟, 𝑧, 𝑡)|𝑟→−∞ = 𝐶𝑙𝑖𝑚(𝑟, 𝑧, 𝑡)|𝑟→−∞ = 0, 𝑟 ≥ 𝑟𝑤,      (C5) 270 

𝐶𝑚1(𝑟, 𝑡) = 𝐶𝑢𝑚(𝑟, 𝑧 = 𝑏, 𝑡), 𝑟𝑤 ≤  𝑟 ≤ 𝑟𝑠,      (C6a) 271 

𝐶𝑚2(𝑟, 𝑡) = 𝐶𝑢𝑚(𝑟, 𝑧 = 𝑏, 𝑡), 𝑟 > 𝑟𝑠,       (C6b) 272 

𝐶𝑚1(𝑟, 𝑡) = 𝐶𝑙𝑚(𝑟, 𝑧 = −𝑏, 𝑡), 𝑟𝑤 ≤  𝑟 ≤ 𝑟𝑠,       (C7a) 273 

𝐶𝑚2(𝑟, 𝑡) = 𝐶𝑙𝑚(𝑟, 𝑧 = −𝑏, 𝑡), 𝑟 > 𝑟𝑠.        (C7b) 274 

The flux concentration continuity is applied in boundary condition of the wellbore, and one 275 

has 276 

[𝑣𝑎1,𝑖𝑛𝑗𝐶𝑚1(𝑟, 𝑡) − 𝛼1|𝑣𝑎1,𝑖𝑛𝑗|
𝜕𝐶𝑚1(𝑟,𝑡)

𝜕𝑟
]|

𝑟=𝑟𝑤

= [𝑣𝑎1,𝑖𝑛𝑗𝐶𝑖𝑛𝑗(𝑡)]|
𝑟=𝑟𝑤

, 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗, (C8a) 277 

[𝑣𝑎1,𝑐ℎ𝑎𝐶𝑚1(𝑟, 𝑡) − 𝛼1|𝑣𝑎1,𝑐ℎ𝑎|
𝜕𝐶𝑚1(𝑟,𝑡)

𝜕𝑟
]|

𝑟=𝑟𝑤

= [𝑣𝑎1,𝑐ℎ𝑎𝐶𝑐ℎ𝑎(𝑡)]|
𝑟=𝑟𝑤

, 𝑡 > 𝑡𝑖𝑛𝑗,  (C8b) 278 
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where 𝐶𝑖𝑛𝑗(𝑡) and 𝐶𝑐ℎ𝑎(𝑡) represent the wellbore concentrations [ML-3] of tracer in the injection 279 

and chasing phases, respectively.  280 

Considering the mixing effect of the injected tracer with the original water in the wellbore, 281 

the variations of concentration in the injection and chasing phases could be described as 282 

𝑉𝑤,𝑖𝑛𝑗
𝑑𝐶𝑖𝑛𝑗

𝑑𝑡
= −𝜉𝑣𝑎1,𝑖𝑛𝑗(𝑟𝑤)[𝐶𝑖𝑛𝑗(𝑡) − 𝐶0], 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗,    (C9a) 283 

𝑉𝑤,𝑐ℎ𝑎
𝑑𝐶𝑐ℎ𝑎

𝑑𝑡
= −𝜉𝑣𝑎1,𝑐ℎ𝑎(𝑟𝑤)[𝐶𝑐ℎ𝑎(𝑡)], 𝑡 > 𝑡𝑖𝑛𝑗.     (C9b) 284 

3.2 Derivation of the analytical solutions  285 

The dimensionless parameters are defined as: 𝐶𝑚1𝐷 =
𝐶𝑚1

𝐶0
, 𝐶𝑖𝑚1𝐷 =

𝐶𝑖𝑚1

𝐶0
, 𝐶𝑚2𝐷 =

𝐶𝑚2

𝐶0
, 286 

𝐶𝑖𝑚2𝐷 =
𝐶𝑖𝑚2

𝐶0
, 𝐶𝑤𝐷 =

𝐶𝑤

𝐶0
, 𝐶𝑖𝑛𝑗,𝐷 =

𝐶𝑖𝑛𝑗

𝐶0
, 𝐶𝑐ℎ𝑎,𝐷 =

𝐶𝑐ℎ𝑎

𝐶0
, 𝐶𝑢𝑚𝐷 =

𝐶𝑢𝑚

𝐶0
, 𝐶𝑢𝑖𝑚𝐷 =

𝐶𝑢𝑖𝑚

𝐶0
, 𝐶𝑙𝑚𝐷 =

𝐶𝑙𝑚

𝐶0
, 287 

𝐶𝑙𝑖𝑚𝐷 =
𝐶𝑙𝑖𝑚

𝐶0
, 𝑡𝐷 =

|𝐴|𝑡

𝛼2
2𝑅𝑚1

, 𝑡𝑖𝑛𝑗,𝐷 =
|𝐴|𝑡𝑖𝑛𝑗

𝛼2
2𝑅𝑚1

,  𝑟𝐷 =
𝑟

𝛼2
, 𝑟𝑤𝐷 =

𝑟𝑤

𝛼2
, 𝑧𝐷 =

𝑧

𝐵
, 𝜇𝑚1𝐷 =

𝛼2
2𝜇𝑚1

𝐴
, 𝜇𝑖𝑚1𝐷 =288 

𝛼2
2𝑅𝑚1𝜇𝑖𝑚1

𝑅𝑖𝑚1𝐴
, 𝜇𝑚2𝐷 =

𝛼2
2𝜇𝑚2

𝐴
, 𝜇𝑖𝑚2𝐷 =

𝛼2
2𝑅𝑚1𝜇𝑖𝑚2

𝑅𝑖𝑚2𝐴
, 𝜇𝑢𝑚𝐷 =

𝛼2
2𝑅𝑚𝜇𝑚

𝑅𝑢𝑚𝐴
, 𝜇𝑢𝑖𝑚𝐷 =

𝛼2
2𝑅𝑚𝜇𝑖𝑚

𝑅𝑢𝑚𝐴
, 𝜇𝑙𝑚𝐷 =289 

𝛼2
2𝑅𝑚𝜇𝑚

𝐴𝑅𝑙𝑚
 , 𝜇𝑙𝑖𝑚𝐷 =

𝛼2
2𝑅𝑚𝜇𝑖𝑚

𝑅𝑙𝑚𝐴
 and 𝐴 =

𝑄

4𝜋𝐵𝜃𝑚1
. The dimensionless forms of the governing equation 290 

could be rewritten as 291 

𝜕𝐶𝑚1𝐷

𝜕𝑡𝐷
=

𝜆

𝑟𝐷

𝜕2𝐶𝑚1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚1𝐷

𝜕𝑟𝐷
− 𝜀𝑚1(𝐶𝑚1𝐷 − 𝐶𝑖𝑚1𝐷) − 𝜇𝑚1𝐷𝐶𝑚1𝐷 −

𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚1𝑏2

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
|

𝑧=1
+292 

𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚1

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
|

𝑧=−1
, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,        (C10a) 293 

𝜕𝐶𝑖𝑚1𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚1(𝐶𝑚1𝐷 − 𝐶𝑖𝑚1𝐷) − 𝜇𝑖𝑚1𝐷𝐶𝑖𝑚1𝐷, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,   (C10b) 294 

𝜕𝐶𝑚2𝐷

𝜕𝑡𝐷
=

1

𝑟𝐷

𝜕2𝐶𝑚2𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) − 𝜇𝑚2𝐷𝐶𝑚2𝐷 −

𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚2b2

𝜕𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
|

𝑧=1
+295 

𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚2

𝜕𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
|

𝑧=−1
, 𝑟𝐷 > 𝑟𝑠𝐷,         (C10c) 296 

𝜕𝐶𝑖𝑚2𝐷

𝜕𝑡𝐷
= 𝜀𝑖𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) − 𝜇𝑖𝑚2𝐷𝐶𝑖𝑚2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷,    (C10d) 297 
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𝜕𝐶𝑢𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚1𝛼2
2𝐷𝑢

𝐴𝑏2𝑅𝑢𝑚

𝜕2𝐶𝑢𝑚𝐷

𝜕𝑧𝐷
2 − 𝜀𝑢𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑚𝐷𝐶𝑢𝑚𝐷,𝑧𝐷 ≥ 1,𝑡𝐷 > 0, (C11a) 298 

𝜕𝐶𝑢𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑢𝑖𝑚(𝐶𝑢𝑚𝐷 − 𝐶𝑢𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶𝑢𝑖𝑚𝐷, 𝑧𝐷 ≥ 1, 𝑡𝐷 > 0   (C11b) 299 

𝜕𝐶𝑙𝑚𝐷

𝜕𝑡𝐷
=

𝑅𝑚1𝛼2
2𝐷𝑙

𝐴𝑏2𝑅𝑙𝑚

𝜕2𝐶𝑙𝑚𝐷

𝜕𝑧𝐷
2 − 𝜀𝑙𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑚𝐷𝐶𝑙𝑚𝐷,𝑧𝐷 ≤ −1,𝑡𝐷 > 0,  (C12a) 300 

𝜕𝐶𝑢𝑖𝑚𝐷

𝜕𝑡𝐷
= 𝜀𝑙𝑖𝑚(𝐶𝑙𝑚𝐷 − 𝐶𝑙𝑖𝑚𝐷) − 𝜇𝑙𝑖𝑚𝐷𝐶𝑙𝑖𝑚𝐷, 𝑧𝐷 ≤ −1, 𝑡𝐷 > 0,    (C12b) 301 

where 𝜀𝑚1 =
𝜔1𝛼2

2

𝐴𝜃𝑚1
, 𝜀𝑖𝑚1 =

𝜔1𝛼2
2𝑅𝑚1

𝐴𝜃𝑖𝑚1𝑅𝑖𝑚1
, 𝜀𝑚2 =

𝜔2𝛼2
2

𝐴𝜃𝑚2
, 𝜀𝑖𝑚2 =

𝜔2𝛼2
2𝑅𝑚1

𝐴𝜃𝑖𝑚2𝑅𝑖𝑚2
, 𝜀𝑢𝑚 =

𝜔𝑢𝛼2
2𝑅𝑚1

𝐴𝜃𝑢𝑚𝑅𝑢𝑚
, 𝜀𝑢𝑖𝑚 =302 

𝜔𝑢𝛼2
2𝑅𝑚1

𝐴𝜃𝑢𝑖𝑚𝑅𝑢𝑖𝑚
, 𝜀𝑙𝑚 =

𝜔𝑙𝛼2
2𝑅𝑚1

𝐴𝜃𝑙𝑚𝑅𝑙𝑚
, 𝜀𝑙𝑖𝑚 =

𝜔𝑙𝛼2
2𝑅𝑚1

𝐴𝜃𝑙𝑖𝑚𝑅𝑙𝑖𝑚
. 303 

Substituting the dimensionless parameters into Eqs. (C4) - (C7), one has 304 

𝐶𝑚1𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑖𝑚1𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑖𝑚2𝐷(𝑟𝐷 , 𝑡𝐷)|𝑡𝐷=0 =305 

𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 =306 

𝐶𝑙𝑖𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡𝐷)|𝑡𝐷=0 = 0,         (C13) 307 

𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑖𝑚2𝐷(𝑟𝐷, 𝑡𝐷)|𝑟𝐷→∞ = 𝐶𝑢𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷→∞ =308 

𝐶𝑢𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷→∞ = 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 , 𝑡)|𝑧𝐷→−∞ = 𝐶𝑙𝑖𝑚𝐷(𝑟𝐷, 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷→−∞ = 0,  (C14) 309 

𝐶𝑚1𝐷(𝑟𝐷, 𝑡𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 = 1, 𝑡𝐷), 𝑟𝑤𝐷 ≤  𝑟𝐷 ≤ 𝑟𝑠𝐷,    (C15a) 310 

𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷) = 𝐶𝑢𝑚𝐷(𝑟𝐷 , 𝑧𝐷 = 1, 𝑡𝐷), 𝑟𝑤𝐷 ≤  𝑟𝐷 ≤ 𝑟𝑠𝐷,    (C15b) 311 

𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷) = 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 = −1, 𝑡𝐷),𝑟𝐷 > 𝑟𝑠𝐷,     (C15c) 312 

𝐶𝑚2𝐷(𝑟𝐷, 𝑡𝐷) = 𝐶𝑙𝑚𝐷(𝑟𝐷 , 𝑧𝐷 = −1, 𝑡𝐷), 𝑟𝐷 > 𝑟𝑠𝐷.     (C15d) 313 

Conducting Laplace transform to Eqs. (C11a) - (C11b), one has: 314 

𝑠𝐶𝑢̅𝑚𝐷 =
𝑅𝑚1𝛼2

2𝐷𝑢

𝐴𝐵2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 − (𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷)𝐶𝑢̅𝑚𝐷 + 𝜀𝑢𝑚𝐶𝑢̅𝑖𝑚𝐷,𝑧𝐷 ≥ 1,  (C16a) 315 

𝑠𝐶𝑢̅𝑖𝑚𝐷 = 𝜀𝑢𝑖𝑚(𝐶𝑢̅𝑚𝐷 − 𝐶𝑢̅𝑖𝑚𝐷) − 𝜇𝑢𝑖𝑚𝐷𝐶𝑢̅𝑖𝑚𝐷, 𝑧𝐷 ≥ 1.     (C16b) 316 

Substituting Eq. (C16b) into Eq. (C16a), Eq. (C16a) could be rewritten as 317 
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𝑅𝑚1𝛼2
2𝐷𝑢

𝐴𝑏2𝑅𝑢𝑚

𝜕2𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
2 − (𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
) 𝐶𝑢̅𝑚𝐷 = 0, 𝑧𝐷 ≥ 1.  (C17) 318 

Similarly, Eqs. (C12a) - (C12b) become: 319 

𝑅𝑚1𝛼2
2𝐷𝑙

𝐴𝑏2𝑅𝑙𝑚

𝜕2𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
2 − (𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
) 𝐶𝑙̅𝑚𝐷 = 0, 𝑧𝐷 ≤ −1.  (C18) 320 

Eqs. (C13) - (C15d) and Eq. (C17) compose a model of the second-order ordinary 321 

differential equation (ODE) with boundary conditions, and the general solution of the Eq. (C17) 322 

is 323 

𝐶𝑢̅𝑚𝐷 = 𝐴1𝑒𝑎1𝑧𝐷 + 𝐵1𝑒𝑎2𝑧𝐷, 𝑧𝐷 ≥ 1.       (C19a) 324 

Similarly, the general solution of Eq. (C18) is 325 

𝐶𝑙̅𝑚𝐷 = 𝐴2𝑒𝑏1𝑧𝐷 + 𝐵2𝑒𝑏2𝑧𝐷, 𝑧𝐷 ≤ −1,       (C19b) 326 

where 𝑎1 = √𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
, 𝑎2 = −√𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −

𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠+𝜇𝑢𝑖𝑚𝐷+𝜀𝑢𝑖𝑚
, 𝑏1 =327 

√𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
 and 𝑏2 = −√𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −

𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠+𝜇𝑙𝑖𝑚𝐷+𝜀𝑙𝑖𝑚
. 328 

Substituting Eqs. (C19a) - (C19b) into Eqs. (C15a) - ( C15d), one has 329 

𝐶𝑢̅𝑚𝐷 = 𝐵1𝑒𝑎2𝑧𝐷, 𝑧𝐷 ≥ 1,        (C20a) 330 

𝐶𝑙̅𝑚𝐷 = 𝐴2𝑒𝑏1𝑧𝐷, 𝑧𝐷 ≤ −1,        (C20b) 331 

where 𝐵1 = 𝐶𝑚̅𝐷𝑒𝑥𝑝 (−𝑎2), 𝐵2 = 0, 𝐴1 = 0 and 𝐴2 = 𝐶𝑚̅𝐷𝑒𝑥𝑝 (𝑏1). 332 

Thus, the solutions of the aquitards are 333 

𝐶𝑢̅𝑚𝐷 = 𝐶𝑚̅1𝐷𝑒𝑥𝑝 (𝑎2𝑧𝐷 − 𝑎2), 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,     (C3a) 334 

𝐶𝑢̅𝑚𝐷 = 𝐶𝑚̅2𝐷𝑒𝑥𝑝 (𝑎2𝑧𝐷 − 𝑎2),𝑟𝐷 > 𝑟𝑠𝐷,      (C21b) 335 

𝐶𝑢̅𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
𝐶𝑢̅𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,       (C21c) 336 

𝐶𝑙̅𝑚𝐷 = 𝐶𝑚̅1𝐷𝑒𝑥𝑝 (𝑏1𝑧𝐷 + 𝑏1), 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,     (C22a) 337 

𝐶𝑙̅𝑚𝐷 = 𝐶𝑚̅2𝐷𝑒𝑥𝑝 (𝑏1𝑧𝐷 + 𝑏1),𝑟𝐷 > 𝑟𝑠𝐷,      (C22b) 338 
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𝐶𝑙̅𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
𝐶𝑙̅𝑚𝐷, 𝑟𝐷 ≥ 𝑟𝑤𝐷,       (C22c) 339 

The dimensionless forms of Eqs. (C8a) - (C9b) become 340 

[𝐶𝑚1𝐷 − 𝜆
𝜕𝐶𝑚1𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 𝐶𝑖𝑛𝑗,𝐷(𝑡𝐷), 0 < 𝑡𝐷 ≤  𝑡𝑖𝑛𝑗,𝐷,    (C23a) 341 

[𝐶𝑚1𝐷 − 𝜆
𝜕𝐶𝑚1𝐷(𝑟𝐷,𝑡𝐷)

𝜕𝑟𝐷
]|

𝑟=𝑟𝑤𝐷

= 𝐶𝑐ℎ𝑎,𝐷(𝑡𝐷), 𝑡𝐷 > 𝑡𝑖𝑛𝑗,𝐷,    (C23b) 342 

𝛽𝑖𝑛𝑗
𝑑𝐶𝑖𝑛𝑗,𝐷(𝑡𝐷)

𝑑𝑡𝐷
= 1 − 𝐶𝑖𝑛𝑗,𝐷(𝑡𝐷), 0 < 𝑡𝐷 ≤ 𝑡𝑖𝑛𝑗,𝐷,     (C24a) 343 

𝛽𝑐ℎ𝑎
𝑑𝐶𝑐ℎ𝑎,𝐷(𝑡𝐷)

𝑑𝑡𝐷
= −𝐶𝑐ℎ𝑎,𝐷(𝑡𝐷), 𝑡𝐷 > 𝑡𝑖𝑛𝑗,𝐷,      (C24b) 344 

where 𝛽𝑖𝑛𝑗 =
𝑉𝑤,𝑖𝑛𝑗𝑟𝑤𝐷

𝜉𝑅𝑚𝛼2
 and 𝛽𝑐ℎ𝑎 =

𝑉𝑤,𝑐ℎ𝑎𝑟𝑤𝐷

𝜉𝑅𝑚𝛼2
. 345 

After applying Laplace transform to Eqs. (C10a) - (C10b), one has 346 

𝑠𝐶𝑚̅1𝐷 =
𝜆

𝑟𝐷

𝜕2𝐶𝑚̅1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅1𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚̅1𝐷 − 𝐶𝑖̅𝑚1𝐷) − 𝜇𝑚1𝐷𝐶𝑚̅1𝐷 −

𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚1𝑏2

𝜕𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷 𝑧=1
+347 

𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚1

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
|

𝑧=−1
, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,        (C25a) 348 

𝑠𝐶𝑖̅𝑚1𝐷 = 𝜀𝑖𝑚2(𝐶𝑚̅1𝐷 − 𝐶𝑖̅𝑚1𝐷) − 𝜇𝑖𝑚1𝐷𝐶𝑖̅𝑚1𝐷,𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷.    (C25b) 349 

Substituting Eq. (C25b) into Eq. (C25a), Eq. (C25a) could be rewritten as 350 

𝜆

𝑟𝐷

𝜕2𝐶𝑚̅1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅1𝐷

𝜕𝑟𝐷
− (𝜀𝑚1 + 𝜇𝑚1𝐷 −

𝜀𝑚1𝜀𝑖𝑚1

𝑠+𝜇𝑖𝑚1𝐷+𝜀𝑖𝑚1
) 𝐶𝑚̅1𝐷 −

𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚1𝑏2

𝜕𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
|

𝑧=1
+351 

𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚1

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
|

𝑧=−1
,𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷.        (C26) 352 

After applying Laplace transform to Eqs. (C10c) - (C10d), the following equations would be 353 

obtained 354 

𝑠𝐶𝑚̅2𝐷 =
𝜂

𝑟𝐷

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 −

𝜂

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝜀𝑚2(𝐶𝑚2𝐷 − 𝐶𝑖𝑚2𝐷) −

𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚2𝑏2

𝜕𝐶̅𝑢𝑚𝐷

𝜕𝑧𝐷
|

𝑧=1
+355 

𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚2

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
|

𝑧=−1
,𝑟𝐷 > 𝑟𝑠𝐷,         (C27a) 356 

𝑠𝐶𝑖̅𝑚2𝐷 = 𝜀𝑖𝑚2(𝐶̅𝑚2𝐷 − 𝐶𝑖̅𝑚2𝐷) − 𝜇𝑖𝑚2𝐷𝐶𝑖̅𝑚2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷.     (C27b) 357 
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Substituting Eq. (C27b) into Eq. (C27a), one has 358 

𝑠𝐶𝑚̅2𝐷 =
𝜂

𝑟𝐷

𝜕2𝐶𝑚̅2𝐷

𝜕𝑟𝐷
2 −

𝜂

𝑟𝐷

𝜕𝐶𝑚̅2𝐷

𝜕𝑟𝐷
− (𝜀𝑚2 + 𝜇𝑚2𝐷 −

𝜀𝑚2𝜀𝑖𝑚2

𝑠+𝜇𝑖𝑚2𝐷+𝜀𝑖𝑚2
) 𝐶𝑚̅2𝐷 −  359 

𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚2𝑏2

𝜕𝐶𝑢̅𝑚𝐷

𝜕𝑧𝐷
|

𝑧=1
+

𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚2

𝜕𝐶̅𝑙𝑚𝐷

𝜕𝑧𝐷
|

𝑧=−1
, 𝑟𝐷 > 𝑟𝑠𝐷.      (C28) 360 

Substituting Eq. (C21a) and Eq. (C22a) into Eq. (C26), one has  361 

𝜆

𝑟𝐷

𝜕2𝐶𝑚̅1𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶𝑚̅1𝐷

𝜕𝑟𝐷
− 𝐸3𝐶𝑚̅1𝐷 = 0,𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,     (C29a) 362 

Substituting Eq. (C21b) and Eq. (C22b) into Eq. (C28), one has 363 

1

𝑟𝐷

𝜕2𝐶̅𝑚2𝐷

𝜕𝑟𝐷
2 −

1

𝑟𝐷

𝜕𝐶̅𝑚2𝐷

𝜕𝑟𝐷
− 𝐸4𝐶𝑚̅2𝐷 = 0, 𝑟𝐷 > 𝑟𝑠𝐷,      (C29b) 364 

where 𝐸3 = 𝑠 + 𝜀𝑚1 + 𝜇𝑚1𝐷 −
𝜀𝑚1𝜀𝑖𝑚1

𝑠+𝜇𝑖𝑚1𝐷+𝜀𝑖𝑚1
−

𝑎2𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚1𝑏2 +
𝑏1𝜃𝑙𝑚𝛼2

2𝐷𝑙

2𝐴𝑏 2𝜃𝑚1
 and 𝐸4 =

1

𝜂
(𝑠 + 𝜀𝑚2 +365 

𝜇𝑚2𝐷 −
𝜀𝑚2𝜀𝑖𝑚2

𝑠+𝜇𝑖𝑚2𝐷+𝜀𝑖𝑚2
−

𝑎2𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚2𝑏2 +
𝑏1𝜃𝑙𝑚𝛼2

2𝐷𝑙

2𝐴𝑏2𝜃𝑚2
). 366 

The boundary conditions of the wellbore and infinity in the Laplace domain are 367 

[𝐶𝑚̅1𝐷 − 𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

=
1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
, 0 < 𝑡𝐷 ≤  𝑡𝑖𝑛𝑗,𝐷,    (C30a)  368 

[𝐶𝑚̅1𝐷 − 𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
]|

𝑟𝐷=𝑟𝑤𝐷

=
𝛽𝑐ℎ𝑎𝐶𝑖𝑛𝑗,𝐷(𝑟𝑤𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠𝛽𝑐ℎ𝑎+1)
, 𝑡𝐷 > 𝑡𝑖𝑛𝑗,𝐷,   (C30b) 369 

𝐶𝑚̅1𝐷(𝑟𝑠𝐷, 𝑠) = 𝐶𝑚̅2𝐷(𝑟𝑠𝐷 , 𝑠),        (C30c) 370 

𝜆
𝜕𝐶̅𝑚1𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
|

𝑟𝐷=𝑟𝑠𝐷

=
𝜕𝐶̅𝑚2𝐷(𝑟𝐷,𝑠)

𝜕𝑟𝐷
|

𝑟𝐷=𝑟𝑠𝐷

,      (C30d) 371 

𝐶𝑚̅2𝐷(𝑟𝐷, 𝑠)|𝑟𝐷→∞ = 0.         (C30e) 372 

Therefore, the general solutions of Eq. (C30a) and Eq. (C30b) are 373 

𝐶𝑚̅1𝐷 = 𝑇1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝜑1) + 𝑇2𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐵𝑖(𝜑1), 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,   (C31a) 374 

𝐶𝑚̅2𝐷 = 𝑇3 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝜑2) + 𝑇4𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐵𝑖(𝜑2), 𝑟𝐷 > 𝑟𝑠𝐷,    (C31b) 375 
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where 𝜑1 = (
𝐸3

𝜆
)

1/3

(𝑟𝐷 +
1

4𝜆𝐸3
), 𝜑2 = 𝐸4

1/3 (𝑟𝐷 +
1

4𝐸4
), 𝑇1, 𝑇2, 𝑇3 and 𝑇4 are constants which 376 

could be determined by the boundary conditions. 377 

Substituting Eq. (C31b) into Eq. (C30e), one has 378 

𝑇4 = 0.           (C32) 379 

Substituting Eq. (C31a) into Eq. (C30a), one has 380 

𝑇1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑𝑤) − 𝜆 (

𝐸3

𝜆
)

1/3

𝐴𝑖
′(𝜑𝑤)] + 𝑇2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑𝑤) −381 

𝜆 (
𝐸3

𝜆
)

1/3

𝐵𝑖
′(𝜑𝑤)] = 𝐹1.         (C33a) 382 

Substituting Eq. (C31a) into Eq. (C30b), one has 383 

𝑇1𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑𝑤) − 𝜆 (

𝐸4

𝜆
)

1/3

𝐴𝑖
′(𝜑𝑤)] + 𝑇2𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑𝑤) −384 

𝜆 (
𝐸4

𝜆
)

1/3

𝐵𝑖
′(𝜑𝑤)] = 𝐹2,         (C33b) 385 

where 𝜑𝑤 = (
𝐸3

𝜆
)

1/3

(𝑟𝑤𝐷 +
1

4𝜆𝐸3
), 𝐹1 =

1

𝑠(𝑠𝛽𝑖𝑛𝑗+1)
 and 𝐹2 =

𝛽𝑐ℎ𝑎𝐶𝑖𝑛𝑗,𝐷(𝑟𝑤𝐷,𝑡𝑖𝑛𝑗,𝐷)

(𝑠𝛽𝑐ℎ𝑎+1)
. 386 

Substituting Eqs. (C31a) - (C31b) into Eq. (C30c), one has 387 

𝑇1 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝜑1𝑠) + 𝑇2𝑒𝑥 𝑝 (

𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝜑1𝑠) = 𝑇3 𝑒𝑥𝑝 (

𝑟𝑠𝐷

2
) 𝐴𝑖(𝜑2𝑠),   (C34) 388 

where 𝜑1𝑠 = (
𝐸3

𝜆
)

1/3

(𝑟𝑠𝐷 +
1

4𝜆𝐸3
), 𝜑2𝑠 = 𝐸4

1/3 (𝑟𝐷 +
1

4𝐸4
). 389 

Substituting Eqs. (B31a) - (B31b) into Eq. (B30d), one has 390 

𝑇1𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑1𝑠) + 𝜆 (

𝐸3

𝜆
)

1/3
𝐴𝑖

′(𝜑1𝑠)] + 𝑇2𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑1𝑠) + 𝜆 (

𝐸3

𝜆
)

1/3
𝐵𝑖

′(𝜑1𝑠)] =391 

𝑇3𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) [

1

2
𝐴𝑖(𝜑2𝑠) + 𝐸4

1/3𝐴𝑖
′(𝜑2𝑠)].        (C35) 392 

The values of 𝑇1, 𝑇2, and 𝑇3 could be determined by solving Eqs. (C33a) - (C35) 393 

𝑇1 =
𝐹−𝐺2𝑇2

𝐺1
, 394 
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𝑇2 =
𝐺3𝐺8𝐹−𝐺5𝐺6𝐹

𝐺1𝐺5𝐺7+𝐺2𝐺3𝐺8−𝐺2𝐺5𝐺6−𝐺1𝐺4𝐺8
  395 

𝑇3 =
𝐺3𝐹

𝐺1𝐺5
−

𝐺2𝐺3𝑇2

𝐺1𝐺5
+

𝐺4𝑇2

𝐺5
, 396 

where 𝐺1 = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑𝑤) − 𝜆 (

𝐸3

𝜆
)

1/3

𝐴𝑖
′(𝜑𝑤)], 397 

 𝐺2 = 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑𝑤) − 𝜆 (

𝐸3

𝜆
)

1/3

𝐵𝑖
′(𝜑𝑤)], 398 

 𝐺3 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝜑1𝑠), 𝐺4 = 𝑒𝑥 𝑝 (

𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝜑1𝑠), 𝐺5 = 𝑒𝑥𝑝 (

𝑟𝑠𝐷

2
) 𝐴𝑖(𝜑2𝑠), 399 

 𝐺6 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑1𝑠) + 𝜆 (

𝐸3

𝜆
)

1/3

𝐴𝑖
′(𝜑1𝑠)], 400 

 𝐺7 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑1𝑠) + 𝜆 (

𝐸3

𝜆
)

1/3

𝐵𝑖
′(𝜑1𝑠)],  401 

𝐺8 = 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) [

1

2
𝐴𝑖(𝜑2𝑠) + 𝐸4

1/3𝐴𝑖
′(𝜑2𝑠)],  402 

and 𝐹 = 𝐶𝑖𝑛𝑗,𝐷
1−𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
. 403 

In the injection phase, the values of 𝑇1 and 𝑇2 are modified into 𝑇1
′ and 𝑇2

′ as follows 404 

𝑇1
′ =

𝐹1−𝐺2
′𝑇2

′

𝐺1
′  and 𝑇2

′ =
𝐺3𝐺8𝐹1−𝐺5𝐺6𝐹1

𝐺1
′𝐺5𝐺7+𝐺2

′𝐺3𝐺8−𝐺2
′𝐺5𝐺6−𝐺1

′𝐺4𝐺8
, 405 

where 𝐺1
′ =

1

2
𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) 𝐴𝑖(𝜑𝑤) and 𝐺2

′ =
1

2
𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) 𝐵𝑖(𝜑𝑤). 406 

Substituting 𝑇1
′ and 𝑇2

′ into Eq. (C31a), one has 407 

𝐶𝑖̅𝑛𝑗,𝐷(𝑟𝑤𝐷 , s) =  𝑇1
′ 𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) 𝐴𝑖(𝜑𝑤) +  𝑇2

′𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) 𝐵𝑖(𝜑𝑤),   (C36) 408 

In the chasing phase, the values of 𝑇1 and 𝑇2 are modified into 𝑇1
′ and 𝑇2

′ as follows 409 

𝑇1
′′ =

𝐹2−𝐺2
′𝑇2

′

𝐺1
′  and 𝑇2

′′ =
𝐺3𝐺8𝐹2−𝐺5𝐺6𝐹2

𝐺1
′ 𝐺5𝐺7+𝐺2

′𝐺3𝐺8−𝐺2
′𝐺5𝐺6−𝐺1

′𝐺4𝐺8
. 410 

Substituting 𝑇1
′′ and 𝑇2

′′ into Eq. (C31a), one has 411 

𝐶𝑐̅ℎ𝑎,𝐷(𝑟𝑤𝐷, s) =  𝑇1
′′ 𝑒𝑥𝑝 (

𝑟𝑤𝐷

2𝜆
) 𝐴𝑖(𝜑𝑤) +  𝑇2

′′𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) 𝐵𝑖(𝜑𝑤).   (C37) 412 
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Conducting Laplace transform on Eq. (A4c), one has 413 

𝐶w̅𝐷(𝑟𝑤𝐷, 𝑠) = 𝐶𝑖𝑛𝑗,𝐷
1−𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
,     (C38) 414 

where 𝐶𝑖𝑛𝑗,𝐷 and 𝐶𝑐ℎ𝑎,𝐷 could be determined by Eqs. (C36) - (C37). 415 

Substituting Eqs. (C31a) - (C31b) into Eqs. (C33a) - (C35) and Eq. (C38), one has 416 

𝐶𝑚̅1𝐷 = 𝑇1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝜑1) + 𝑇2𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐵𝑖(𝜑1), 𝑟𝑤𝐷 < 𝑟𝐷 ≤ 𝑟𝑠𝐷,   (C39a) 417 

𝐶𝑚̅2𝐷 = 𝑇3 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝜑2), 𝑟𝐷 > 𝑟𝑠𝐷.       (C39b) 418 

S4. Numerical simulation by COMSOL Multiphysics 419 

In this study, the numerical simulation based on the Galerkin finite-element method is 420 

conducted in the COMSOL Multiphysics platform to test new solutions.  421 

S4.1 Models of Eqs. (14) – (15): Confined aquifer 422 

In our COMSOL simulation for the radial dispersion in a confined aquifer, triangles in the 423 

r–z plane are used as the elements, and it is easy to refine the elements near both the well and the 424 

skin-aquifer interfaces, as shown in Figure S2. The number of mesh points is 759, and the 425 

number of triangle elements is 1386. The time step increases linearly, and the initial time step is 426 

5s, with a total simulation time of 1000s. The parameters used in the numerical simulation 427 

are: 𝑟𝑤 = 2.5cm; 𝑟𝑠 = 12.5cm; 𝑄𝑖𝑛𝑗 = 𝑄𝑐ℎ𝑎 = 100ml/s; 𝑡𝑖𝑛𝑗 = 300s; 𝛼1 = 2.5cm; 𝛼2 = 2.5cm; 428 

𝜃𝑚 = 0.30; 𝜃𝑖𝑚 = 0.01; 𝜔 = 0.0001 s-1; 𝑅𝑚1 = 𝑅𝑖𝑚1 = 𝑅𝑚2 = 𝑅𝑖𝑚2 = 1; 𝐵 = 50 cm; 𝜇𝑚1 =429 

𝜇𝑚2 = 𝜇𝑖𝑚1 = 𝜇𝑖𝑚2 = 10−7 s-1 , and ℎ𝑤,𝑖𝑛𝑗 = ℎ𝑤,𝑐ℎ𝑎 = 𝐵. 430 

S4.2 Models of Eqs. (19) – (20): Leaky-confined aquifer 431 

The temporal and spatial discretization of the aquifer in the numerical simulation is similar 432 

to the one used in Section S4.1. To decrease the numerical errors, the size of triangle cells is 433 

smaller around the aquifer-aquitard interface. The number of mesh points is 2885, and the 434 
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number of triangle elements is 5592. Figure 1 shows the comparison between the analytical and 435 

numerical solutions, and the agreement is well. The parameters of the aquifers used in the 436 

numerical simulation are from Section S4.1, while the others are: 𝑅𝑢𝑚 = 𝑅𝑢𝑖𝑚 = 𝑅𝑙𝑚 = 𝑅𝑙𝑖𝑚 =437 

1, 𝜔𝑢 = 𝜔𝑙 = 0.0001 s-1, 𝜃𝑢𝑚 = 𝜃𝑙𝑚 = 0.1, 𝜃𝑢𝑖𝑚 = 𝜃𝑙𝑖𝑚 = 0.01, 𝜇𝑢𝑚 = 𝜇𝑢𝑖𝑚 = 𝜇𝑙𝑚 = 𝜇𝑙𝑖𝑚 =438 

10−7 s-1, 𝐷𝑢 =  𝐷𝑙 = 0.0005 cm2/s. 439 

S5. The fitness of the experimental data by Chao (1999) 440 

Figures 4a and 4b show that the sensitivity of 𝑉𝑤 on BTCs is the least. To answer the 441 

question that if the influence of 𝑉𝑤 could be ignored, we compare solutions of this study with and 442 

without the mixing effect, and the experimental data are also included for the comparison, as 443 

shown in Figure S4. The results show that two curves are almost the same. The reason is that the 444 

𝑉𝑤 is too small in the experiment of Chao (1999). Different sensitivity of 𝑉𝑤 on BTCs has been 445 

obtained for field applications in which 𝑉𝑤 is significantly greater than that used by Chao (1999). 446 

 447 

Figure S1. The schematic diagram of the radial dispersion in the aquifer-aquitard system.  448 
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 449 

 450 

Figure S2. The grid mesh of the skin-aquifer system used in the Galerkin finite-element 451 

COMSOL Multiphysics program. 452 

 453 
Figure S3. The grid mesh of the skin-aquifer-aquitard system used in the Galerkin finite-element 454 

COMSOL Multiphysics program. 455 
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 456 
Figure S4. Fitness of observed BTC by the solutions of this study. 457 
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Solution of this study: r = 22.5cm

Solution of this study: r = 30.4cm

Solution without mixing effect: r = 22.5cm

Solution without mixing effect: r = 30.4cm
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