

1 **A General Model of Radial Dispersion with Wellbore Mixing and Skin Effects**

2

3 **Wenguang Shi¹, Quanrong Wang^{1,2,3*}, Hongbin Zhan⁴, and Renjie Zhou⁵**

4

5 ¹School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan
6 430074, China

7 ²State Environmental Protection Key Laboratory of Source Apportionment and Control of
8 Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, Hubei 430074, PR China

9 ³Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of
10 Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, PR China

11 ⁴Department of Geography and Geology, Sam Houston State University, 1905 University
12 Avenue Huntsville, TX 77340, USA

13 ⁵Department of Environmental and Geosciences, Sam Houston State University, Huntsville, TX
14 77340, USA

15

16 Corresponding author: Quanrong Wang (wangqr@cug.edu.cn).

17

18

19 **Supplementary Materials**

20 S1. Derivation of Eqs. (14a) - (15b).

21 S2. Derivation of Eqs. (17a) - (18b).

22 S3. The MIM model and solution in an aquifer-aquitard system.

23 S4. Numerical simulation by COMSOL Multiphysics.

24 S5. The fitness of the experimental data by Chao (1999).

25 S6. Figures S1 - S4.

26

27 **Supplementary Materials**

28 **S1. Derivation of Eqs. (14a) - (15b)**

29 The dimensionless parameters are defined as: $C_{m1D} = \frac{C_{m1}}{C_0}$, $C_{im1D} = \frac{C_{im1}}{C_0}$, $C_{m2D} = \frac{C_{m2}}{C_0}$,

30 $C_{im2D} = \frac{C_{im2}}{C_0}$, $C_{wD} = \frac{C_w}{C_0}$, $C_{inj,D} = \frac{C_{inj}}{C_0}$, $C_{cha,D} = \frac{C_{cha}}{C_0}$, $t_D = \frac{|A|t}{\alpha_2^2 R_{m1}}$, $t_{inj,D} = \frac{|A|t_{inj}}{\alpha_2^2 R_{m1}}$, $r_D = \frac{r}{\alpha_2}$,

31 $r_{wD} = \frac{r_w}{\alpha_2}$, $r_{sD} = \frac{r_s}{\alpha_2}$, $r_{0D} = \frac{r_0}{\alpha_2}$, $\mu_{m1D} = \frac{\alpha_2^2 \mu_{m1}}{A}$, $\mu_{im1D} = \frac{\alpha_2^2 R_{m1} \mu_{im1}}{R_{im1} A}$, $\mu_{m2D} = \frac{\alpha_2^2 \mu_{m2} R_{m1}}{A R_{m2}}$, $\mu_{im2D} =$

32 $\frac{\alpha_2^2 R_{m1} \mu_{im2}}{R_{im2} A}$ and $A = \frac{Q}{2\pi B \theta_{m1}}$. After the dimensionless transform, the governing equations become

33
$$\frac{\partial C_{m1D}}{\partial t_D} = \frac{\lambda}{r_D} \frac{\partial^2 C_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial C_{m1D}}{\partial r_D} - \varepsilon_{m1} (C_{m1D} - C_{im1D})$$

34
$$-\mu_{m1D} C_{m1D}, r_{wD} < r_D \leq r_{sD} \quad (\text{A1a})$$

35
$$\frac{\partial C_{im1D}}{\partial t_D} = \varepsilon_{im1} (C_{m1D} - C_{im1D}) - \mu_{im1D} C_{im1D}, r_{wD} < r_D \leq r_{sD}, \quad (\text{A1b})$$

36
$$\frac{\partial C_{m2D}}{\partial t_D} = \frac{\eta}{r_D} \frac{\partial^2 C_{m2D}}{\partial r_D^2} - \frac{\eta}{r_D} \frac{\partial C_{m2D}}{\partial r_D} - \varepsilon_{m2} (C_{m2D} - C_{im2D}) - \mu_{m2D} C_{m2D}, r_D > r_{sD}, \quad (\text{A1c})$$

37
$$\frac{\partial C_{im2D}}{\partial t_D} = \varepsilon_{im2} (C_{m2D} - C_{im2D}) - \mu_{im2D} C_{im2D}, r_D > r_{sD}, \quad (\text{A1d})$$

38 where $\varepsilon_{m1} = \frac{\omega_1 \alpha_2^2}{A \theta_{m1}}$, $\varepsilon_{im1} = \frac{\omega_1 \alpha_2^2 R_{m1}}{A \theta_{im1} R_{im1}}$, $\varepsilon_{m2} = \frac{\omega_2 \alpha_2^2 R_{m1}}{A \theta_{m2} R_{m2}}$, $\varepsilon_{im2} = \frac{\omega_2 \alpha_2^2 R_{m1}}{A \theta_{im2} R_{im2}}$, $\eta = \frac{\theta_{m1} R_{m1}}{\theta_{m2} R_{m2}}$ and $\lambda = \frac{\alpha_1}{\alpha_2}$.

39 As for the boundary conditions at the well screen, a Heaviside step function will be

40 employed to combine them at the injection and chasing phases:

41
$$C_w(r_w, t) = C_{inj} [H(t) - H(t - t_{inj})] + C_{cha} H(t - t_{inj}), t > 0, \quad (\text{A2})$$

42 where $H(t)$ is the Heaviside step function, $C_w(r_w, t)$ is concentration [ML^{-3}] in the wellbore.

43 The dimensionless initial conditions and dimensionless boundary conditions are

44
$$C_{m1D}(r_D, t_D)|_{t_D=0} = C_{im1D}(r_D, t_D)|_{t_D=0} = C_{m2D}(r_D, t_D)|_{t_D=0}$$

45
$$= C_{im2D}(r_D, t_D)|_{t_D=0} = 0, r_D > r_{wD}, \quad (\text{A3a})$$

46 $C_{m2D}(r_D, t_D)|_{r_D \rightarrow \infty} = C_{im2D}(r_D, t_D)|_{r_D \rightarrow \infty} = 0, t_D > 0,$ (A3b)

47 $\left[C_{m1D}(r_D, t_D) - \lambda \frac{\partial C_{m1D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = C_{inj,D}(t_D), 0 < t_D \leq t_{inj,D},$ (A4a)

48 $\left[C_{m1D}(r_D, t_D) - \lambda \frac{\partial C_{m1D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = C_{cha,D}(t_D), t_D > t_{inj,D},$ (A4b)

49 $C_{WD}(r_{WD}, t_D) = C_{inj,D}[H(t_D) - H(t_D - t_{inj,D})] + C_{cha,D}H(t_D - t_{inj,D}).$ (A4c)

50 The dimensionless forms of Eqs. (7) - (8) are

51 $\beta_{inj} \frac{dC_{inj,D}(t_D)}{dt_D} = 1 - C_{inj,D}(t_D), 0 < t_D \leq t_{inj,D},$ (A5a)

52 $\beta_{cha} \frac{dC_{cha,D}(t_D)}{dt_D} = -C_{cha,D}(t_D), t_D > t_{inj,D},$ (A5b)

53 where $\beta_{inj} = \frac{V_{w,inj}r_{WD}}{\xi R_{m1}\alpha_2}$ and $\beta_{cha} = \frac{V_{w,cha}r_{WD}}{\xi R_{m1}\alpha_2}.$

54 The dimensionless forms of Eqs. (12) - (13) are

55 $C_{m1D}(r_{SD}, t_D) = C_{m2D}(r_{SD}, t_D), t_D > 0,$ (A6a)

56 $\left[\lambda \frac{\partial C_{m1D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r_D=r_{SD}} = \left[\frac{\partial C_{m2D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r_D=r_{SD}}, t_D > 0,$ (A6b)

57 Conducting Laplace transform to Eqs. (A1a) - (A1b), one has

58 $s\bar{C}_{m1D} = \frac{\lambda}{r_D} \frac{\partial^2 \bar{C}_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m1D}}{\partial r_D} - \varepsilon_{m1}(\bar{C}_{m1D} - \bar{C}_{im1D}) - \mu_{m1D}\bar{C}_{m1D},$ (A7a)

59 $s\bar{C}_{im1D} = \varepsilon_{im1}(\bar{C}_{m1D} - \bar{C}_{im1D}) - \mu_{im1D}\bar{C}_{im1D},$ (A7b)

60 where the over bar represents the variable in Laplace domain; s is the Laplace transform

61 parameter in respect to the dimensionless time $t_D.$

62 Substituting Eq. (A7b) into Eq. (A7a), one has

63 $\frac{\lambda}{r_D} \frac{\partial^2 \bar{C}_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m1D}}{\partial r_D} - E_1 \bar{C}_{m1D} = 0, r_{WD} < r_D \leq r_{SD},$ (A8)

64 where $E_1 = s + \varepsilon_{m1} + \mu_{m1D} - \frac{\varepsilon_{m1}\varepsilon_{im1}}{s + \varepsilon_{im1} + \mu_{im1D}}.$

65 Conducting Laplace transform to Eqs. (A1c) - (A1d), one has

66 $s\bar{C}_{m2D} = \frac{\eta}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{\eta}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \varepsilon_{m2}(\bar{C}_{m2D} - \bar{C}_{im2D}) - \mu_{m2D}\bar{C}_{m2D},$ (A9a)

67 $s\bar{C}_{im2D} = \varepsilon_{im2}(\bar{C}_{m2D} - \bar{C}_{im2D}) - \mu_{im2D}\bar{C}_{im2D}.$ (A9b)

68 Substituting Eq. (A9b) into Eq. (A9a), one has

69 $\frac{1}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - E_2 \bar{C}_{m2D} = 0, r_D > r_{sD},$ (A10)

70 where $E_2 = \frac{1}{\eta} \left(s + \varepsilon_{m2} + \mu_{m2D} - \frac{\varepsilon_{m2}\varepsilon_{im2}}{s + \varepsilon_{im2} + \mu_{im2D}} \right).$

71 The boundary conditions in the Laplace domain are

72 $\left[\bar{C}_{m1D}(r_D, s) - \lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = \frac{1}{s(s\beta_{inj}+1)}, 0 < t_D \leq t_{inj,D},$ (A11a)

73 $\left[\bar{C}_{m1D}(r_D, s) - \lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = \frac{\beta_{cha} C_{inj,D}(r_{WD}, t_{inj,D})}{(s\beta_{cha}+1)}, t_D > t_{inj,D},$ (A11b)

74 $\bar{C}_{m1D}(r_{sD}, s) = \bar{C}_{m2D}(r_{sD}, s), t_D > 0,$ (A11c)

75 $\lambda \left[\frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{sD}} = \left[\frac{\partial \bar{C}_{m2D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{sD}}, t_D > 0,$ (A11d)

76 $\bar{C}_{m2D}(r_D, s) \Big|_{r_D \rightarrow \infty} = 0, t_D > 0,$ (A11e)

77 The general solutions of Eq. (A8) and Eq. (A10) are respectively

78 $\bar{C}_{m1D} = N_1 \exp \left(\frac{r_D}{2\lambda} \right) A_i(y_1) + N_2 \exp \left(\frac{r_D}{2\lambda} \right) B_i(y_1), r_{WD} < r_D \leq r_{sD},$ (A12a)

79 $\bar{C}_{m2D} = N_3 \exp \left(\frac{r_D}{2} \right) A_i(y_2) + N_4 \exp \left(\frac{r_D}{2} \right) B_i(y_2), r_D > r_{sD},$ (A12b)

80 where $y_1 = \left(\frac{E_1}{\lambda} \right)^{1/3} \left(r_D + \frac{1}{4\lambda E_1} \right); y_2 = (E_2)^{1/3} \left(r_D + \frac{1}{4E_2} \right); N_1, N_2, N_3$ and N_4 are constants

81 which could be determined by the boundary conditions. $A_i(\cdot)$ and $B_i(\cdot)$ are the Airy functions of
82 the first kind and second kind, respectively.

83 Substituting Eq. (A12b) into Eq. (A11e), one has

84 $N_4 = 0.$ (A13)

85 Substituting Eq. (A12a) into Eq. (A11a), one has

86 $N_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right] + N_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right] = F_1, \quad (\text{A14a})$

88 where $y_w = \left(\frac{E_1}{\lambda}\right)^{1/3} \left(r_{WD} + \frac{1}{4\lambda E_1}\right)$, and $F_1 = \frac{1}{s(s\beta_{inj}+1)}$.

89 Substituting Eq. (A12a) into Eq. (A11b), one has

90 $N_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right] + N_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right] = F_2, \quad (\text{A14b})$

92 where $F_2 = \frac{\beta_{cha} C_{inj,D} (r_{WD}, t_{inj,D})}{(s\beta_{cha}+1)}$.

93 Conducting Laplace transform on Eq. (A4c), one has

94 $\bar{C}_{WD}(r_{WD}, s) = C_{inj,D} \frac{1 - \exp(-t_{inj,D}s)}{s} + C_{cha,D} \frac{\exp(-t_{inj,D}s)}{s}, r_D = r_{WD}, \quad (\text{A14c})$

95 Thus, Eqs. (A14a)-(A14c) could be combined as the following equation

96 $N_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right] + N_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right] = F, \quad (\text{A14d})$

98 where $F = C_{inj,D} \frac{1 - \exp(-t_{inj,D}s)}{s} + C_{cha,D} \frac{\exp(-t_{inj,D}s)}{s}$.

99 Substituting Eqs. (A12a) - (A12b) into Eq. (A11c), one has

100 $N_1 \exp\left(\frac{r_{SD}}{2\lambda}\right) A_i(y_{1s}) + N_2 \exp\left(\frac{r_{SD}}{2\lambda}\right) B_i(y_{1s}) = N_3 \exp\left(\frac{r_{SD}}{2}\right) A_i(y_{2s}), \quad (\text{A15})$

101 where $y_{1s} = \left(\frac{E_1}{\lambda}\right)^{1/3} \left(r_{SD} + \frac{1}{4\lambda E_1}\right)$; $y_{2s} = (E_2)^{1/3} \left(r_{SD} + \frac{1}{4E_2}\right)$.

102 Substituting Eqs. (A12a) - (A12b) into Eq. (A11d) yields

103 $N_1 \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_{1s}) \right] + N_2 \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_{1s}) + \right.$
 104 $\left. \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} B'_i(y_{1s}) \right] = N_3 \exp\left(\frac{r_{SD}}{2}\right) \left[\frac{1}{2} A_i(y_{2s}) + (E_2)^{1/3} A'_i(y_{2s}) \right], \quad (\text{A16})$

105 where $A'_i(\cdot)$ and $B'_i(\cdot)$ are the derivative of the Airy functions of the first kind and second kind,
 106 respectively.

107 The values of N_1 , N_2 , and N_3 could be determined by solving Eqs. (A14d) - (A16):

108 $N_1 = \frac{F - H_2 N_2}{H_1},$

109 $N_2 = \frac{H_3 H_8 F - H_5 H_6 F}{H_1 H_5 H_7 + H_2 H_3 H_8 - H_2 H_5 H_6 - H_1 H_4 H_8},$

110 $N_3 = \frac{H_3 F}{H_1 H_5} - \frac{H_2 H_3 N_2}{H_1 H_5} + \frac{H_4 N_2}{H_5},$

111 where $H_1 = \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right],$

112 $H_2 = \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right],$

113 $H_3 = \exp\left(\frac{r_{SD}}{2\lambda}\right) A_i(y_{1s}), H_4 = \exp\left(\frac{r_{SD}}{2\lambda}\right) B_i(y_{1s}), H_5 = \exp\left(\frac{r_{SD}}{2}\right) A_i(y_{2s}),$

114 $H_6 = \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_{1s}) \right],$

115 $H_7 = \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} B'_i(y_{1s}) \right],$

116 $H_8 = \exp\left(\frac{r_{SD}}{2}\right) \left[\frac{1}{2} A_i(y_{2s}) + (E_2)^{1/3} A'_i(y_{2s}) \right],$

117 and $F = C_{inj,D} \frac{1 - \exp(-t_{inj,DS})}{s} + C_{cha,D} \frac{\exp(-t_{inj,DS})}{s}$. Substituting the expressions of N_1 , N_2 , N_3 ,

118 and N_4 into Eqs. (A12a) - (A12b), one could get the solutions of Eq. (14a) and Eq. (15a).

119 Substituting Eqs. (A12a) - (A12b) into Eq. (A7b) and Eq. (A9b), one could get the solutions

120 of Eq. (14b) and Eq. (15b)

121 $\bar{C}_{im1D} = \frac{\varepsilon_{im1}}{s + \varepsilon_{im1} + \mu_{im1D}} \bar{C}_{m1D}, r_{WD} \leq r_D \leq r_{SD},$ (A17a)

122 $\bar{C}_{im2D} = \frac{\varepsilon_{im2}}{s + \varepsilon_{im2} + \mu_{im2D}} \bar{C}_{m2D}, r_D > r_{SD}.$ (A17b)

123 In the injection phase, the values of N_1 and N_2 are modified into N'_1 and N'_2 as follows

124 $N'_1 = \frac{F_1 - H_2 N'_2}{H'_1}$ and $N'_2 = \frac{H_3 H_8 F_1 - H_5 H_6 F_1}{H'_1 H_5 H_7 + H_2 H_3 H_8 - H_2 H_5 H_6 - H'_1 H_4 H_8},$ where $H'_1 = \exp\left(\frac{r_{WD}}{2\lambda}\right) A_i(y_w).$

125 Substituting N'_1 and N'_2 into Eq. (A12a), one has

126 $\bar{C}_{inj,D} = N'_1 \exp\left(\frac{r_D}{2\lambda}\right) A_i(y_1) + N'_2 \exp\left(\frac{r_D}{2\lambda}\right) B_i(y_1), r_D = r_{WD},$ (A18)

127 In the chasing phase, the values of N_1 and N_2 are modified into N''_1 and N''_2 as follows

128 $N''_1 = \frac{F_2 - H_2 N''_2}{H'_1}, N''_2 = \frac{H_3 H_8 F_2 - H_5 H_6 F_2}{H'_1 H_5 H_7 + H_2 H_3 H_8 - H_2 H_5 H_6 - H'_1 H_4 H_8},$ and substituting N''_1 and N''_2 into Eq.

129 (A12a), one has

130 $\bar{C}_{cha,D} = N''_1 \exp\left(\frac{r_D}{2\lambda}\right) A_i(y_1) + N''_2 \exp\left(\frac{r_D}{2\lambda}\right) B_i(y_1), r_D = r_{WD},$ (A19)

131 **S2. Model with scale-dependent dispersivity: Derivation of Eqs. (17a) - (18b)**

132 Substituting Eq. (16) into Eq. (1c), the dimensionless form of the governing equations

133 become

134 $\frac{\partial C_{m2D}}{\partial t_D} = \frac{k\eta \partial^2 C_{m2D}}{\partial r_D^2} + \frac{k\eta - \eta}{r_D} \frac{\partial C_{m2D}}{\partial r_D} - \varepsilon_{m2} (C_{m2D} - C_{im2D}) - \mu_{m2D} C_{m2D}, r_{SD} \leq r_D \leq r_{0D},$ (B2a)

135 $\frac{\partial C_{m2D}}{\partial t_D} = \frac{\eta}{r_D} \frac{\partial^2 C_{m2D}}{\partial r_D^2} - \frac{\eta}{r_D} \frac{\partial C_{m2D}}{\partial r_D} - \varepsilon_{m2} (C_{m2D} - C_{im2D}) - \mu_{m2D} C_{m2D}, r_D \geq r_{0D}.$ (B1b)

136 Similarly, one could obtain the dimensionless initial conditions and dimensionless boundary

137 conditions, the expressions of the dimensionless initial conditions and dimensionless boundary

138 conditions are the same with Eqs. (A3a) - (A6b), except that

139 $\left[\lambda \frac{\partial C_{m1D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r_D=r_{SD}} = \left[k \frac{\partial C_{m2D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r_D=r_{SD}}.$ (B2)

140 In the formation zone, we could obtain the boundary condition at $r_D = r_{0D}$

141 $kr_D \frac{\partial C_{m2D}(r_D, t_D)}{\partial r_D} = \frac{\partial C_{m2D}(r_D, t_D)}{\partial r_D}, r_D = r_{0D}, \quad (B3)$

142 Then conducting Laplace transform to Eqs. (B1a)- (B1b), one has

143 $s\bar{C}_{m2D} = k\eta \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} + \frac{k\eta - \eta}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \varepsilon_{m2}(\bar{C}_{m2D} - \bar{C}_{im2D}) - \mu_{m2D}\bar{C}_{m2D}, r_{sD} \leq r_D \leq r_{0D} \quad (B4a)$

144 $s\bar{C}_{m2D} = \frac{\eta}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{\eta}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \varepsilon_{m2}(\bar{C}_{m2D} - \bar{C}_{im2D}) - \mu_{m2D}\bar{C}_{m2D}, r_D \geq r_{0D} \quad (B4b)$

145 Substituting Eq. (A9b) into Eqs. (B4a) - (B4b), one has

146 $\frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} + \frac{n}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \varepsilon_1^2 \bar{C}_{m2D} = 0, r_{sD} \leq r_D \leq r_{0D}, \quad (B5a)$

147 $\frac{1}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \varepsilon_1^2 \bar{C}_{m2D} = 0, r_D > r_{0D}. \quad (B5b)$

148 where $n = 1 - \frac{1}{k}$ and $\varepsilon_1 = \sqrt{\frac{E_2}{k\eta}}$.

149 Similar to Eqs. (A11a) - (A11e) and Eq. (B2), the boundary conditions at wellbore and

150 infinity in the Laplace domain are

151 $\left[\bar{C}_{m1D}(r_D, s) - \lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = \frac{1}{s(s\beta_{inj}+1)}, \quad (B6a)$

152 $\left[\bar{C}_{m1D}(r_D, s) - \lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = \frac{\beta_{cha} C_{inj,D}(r_{WD}, t_{inj,D})}{(s\beta_{cha}+1)}, \quad (B6b)$

153 $\bar{C}_{m1D}(r_{sD}, s) = \bar{C}_{m2D}(r_{sD}, s), \quad (B6c)$

154 $\left[\lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{sD}} = \left[k \frac{\partial \bar{C}_{m2D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{sD}}, \quad (B6d)$

155 $\left[kr_D \frac{\partial \bar{C}_{m2D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{0D}} = \left[\frac{\partial \bar{C}_{m2D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{0D}}, \quad (B6e)$

156 $\bar{C}_{m2D}(r_{0D}, s) = \bar{C}_{m2D}(r_{0D}, s), \quad (B6f)$

157 $\bar{C}_{m2D}(r_D, s) \Big|_{r_D \rightarrow \infty} = 0. \quad (B6g)$

158 The general solutions of Eq. (A8) and Eq. (B4) are respectively

159 $\bar{C}_{m1D} = \mathcal{T}_1 \exp\left(\frac{r_D}{2\lambda}\right) A_i(y_1) + \mathcal{T}_2 \exp\left(\frac{r_D}{2\lambda}\right) B_i(y_1), r_{WD} < r_D \leq r_{SD},$ (B7a)

160 $\bar{C}_{m2D} = \mathcal{T}_3 r_D^m K_m(\varepsilon_1 r_D) + \mathcal{T}_4 r_D^m I_m(\varepsilon_1 r_D), r_{SD} \leq r_D \leq r_{0D},$ (B7b)

161 $\bar{C}_{m2D} = \mathcal{T}_5 \exp\left(\frac{r_D}{2}\right) A_i(y_3) + \mathcal{T}_6 \exp\left(\frac{r_D}{2}\right) B_i(y_3), r_D > r_{0D},$ (B7c)

162 where $m = \frac{1}{2k}$; $y_3 = (\varepsilon_1)^{1/3} \left(r_D + \frac{1}{4\varepsilon_1}\right)$; $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4, \mathcal{T}_5$ and \mathcal{T}_6 are constants which could be
 163 determined by the boundary conditions; I_m and K_m are the m^{th} -order modified Bessel functions
 164 of the first kind and second kind, respectively.

165 Substituting Eq. (B6f) into Eq. (B7c), one has

166 $\mathcal{T}_6 = 0.$ (B8)

167 Substituting Eq. (B7a) into Eq. (B6a), one has

168 $\mathcal{T}_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right] + \mathcal{T}_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right] = F_1.$ (B9)

169 Substituting Eq. (B7a) into Eq. (B6b), one has

170 $\mathcal{T}_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right] + \mathcal{T}_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right] = F_2,$ (B10a)

171 Similar to the treatment of Eq. (A14d), Eqs. (B9)-(B10a) could be combined as the

172 following equation

173 $\mathcal{T}_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right] + \mathcal{T}_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right] = F,$ (B10b)

174 where $F = C_{inj,D} \frac{1 - \exp(-t_{inj,D}s)}{s} + C_{cha,D} \frac{\exp(-t_{inj,D}s)}{s}.$

178 Substituting Eqs. (B7a) - (B7b) into Eq. (B6c), one has

179 $\mathcal{T}_1 \exp\left(\frac{r_{SD}}{2\lambda}\right) A_i(y_{1s}) + \mathcal{T}_2 \exp\left(\frac{r_{SD}}{2\lambda}\right) B_i(y_{1s}) = \mathcal{T}_3 r_{SD}^m K_m(\varepsilon_1 r_{SD}) + \mathcal{T}_4 r_D^m I_m(\varepsilon_1 r_D), \quad (\text{B11})$

180 Substituting Eqs. (B7a) - (B7b) into Eq. (B6d) yields

181 $\mathcal{T}_1 \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_{1s}) \right] + \mathcal{T}_2 \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} B'_i(y_{1s}) \right] =$

182 $-\mathcal{T}_3 k \varepsilon_1 r_{SD}^{m+1} K_{m-1}(\varepsilon_1 r_{SD}) + \mathcal{T}_4 k \{m r_{SD}^{m-1} I_m(\varepsilon_1 r_D) + 0.5 \varepsilon_1 r_{SD}^m [I_{m-1}(\varepsilon_1 r_D) + I_{m+1}(\varepsilon_1 r_D)]\}, \quad (\text{B12})$

183 where $K_{m-1}(\cdot)$ is the derivative of the m^{th} -order modified Bessel function of the second kind,

184 $I_{m-1}(\cdot)$ and $I_{m+1}(\cdot)$ are the derivatives of the m^{th} -order modified Bessel function of the first

185 kind.

186 Substituting Eqs. (B7b)-(B7c) into Eq. (B6e) and Eq. (B6f) yields

187 $-\mathcal{T}_3 k \varepsilon_1 r_{0D}^{m+2} K_{m-1}(\varepsilon_1 r_{0D}) + \mathcal{T}_4 k \{m r_{0D}^m I_m(\varepsilon_1 r_{0D}) + 0.5 \varepsilon_1 r_{0D}^{m+1} [I_{m-1}(\varepsilon_1 r_{0D}) +$

188 $I_{m+1}(\varepsilon_1 r_{0D})]\} = \mathcal{T}_5 \left[0.5 \exp\left(\frac{r_D}{2}\right) A_i(y_4) + \varepsilon_1^{1/3} \exp\left(\frac{r_D}{2}\right) A'_i(y_4) \right], \quad (\text{B13})$

189 $\mathcal{T}_3 r_{0D}^m K_m(\varepsilon_1 r_{0D}) + \mathcal{T}_4 r_{0D}^m I_m(\varepsilon_1 r_{0D}) = \mathcal{T}_5 \exp\left(\frac{r_{0D}}{2}\right) A_i(y_4), \quad (\text{B14})$

190 where $y_4 = (\varepsilon_1)^{1/3} \left(r_{0D} + \frac{1}{4\varepsilon_1}\right)$.

191 The values of \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 , \mathcal{T}_4 , \mathcal{T}_5 and \mathcal{T}_6 could be determined by solving Eqs. (B8) - (B14),

192 one has

193 $\mathcal{T}_1 = \frac{F - W_2 \mathcal{T}_2}{W_1},$

194 $\mathcal{T}_2 = \frac{W_1 W_5}{W_1 W_4 - W_2 W_3} \mathcal{T}_3 + \frac{W_1 W_6}{W_1 W_4 - W_2 W_3} \mathcal{T}_4 - \frac{W_3 F}{W_1 W_4 - W_2 W_3},$

195 $\mathcal{T}_3 = \frac{W_{13} W_{15} - W_{12} W_{16}}{W_{11} W_{16} - W_{13} W_{14}} \mathcal{T}_4,$

196 $\mathcal{T}_4 = \frac{W_3 F (W_1 W_8 - W_2 W_7) - W_7 F (W_1 W_4 - W_2 W_3)}{(W_1 W_5 \Theta + W_1 W_6) (W_1 W_8 - W_2 W_7) - (W_1 W_9 \Theta - W_1 W_{10}) (W_1 W_4 - W_2 W_3)} \text{ and } \mathcal{T}_5 = \frac{W_{14}}{W_{16}} \mathcal{T}_3 + \frac{W_{15}}{W_{16}} \mathcal{T}_4.$

197 where $W_1 = \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_w) \right],$

198 $W_2 = \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_w) - \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} \exp\left(\frac{r_{WD}}{2}\right) B'_i(y_w) \right],$

199 $W_3 = \exp\left(\frac{r_{SD}}{2\lambda}\right) A_i(y_{1s}), \exp\left(\frac{r_{SD}}{2\lambda}\right) B_i(y_{1s}), W_5 = r_{SD}^m K_m(\varepsilon_1 r_{SD}), W_6 = r_D^m I_m(\varepsilon_1 r_D),$

200 $W_7 = \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} A_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} A'_i(y_{1s}) \right],$

201 $W_8 = \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} B_i(y_{1s}) + \lambda \left(\frac{E_1}{\lambda}\right)^{1/3} B'_i(y_{1s}) \right],$

202 $W_9 = -k\varepsilon_1 r_{SD}^{m+1} K_{m-1}(\varepsilon_1 r_{SD}),$

203 $W_{10} = k\{mr_{SD}^{m-1} I_m(\varepsilon_1 r_D) + 0.5\varepsilon_1 r_{SD}^m [I_{m-1}(\varepsilon_1 r_D) + I_{m+1}(\varepsilon_1 r_D)]\},$

204 $W_{11} = -k\varepsilon_1 r_{0D}^{m+2} K_{m-1}(\varepsilon_1 r_{0D}),$

205 $W_{12} = k\{mr_{0D}^m I_m(\varepsilon_1 r_{0D}) + 0.5\varepsilon_1 r_{0D}^{m+1} [I_{m-1}(\varepsilon_1 r_{0D}) + I_{m+1}(\varepsilon_1 r_{0D})]\},$

206 $W_{13} = 0.5\exp\left(\frac{r_D}{2}\right) A_i(y_4) + \varepsilon_1^{1/3} \exp\left(\frac{r_D}{2}\right) A'_i(y_4),$

207 $W_{14} = r_{0D}^m K_m(\varepsilon_1 r_{0D}), W_{15} = r_{0D}^m I_m(\varepsilon_1 r_{0D}), W_{16} = \exp\left(\frac{r_{0D}}{2}\right) A_i(y_4) \text{ and } \Theta =$

208 $\frac{W_{13}W_{15}-W_{12}W_{16}}{W_{11}W_{16}-W_{13}W_{14}}$

209 In the injection phase, the values of \mathcal{T}_1 and \mathcal{T}_2 are modified into \mathcal{T}'_1 and \mathcal{T}'_2 as follows

210 $\mathcal{T}'_1 = \frac{F_1 - W'_2 \mathcal{T}'_2}{W'_1}, \mathcal{T}'_2 = \frac{W'_1 W_5}{W'_1 W_4 - W'_2 W_3} \mathcal{T}'_3 + \frac{W'_1 W_6}{W'_1 W_4 - W'_2 W_3} \mathcal{T}'_4 - \frac{W_3 F_1}{W'_1 W_4 - W'_2 W_3},$

211 where $W'_1 = \exp\left(\frac{r_{WD}}{2\lambda}\right) A_i(y_w)$, $W'_2 = \exp\left(\frac{r_{WD}}{2\lambda}\right) B_i(y_w)$, $\mathcal{T}'_3 = \frac{W_{13}W_{15}-W_{12}W_{16}}{W_{11}W_{16}-W_{13}W_{14}} \mathcal{T}'_4$, and $\mathcal{T}'_4 =$

212 $\frac{W_3 F_1 (W'_1 W_8 - W'_2 W_7) - W_7 F_1 (W'_1 W_4 - W'_2 W_3)}{(W'_1 W_5 \Theta + W'_1 W_6)(W'_1 W_8 - W'_2 W_7) - (W'_1 W_9 \Theta - W'_1 W_{10})(W'_1 W_4 - W'_2 W_3)}.$

213 Substituting \mathcal{T}'_1 and \mathcal{T}'_2 into Eq. (B7a), one has

214 $\bar{C}_{inj,D}(r_{WD}, s) = \mathcal{T}'_1 \exp\left(\frac{r_D}{2\lambda}\right) A_i(y_1) + \mathcal{T}'_2 \exp\left(\frac{r_D}{2\lambda}\right) B_i(y_1), \quad (B15)$

215 In the chasing phase, the values of \mathcal{T}_1 and \mathcal{T}_2 are changed into \mathcal{T}''_1 and \mathcal{T}''_2 as follows

216 $\mathcal{T}''_1 = \frac{F_2 - W'_2 \mathcal{T}''_2}{W'_1}, \mathcal{T}''_2 = \frac{W'_1 W_5}{W'_1 W_4 - W'_2 W_3} \mathcal{T}''_3 + \frac{W'_1 W_6}{W'_1 W_4 - W'_2 W_3} \mathcal{T}''_4 - \frac{W_3 F_2}{W'_1 W_4 - W'_2 W_3},$

217 where $\mathcal{T}_3'' = \frac{W_{13}W_{15}-W_{12}W_{16}}{W_{11}W_{16}-W_{13}W_{14}}\mathcal{T}_4''$, $\mathcal{T}_4'' = \frac{W_3F_2(W_1'W_8-W_2'W_7)-W_7F_2(W_1'W_4-W_2'W_3)}{(W_1'W_5\Theta+W_1'W_6)(W_1'W_8-W_2'W_7)-(W_1'W_9\Theta-W_1'W_{10})(W_1'W_4-W_2'W_3)}$.

218 Substituting \mathcal{T}_1'' and \mathcal{T}_2'' into Eq. (B10a), one has

219 $\bar{C}_{cha,D}(r_{WD}, s) = \mathcal{T}_1'' \exp\left(\frac{r_D}{2\lambda}\right) A_i(y_1) + \mathcal{T}_2'' \exp\left(\frac{r_D}{2\lambda}\right) B_i(y_1), \quad (B16)$

220 Substituting Eqs. (B7a) - (B7c) into Eq. (A1b) and Eq. (A1d), one has

221 $\bar{C}_{im1D} = \frac{\varepsilon_{im1}}{s+\varepsilon_{im1}+\mu_{im1D}} \bar{C}_{m1D}, r_{WD} \leq r_D \leq r_{SD}, \quad (B17a)$

222 $\bar{C}_{im2D} = \frac{\varepsilon_{im2}}{s+\varepsilon_{im2}+\mu_{im2D}} \bar{C}_{m2D}, r_D > r_{SD}. \quad (B17b)$

223 **S3. The MIM model and solution in an aquifer-aquitard system**

224 **S3.1 Mathematical model**

225 Assuming that advection, dispersion and sorption involved in the solute transport in the

226 aquifer-aquitard system, the governing equations are

227 $\theta_{m1}R_{m1} \frac{\partial C_{m1}}{\partial t} = \frac{\theta_{m1}}{r} \frac{\partial}{\partial r} \left(r \alpha_1 |v_{a1}| \frac{\partial C_{m1}}{\partial r} \right) - \theta_{m1} v_{a1} \frac{\partial C_{m1}}{\partial r} - \omega_1 (C_{m1} - C_{im1})$

228 $- \theta_{m1} \mu_{m1} C_{m1} - \frac{\theta_{um} D_u}{2b} \frac{\partial C_{um}}{\partial z} \Big|_{z=b} + \frac{\theta_{lm} D_l}{2b} \frac{\partial C_{lm}}{\partial z} \Big|_{z=-b}, r_w \leq r \leq r_s, \quad (C1a)$

229 $\theta_{im1}R_{im1} \frac{\partial C_{im1}}{\partial t} = \omega_1 (C_{m1} - C_{im1}) - \theta_{im1} \mu_{im1} C_{im1}, r_w \leq r \leq r_s, \quad (C1b)$

230 $\theta_{m2}R_{m2} \frac{\partial C_{m2}}{\partial t} = \frac{\theta_{m2}}{r} \frac{\partial}{\partial r} \left(r \alpha_2 |v_{a2}| \frac{\partial C_{m2}}{\partial r} \right) - \theta_{m2} v_{a2} \frac{\partial C_{m2}}{\partial r} - \omega_2 (C_{m2} - C_{im2})$

231 $- \theta_{m2} \mu_{m2} C_{m2} - \frac{\theta_{um} D_u}{2b} \frac{\partial C_{um}}{\partial z} \Big|_{z=b} + \frac{\theta_{lm} D_l}{2b} \frac{\partial C_{lm}}{\partial z} \Big|_{z=-b}, r > r_s, \quad (C1c)$

232 $\theta_{im2}R_{im2} \frac{\partial C_{im2}}{\partial t} = \omega_2 (C_{m2} - C_{im2}) - \theta_{im2} \mu_{im2} C_{im2}, r > r_s, \quad (C1d)$

233 $\theta_{um}R_{um} \frac{\partial C_{um}}{\partial t} = \theta_{um} D_u \frac{\partial^2 C_{um}}{\partial z^2} - \omega_u (C_{um} - C_{uim}) - \theta_{um} \mu_{um} C_{um}, z \geq b, \quad (C2a)$

234 $\theta_{uim}R_{uim} \frac{\partial C_{uim}}{\partial t} = \omega_u (C_{um} - C_{uim}) - \theta_{uim} \mu_{uim} C_{uim}, z \geq b \quad (C2b)$

235 $\theta_{lm}R_{lm} \frac{\partial C_{lm}}{\partial t} = \theta_{lm} D_l \frac{\partial^2 C_{lm}}{\partial z^2} - \omega_l (C_{lm} - C_{lim}) - \theta_{lm} \mu_{lm} C_{lm}, z \leq -b, \quad (C3a)$

236 $\theta_{lim} R_{lim} \frac{\partial C_{lim}}{\partial t} = \omega_l (C_{lm} - C_{lim}) - \theta_{lim} \mu_{lim} C_{lim}, z \leq -b,$ (C3b)

237 where the subscripts “*u*” and “*l*” refer to the parameters in the upper and lower aquitard,
 238 respectively; the subscripts “*m*” and “*im*” refer to the parameters in the mobile and immobile
 239 regions, respectively; the subscripts “1” and “2” refer to the parameters in the skin and
 240 formation regions, respectively; C_{m1} and C_{im1} are the mobile and immobile concentrations [ML^{-3}]
 241 of the skin zone, respectively; C_{m2} and C_{im2} are the mobile and immobile concentrations [ML^{-3}]
 242 of the formation zone, respectively; C_{um} and C_{uim} are the mobile and immobile concentrations
 243 [ML^{-3}] of the upper aquitard, respectively; C_{lm} and C_{lim} are the mobile and immobile
 244 concentrations [ML^{-3}] of the upper aquitard, respectively; t is time [T]; r is the radial distance [L]
 245 from the center of the well; r_w is radius of the well [L]; r_s is the radial distance [L] from the
 246 center of the well to the outer radius of the skin zone; z represents the vertical distance [L]; b is
 247 the half of the aquifer thickness [L]; α_1 and α_2 represent the longitudinal dispersivities [L] in the
 248 skin and formation zones, respectively; D_u and D_l are the vertical dispersion coefficients [L^2T^{-1}]
 249 of the upper and lower aquitards, respectively; v_{a1} and v_{a2} represent the average radial pore
 250 velocity [LT^{-1}] of the skin and formation zones, respectively; and $v_{a1} = \frac{u_1}{\theta_{m1}}$ and $v_{a1} = \frac{u_2}{\theta_{m2}}$; u_1
 251 and u_2 represent Darcian velocity [LT^{-1}] of the skin and formation zones, respectively; $\mu_{m1}, \mu_{im1},$
 252 μ_{m2}, μ_{im2} $\mu_{um}, \mu_{uim}, \mu_{lm}$ and μ_{lim} are reaction rates for first-order biodegradation, or
 253 radioactive decay, or the first-order reaction rate [T^{-1}], respectively; $\theta_{m1}, \theta_{im1}, \theta_{m2}$ and θ_{im2}
 254 are the mobile and immobile porosities [dimensionless], respectively; $\theta_{um}, \theta_{uim}, \theta_{lm}$ and θ_{lim}
 255 are the mobile and immobile porosities [dimensionless], respectively; $R_{m1} = 1 + \frac{\rho_b K_d}{\theta_{m1}}$ and
 256 $R_{im1} = 1 + \frac{\rho_b K_d}{\theta_{im1}}$ are regarded as retardation factors [dimensionless] for the mobile and immobile
 257 regions of the skin zone, respectively; $R_{m2} = 1 + \frac{\rho_b K_d}{\theta_{m2}}$ and $R_{im2} = 1 + \frac{\rho_b K_d}{\theta_{im2}}$ are regarded as

258 retardation factors [dimensionless] for the mobile and immobile regions of the aquifer,
 259 respectively; $R_{um} = 1 + \frac{\rho_b K_d}{\theta_{um}}$ and $R_{uim} = 1 + \frac{\rho_b K_d}{\theta_{uim}}$ are regarded as retardation factors
 260 [dimensionless] for the mobile and immobile regions of the upper aquitard, respectively; $R_{lm} =$
 261 $1 + \frac{\rho_b K_d}{\theta_{lm}}$ and $R_{lim} = 1 + \frac{\rho_b K_d}{\theta_{lim}}$ could be regarded as retardation factors [dimensionless] for the
 262 mobile and immobile regions in the lower aquitard, respectively; K_d is the equilibrium
 263 distribution coefficient for the linear sorption process [$M^{-1}L^3$]; ρ_b is the bulk density [ML^{-3}] of
 264 the aquifer material; ω_a , ω_u and ω_l are the first-order mass transfer coefficients [T^{-1}] of the
 265 aquifer, upper aquitard, and lower aquitard, respectively.

266 Subject to the following initial and boundary conditions

$$267 \quad C_{m1}(r, t)|_{t=0} = C_{im1}(r, t)|_{t=0} = C_{m2}(r, t)|_{t=0} = C_{im2}(r, t)|_{t=0} = C_{um}(r, z, t)|_{t=0} = \\ 268 \quad C_{uim}(r, z, t)|_{t=0} = C_{lm}(r, z, t)|_{t=0} = C_{lim}(r, z, t)|_{t=0} = 0, r \geq r_w, \quad (C4)$$

$$269 \quad C_{m2}(r, t)|_{r \rightarrow \infty} = C_{im2}(r, t)|_{r \rightarrow \infty} = C_{um}(r, z, t)|_{r \rightarrow \infty} = C_{uim}(r, z, t)|_{r \rightarrow \infty} = \\ 270 \quad C_{lm}(r, z, t)|_{r \rightarrow -\infty} = C_{lim}(r, z, t)|_{r \rightarrow -\infty} = 0, r \geq r_w, \quad (C5)$$

$$271 \quad C_{m1}(r, t) = C_{um}(r, z = b, t), r_w \leq r \leq r_s, \quad (C6a)$$

$$272 \quad C_{m2}(r, t) = C_{um}(r, z = b, t), r > r_s, \quad (C6b)$$

$$273 \quad C_{m1}(r, t) = C_{lm}(r, z = -b, t), r_w \leq r \leq r_s, \quad (C7a)$$

$$274 \quad C_{m2}(r, t) = C_{lm}(r, z = -b, t), r > r_s. \quad (C7b)$$

275 The flux concentration continuity is applied in boundary condition of the wellbore, and one
 276 has

$$277 \quad \left[v_{a1,inj} C_{m1}(r, t) - \alpha_1 |v_{a1,inj}| \frac{\partial C_{m1}(r, t)}{\partial r} \right] \Big|_{r=r_w} = [v_{a1,inj} C_{inj}(t)] \Big|_{r=r_w}, 0 < t \leq t_{inj}, \quad (C8a)$$

$$278 \quad \left[v_{a1,cha} C_{m1}(r, t) - \alpha_1 |v_{a1,cha}| \frac{\partial C_{m1}(r, t)}{\partial r} \right] \Big|_{r=r_w} = [v_{a1,cha} C_{cha}(t)] \Big|_{r=r_w}, t > t_{inj}, \quad (C8b)$$

279 where $C_{inj}(t)$ and $C_{cha}(t)$ represent the wellbore concentrations [ML^{-3}] of tracer in the injection
 280 and chasing phases, respectively.

281 Considering the mixing effect of the injected tracer with the original water in the wellbore,
 282 the variations of concentration in the injection and chasing phases could be described as

283
$$V_{w,inj} \frac{dC_{inj}}{dt} = -\xi v_{a1,inj}(r_w) [C_{inj}(t) - C_0], 0 < t \leq t_{inj}, \quad (C9a)$$

284
$$V_{w,cha} \frac{dC_{cha}}{dt} = -\xi v_{a1,cha}(r_w) [C_{cha}(t)], t > t_{inj}. \quad (C9b)$$

285 **3.2 Derivation of the analytical solutions**

286 The dimensionless parameters are defined as: $C_{m1D} = \frac{C_{m1}}{C_0}$, $C_{im1D} = \frac{C_{im1}}{C_0}$, $C_{m2D} = \frac{C_{m2}}{C_0}$,

287 $C_{im2D} = \frac{C_{im2}}{C_0}$, $C_{WD} = \frac{C_w}{C_0}$, $C_{inj,D} = \frac{C_{inj}}{C_0}$, $C_{cha,D} = \frac{C_{cha}}{C_0}$, $C_{umD} = \frac{C_{um}}{C_0}$, $C_{uimD} = \frac{C_{uim}}{C_0}$, $C_{lmD} = \frac{C_{lm}}{C_0}$,

288 $C_{limD} = \frac{C_{lim}}{C_0}$, $t_D = \frac{|A|t}{\alpha_2^2 R_{m1}}$, $t_{inj,D} = \frac{|A|t_{inj}}{\alpha_2^2 R_{m1}}$, $r_D = \frac{r}{\alpha_2}$, $r_{WD} = \frac{r_w}{\alpha_2}$, $z_D = \frac{z}{B}$, $\mu_{m1D} = \frac{\alpha_2^2 \mu_{m1}}{A}$, $\mu_{im1D} =$

289 $\frac{\alpha_2^2 R_{m1} \mu_{im1}}{R_{im1} A}$, $\mu_{m2D} = \frac{\alpha_2^2 \mu_{m2}}{A}$, $\mu_{im2D} = \frac{\alpha_2^2 R_{m1} \mu_{im2}}{R_{im2} A}$, $\mu_{umD} = \frac{\alpha_2^2 R_m \mu_m}{R_{um} A}$, $\mu_{uimD} = \frac{\alpha_2^2 R_m \mu_{im}}{R_{um} A}$, $\mu_{lmD} =$

290 $\frac{\alpha_2^2 R_m \mu_m}{A R_{lm}}$, $\mu_{limD} = \frac{\alpha_2^2 R_m \mu_{im}}{R_{lm} A}$ and $A = \frac{Q}{4\pi B \theta_{m1}}$. The dimensionless forms of the governing equation

291 could be rewritten as

292
$$\frac{\partial C_{m1D}}{\partial t_D} = \frac{\lambda}{r_D} \frac{\partial^2 C_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial C_{m1D}}{\partial r_D} - \varepsilon_{m1} (C_{m1D} - C_{im1D}) - \mu_{m1D} C_{m1D} - \frac{\theta_{um} \alpha_2^2 D_u}{2A \theta_{m1} b^2} \frac{\partial C_{umD}}{\partial z_D} \Big|_{z=1} + \frac{\theta_{lm} \alpha_2^2 D_l}{2A b^2 \theta_{m1}} \frac{\partial C_{lmD}}{\partial z_D} \Big|_{z=-1}, r_{WD} \leq r_D \leq r_{SD}, \quad (C10a)$$

294
$$\frac{\partial C_{im1D}}{\partial t_D} = \varepsilon_{im1} (C_{m1D} - C_{im1D}) - \mu_{im1D} C_{im1D}, r_{WD} \leq r_D \leq r_{SD}, \quad (C10b)$$

295
$$\frac{\partial C_{m2D}}{\partial t_D} = \frac{1}{r_D} \frac{\partial^2 C_{m2D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial C_{m2D}}{\partial r_D} - \varepsilon_{m2} (C_{m2D} - C_{im2D}) - \mu_{m2D} C_{m2D} - \frac{\theta_{um} \alpha_2^2 D_u}{2A \theta_{m2} b^2} \frac{\partial C_{umD}}{\partial z_D} \Big|_{z=1} + \frac{\theta_{lm} \alpha_2^2 D_l}{2A b^2 \theta_{m2}} \frac{\partial C_{lmD}}{\partial z_D} \Big|_{z=-1}, r_D > r_{SD}, \quad (C10c)$$

297
$$\frac{\partial C_{im2D}}{\partial t_D} = \varepsilon_{im2} (C_{m2D} - C_{im2D}) - \mu_{im2D} C_{im2D}, r_D > r_{SD}, \quad (C10d)$$

298
$$\frac{\partial C_{umD}}{\partial t_D} = \frac{R_{m1}\alpha_2^2 D_u}{Ab^2 R_{um}} \frac{\partial^2 C_{umD}}{\partial z_D^2} - \varepsilon_{um}(C_{umD} - C_{uimD}) - \mu_{umD} C_{umD, z_D} \geq 1, t_D > 0, \quad (C11a)$$

299
$$\frac{\partial C_{uimD}}{\partial t_D} = \varepsilon_{uim}(C_{umD} - C_{uimD}) - \mu_{uimD} C_{uimD, z_D} \geq 1, t_D > 0 \quad (C11b)$$

300
$$\frac{\partial C_{lmD}}{\partial t_D} = \frac{R_{m1}\alpha_2^2 D_l}{Ab^2 R_{lm}} \frac{\partial^2 C_{lmD}}{\partial z_D^2} - \varepsilon_{lm}(C_{lmD} - C_{limD}) - \mu_{lmD} C_{lmD, z_D} \leq -1, t_D > 0, \quad (C12a)$$

301
$$\frac{\partial C_{limD}}{\partial t_D} = \varepsilon_{lim}(C_{lmD} - C_{limD}) - \mu_{limD} C_{limD, z_D} \leq -1, t_D > 0, \quad (C12b)$$

302 where $\varepsilon_{m1} = \frac{\omega_1\alpha_2^2}{A\theta_{m1}}$, $\varepsilon_{im1} = \frac{\omega_1\alpha_2^2 R_{m1}}{A\theta_{im1} R_{im1}}$, $\varepsilon_{m2} = \frac{\omega_2\alpha_2^2}{A\theta_{m2}}$, $\varepsilon_{im2} = \frac{\omega_2\alpha_2^2 R_{m1}}{A\theta_{im2} R_{im2}}$, $\varepsilon_{um} = \frac{\omega_u\alpha_2^2 R_{m1}}{A\theta_{um} R_{um}}$, $\varepsilon_{uim} =$

303 $\frac{\omega_u\alpha_2^2 R_{m1}}{A\theta_{uim} R_{uim}}$, $\varepsilon_{lm} = \frac{\omega_l\alpha_2^2 R_{m1}}{A\theta_{lm} R_{lm}}$, $\varepsilon_{lim} = \frac{\omega_l\alpha_2^2 R_{m1}}{A\theta_{lim} R_{lim}}$.

304 Substituting the dimensionless parameters into Eqs. (C4) - (C7), one has

305
$$C_{m1D}(r_D, t_D)|_{t_D=0} = C_{im1D}(r_D, t_D)|_{t_D=0} = C_{m2D}(r_D, t_D)|_{t_D=0} = C_{im2D}(r_D, t_D)|_{t_D=0} =$$

306
$$C_{umD}(r_D, z_D, t_D)|_{t_D=0} = C_{uimD}(r_D, z_D, t_D)|_{t_D=0} = C_{lmD}(r_D, z_D, t_D)|_{t_D=0} =$$

307
$$C_{limD}(r_D, z_D, t_D)|_{t_D=0} = 0, \quad (C13)$$

308
$$C_{m2D}(r_D, t_D)|_{r_D \rightarrow \infty} = C_{im2D}(r_D, t_D)|_{r_D \rightarrow \infty} = C_{umD}(r_D, z_D, t_D)|_{z_D \rightarrow \infty} =$$

309
$$C_{uimD}(r_D, z_D, t_D)|_{z_D \rightarrow \infty} = C_{lmD}(r_D, z_D, t_D)|_{z_D \rightarrow -\infty} = C_{limD}(r_D, z_D, t_D)|_{z_D \rightarrow -\infty} = 0, \quad (C14)$$

310
$$C_{m1D}(r_D, t_D) = C_{umD}(r_D, z_D = 1, t_D), r_{WD} \leq r_D \leq r_{SD}, \quad (C15a)$$

311
$$C_{m2D}(r_D, t_D) = C_{umD}(r_D, z_D = 1, t_D), r_{WD} \leq r_D \leq r_{SD}, \quad (C15b)$$

312
$$C_{m2D}(r_D, t_D) = C_{lmD}(r_D, z_D = -1, t_D), r_D > r_{SD}, \quad (C15c)$$

313
$$C_{m2D}(r_D, t_D) = C_{lmD}(r_D, z_D = -1, t_D), r_D > r_{SD}. \quad (C15d)$$

314 Conducting Laplace transform to Eqs. (C11a) - (C11b), one has:

315
$$s\bar{C}_{umD} = \frac{R_{m1}\alpha_2^2 D_u}{AB^2 R_{um}} \frac{\partial^2 \bar{C}_{umD}}{\partial z_D^2} - (\varepsilon_{um} + \mu_{umD})\bar{C}_{umD} + \varepsilon_{um}\bar{C}_{uimD, z_D} \geq 1, \quad (C16a)$$

316
$$s\bar{C}_{uimD} = \varepsilon_{uim}(\bar{C}_{umD} - \bar{C}_{uimD}) - \mu_{uimD}\bar{C}_{uimD, z_D} \geq 1. \quad (C16b)$$

317 Substituting Eq. (C16b) into Eq. (C16a), Eq. (C16a) could be rewritten as

318
$$\frac{R_{m1}\alpha_2^2 D_u}{Ab^2 R_{um}} \frac{\partial^2 \bar{C}_{umD}}{\partial z_D^2} - \left(s + \varepsilon_{um} + \mu_{umD} - \frac{\varepsilon_{um}\varepsilon_{uim}}{s+\mu_{uimD}+\varepsilon_{uim}} \right) \bar{C}_{umD} = 0, z_D \geq 1. \quad (C17)$$

319 Similarly, Eqs. (C12a) - (C12b) become:

320
$$\frac{R_{m1}\alpha_2^2 D_l}{Ab^2 R_{lm}} \frac{\partial^2 \bar{C}_{lmD}}{\partial z_D^2} - \left(s + \varepsilon_{lm} + \mu_{lmD} - \frac{\varepsilon_{lm}\varepsilon_{lim}}{s+\mu_{limD}+\varepsilon_{lim}} \right) \bar{C}_{lmD} = 0, z_D \leq -1. \quad (C18)$$

321 Eqs. (C13) - (C15d) and Eq. (C17) compose a model of the second-order ordinary
 322 differential equation (ODE) with boundary conditions, and the general solution of the Eq. (C17)
 323 is

324
$$\bar{C}_{umD} = A_1 e^{a_1 z_D} + B_1 e^{a_2 z_D}, z_D \geq 1. \quad (C19a)$$

325 Similarly, the general solution of Eq. (C18) is

326
$$\bar{C}_{lmD} = A_2 e^{b_1 z_D} + B_2 e^{b_2 z_D}, z_D \leq -1, \quad (C19b)$$

327 where $a_1 = \sqrt{s + \varepsilon_{um} + \mu_{umD} - \frac{\varepsilon_{um}\varepsilon_{uim}}{s+\mu_{uimD}+\varepsilon_{uim}}}$, $a_2 = -\sqrt{s + \varepsilon_{um} + \mu_{umD} - \frac{\varepsilon_{um}\varepsilon_{uim}}{s+\mu_{uimD}+\varepsilon_{uim}}}$, $b_1 =$

328
$$\sqrt{s + \varepsilon_{lm} + \mu_{lmD} - \frac{\varepsilon_{lm}\varepsilon_{lim}}{s+\mu_{limD}+\varepsilon_{lim}}}$$
 and $b_2 = -\sqrt{s + \varepsilon_{lm} + \mu_{lmD} - \frac{\varepsilon_{lm}\varepsilon_{lim}}{s+\mu_{limD}+\varepsilon_{lim}}}$.

329 Substituting Eqs. (C19a) - (C19b) into Eqs. (C15a) - (C15d), one has

330
$$\bar{C}_{umD} = B_1 e^{a_2 z_D}, z_D \geq 1, \quad (C20a)$$

331
$$\bar{C}_{lmD} = A_2 e^{b_1 z_D}, z_D \leq -1, \quad (C20b)$$

332 where $B_1 = \bar{C}_{mD} \exp(-a_2)$, $B_2 = 0$, $A_1 = 0$ and $A_2 = \bar{C}_{mD} \exp(b_1)$.

333 Thus, the solutions of the aquitards are

334
$$\bar{C}_{umD} = \bar{C}_{m1D} \exp(a_2 z_D - a_2), r_{WD} \leq r_D \leq r_{SD}, \quad (C3a)$$

335
$$\bar{C}_{umD} = \bar{C}_{m2D} \exp(a_2 z_D - a_2), r_D > r_{SD}, \quad (C21b)$$

336
$$\bar{C}_{uimD} = \frac{\varepsilon_{uim}}{s+\varepsilon_{uim}+\mu_{uimD}} \bar{C}_{umD}, r_D \geq r_{WD}, \quad (C21c)$$

337
$$\bar{C}_{lmD} = \bar{C}_{m1D} \exp(b_1 z_D + b_1), r_{WD} \leq r_D \leq r_{SD}, \quad (C22a)$$

338
$$\bar{C}_{lmD} = \bar{C}_{m2D} \exp(b_1 z_D + b_1), r_D > r_{SD}, \quad (C22b)$$

339 $\bar{C}_{lmD} = \frac{\varepsilon_{lim}}{s + \varepsilon_{lim} + \mu_{limD}} \bar{C}_{lmD}, r_D \geq r_{WD},$ (C22c)

340 The dimensionless forms of Eqs. (C8a) - (C9b) become

341 $\left[C_{m1D} - \lambda \frac{\partial C_{m1D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r=r_{WD}} = C_{inj,D}(t_D), 0 < t_D \leq t_{inj,D},$ (C23a)

342 $\left[C_{m1D} - \lambda \frac{\partial C_{m1D}(r_D, t_D)}{\partial r_D} \right] \Big|_{r=r_{WD}} = C_{cha,D}(t_D), t_D > t_{inj,D},$ (C23b)

343 $\beta_{inj} \frac{dC_{inj,D}(t_D)}{dt_D} = 1 - C_{inj,D}(t_D), 0 < t_D \leq t_{inj,D},$ (C24a)

344 $\beta_{cha} \frac{dC_{cha,D}(t_D)}{dt_D} = -C_{cha,D}(t_D), t_D > t_{inj,D},$ (C24b)

345 where $\beta_{inj} = \frac{V_{w,inj} r_{WD}}{\xi R_m \alpha_2}$ and $\beta_{cha} = \frac{V_{w,cha} r_{WD}}{\xi R_m \alpha_2}.$

346 After applying Laplace transform to Eqs. (C10a) - (C10b), one has

347 $s \bar{C}_{m1D} = \frac{\lambda}{r_D} \frac{\partial^2 \bar{C}_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m1D}}{\partial r_D} - \varepsilon_{m2} (\bar{C}_{m1D} - \bar{C}_{im1D}) - \mu_{m1D} \bar{C}_{m1D} - \frac{\theta_{um} \alpha_2^2 D_u}{2A \theta_{m1} b^2} \frac{\partial \bar{C}_{umD}}{\partial z_D} \Big|_{z=1} +$

348 $\frac{\theta_{lm} \alpha_2^2 D_l}{2Ab^2 \theta_{m1}} \frac{\partial \bar{C}_{lmD}}{\partial z_D} \Big|_{z=-1}, r_{WD} \leq r_D \leq r_{SD},$ (C25a)

349 $s \bar{C}_{im1D} = \varepsilon_{im2} (\bar{C}_{m1D} - \bar{C}_{im1D}) - \mu_{im1D} \bar{C}_{im1D}, r_{WD} \leq r_D \leq r_{SD}.$ (C25b)

350 Substituting Eq. (C25b) into Eq. (C25a), Eq. (C25a) could be rewritten as

351 $\frac{\lambda}{r_D} \frac{\partial^2 \bar{C}_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m1D}}{\partial r_D} - \left(\varepsilon_{m1} + \mu_{m1D} - \frac{\varepsilon_{m1} \varepsilon_{im1}}{s + \mu_{im1D} + \varepsilon_{im1}} \right) \bar{C}_{m1D} - \frac{\theta_{um} \alpha_2^2 D_u}{2A \theta_{m1} b^2} \frac{\partial \bar{C}_{umD}}{\partial z_D} \Big|_{z=1} +$

352 $\frac{\theta_{lm} \alpha_2^2 D_l}{2Ab^2 \theta_{m1}} \frac{\partial \bar{C}_{lmD}}{\partial z_D} \Big|_{z=-1}, r_{WD} \leq r_D \leq r_{SD}.$ (C26)

353 After applying Laplace transform to Eqs. (C10c) - (C10d), the following equations would be

354 obtained

355 $s \bar{C}_{m2D} = \frac{\eta}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{\eta}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \varepsilon_{m2} (\bar{C}_{m2D} - \bar{C}_{im2D}) - \frac{\theta_{um} \alpha_2^2 D_u}{2A \theta_{m2} b^2} \frac{\partial \bar{C}_{umD}}{\partial z_D} \Big|_{z=1} +$

356 $\frac{\theta_{lm} \alpha_2^2 D_l}{2Ab^2 \theta_{m2}} \frac{\partial \bar{C}_{lmD}}{\partial z_D} \Big|_{z=-1}, r_D > r_{SD},$ (C27a)

357 $s \bar{C}_{im2D} = \varepsilon_{im2} (\bar{C}_{m2D} - \bar{C}_{im2D}) - \mu_{im2D} \bar{C}_{im2D}, r_D > r_{SD}.$ (C27b)

358 Substituting Eq. (C27b) into Eq. (C27a), one has

359
$$s\bar{C}_{m2D} = \frac{\eta}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{\eta}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - \left(\varepsilon_{m2} + \mu_{m2D} - \frac{\varepsilon_{m2} \varepsilon_{im2}}{s + \mu_{im2D} + \varepsilon_{im2}} \right) \bar{C}_{m2D} -$$

360
$$\frac{\theta_{um} \alpha_2^2 D_u}{2A\theta_{m2} b^2} \frac{\partial \bar{C}_{umD}}{\partial z_D} \Big|_{z=1} + \frac{\theta_{lm} \alpha_2^2 D_l}{2Ab^2 \theta_{m2}} \frac{\partial \bar{C}_{lmD}}{\partial z_D} \Big|_{z=-1}, r_D > r_{SD}. \quad (C28)$$

361 Substituting Eq. (C21a) and Eq. (C22a) into Eq. (C26), one has

362
$$\frac{\lambda}{r_D} \frac{\partial^2 \bar{C}_{m1D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m1D}}{\partial r_D} - E_3 \bar{C}_{m1D} = 0, r_{WD} \leq r_D \leq r_{SD}, \quad (C29a)$$

363 Substituting Eq. (C21b) and Eq. (C22b) into Eq. (C28), one has

364
$$\frac{1}{r_D} \frac{\partial^2 \bar{C}_{m2D}}{\partial r_D^2} - \frac{1}{r_D} \frac{\partial \bar{C}_{m2D}}{\partial r_D} - E_4 \bar{C}_{m2D} = 0, r_D > r_{SD}, \quad (C29b)$$

365 where $E_3 = s + \varepsilon_{m1} + \mu_{m1D} - \frac{\varepsilon_{m1} \varepsilon_{im1}}{s + \mu_{im1D} + \varepsilon_{im1}} - \frac{a_2 \theta_{um} \alpha_2^2 D_u}{2A\theta_{m1} b^2} + \frac{b_1 \theta_{lm} \alpha_2^2 D_l}{2Ab^2 \theta_{m1}}$ and $E_4 = \frac{1}{\eta} \left(s + \varepsilon_{m2} + \right.$

366
$$\left. \mu_{m2D} - \frac{\varepsilon_{m2} \varepsilon_{im2}}{s + \mu_{im2D} + \varepsilon_{im2}} - \frac{a_2 \theta_{um} \alpha_2^2 D_u}{2A\theta_{m2} b^2} + \frac{b_1 \theta_{lm} \alpha_2^2 D_l}{2Ab^2 \theta_{m2}} \right).$$

367 The boundary conditions of the wellbore and infinity in the Laplace domain are

368
$$\left[\bar{C}_{m1D} - \lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = \frac{1}{s(s\beta_{inj}+1)}, 0 < t_D \leq t_{inj,D}, \quad (C30a)$$

369
$$\left[\bar{C}_{m1D} - \lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \right] \Big|_{r_D=r_{WD}} = \frac{\beta_{cha} C_{inj,D}(r_{WD}, t_{inj,D})}{(s\beta_{cha}+1)}, t_D > t_{inj,D}, \quad (C30b)$$

370
$$\bar{C}_{m1D}(r_{SD}, s) = \bar{C}_{m2D}(r_{SD}, s), \quad (C30c)$$

371
$$\lambda \frac{\partial \bar{C}_{m1D}(r_D, s)}{\partial r_D} \Big|_{r_D=r_{SD}} = \frac{\partial \bar{C}_{m2D}(r_D, s)}{\partial r_D} \Big|_{r_D=r_{SD}}, \quad (C30d)$$

372
$$\bar{C}_{m2D}(r_D, s) \Big|_{r_D \rightarrow \infty} = 0. \quad (C30e)$$

373 Therefore, the general solutions of Eq. (C30a) and Eq. (C30b) are

374
$$\bar{C}_{m1D} = T_1 \exp \left(\frac{r_D}{2\lambda} \right) A_i(\varphi_1) + T_2 \exp \left(\frac{r_D}{2\lambda} \right) B_i(\varphi_1), r_{WD} \leq r_D \leq r_{SD}, \quad (C31a)$$

375
$$\bar{C}_{m2D} = T_3 \exp \left(\frac{r_D}{2} \right) A_i(\varphi_2) + T_4 \exp \left(\frac{r_D}{2} \right) B_i(\varphi_2), r_D > r_{SD}, \quad (C31b)$$

376 where $\varphi_1 = \left(\frac{E_3}{\lambda}\right)^{1/3} \left(r_D + \frac{1}{4\lambda E_3}\right)$, $\varphi_2 = E_4^{1/3} \left(r_D + \frac{1}{4E_4}\right)$, T_1, T_2, T_3 and T_4 are constants which
 377 could be determined by the boundary conditions.

378 Substituting Eq. (C31b) into Eq. (C30e), one has

379 $T_4 = 0.$ (C32)

380 Substituting Eq. (C31a) into Eq. (C30a), one has

381 $T_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(\varphi_w) - \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} A'_i(\varphi_w) \right] + T_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(\varphi_w) - \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} B'_i(\varphi_w) \right] = F_1.$ (C33a)

383 Substituting Eq. (C31a) into Eq. (C30b), one has

384 $T_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(\varphi_w) - \lambda \left(\frac{E_4}{\lambda}\right)^{1/3} A'_i(\varphi_w) \right] + T_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(\varphi_w) - \lambda \left(\frac{E_4}{\lambda}\right)^{1/3} B'_i(\varphi_w) \right] = F_2,$ (C33b)

386 where $\varphi_w = \left(\frac{E_3}{\lambda}\right)^{1/3} \left(r_{WD} + \frac{1}{4\lambda E_3}\right)$, $F_1 = \frac{1}{s(s\beta_{inj}+1)}$ and $F_2 = \frac{\beta_{cha} C_{inj,D}(r_{WD}, t_{inj,D})}{(s\beta_{cha}+1)}.$

387 Substituting Eqs. (C31a) - (C31b) into Eq. (C30c), one has

388 $T_1 \exp\left(\frac{r_{SD}}{2\lambda}\right) A_i(\varphi_{1s}) + T_2 \exp\left(\frac{r_{SD}}{2\lambda}\right) B_i(\varphi_{1s}) = T_3 \exp\left(\frac{r_{SD}}{2}\right) A_i(\varphi_{2s}),$ (C34)

389 where $\varphi_{1s} = \left(\frac{E_3}{\lambda}\right)^{1/3} \left(r_{SD} + \frac{1}{4\lambda E_3}\right)$, $\varphi_{2s} = E_4^{1/3} \left(r_D + \frac{1}{4E_4}\right).$

390 Substituting Eqs. (B31a) - (B31b) into Eq. (B30d), one has

391 $T_1 \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} A_i(\varphi_{1s}) + \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} A'_i(\varphi_{1s}) \right] + T_2 \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} B_i(\varphi_{1s}) + \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} B'_i(\varphi_{1s}) \right] =$
 392 $T_3 \exp\left(\frac{r_{SD}}{2}\right) \left[\frac{1}{2} A_i(\varphi_{2s}) + E_4^{1/3} A'_i(\varphi_{2s}) \right].$ (C35)

393 The values of T_1, T_2 , and T_3 could be determined by solving Eqs. (C33a) - (C35)

394 $T_1 = \frac{F - G_2 T_2}{G_1},$

395 $T_2 = \frac{G_3 G_8 F - G_5 G_6 F}{G_1 G_5 G_7 + G_2 G_3 G_8 - G_2 G_5 G_6 - G_1 G_4 G_8}$

396 $T_3 = \frac{G_3 F}{G_1 G_5} - \frac{G_2 G_3 T_2}{G_1 G_5} + \frac{G_4 T_2}{G_5},$

397 where $G_1 = \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} A_i(\varphi_w) - \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} A'_i(\varphi_w) \right],$

398 $G_2 = \exp\left(\frac{r_{WD}}{2\lambda}\right) \left[\frac{1}{2} B_i(\varphi_w) - \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} B'_i(\varphi_w) \right],$

399 $G_3 = \exp\left(\frac{r_{SD}}{2\lambda}\right) A_i(\varphi_{1s}), G_4 = \exp\left(\frac{r_{SD}}{2\lambda}\right) B_i(\varphi_{1s}), G_5 = \exp\left(\frac{r_{SD}}{2}\right) A_i(\varphi_{2s}),$

400 $G_6 = \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} A_i(\varphi_{1s}) + \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} A'_i(\varphi_{1s}) \right],$

401 $G_7 = \exp\left(\frac{r_{SD}}{2\lambda}\right) \left[\frac{1}{2} B_i(\varphi_{1s}) + \lambda \left(\frac{E_3}{\lambda}\right)^{1/3} B'_i(\varphi_{1s}) \right],$

402 $G_8 = \exp\left(\frac{r_{SD}}{2}\right) \left[\frac{1}{2} A_i(\varphi_{2s}) + E_4^{1/3} A'_i(\varphi_{2s}) \right],$

403 and $F = C_{inj,D} \frac{1 - \exp(-t_{inj,D}s)}{s} + C_{cha,D} \frac{\exp(-t_{inj,D}s)}{s}.$

404 In the injection phase, the values of T_1 and T_2 are modified into T'_1 and T'_2 as follows

405 $T'_1 = \frac{F_1 - G'_2 T'_2}{G'_1} \text{ and } T'_2 = \frac{G_3 G_8 F_1 - G_5 G_6 F_1}{G'_1 G_5 G_7 + G'_2 G_3 G_8 - G'_2 G_5 G_6 - G'_1 G_4 G_8},$

406 where $G'_1 = \frac{1}{2} \exp\left(\frac{r_{WD}}{2\lambda}\right) A_i(\varphi_w)$ and $G'_2 = \frac{1}{2} \exp\left(\frac{r_{WD}}{2\lambda}\right) B_i(\varphi_w).$

407 Substituting T'_1 and T'_2 into Eq. (C31a), one has

408 $\bar{C}_{inj,D}(r_{WD}, s) = T'_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) A_i(\varphi_w) + T'_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) B_i(\varphi_w), \quad (\text{C36})$

409 In the chasing phase, the values of T_1 and T_2 are modified into T''_1 and T''_2 as follows

410 $T''_1 = \frac{F_2 - G'_2 T'_2}{G'_1} \text{ and } T''_2 = \frac{G_3 G_8 F_2 - G_5 G_6 F_2}{G'_1 G_5 G_7 + G'_2 G_3 G_8 - G'_2 G_5 G_6 - G'_1 G_4 G_8}.$

411 Substituting T''_1 and T''_2 into Eq. (C31a), one has

412 $\bar{C}_{cha,D}(r_{WD}, s) = T''_1 \exp\left(\frac{r_{WD}}{2\lambda}\right) A_i(\varphi_w) + T''_2 \exp\left(\frac{r_{WD}}{2\lambda}\right) B_i(\varphi_w). \quad (\text{C37})$

413 Conducting Laplace transform on Eq. (A4c), one has

414
$$\bar{C}_{WD}(r_{WD}, s) = C_{inj,D} \frac{1 - \exp(-t_{inj,DS})}{s} + C_{cha,D} \frac{\exp(-t_{inj,DS})}{s}, \quad (C38)$$

415 where $C_{inj,D}$ and $C_{cha,D}$ could be determined by Eqs. (C36) - (C37).

416 Substituting Eqs. (C31a) - (C31b) into Eqs. (C33a) - (C35) and Eq. (C38), one has

417
$$\bar{C}_{m1D} = T_1 \exp\left(\frac{r_D}{2\lambda}\right) A_i(\varphi_1) + T_2 \exp\left(\frac{r_D}{2\lambda}\right) B_i(\varphi_1), r_{WD} < r_D \leq r_{SD}, \quad (C39a)$$

418
$$\bar{C}_{m2D} = T_3 \exp\left(\frac{r_D}{2}\right) A_i(\varphi_2), r_D > r_{SD}. \quad (C39b)$$

419 **S4. Numerical simulation by COMSOL Multiphysics**

420 In this study, the numerical simulation based on the Galerkin finite-element method is

421 conducted in the COMSOL Multiphysics platform to test new solutions.

422 ***S4.1 Models of Eqs. (14) – (15): Confined aquifer***

423 In our COMSOL simulation for the radial dispersion in a confined aquifer, triangles in the

424 $r-z$ plane are used as the elements, and it is easy to refine the elements near both the well and the

425 skin-aquifer interfaces, as shown in Figure S2. The number of mesh points is 759, and the

426 number of triangle elements is 1386. The time step increases linearly, and the initial time step is

427 5s, with a total simulation time of 1000s. The parameters used in the numerical simulation

428 are: $r_w = 2.5\text{cm}$; $r_s = 12.5\text{cm}$; $Q_{inj} = Q_{cha} = 100\text{ml/s}$; $t_{inj} = 300\text{s}$; $\alpha_1 = 2.5\text{cm}$; $\alpha_2 = 2.5\text{cm}$;

429 $\theta_m = 0.30$; $\theta_{im} = 0.01$; $\omega = 0.0001 \text{ s}^{-1}$; $R_{m1} = R_{im1} = R_{m2} = R_{im2} = 1$; $B = 50 \text{ cm}$; $\mu_{m1} =$

430 $\mu_{m2} = \mu_{im1} = \mu_{im2} = 10^{-7} \text{ s}^{-1}$, and $h_{w,inj} = h_{w,cha} = B$.

431 ***S4.2 Models of Eqs. (19) – (20): Leaky-confined aquifer***

432 The temporal and spatial discretization of the aquifer in the numerical simulation is similar

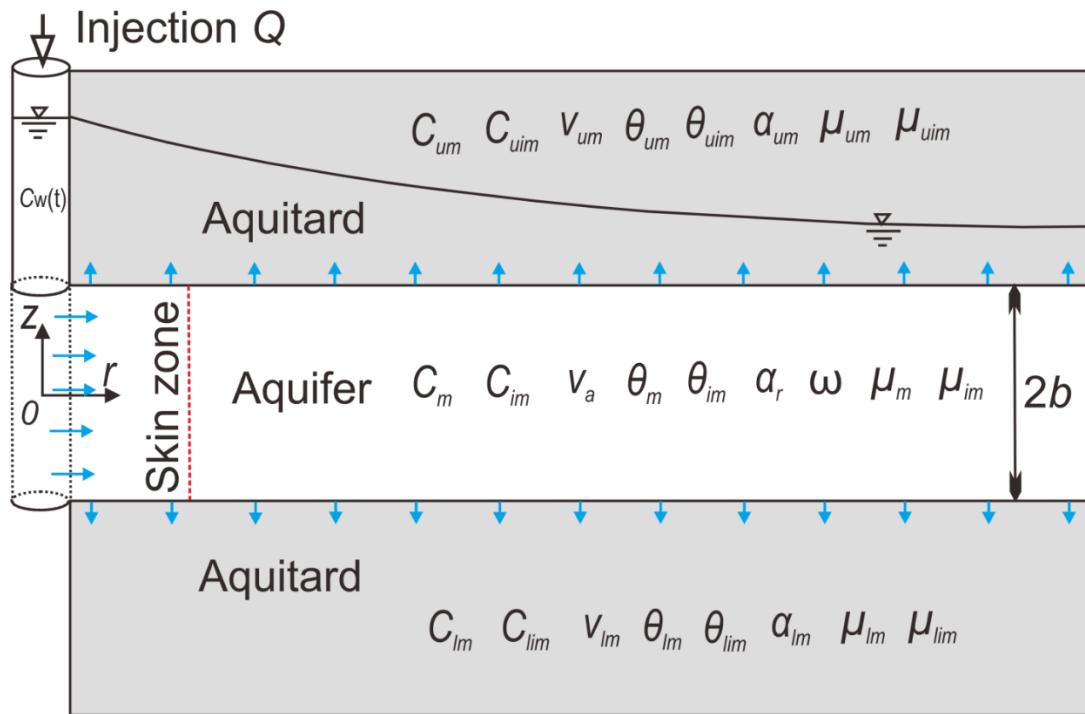
433 to the one used in Section S4.1. To decrease the numerical errors, the size of triangle cells is

434 smaller around the aquifer-aquitard interface. The number of mesh points is 2885, and the

435 number of triangle elements is 5592. Figure 1 shows the comparison between the analytical and
 436 numerical solutions, and the agreement is well. The parameters of the aquifers used in the
 437 numerical simulation are from Section S4.1, while the others are: $R_{um} = R_{uim} = R_{lm} = R_{lim} =$
 438 1 , $\omega_u = \omega_l = 0.0001 \text{ s}^{-1}$, $\theta_{um} = \theta_{lm} = 0.1$, $\theta_{uim} = \theta_{lim} = 0.01$, $\mu_{um} = \mu_{uim} = \mu_{lm} = \mu_{lim} =$
 439 10^{-7} s^{-1} , $D_u = D_l = 0.0005 \text{ cm}^2/\text{s}$.

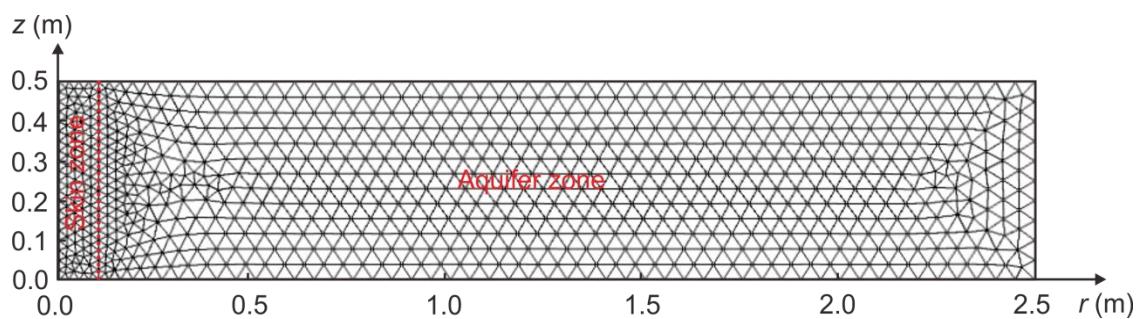
440 **S5. The fitness of the experimental data by Chao (1999)**

441 Figures 4a and 4b show that the sensitivity of V_w on BTCs is the least. To answer the
 442 question that if the influence of V_w could be ignored, we compare solutions of this study with and
 443 without the mixing effect, and the experimental data are also included for the comparison, as
 444 shown in Figure S4. The results show that two curves are almost the same. The reason is that the
 445 V_w is too small in the experiment of Chao (1999). Different sensitivity of V_w on BTCs has been
 446 obtained for field applications in which V_w is significantly greater than that used by Chao (1999).



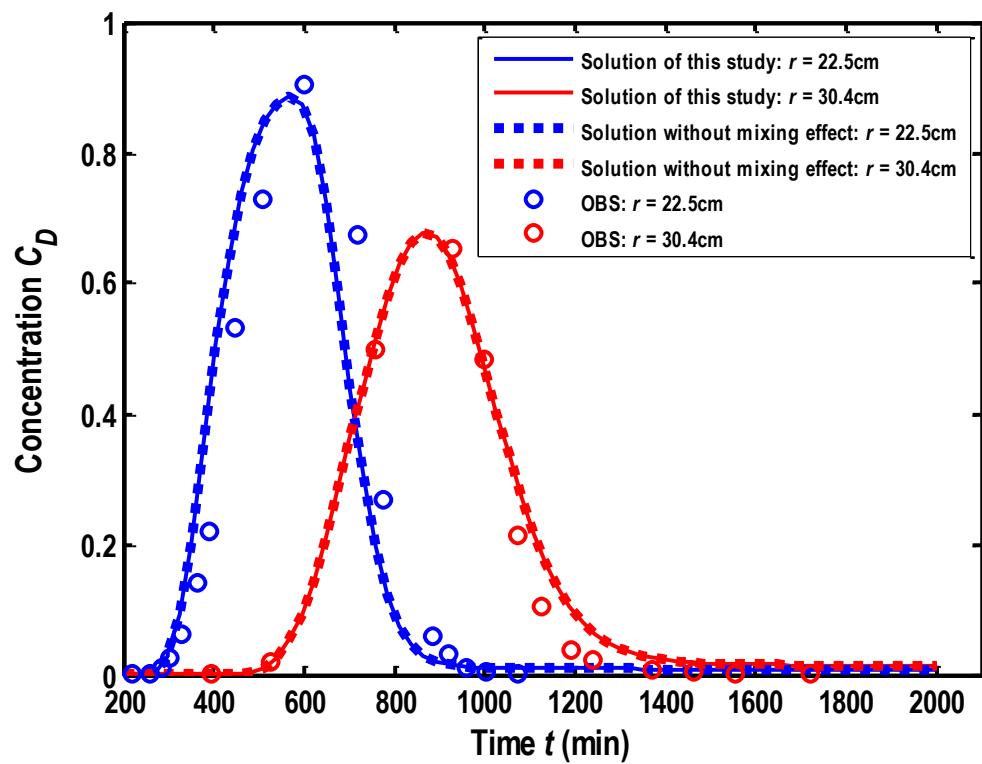
447

448 **Figure S1.** The schematic diagram of the radial dispersion in the aquifer-aquitard system.



451 **Figure S2.** The grid mesh of the skin-aquifer system used in the Galerkin finite-element
452 COMSOL Multiphysics program.

454 **Figure S3.** The grid mesh of the skin-aquifer-aquitard system used in the Galerkin finite-element
455 COMSOL Multiphysics program.



456
457

Figure S4. Fitness of observed BTC by the solutions of this study.