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Supplementary Materials

S1. Derivation of Egs. (14a) - (15b)

. . . C C; C
The dimensionless parameters are defined as: C,,1p = Cll Cimip = lcil Coap = Clz
0 0 0
C; C Cinj Ccha |Ale 1Al tinj r
Co o =Cmz o _Cw o~ Cing oo — = o Al T
im2D c ' wD o’ inj,D Co ' cha,D Co ! D angf inj,D a%le’ D a’
roo= Tw ro. = Ts T = To M — ad ma 1 — a3 R lim1 M — a3 ma2Rm1 L —
wD ay’ sD ay’' 0D ay’ ml1D 4 ' PimlD RimA ' m2D ARmp im2D

2
R i f . . .
Zomilimz and 4 = > BQ . After the dimensionless transform, the governing equations become

Rim24 BOm1

aleD — A aZleD 1 aleD

— &m1(Cmap — Cim1ip)

dtp - D a‘l‘lz) rp OTrp
—Um1pCmips Twp < Tp < Tgp (Ala)
aCimlD _
o, €m1(Cmip — Cim1p) — Uim1pCimip, Twp < Tp < Tsp, (Alb)
0Cmzp _ 7 02Cmap 1N 0Cm2p
=73 — - — &m2(Cmzp — Cimap) — Um2pCmazp, Tp > Tsp, (Alc)
dtp rp 0rp rp OTrp
Cimap — ¢ (Covp — Cimap) — C > Ald
oty €im2\Um2p im2D Uim2pLlim2p: "D = Tsp ( )
2 2 2 2
_ wqaj __ w1a3Rm1 _ W2a5Rm1 __ W2aj3Rm1 __ OmiRm1 o
where Em1 = 0. Eim1 = 9 > fm2 T Ly > €im2 = 9. >N =3 and A = —.
Abm1 ABim1Rim1 AOm2Rmo2 AOimaRim2 m2Rm2 (4%)

As for the boundary conditions at the well screen, a Heaviside step function will be
employed to combine them at the injection and chasing phases:

Cow (T, ©) = Cin;[H(®) — H(t — tin;)| + ConaH (€ — tinj), £ > 0, (A2)
where H(t) is the Heaviside step function, C,, (,, t) is concentration [ML] in the wellbore.

The dimensionless initial conditions and dimensionless boundary conditions are

Crnap ("ps tp)lep=0 = Cimip ("ps tp)lep=0 = Cmzp (b, tp)lep=0

= Cim2p(p, tp)lep=0 = 0,7p > Typ, (A3a)
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Cmzp ("0, tp) |0 = Cimap (Mo, tp)lrpsee = 0, tp > 0,
0Cm1p(rp,tp)
[leD(rD'tD) - A% = Cinjp(tp), 0 < tp < tinjp,
b TD=TwD
0Cm1ip(rp,tp)
[me (rp, tp) — A—22-2- = Ccha,p(tp), tp > tinjp,
orp rp=r
D="wD
Cwp(Mwp, tp) = Cinjp [H(tp) - H(tD - tinj,D)] + Ccha,DH(tD - tinj,D)-
The dimensionless forms of Egs. (7) - (8) are
dCin (tp)
Bm} thD =1- Cinj,D(tD)1 0< tp = tinj,Da
dCchap(tp)
ﬂcha% - Ccha,D (tD)’ tp > tinj,D’
o Vw,injTwD _ Vwcha’wbD
where B, = TRy1a, and B.pa = NTIVR
The dimensionless forms of Egs. (12) - (13) are
Cm1p (Tsps tp) = Cap (Tsp, tp), tp > 0,
[/1 9Cm1p(rp.tp) _ [aCmZD(TD ,tp) tp >0,
oD TD=Tsp oD TD=Tsp
Conducting Laplace transform to Egs. (Ala) - (Alb), one has
A 9%C 14C = = =
SCnip = - a%w T a:l;D — €m1(Cnip — Cimip) — Um1pCmaps
$Cim1p = €im1(Cmip = Cim1p) = Him1p Cimip,
where the over bar represents the variable in Laplace domain; s is the Laplace transform
parameter in respect to the dimensionless time t,.
Substituting Eq. (A7b) into Eqg. (A7a), one has
A 0%Chy 1 0Cpy =
- argw 0 ar;D — E1Cpap = 0, 1ryp <71p < 7p,
_ _ Emi1€im1
where E; = s + &pq + Umip —
Conducting Laplace transform to Egs. (Alc) - (Ald), one has

(A3b)

(Ada)

(Adb)

(A4c)

(A5a)

(A5b)

(A6a)

(A6b)

(A7a)

(ATb)

(A8)
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laZEmZD _ laEmZD
rp Orh rp 0rp

SC_'mZD = - ng(CmZD - C_‘imZD) — Um2p C_‘mZD’

SCimzp = €im2(Cmzp = Cim2p) — Mim2p Cimzp-
Substituting Eq. (A9b) into Eq. (A9a), one has

1 8%2Cmap 1 0Cmap
rp Ord rp 9rp

— E;Cpmap = 0,1 > 15,

Em2€im2 )
St&imztUim2Dp

where E2 = %(S + Em2 + Himz2p —

The boundary conditions in the Laplace domain are

= ac (rp,s) 1

Crnip(1p, s AL] =—— 0<tp < tinip
[ mlD( D ) arp D=Twb s(sﬁinj+1) D inj,D

= ac (rp,s) BchaCinj D(TwD»tin 'D)

C ™, S AL] = L 122ty > tinip,
[ mlD( D ) arD FD=Twh (Sﬁcha'l'l) D an,D
Cm1p(Tsp, S) = Cap (rsp, S), tp > 0,

65m1p(rp.8)] [aCmZD (rp,s)
A [ 6rD - aT‘D ! tD > O’

TD=T"sD D=TsD

EmZD(TD:5)|rD—>oo =0,tp >0,

The general solutions of Eq. (A8) and Eq. (A10) are respectively
Cmip = Ny exp( )A (1) + Nyexp ( )B (1), Twp <7p S Tgp

Cnap = N3 exp( )A (y2) + Naexp ( )B (72), 1o > Tsp,

(A9a)

(A9D)

(A10)

(Alla)

(AL1b)

(Allc)

(Al1d)

(Alle)

(Al2a)

(AL2b)

1/3
where y; = (%) (rD + /115 ) y, = (Ex)Y/3 (rD + —) N;, Ny, N5 and N, are constants

which could be determined by the boundary conditions. A;(-) and B;(-) are the Airy functions of

the first kind and second kind, respectively.
Substituting Eq. (A12b) into Eq. (Alle), one has
N,=0.

Substituting Eq. (A12a) into Eq. (Al1a), one has

(A13)
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102

Nlexp( )[ Ai(yw) = /’l( )1/3 Ai(yw)] + Nyexp (rzw—f) [%Bi(yw) -

A(2)" exp (22) B3| = A,

1

where y,, = (%)1/3 (er + ﬁ) and F; = D)’

Substituting Eq. (A12a) into Eq. (A11b), one has

Niexp ( ” ) [ Ai(yw) = /’l( )1/3 Ai(yw)] + Naexp (rzw—f) E Bi(yw) —

E

A(2)" e (222) B )| = o

[’)chacln] D (er tinj, D)

where F, = Ty

Conducting Laplace transform on Eq. (A4c), one has

exp(—tinj,ps)

1-exp(—tinjps)
+ Ccha,D s "o = Twp;

EWD (er' S) = Cinj,D

Thus, Egs. (Al4a)-( Al4c) could be combined as the following equation

Mexp (22) [24:0u) = 2(2) " 410w)] + Naexp (222) [£Bi) -

Ey

p (7)1/ ? exp (Fu2) Bg(yw)] _F, (Al4d)

1—exp(~tin;ps) exp(~tinjp5)

where F = Cinjp .

+ Ccha,D
Substituting Eqgs. (A12a) - (A12b) into Eq. (Allc), one has
Ny exp ( )A (1) + Naexp (2 ) Bi(y15) = N3 exp ( 2) 4;(y26),

where Vis = (%)1/3 (rsD + 4AE, ) Yos = (Ez)l/ (rsD + é)

Substituting Egs. (A12a) - (A12b) into Eq. (A11d) yields

(Alda)

(A14b)

(Al4c)

(A15)
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120

N;exp (rzs_;) [%AiOﬁs) + 1 (%)1/3 A;(Jﬁs)] + Nyexp (rzs_;) E Bi(y1s) +

ENY/3 D\ 1 ’
A(2)" Bl = Naewp (22) [ 4:0r20) + ()2 4100)] (A15)
where A;(+) and B;(*) are the derivative of the Airy functions of the first kind and second kind,

respectively.

The values of N;, N5, and N5 could be determined by solving Eqgs. (A14d) - (A16):

F—H,N
Nl = = 27
Hy
N = HsHgF—HsHgF
2 7 HyHsHy+H,HsHg—HyHsHg—HyHyHg’

HsF  HyH3N, . HuN,
N3 = - 5
HyHs HiHs Hs

where H; = exp (22) [%Ai(yw) — A (%)1/3 Aé(yw)],

Hy = exp (22) E Bi() — 2 (%)1/3 exp (2) B{(yw)],

(
Hy = exp (22) 4i(y1s), Ha = exp (Z2) Bi(yso), Hs = exp (Z2) 4i(yas),
He = exp (rS_D) [%Ai(yls) +4 (%)1/3 Ai (3’15)],

(

=) E B +2(2)" By (yls)]’

Hg = exp (TSTD) EAL'(J’ZS) + (52)1/314;(3’25)],

1-exp(—tinjps)

+ Ccha,D

~tin; _ .
M. Substituting the expressions of Ny, N, N,

and F = Cinj,D
and N, into Egs. (A12a) - (A12b), one could get the solutions of Eq. (14a) and Eqg. (15a).

Substituting Egs. (Al12a) - (A12b) into Eq. (A7b) and Eqg. (A9b), one could get the solutions

of Eq. (14b) and Eqg. (15b)
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138

139

140

~ _ €im1 ~
Cimip = ————Cmap:Twp < Tp < Tsp, (Al7a)
S+€&mi1tiimiD

_ €im2
CimZD -

St&ima+HUimaD

Cynaps Tp > Tsp- (A17b)

In the injection phase, the values of N; and N, are modified into N{ and N, as follows

—H,N) and N/ H3HgF;—HsHgF;
;=

N/
1= H1 H{HsH;+H,H3Hg—H,HsHg—Hi HyHg’

where H; = exp( WD)A V).

Substituting N; and N, into Eq. (A12a), one has

Cinjo = Ny exp (22) A1) + Nsexp (22) Bi(y1), 7 = Tuup, (A18)

In the chasing phase, the values of N; and N, are modified into N;’ and N, as follows

N, = ﬂ Ny =— oM~ Msfes __ and substituting N}’ and N’ into Eq.
H! H!HgH,+HyH3 Hg—HyHs Hg—H) HyHg
(Al12a), one has
Cenap = Ni' exp (22) Ai(y1) + Ng'exp (22) Bi(y1). 7 = Tup, (AL9)

S2. Model with scale-dependent dispersivity: Derivation of Egs. (17a) - (18b)

Substituting Eq. (16) into Eq. (1c), the dimensionless form of the governing equations

become
0Cm2p kUaZCmZD kn-n 0Cmap
= T — &m2(Cnz2p — Cimz2p) — Um2pCmap, Tsp < Tp < Top,(B2a)
dtp arj D arp

0Cm2p _n azcm2D 1N 0Cm2p
= 2 — &m2(Cmzp — Cimz2p) — Um2pCmazp: ™o = Top- (B1b)
dtp rp 0rh rp Orp

Similarly, one could obtain the dimensionless initial conditions and dimensionless boundary

conditions, the expressions of the dimensionless initial conditions and dimensionless boundary
conditions are the same with Eqgs. (A3a) - (A6b), except that

[/1 9Cm1p(rp.tp) (B2)

6rD

_ [k 0Cm2p(rp,tp)
aTD

D=TsD D=TsD

In the formation zone, we could obtain the boundary condition at r, = ryp



141 kTD aCmZD(TD'tD) — aCmZD(rD'tD) _ (BB)

6rD aTD 1rD - TOD’

142 Then conducting Laplace transform to Eqgs. (B1a)- (B1b), one has

= 02Cp, kn-10Cm = = =
143 SCmap = kn arzw + Z E ar 22 — m2(Cmzp — Cimz2p) — tmzpCmazp, Tsp < 1p < 1pp(B43)

D D D

= 0%Cp, aCm = = =

144 SCnz2p = Tl arzw - rl ar 22 — &m2(Cmzp = Cimzp) = Mmzp Cmzp: T = Top (B4b)
D D D D
145 Substituting Eq. (A9b) into Egs. (B4a) - (B4b), one has
0%Cp, aCm =

146 S L — e} G = 0, Typ S Tp < Top, (B52)

1 0%Cy 1 0Cpy =
147 ; 6T52D - ; aT‘DZD - glzcmZD = O, TD > T‘OD. (BEb)
1 E,
148 wheren=1—--andg = |[—.
k kn
149 Similar to Egs. (Alla) - (Alle) and Eq. (B2), the boundary conditions at wellbore and

150 infinity in the Laplace domain are

= 0Cm1p(rp,s) _ 1
151 [me (rp, 5) — A 2 T2 vy (B6a)
= 0Cm1p(rp,s) _ BcraCinj,po(rwpitinj,p)
152 [me (rp, 5) — A 2 T2 b = oy (B6b)
153 Cm1p (Tsps S) = Cinzp (1sp, S), (Béc)
9Cm1p(rp,s) 0Cm2p(rp,s)
154 [/1 drp ] rD=Tsp [k orp rD=r5D1 (Bﬁd)
0Cmap(rp,s) 0Cm2p(rp,s)
155 [krD 6rD ] TD=ToD o [ 6rD ] TD=T0D’ (BGe)
156 Crmzp (Tops $) = Cmap (Top, S, (B6f)
157 Cinzp (1ps ) |y = 0. (B6g)
158 The general solutions of Eq. (A8) and Eq. (B4) are respectively
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172
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175

176

177

Cmip =71 exP( )A (y1) + Trexp ( )B y1), rwp <71p < Tp, (B7a)

Cimzp = 313 K (e17p) + 15 Ly (e17p), Tsp < 1p < Top, (B7b)
Crnzp = T exP( )A (y3) + Tgexp ( )B (73), b > Top, (B7c)
where m = —: y; = (&) 1/3 (rD + ) T, 75, T3, T,, T and Ty are constants which could be

determined by the boundary conditions; I,,,and K,,, are the m*"-order modified Bessel functions
of the first kind and second kind, respectively.

Substituting Eq. (B6f) into Eq. (B7c¢), one has

T = 0. (B8)

Substituting Eq. (B7a) into Eq. (B6a), one has
Tiex ( ) = A, A (2 1) Al Iwp) (lp —
1exp iOw) — iOw) |+ Texp (557) |5 BiOw)

A(2)" exp (22) Biow)] = B ®9)

Substituting Eq. (B7a) into Eq. (B6b), one has

Trexp (22) [24,0w) = 2(2) " 410w)] + Toexp (22) [£ B -

Ey

/3 Tw ’
2(2)" ewn (22) Biow)| = B (B103)
Similar to the treatment of Eq. (A14d), Egs. (B9)-(B10a) could be combined as the

following equation
Trexp (22) [24,00) = 2(2)" 410w)] + Toexp (22) [£ Bi) -

A (%)1/3 exp (erD) B{(yw)] =F, (B10b)

1—exp(—tinj,DS) exp(—tinj,DS)

where F = Cinjp .

+ Ccha,D
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185

186

187

188

189

190

191

192

193

194

195

196

197

Substituting Egs. (B7a) - (B7b) into Eq. (B6c), one has

Ty exp (22) A;0ns) + Trex p (22) Bi(ys) = TirdpKm(earsn) + Tyrfl I (e17), (B11)
Substituting Egs. (B7a) - (B7b) into Eq. (B6d) yields

Tiexp (22) [£4:010) +4(£)" 410n0)] + Texw (22) [tBi0a0) +2(2) " Bio)| =

—T3ke K, 1 (e17sp) + Tuk{mr2 11 (e17p) + 0.5 7 L1 (e17p) + Isr (e170)1}, (B12)
where K,,_, () is the derivative of the mt"-order modified Bessel function of the second kind,
Ly_1(") and I,4,(*) are the derivatives of the m*"-order modified Bessel function of the first
kind.

Substituting Eqgs. (B7b)-( B7¢) into Eq. (B6e) and Eq. (B6f) yields

—T3key g Kin—1 (e170p) + Tk {mirgp Iy (€170p) + 0.5, 735+ [ I—1 (€170p) +
1 (e17op) 1} = T5 [0.5exp (22) Ai(va) + &7° exp (2) Ai(va) | (B13)
T3ropKm(€17op) + Taroplm (€170p) = Ts exp( )A (V). (B14)

1
where y, = (&)/3 (rOD + )

The values of 73, 75, 73, 74, J5 and T could be determined by solving Egs. (B8) - (B14),

one has
F-WyT,
T, = 0%
1
Wy Ws WiWe W3 F
Ip = I3 + Ta — \
WiWy—WoW3 WiWy—W,oW3 WiW, =W, W3
T = Wi3Wis—Wi12Wie
3 W11Wi6—W13Wis 4
W3 F (W, Wg—Wo W) —Wo F (W Wa—WoW3) % w-
T, = 3 1 We—WoW5 7 1 Wa—Wr W3 and Ty = 147})_'_15:7:}
(W, W50 +W; We) (Wi Wg=Wo W) — (W1 Wo ®@—=W1 W1o) (Wi Wy—WoWs) Wie

where W, = exp( )[ A;(yy) — A( )1/3 A;(yW)],

10
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199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

o) [ B~ 2(2) " exp (22) Bl |

TsD TsD

W3 = exp () Ai(V1s), exp(z—

)

)BL(Y15) Ws = 1ipKm(e175p), We = 15 I (&17p),
)1/3
)"

)
=) [ (V1) + 2
)

W, = exp (% A; (}’15)]
Wy = exp (22) [3Bi0no) +2(2) " BiOno),

Wo = —ke 15" Kim—1(e175p),

Wio = k{mrip  m(e11p) + 056175 [In—1 (&17D) + Im11 (e17p)]},
Wiy = —keirgpt? Km_1(e170p),

Wia = k{mrgp I (e170p) + 0.561755"  [In—1 (€170p) + a1 (€170p)13,

Wiz = 0.5exp (2) 4 (ya) + &, exp (22) 47 ().

Wis = 1opKm(&170p), Wis = 19pI;m (€170p), Wi = exp( OD)A (y4) and © =

Wi13Wis—W1,Wie
W11Wi16—Wi3Wiy

In the injection phase, the values of 7; and 7, are modified into 7;' and 75 as follows

Wi Ws
Wi W,—W, W;

Fi—-Wy Ty
wy

WiWe r_ W3F,

T = L —
1 wiw,-wiws "4 wlw-wlwy’

L
9:7;_

T3+

WisWis—W1,Wig
WasWas WaaWas 71 and 7, =
W11 Wi16—Wi13Wis

where W, = exp( WD)A ) W, = eXP( WD)B ), T3 =

W Fy (Wi We—W, Wy ) =Wy Fy (W] Wa—W, W3)
(W] Ws@+W{ W, ) (W] Wa—W, Wy ) —(W{ Wo®—W{ Wi ) (W] Wy=W, Ws)'

Substituting 77" and 75, into Eq. (B7a), one has

Cinjo (s $) = T3 exp (32) Ai(y1) + Tyexp (32) Bi(yy), (B15)

In the chasing phase, the values of 7; and 7, are changed into 77" and 7, as follows

F-Wo T . W{Ws

WiWe n__ WsR
w! 72 T wlwe-wiws

TII —
1 wiw,-wiws 4 wlw,—wiws’

:7"3/I +
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218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

WisWis—W1,Wie
W11Wi16—Wi13Wis

T T W3 Fp (W1 We =W, Wy ) =Wy Fp (W] Wy— W, W)
4 >

"no_ —
where T = T (W ws0+ W] We) (W We =Wy Wy ) — (Wi Wo®—W{ Wio) (W] Wy— W) Ws)'

Substituting 73" and 75" into Eq. (B10a), one has

Cenan (rwn,s) = 71" exp (22) 4 (yy) + T3 "exp (22) By (on), (B16)

Substituting Egs. (B7a) - (B7¢) into Eq. (A1b) and Eq. (A1d), one has

_ €im1
Cimip = ————Cnips Twp S Tp < Tsp, (B17a)
St€&€im1tUlimiD

Cimap = Lémzm Tp > Tsp. (B17b)

St&imzt+Uim2p

S3. The MIM model and solution in an aquifer-aquitard system

S3.1 Mathematical model

Assuming that advection, dispersion and sorption involved in the solute transport in the

aquifer-aquitard system, the governing equations are

OmiRm1 % = %% (Ta1|va1| %) — OmiVar % — 01 (Cny — Cim1)
~Ombm1Cm1 — B“Z,D“a% e 9%’16% WS TST, (Cla)
Oim1Rim1 acai;m = w1(Cn1 = Cim1) = Oimibim1 Cim1, Tw < 7 <15, (Clb)
Omz2Rm2 % = %% (Tazlvazl %) — OmaVaz % — w3(Cz — Cima2)
—Om2bm2Cma — eu;n%ag% b + elszDl% yep' > 15, (Clc)
Oim2Rim:2 acal% = w2(Cnz = Cimz) — Oimzttim2Cima, 7 > 75, (C1d)
Bum Rum 22 = 0,10, 24 — 60, (Cm ~ Cuim) = OumbtamCume 22 b, (C29)
OvimRuim acautim = Wy (Cum — Cuim) — OuimbuimCuim: Z = b (C2b)
O1mRim ag% = O0imDy a;% — 0 (Cim — Ciim) — OimtimCuim, 2 < =D, (C3a)

12
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237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

9Ciim
Qlileima_lt = 0;(Crm — Ciim) — OrimtiimCiim, 2 < =D, (C3b)

where the subscripts “u” and “I” refer to the parameters in the upper and lower aquitard,
respectively; the subscripts “m” and “im” refer to the parameters in the mobile and immobile
regions, respectively; the subscripts ‘1’ and “2” refer to the parameters in the skin and
formation regions, respectively; C,,; and C;,,,; are the mobile and immobile concentrations [ML]
of the skin zone, respectively; C,,, and C;,,,, are the mobile and immobile concentrations [ML™]
of the formation zone, respectively; C,,, and C,;,, are the mobile and immobile concentrations
[ML] of the upper aquitard, respectively; C;,,, and C;,,, are the mobile and immobile
concentrations [ML®] of the upper aquitard, respectively; t is time [T]; 7 is the radial distance [L]
from the center of the well; ;, is radius of the well [L]; r; is the radial distance [L] from the
center of the well to the outer radius of the skin zone; z represents the vertical distance [L]; b is
the half of the aquifer thickness [L]; a; and a, represent the longitudinal dispersivities [L] in the
skin and formation zones, respectively; D, and D; are the vertical dispersion coefficients [L2T]
of the upper and lower aquitards, respectively; v,; and v,, represent the average radial pore

velocity [LT™%] of the skin and formation zones, respectively; and v, = 9”—1 and vy, = 6”—2; Uy
mil m2

and u, represent Darcian velocity [LT™] of the skin and formation zones, respectively; 1, tim1.,
Umzs Kim2 Hum, Huim, Lim @aNd Wy, are reaction rates for first-order biodegradation, or
radioactive decay, or the first-order reaction rate [T™1], respectively; 8,1, @im1, Omz and 6,5

are the mobile and immobile porosities [dimensionless] , respectively; 6,,,60uim> O1m and 0,

are the mobile and immobile porosities [dimensionless], respectively; R,,; = 1 + ";—K‘i and

mil

Rimi =1+ Z’_’ﬁ are regarded as retardation factors [dimensionless] for the mobile and immobile

mi

regions of the skin zone, respectively; R, =1+ pe”—Kd and Rjpp =1+ ’;’?ﬁ are regarded as

m2 im2

13



258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

retardation factors [dimensionless] for the mobile and immobile regions of the aquifer,

respectively; Ry, = 1+ ’;”—K" and R;, =1+ Z”—"{d are regarded as retardation factors

um um

[dimensionless] for the mobile and immobile regions of the upper aquitard, respectively; R;,, =

1+ pg”ﬁ and Ry, =1+ ’;”—'K" could be regarded as retardation factors [dimensionless] for the

m lim

mobile and immobile regions in the lower aquitard, respectively; K is the equilibrium
distribution coefficient for the linear sorption process [M*L]; p,, is the bulk density [ML] of
the aquifer material; w,, w, and w, are the first-order mass transfer coefficients [T™] of the
aquifer, upper aquitard, and lower aquitard, respectively.

Subject to the following initial and boundary conditions

Cn1 (1, D=0 = Cim1 (, D=0 = Crna (1, Ole=0 = Cima (1, Ole=0 = Cum (1,2, )| ¢=0 =
Cuim(1, 2, )| t=0 = Ci (1,2, D) t=0 = Ciim (1,2, )|;=0 = 0,7 = 13y, (C4)

Cm2 (T, t)lr—wo = Cimz (T‘, t)lr—wo = Cum(r’ Z, t)lr—mo = Cuim(rf Z, t)lr—mo =

Com(, 2, )50 = Ciim (1,2, ) |, 5o = 0,7 =15, (C5)
Cri(r,t) = Cyn(r,z=b,t), 1, < r <rs, (C6a)
Cra2(r,t) = Cym(r,z =b,t), r > 15, (Céb)
Cr1(r,t) = Cppp(r,z = =b,t), 1, < 1 <15, (C7a)
Cra(r,t) = Cppp(r,z = —b,t), r > 1. (C7b)

The flux concentration continuity is applied in boundary condition of the wellbore, and one

has
9Cm1 (1)
[val,injcml (r, ) — a1|Vayimj alrr = [Val,injcinj(t)]|r=rw’ 0 <t < tin, (C8a)
9Cm1 (1)
[val,chacml (T, t) - a1|va1,cha| alrr . = [val'ChaCCha(t)]|r=rw’ t> tinj, (C8b)
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280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

where C;,;(t) and C.pq (t) represent the wellbore concentrations [ML®] of tracer in the injection
and chasing phases, respectively.
Considering the mixing effect of the injected tracer with the original water in the wellbore,

the variations of concentration in the injection and chasing phases could be described as

ACinj

Viw,inj 7] = —&Va1,inj () [Cinj (©) — Co, 0 < t < tyyj, (C9a)
dCcha

Vw,cha dth = _Eval,cha(rw) [Ccha(t)], t > tinj. (C9b)

3.2 Derivation of the analytical solutions

. . . C C; C
The dimensionless parameters are defined as: C,,1p = Cil Cimip = ‘Cil Cozp = 22,
0 0

_ Cim2 _ Cy _ Cin}' _ Ccha _ Cum _ Cuim _Cim
CimZD - ) CwD - C_o’ Cinj,D - Co Ccha,D - y YuymD — ) CuimD - ) ClmD - )

Co Co Co Co Co
Clim |Alt |Altin r Tw z a3 tm1
C . =—tnhn=— t:; = — 1y = — = = Zn = — = = . =
limD Co ' 0T @Ry VD T gzg, 0 TD T o Twp T 000 4D = HUmip 2 Himip
2 ) 2 2 ) 2 2 .
a5 Rmilim1 — asUm2 U — a5 Rmilimz M — a5 Rmlm Ly — a5 Rmlim M —
Rim1A y Um2D 4 ' im2D Rima2A y fumD RumA y HfuimD RymA y #lmD
a3 Rmbm a3 Rmkim Q : : : :
s Uiimp = ——=and A = . The dimensionless forms of the governing equation
ARpm RimA 4B Oy
could be rewritten as
0Cmip _ A azleD 1 0Cmip euma%Du 9Cymp
oty rp o2 N &m1(Cmip — Cim1p) — Um1pCmip 246,50 0zp |,_, +
01ma3D; Cimp
— s = < <
2Ab29m1 azp Z=—1' TWD —= TD — TSD! (ClOa)
aCim1D _
o, €m1(Cmip — Cim1p) — Him1pCimip: Twp < Tp < Tsp, (C10b)
0Cm2p _ 1 azszD 1 0Cma2p euma%Du 9Cymp
aty rp 012 o ar, | Em2 (Cmzp — Cim2p) — Mm2pCmzp 246,507 0zp |, +
01ma3D; Cimp
—m_2_ - mb Th > T C10c
24b%0y, 0zp |,__, D 7 "D ( )
aCimZD _
Totp €im2(Cmzp — Cim2p) — Wim2p Cimzp: o > Tsp, (C10d)
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298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

0CymbD lea%Du 92 CumbD

atp - Ab2Ry,;, 0z €um (Cump — Cuimp) — Mump Cump,Zp = 1,tp > 0, (Cl1a)

6(‘;% = €uim (Cyump — Cuimp) — Huimp Cuimp, Zp = 1,tp > 0 (Cl11b)

agltTZD = 1:.;120;%1:1 aZaCZlZz:D — &m(Cump = Ciimp) — Mimp Cimp,Zp < —1tp >0, (C12a)

acau% = €1im(Cimp — Climp) — Miimp Ciimp: Zp < —1,tp >0, (C12b)
w03 _ w1a3Rm1 _ wa? _ w2a%Rm1 _ wyua@3Rm1

where €,,; = —=, €1 = =22 ¢, = = =
ml A9m1, iml AeimlRiml, m2 Aemz, im2 AeimzRimZ’ um AeumRum’ uim

wu“%er _ wla’%le € _ wla%le
m — lim — .
AByimRuyim’ AOmRim’ AOimRiim

Substituting the dimensionless parameters into Egs. (C4) - (C7), one has

Crnap (rps tp)lep=0 = Cimip (ps tp)lep=0 = Cmzp (T, tp)lep=0 = Cimzp (b, tp)lep=0 =

Cump ("0, Zp, tp)ltp=0 = Cuimp ("p, Zps tp)ley=0 = Cimp ("ps Zp, tp)lep=0 =

Ciimp (p, Zp, tp)lep=0 = 0, (C13)
Cmzp ("0, tp) |l psco = Cimap Ty tp) lrp—00 = Cump (Tpy Zp, tp) | 2pse0 =

Cuimp (T, Zp, tp) | 25500 = Cimp (1ps Zp, )| 2p5—c0 = Climp ("ps Zp, tp) | 2500 = 0, (C14)
Con1p("p, tp) = Cump(1p,2p = 1,tp), Typ < 1p < Ty, (C153)
Cin2p("p, tp) = Cump(1p,2p = 1,tp), Typ < 1p < Typ, (C15b)
Cmzp (1p, tp) = Cimp (1p, 2p = =1, tp),1p > T5p, (C15c)
Cin2p ("p, tp) = Cpnp (rp, zp = —1,tp), 1p > Tsp. (C15d)

Conducting Laplace transform to Egs. (C11a) - (C11b), one has:

__ Rm a% Dy 92 Cumb

SC_'umD = ABZRym 073 - (Sum + ﬂumD)CumD + gumc_'uimDaZD =1, (C16a)

SC_'uimD = guim(c_'umD - C_‘uimD) — Hyimbp CuimDa Zp =1 (Cle)

Substituting Eq. (C16b) into Eq. (C16a), Eq. (C16a) could be rewritten as
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318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

2 _
RmiasDy 92Cyump _

EuméEuim ~ _
ADZRyy 073 (s + &um + Uump — —) Cump = 0,2p = 1.

StUyimptEuim

Similarly, Egs. (C12a) - (C12b) become:

Rm1@5D; 0%Cimp _

ElmElim ) ~
s+e¢ ——F——|C =0,zp, <-—1.
ADb2R;, 62,% ( + Im + Uimb ImD D =

StUimDtElim

Egs. (C13) - (C15d) and Eq. (C17) compose a model of the second-order ordinary

(C17)

(C18)

differential equation (ODE) with boundary conditions, and the general solution of the Eq. (C17)

is
Cyump = A% + Bje%?D 7, > 1.
Similarly, the general solution of Eq. (C18) is
Cimp = ApeP1%0 + B,eP2%p 7, < —1,
where a; = \/s + ey + fump — —22Mm g, = —\/s + Eym F ymp — ——mum
S+Uyimp+Euim S+Huimb +Euim

SimElim Eim€lim
S+en + — —mfim__and b, = — |5 + & + S ——
\/ tim T Himp S+UiimD+Elim 2 tm T Himp StHUiimptElim

Substituting Egs. (C19a) - (C19b) into Egs. (C15a) - ( C15d), one has

Cump = B1e%%P, zp > 1,
C_‘lmD = AZeblzDa Zp < _11
Where B1 = _mDexp (_az), BZ = O, A1 =0 and AZ = C_'mDexp (bl)

Thus, the solutions of the aquitards are

Cump = Cmipexp (ayzp — az), ryp < 1p < Tsp,

Cump = Cmapexp (azzp — az),rp > Tsp,

Cyuimp =

Euim
Cumpr D = Twp»

St+eyimtHhuimbD
Cimp = Cuipexp (b1zp + by), Tywp < 1p < Typ,

Cimp = Capexp (bizp + by),rp > 1sp,

(C19a)

(C19b)

(C20a)

(C20b)

(C3a)
(C21b)

(C21¢)

(C22a)

(C22b)
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339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

~ Elim ~
Cijmp = ——C p =T, C22c
limD S+E1m+Rlimb ImDy "D = "wD>» ( )

The dimensionless forms of Egs. (C8a) - (C9b) become

ac (rp,tp)
[me - A%DDD = Cinjp(tp), 0 <tp < tinjp, (C23q)
=TwD
ac (rp,tp)
|Cmap = 2AZmEIBID | = Copp(tp), t > tinj, (C23)
r="wbD
dCinjp(tp)
Binj——— —mDP =1 - Cinjp(tp), 0 < tp < tinjp, (C24a)
dtp
dCchap(tp) _
ﬂcha CdatD — ~Lcha,D (tD)’ tp > tinj,D’ (C24b)
o Vw,injTwD _ Vwcha’wbD
where B, = T and B.pa = T

After applying Laplace transform to Egs. (C10a) - (C10b), one has

A 8%Chmip 1 0Cmip
rp Or} rp Orp

Bum @3 Dy, Cump
240 1b% 9zp ,_q

SEmID = — Em2 (EmlD - EimlD) - :umlDC_‘mlD - +

01ma3D; Cimp
2Ab29m1 aZD

Z=_1, Twp < 1p < Tgp, (C25a)

SC_'imlD = &im2 (C_'mlD - CTimlD) - .uiml[)c_'imlD’er <Tp < Tsp. (C25b)

Substituting Eq. (C25b) into Eq. (C25a), Eq. (C25a) could be rewritten as

iazc_mlD _ iaérmD _ (8 +u _ Emi€im1 ) ~ _ Bum @3 Dy Cump +

rp 0} rp Orp mi mib StUimiDtEim1 miD 240 0% dzp 1,4
81ma3Di 9Cimp
—r 2 o Twp < Tp < T'sp. C26
2Ab2 eml aZD W'wD =1'D = I'sD ( )

z=-1

After applying Laplace transform to Egs. (C10c) - (C10d), the following equations would be

obtained
~ _n 62CTsz n 9Cmz2p Bum“%Du Cump
SCnzp = o or2 S €m2(Conzp — Cimap) 246307 9zp | _, +
01masD; 8Cimp
— e = T T C27a
24b20,,, dzp Z=—1’ D > sD» ( )
SCimap = €m2(Cmap — Cimap) — Mim2p Cimzps Tp > Tsp- (C27b)
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358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Substituting Eq. (C27b) into Eq. (C27a), one has

2~ _
~ N 0*Cmz2p n 0Cmap ( Em2€im2 ~

5Cap = L — D %Cman (o gy o — —im2fmz )
m2D = 7T 52 91D m2 T Hmap — 7 imap+eimy) ~M2D

gumagDu 3Cump
2A6m2b2 aZD

01ma3D; Cmp
2Ab26m2 aZD

,Tp > Tsp. (C28)

z=-1

z=1
Substituting Eq. (C21a) and Eq. (C22a) into Eq. (C26), one has

A 0%Cpip 1 9Cmip
rp 0rd rp Orp

~ E3Cpip = 0,1yp < 1p < Top, (C292)

Substituting Eq. (C21b) and Eq. (C22b) into Eq. (C28), one has

i 62C_‘mZD _ i aC_‘sz

—E,Chop =0,1p > C29b
D arg D arD 4%“m2D v 'D SD» ( )
2 2
Em1€im1 a260umazDy | b16pmas; Dy 1
where E; = s+ €, + - — + and E, ==(s+ &, +
3 ml Hm1p S*+UimiDptEim1 2461 b2 24b 20, 4 n m2
I _ Em2€ima2 _ azguma%Du blglma%Dl)
m2b S+Uimap+Eim2 2A0m2b? 2Ab20m;

The boundary conditions of the wellbore and infinity in the Laplace domain are

1

[Conap — 222202 o Ty O <t S tin, (C30a)
[Emw B A%I(JTD'S) TD=TwD N ﬁChaCi(’;j[;)’Z’E:":’i’)tinﬁD)’ tp > tini,D’ (CBOb)
Cnip (Tsp, ) = Crnap (Tsp, S, (C30c)
3Cm1p (.5 _ 3Cman(rp,5) | (C30d)
rp TD=Tsp 9rp Tp=Tsp
C_mZD(rD'S)er—)oo = 0. (C30e)

Therefore, the general solutions of Eq. (C30a) and Eq. (C30b) are
— D D
Cmip = T1exp (ﬁ) Ai(p1) + Trexp (ﬁ) Bi(¢1), rwp S 1p < Top, (C31a)

Cmap = Tz exp (%D) A;i(@,) + Tyexp (%D) Bi(¢3), 1p > 15p, (C31b)
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376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

1/3
where @, = (%) (rD +3 ;E ) @, = E,4 1/3 (rD + é), T;, T,, T; and T, are constants which

could be determined by the boundary conditions.
Substituting Eq. (C31b) into Eq. (C30e¢), one has
T, =0.

Substituting Eq. (C31a) into Eq. (C30a), one has
T.e ( ) 1 1(E A Twp) |1 _
1€Xp i(pw) — Ai(pw) | + Tzexp (25 ) |5 Bi(ow)

1(2)" Bitpn)] = i

Substituting Eq. (C31a) into Eq. (C30b), one has
Tyexp (222) | A (2 )1/3,4’ o) 11 (g,,) —
1exp Pw) — i(pw) | + Tzexp (25 ) |5 Bi(ow)

1(2)" Bt =

and Fz BchaCinj, D(TwD tinj, D)

where ¢, = (%)1/3 ( Twp t 4/11,5 ) F = (sBehat1)

1
s(sBinj+1)
Substituting Egs. (C31a) - (C31b) into Eq. (C30c), one has

Ty exp (ZA)A (@15) + Tzexp (M) Bi(¢15) = Ts exp ( )A (@25,

where gus = (3)' (0 + 535). 020 = £ (0 + ).

Substituting Eqgs. (B31a) - (B31b) into Eq. (B30d), one has

Tlexp( )[ Ai(p1s) +A( )1 A; (4’15)] + Tzexp( )[ Bi(¢1s) +/1(E3) v B; (<P1s)]

Tzexp (rSD) [%Ai((l’zs) + E4-1/3A,i((p25)]-

The values of Ty, T,, and T5 could be determined by solving Egs. (C33a) - (C35)

F—G,T

T, =
1 Gy

(C32)

(C33a)

(C33b)

(C34)

(C35)
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395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

G3GgF—GsGgF
G1GsGy+GG3Gg—GoGsGe—G1GaGg

TZ =

T3 = y
G1Gs G1Gs Gs

where G; = exp( ) [ Ai(py) — /1(E3)1 A; (‘Pw)]

w 1 E3 1/3 ’
G, = exp rZ—D) [EBi((pw) - )1(7) B; (‘Pw)],

Gs = exp (22) Ai(ss), Gy = exp (22) Bilgrs), Gs = exp (Z2) Ai(g2s),

=) [%Ai((pls) +2 (%)1/3 Al (gpls)],
E Bi(p15) + 4 (%)1/3 B;(q)ls)],

S 1 !
Gg = exp (rTD) I:EAi((pZS) + E41/3Ai(<P25)]7
1-exp(—tinjps) exp(—tinjps)
- - R —

and F = CiTLj,D + Ccha,D

In the injection phase, the values of T; and T, are modified into T, and T, as follows

F1 G2T2 dT 6368F1—6566F1
G; 2 = G1G5G7+GyG3Gg—GyGsGe—G1 G4Gg’

T =
' 1 w 4 1 w.

where G; =~ exp (rz—f) Ai(py) and G; = ~exp (rz—f) B;(¢,).
Substituting T; and T, into Eq. (C31a), one has

Cinj.o(wp. ) = T exp (22) Ai(p) + Texp (22) Bilpy), (C36)

In the chasing phase, the values of T; and T, are modified into T; and T, as follows

—G,T, and T = G3GgF—G5Gg P
2

II_
= G! Gl GsG,+GhG3Gg—GaGsGg—GlGyGg'
1 1547 20348 2b5U6 1Y44g

Substituting T;" and T," into Eq. (C31a), one has

Cenap (wp,S) = T1 exp (22) Ai(pw) + Ty'exp (Z2) Bi(py). (C37)
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413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

Conducting Laplace transform on Eq. (A4c), one has

1—exp(;tinj'Ds) + Ccha’D exp(_tinj,Ds)1 (C38)

Cwp(Twp,S) = Cinjp B

where Ci,j p and Cepq,p could be determined by Egs. (C36) - (C37).

Substituting Egs. (C31a) - (C31b) into Egs. (C33a) - (C35) and Eq. (C38), one has

Cmip = Tr exp (;_i) Ai(@1) + Trexp (Z_i) Bi(¢1), rwp <71p < Tgp, (C39a)

Cmap = T3 exp (%D) Ai(@3),1p > 1gp. (C39Db)

S4. Numerical simulation by COMSOL Multiphysics

In this study, the numerical simulation based on the Galerkin finite-element method is
conducted in the COMSOL Multiphysics platform to test new solutions.
S4.1 Models of Egs. (14) — (15): Confined aquifer

In our COMSOL simulation for the radial dispersion in a confined aquifer, triangles in the
r-z plane are used as the elements, and it is easy to refine the elements near both the well and the
skin-aquifer interfaces, as shown in Figure S2. The number of mesh points is 759, and the
number of triangle elements is 1386. The time step increases linearly, and the initial time step is
5s, with a total simulation time of 1000s. The parameters used in the numerical simulation
are: r, = 2.5cm; 7z = 12.5¢M; Qinj = Qcng = 100ml/s; t;,; = 300s; a; = 2.5cm; a, = 2.5cm;
0,, = 0.30; 8, = 0.01; w = 0.0001s; R,;; = Riy1 = Rz = Rimz = 1; B =50 ¢cm; p,y =
Hmz = Him1 = Himz = 1077 5™, and hy, inj = Ry, cha = B.
S4.2 Models of Egs. (19) — (20): Leaky-confined aquifer

The temporal and spatial discretization of the aquifer in the numerical simulation is similar
to the one used in Section S4.1. To decrease the numerical errors, the size of triangle cells is

smaller around the aquifer-aquitard interface. The number of mesh points is 2885, and the
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435  number of triangle elements is 5592. Figure 1 shows the comparison between the analytical and

436  numerical solutions, and the agreement is well. The parameters of the aquifers used in the

437  numerical simulation are from Section S4.1, while the others are: R, = Ryim = Rim = Riim =
438 1, w, = w; = 0.0001 5%, 6,,, = 0, = 0.1, By = Otim, = 0.01, Ly, = Husim = Mim = Hiim =
439 1077s%, D, = D, = 0.0005 cm?/s.

440  Sb. The fitness of the experimental data by Chao (1999)

441 Figures 4a and 4b show that the sensitivity of 1, on BTCs is the least. To answer the

442  question that if the influence of V,, could be ignored, we compare solutions of this study with and
443  without the mixing effect, and the experimental data are also included for the comparison, as
444 shown in Figure S4. The results show that two curves are almost the same. The reason is that the
445 1, is too small in the experiment of Chao (1999). Different sensitivity of 1/, on BTCs has been

446  obtained for field applications in which 14, is significantly greater than that used by Chao (1999).

Injection Q

% Cum Cuim Vum eum eujm aum IJum IJ uim

Cw(t .

. Aquitard =

......... , S SN SN SN | S SN | ¢ 4+ 4 4+ 4
: O
Si
-{ N{ Aquifer C, C, V. 6, 6, 0 W M, My |2p
c

s N
v v v v v v v v v v v v v

Aquitard
C.'m Cﬁm me elm 9,,',,, alm p Im ul:'m
447

448  Figure S1. The schematic diagram of the radial dispersion in the aquifer-aquitard system.
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451  Figure S2. The grid mesh of the skin-aquifer system used in the Galerkin finite-element

452  COMSOL Multiphysics program.
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454  Figure S3. The grid mesh of the skin-aquifer-aquitard system used in the Galerkin finite-element

455  COMSOL Multiphysics program.
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Figure S4. Fitness of observed BTC by the solutions of this study.
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