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Abstract.  

The mechanism of radial dispersion is important for understanding reactive transport in the subsurface and for 15 

estimating aquifer parameters required in the optimization design of remediation strategies. Many previous 

studies demonstrated that injected solute firstly experienced a mixing process in the injection wellbore, then 

entered a skin zone after leaving the injection wellbore, and finally moved into the aquifer through advective, 

diffusive, dispersive, and chemical-biological-radiological processes. In this study, a physically-based new model 

and associated analytical solutions in Laplace domain are developed by considering the mixing effect, skin effect, 20 

scale effect, aquitard effect and media heterogeneity (in which the solute transport is described in a mobile-

immobile framework). This new model is tested against a finite-element numerical model and experimental data. 

The results demonstrate that the new model performs better than previous models of radial dispersion in 

interpreting the experimental data. To prioritize the influences of different parameters on the breakthrough curves, 

a sensitivity analysis is conducted. The results show that the model is sensitive to the mobile porosity and 25 

wellbore volume, and the sensitivity coefficient of wellbore volume increases with the well radius, while it 

decreases with increasing distance from the wellbore. The new model represents the most recent advancement on 

radial dispersion study that incorporates a host of important processes that are not taken into consideration in 

previous investigations. 
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1 Introduction 

Radial dispersion refers to a process of reactive transport under the radial flow condition. One unique 

feature of radial dispersion (as compared to unilateral dispersion where the flow velocity is unilateral) is 

that the dispersive transport becomes progressively weaker when the radial distance from the 

injection/pumping well becomes larger (or the radial flow velocity becomes smaller), thus the relative 35 

importance of molecular diffusion (which is assumed to be constant) versus the dispersion becomes 

progressively stronger with larger radial distance. The radial dispersion problem is both theoretically 

interesting and practically important in many fields, like chemical engineering (Davis and Davis, 2002), 

environmental science (Reinhard et al., 1997), and hydrogeology (Webster et al., 1970). Although 

numerical modelling is probably inevitable and more powerful than the analytical modelling in 40 

describing radial dispersion, especially put forward for heterogeneous aquifers with complex initial and 

boundary conditions, the numerical errors and computational cost are not always trivial issues and have 

to be considered by the engineers. As an alternative, many analytical models have been developed for 

radial dispersion around an injection well under rather simplified conditions. Such analytical models 

can fulfil a host of tasks such as 1) prioritizing the importance of different controlling parameters 45 

through a sensitivity analysis; 2) benchmarking the numerical solutions to elucidate the possible 

numerical errors such as numerical dispersion and artificial oscillation which are notorious for 

advection-dominated transport problems; 3) providing a quick screening tool before implementing a 

full-scale comprehensive study.  

Because of above-mentioned benefits, significant efforts have been put forward over many decades on 50 

developing advanced analytical models of radial dispersion. Some examples include the works of 
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Hoopes and Harleman (1967), Gelhar and Collins (1971), Tang and Babu (1979), Moench and Ogata 

(1981), Chen (1985), Chen (1986), Hsieh (1986), Tang and Peaceman (1987), Yates (1988), Falade and 

Brigham (1989), Chen (1991), Novakowski (1992), Philip (1994), Veling (2001), Huang and Goltz 

(2006), Chen et al. (2007), Gao et al. (2009a), Chen et al. (2011), Cihan and Tyner (2011), Veling 55 

(2011), Chen et al. (2012), Wang and Zhan (2013a), Hsieh and Yeh (2014), Zhou et al. (2017), Chen et 

al. (2017), Wang et al. (2018), Huang et al. (2019), Li et al. (2020), Wang et al. (2020) and so on. A 

general trend of such developments is to provide models that are more robust and can better represent 

the physical reality. However, despite the enormous efforts up to date, some significant pitfalls still 

exist and become roadblocks for quick and accurate interpretation of observed data in the experiments. 60 

A major task of this research is to eliminate such pitfalls which are briefly illustrated in the following.  

In a well-aquifer system with radial dispersion, the region could be horizontally divided into three parts: 

wellbore, skin zone, and aquifer formation zone. The skin zone refers to the disturbed region around the 

well caused by drilling and construction practices or well completion (Yeh and Chang, 2013;Chen et al., 

2012; Li et al., 2020;Li et al., 2019;Huang et al., 2019). It is spatially between well screen and aquifer 65 

formation zone. Correspondingly, the injected solute may experience three processes from the wellbore 

to the aquifer formation zone.  

Firstly, the injected solute goes through a mixing process with native (or pre-injection) water in the 

wellbore at the early stage of injection, which is called mixing effect. Probably due to the small radius 

of the well, the mixing effect has been overlooked by almost all the analytical solutions mentioned 70 

above except Novakowski (1992), Wang et al. (2018), Shi et al. (2020) and Wang et al. (2020), e.g., 

either by assuming that the well radius was infinitesimal, or assuming that the solute concentration in 
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the wellbore was the same as the concentration of the injected solution (Hoopes and Harleman, 

1967;Veling, 2011;Zhou et al., 2017). Consequently, the solutions developed without considering the 

wellbore mixing effect may overestimate concentration values in both the wellbore and the aquifer 75 

(Novakowski, 1992;Wang et al., 2018;Shi et al., 2020; Wang et al., 2020). The reason is that the solute 

concentration in the wellbore is initially zero (when the aquifer is free of solute before the injection), 

and then increases steadily until it is up to the maximum, which is equal to the concentration of the 

injected solution.  

Secondly, the solute enters the skin zone after leaving the wellbore. Comparing with aquifer formation 80 

zone of interest, the dimension of the skin zone is much smaller, e.g., ranging from 0.1 m to several 

meters, and it is ignored or included in wellbore. In another word, the effect of the skin zone on radial 

dispersion (named as skin effect) was negligible. However, numerous previous studies demonstrated 

that the existence of a skin zone might significantly alter the mechanism of groundwater flow and solute 

transport around well (Chen et al., 2012;Hsieh and Yeh, 2014;Yeh and Chang, 2013; Li et al., 2020;Li 85 

et al., 2019). This is because the physical properties (such as permeability, porosity, dispersivity, and so 

on) of the skin zone are often vastly different from their counterparts of the formation zone. Previously, 

studies on the skin effect were mainly concentrated on the groundwater flow process around the well, 

and much less attention was paid to solute transport processes. To date, few studies considered the skin 

effect among the above-mentioned analytical models on radial dispersion, such as Chen et al. (2012), 90 

Hsieh and Yeh (2014), Huang et al. (2019) and Li et al. (2020). Chen et al. (2012) proposed an 

analytical solution of solute transport with skin effect to investigate the influences of dispersivity on 

radial dispersion, soon after, Hsieh and Yeh (2014) extended the model of Chen et al. (2012) by taking 
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into account a third-type (Robin) condition. Huang et al. (2019) demonstrated that the skin effect has a 

major influence on observed breakthrough curves (BTCs) for radially convergent tracer tests. Recently, 95 

Li et al. (2020) developed the analytical model for radial reactive transport with skin effect to 

investigate the impacts of dispersivity, effective porosity and mass transfer coefficient in skin zone on 

radial dispersion. The above-mentioned studies demonstrated the skin effects are significant for radial 

dispersion. 

Thirdly, the solute moves into the formation zone from the skin zone by advective, diffusive, and 100 

dispersive processes. Such processes have been widely described by the traditional advection-dispersion 

equation (ADE) which is based on Fick’s law; however, many recent studies demonstrated that the 

ADE model mainly worked well for homogeneous (or nearly homogeneous) porous media. As for 

reactive transport in heterogeneous media, the BTCs may exhibit a host of non-Fickian characteristics 

such as early arrival and heavy tailing (Di Dato et al., 2017;Molinari et al., 2015). Alternatively, many 105 

non-Fickian transport models have been developed, such as the multi-rate mass transfer model (MRMT) 

(Le Borgne and Gouze, 2008;Haggerty et al., 2001), mobile-immobile model (MIM) (van Genuchten 

and Wierenga, 1976;Zhou et al., 2017;Wang et al., 2020), continuous-time random-walk models 

(CTRW) (Dentz et al., 2015;Hansen et al., 2016), fractional-derivative ADE models (fADE) 

(Soltanpour Moghadam et al., 2022;Chen et al., 2017), a combination of MRMT and CTRW (Kang et 110 

al., 2015), and so on (Zheng et al., 2019;Lu et al., 2018). Although the models of MRMT, CTRW and 

fADE perform well in modeling non-Fickian transport, it is not easy to obtain the analytical solutions of 

these models. Meanwhile, these theories are usually not easy to apply for solving regional-scale 

transport problems, as pointed out in a recent study (Zheng et al., 2019). MIM is an extension of ADE 
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by considering both flowing and stagnant regions in porous media and mass transfer between them (van 115 

Genuchten and Wierenga, 1976;Zhou et al., 2017;Wang et al., 2020), Zhou et al. (2017) and Wang et al. 

(2020) derived the MIM solutions of radial dispersion. However, the skin effect and the scale effect 

were ignored in their studies, which will be investigated in this study. Besides the MRMT, MIM, 

CTRW, and fADE models, another approach to represent the heterogeneity is to use a scale-dependent 

dispersivity (or dispersion) in the ADE or MIM models (Haddad et al., 2015;Gelhar et al., 1992). Gao et 120 

al. (2009a) and Chen et al. (2007) discussed radial dispersion and found that the scale-dependent 

dispersion effect was not negligible. There are also experimental evidence for the scaling of dispersion, 

mixing, and reaction (Leitão et al., 1996;Edery et al., 2015). 

The differences among the currently available analytical solutions for radial dispersion have been 

reviewed and summarized in Table 1. As one can see from this table, the mixing effect in the wellbore 125 

was ignored in all of the models except for Novakowski (1992), Wang et al. (2018), Shi et al. (2020) 

and Wang et al. (2020). Only Chen et al. (2012), Hsieh and Yeh (2014), Huang et al. (2019) and Li et al. 

(2020) took the skin effect into account. The differences among the solutions of Tang and Babu (1979), 

Moench and Ogata (1981), Hsieh (1986), Tang and Peaceman (1987), Yates (1988), Cihan and Tyner 

(2011), and Chen et al. (2012a) mainly consist in the boundary conditions, source-injection types 130 

(instantaneous or continuous), and initial conditions.  

In summary, no existing analytical model has ever considered the mixing effect, skin effect, scale effect 

and media heterogeneity effect (which is described using MIM) simultaneously. Although the numerical 

method is more powerful than the analytical method for problems with complex initial and boundary 

conditions and heterogeneous aquifers of interest, numerical errors could not be avoided easily for the 135 
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MIM models of concern here, such as numerical dispersion and numerical oscillation issues (Zheng and 

Wang, 1999;Wang and Zhan, 2013b). Meanwhile, the analytical solutions are usually computationally 

more efficient than the numerical solutions, and can be easily coupled into optimization algorithms for 

problems related to parameter estimation (Neuman and Mishra, 2012). Therefore, a primary purpose of 

this study is to develop such an analytical model. Furthermore, the accuracy and robustness of the 140 

developed model will be tested against a finite-element numerical simulation and experimental data. 

Moreover, a sensitivity analysis will be conducted to prioritize the influences of various controlling 

parameters on the newly developed radial dispersion reactive transport model. 

2 Methods 

2.1 Mathematical model of radial dispersion 145 

An aquifer is assumed to be confined, homogeneous, horizontally isotropic, with a constant thickness, 

and fully penetrated by a well from which the solute is injected. A cylindrical coordinate system is 

established with the r-axis horizontal and the z-axis vertically upward. The origin of the coordinate 

system is located at intersect of the well center and the middle elevation of the aquifer. A schematic 

diagram of the problem is available in Figure S1 of Supplementary Materials. 150 

In this study, we mainly focus on developing analytical solutions of radial dispersion with a Heaviside 

step source (or step function for abbreviation hereinafter), as solutions of a variety of injection scenarios 

can be easily obtained on the basis of such a step source solution, as shown in Eq. (A2) in 

Supplementary Materials, Eqs. (4a) - (4b), or Eqs. (5a) - (5b). Assuming that 𝑡𝑖𝑛𝑗 is the duration of the 
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step source, the solute source concentration (𝐶0) is 𝐶𝑖𝑛𝑗(𝑡) when time is smaller than 𝑡𝑖𝑛𝑗, while it is 155 

𝐶𝑐ℎ𝑎(𝑡) when time is greater than 𝑡𝑖𝑛𝑗, in which 𝐶𝑖𝑛𝑗(𝑡) and 𝐶𝑐ℎ𝑎(𝑡) represent the solute concentrations 

[ML-3] in the wellbore before time 𝑡𝑖𝑛𝑗  and after time 𝑡𝑖𝑛𝑗 , respectively; When 𝐶𝑐ℎ𝑎(𝑡) = 0 and 𝑡𝑖𝑛𝑗 

approaches zero but the total injected mass remains finite, the model of the step source reduces to the 

model of the instantaneous injection. Similarly, the model of the step source becomes the model of the 

continuous injection source when 𝑡𝑖𝑛𝑗 becomes infinity.  160 

Similar to Chen et al. (2012) and Hsieh and Yeh (2014), a two-region (skin and formation) model of 

radial dispersion is employed to describe the skin effect. In the skin zone, the governing equations of 

radial dispersion are 

𝜃𝑚1𝑅𝑚1
𝜕𝐶𝑚1

𝜕𝑡
=

𝜃𝑚1

𝑟

𝜕

𝜕𝑟
(𝑟𝛼1|𝑣𝑎1|

𝜕𝐶𝑚1

𝜕𝑟
) − 𝜃𝑚1𝑣𝑎1

𝜕𝐶𝑚1

𝜕𝑟
− 𝜔1(𝐶𝑚1 − 𝐶𝑖𝑚1) − 𝜃𝑚1𝜇𝑚1𝐶𝑚1, 𝑟𝑤 ≤ 𝑟 ≤ 𝑟𝑠, (1a) 

𝜃𝑖𝑚1𝑅𝑖𝑚1
𝜕𝐶𝑖𝑚1

𝜕𝑡
= 𝜔1(𝐶𝑚1 − 𝐶𝑖𝑚1) − 𝜃𝑖𝑚1𝜇𝑖𝑚1𝐶𝑖𝑚1, 𝑟𝑤 ≤ 𝑟 ≤ 𝑟𝑠;     (1b) 165 

In the formation zone, one has 

𝜃𝑚2𝑅𝑚2
𝜕𝐶𝑚2

𝜕𝑡
=

𝜃𝑚2

𝑟

𝜕

𝜕𝑟
(𝑟𝛼2|𝑣𝑎2|

𝜕𝐶𝑚2

𝜕𝑟
) − 𝜃𝑚2𝑣𝑎2

𝜕𝐶𝑚2

𝜕𝑟
− 𝜔2(𝐶𝑚2 − 𝐶𝑖𝑚2) − 𝜃𝑚2𝜇𝑚2𝐶𝑚2, 𝑟 > 𝑟𝑠,(1c) 

𝜃𝑖𝑚2𝑅𝑖𝑚2
𝜕𝐶𝑖𝑚2

𝜕𝑡
= 𝜔2(𝐶𝑚2 − 𝐶𝑖𝑚2) − 𝜃𝑖𝑚2𝜇𝑖𝑚2𝐶𝑖𝑚2, 𝑟 > 𝑟𝑠,     (1d) 

where the subscripts ‘‘ 𝑚 ’’ and “ 𝑖𝑚 ” refer to parameters in the mobile and immobile domains, 

respectively; the subscripts ‘‘1’’ and “2” refer to parameters in the skin and formation regions, 170 

respectively; 𝐶𝑚1  and 𝐶𝑖𝑚1  are the mobile and immobile concentrations [ML-3] of the skin zone, 

respectively; 𝐶𝑚2 and 𝐶𝑖𝑚2 are the mobile and immobile concentrations [ML-3] of the formation zone, 
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respectively; 𝑟 is the radial distance [L] from the center of the well; 𝑟𝑤 is the well radius; 𝑟𝑠 is the radial 

distance [L] from the center of the well to the outer boundary of the skin zone; 𝑣𝑎 is the average radial 

pore velocity [LT-1] in the aquifer; 𝑣𝑎1 =
𝑢𝑎1

𝜃𝑚1
 ; 𝑣𝑎2 =

𝑢𝑎2

𝜃𝑚2
; 𝑢𝑎1  and 𝑢𝑎2  represent Darcian velocities 175 

[LT-1] in the skin and formation zones, respectively; 𝛼1 and 𝛼2 represent the longitudinal dispersivities 

[L] in the skin and formation zones, respectively; 𝜇𝑚1, 𝜇𝑖𝑚1, 𝜇𝑚2 and 𝜇𝑖𝑚2 are reaction rates for the 

first-order reaction rate, or the first-order biodegradation, or the radioactive decay [T-1]; 𝜃𝑚1, 𝜃𝑖𝑚1, 𝜃𝑚2 

and 𝜃𝑖𝑚2  are porosities; 𝑅𝑚1 , 𝑅𝑖𝑚1 , 𝑅𝑚2  and 𝑅𝑖𝑚2  are retardation factors [dimensionless]; 𝜔1  and 𝜔2 

represent the first-order mass transfer coefficients [T-1] between the mobile and immobile dissolved 180 

phases in the skin and formation zones, respectively. One point to note is that the molecular diffusive 

effect is assumed to be negligible in above governing equations. 

Assuming that the skin and formation zone are initially free of solute, the initial conditions are 

𝐶𝑚1(𝑟, 𝑡)|𝑡=0 = 𝐶𝑖𝑚1(𝑟, 𝑡)|𝑡=0 = 𝐶𝑚2(𝑟, 𝑡)|𝑡=0 = 𝐶𝑖𝑚2(𝑟, 𝑡)|𝑡=0 = 0, 𝑟 ≥ 𝑟𝑤.   (2) 

The outer boundary condition at an infinite distance is 185 

𝐶𝑚2(𝑟, 𝑡)|𝑟→∞ = 𝐶𝑖𝑚2(𝑟, 𝑡)|𝑟→∞ = 0.        (3) 

Two types of models have been widely applied to the boundary condition at the well screen: the mass 

flux continuity (MFC)model and the resident concentration continuity (RCC) model. The RCC model is  

[𝐶𝑚1(𝑟, 𝑡)]|𝑟=𝑟𝑤
= [𝐶𝑖𝑛𝑗(𝑡)]|

𝑟=𝑟𝑤
, 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗,       (4a) 

[𝐶𝑚1(𝑟, 𝑡)]|𝑟=𝑟𝑤
= [𝐶𝑐ℎ𝑎(𝑡)]|𝑟=𝑟𝑤

, 𝑡 > 𝑡𝑖𝑛𝑗,        (4b) 190 

and the MFC model is 
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[𝐶𝑚1(𝑟, 𝑡) − 𝛼1
|𝑣𝑎1,𝑖𝑛𝑗|

𝑣𝑎1,𝑖𝑛𝑗

𝜕𝐶𝑚1(𝑟,𝑡)

𝜕𝑟
]|

𝑟=𝑟𝑤

= [𝐶𝑖𝑛𝑗(𝑡)]|
𝑟=𝑟𝑤

, 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗,    (5a) 

[𝐶𝑚1(𝑟, 𝑡) − 𝛼1
|𝑣𝑎1,𝑐ℎ𝑎|

𝑣𝑎1,𝑐ℎ𝑎

𝜕𝐶𝑚1(𝑟,𝑡)

𝜕𝑟
]|

𝑟=𝑟𝑤

= [𝐶𝑐ℎ𝑎(𝑡)]|𝑟=𝑟𝑤
, 𝑡 > 𝑡𝑖𝑛𝑗,     (5b) 

where  𝑣𝑎1,𝑖𝑛𝑗 and 𝑣𝑎1,𝑐ℎ𝑎 refer to velocities in the injection and chasing phases, respectively. It was 

demonstrated that the mass balance requirement could not be satisfied in the RCC model, while the 195 

resident concentration was not continuous in the MFC model (Wang et al. 2018). Many experimental 

studies demonstrated that the MFC model performed better than the RCC model (Novakowski, 1992a). 

Therefore, the MFC model will be used to describe the boundary condition in the wellbore in this study. 

Comparing Eqs. (4) and (5), one may find that the main difference between these two models is whether 

the dispersivity is involved or not. Recently, Wang et al. (2019) pointed out that the conflicts between 200 

these two models could be resolved by a scale-dependent dispersivity, which was zero at the well screen, 

and increased with the travel distance of solute. This is because when the dispersivity is zero in Eqs. (5a) 

- (5b), the MFC model reduces to the RCC model. The model of the scale-dependent dispersivity will 

be discussed in Section 2.4. 

When taking into account the mixing effect in the wellbore, one has 205 

𝑉𝑤,𝑖𝑛𝑗
𝑑𝐶𝑖𝑛𝑗

𝑑𝑡
= −𝜉𝑣𝑎1,𝑖𝑛𝑗(𝑟𝑤)[𝐶𝑖𝑛𝑗(𝑡) − 𝐶0], 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗,      (6) 

𝑉𝑤,𝑐ℎ𝑎
𝑑𝐶𝑐ℎ𝑎

𝑑𝑡
= −𝜉𝑣𝑎1,𝑐ℎ𝑎(𝑟𝑤)[𝐶𝑐ℎ𝑎(𝑡)], 𝑡 > 𝑡𝑖𝑛𝑗,       (7) 

where 𝑉𝑤,𝑖𝑛𝑗 is the volume [L3] of water in the wellbore when 𝑡 ≤ 𝑡𝑖𝑛𝑗, and 𝑉𝑤,𝑖𝑛𝑗 = 𝜋𝑟𝑤
2ℎ𝑤,𝑖𝑛𝑗; ℎ𝑤,𝑖𝑛𝑗 

is the water level [L] in the wellbore when 𝑡 ≤ 𝑡𝑖𝑛𝑗 ; 𝜉 = 2𝜋𝑟𝑤𝜃𝑚1𝐵 ; 𝐵  is thickness [L] of 
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aquifer; 𝑉𝑤,𝑐ℎ𝑎  is the volume [L3] of water in the wellbore when 𝑡 > 𝑡𝑖𝑛𝑗 , and  𝑉𝑤,𝑐ℎ𝑎 = 𝜋𝑟𝑤
2ℎ𝑤,𝑐ℎ𝑎 ; 210 

ℎ𝑤,𝑐ℎ𝑎 is the water level [L] in the wellbore when 𝑡 > 𝑡𝑖𝑛𝑗; 𝑣𝑎1,𝑖𝑛𝑗(𝑟𝑤) is velocity at the well screen in 

the injection phase, and 𝑣𝑎1,𝑖𝑛𝑗(𝑟𝑤) =
𝑄𝑖𝑛𝑗

2𝜋𝐵𝑟𝑤𝜃𝑚1
; 𝑣𝑎1,𝑐ℎ𝑎(𝑟𝑤) is velocity at the well screen in the chasing 

phase, and it equals to 
𝑄𝑐ℎ𝑎

2𝜋𝐵𝑟𝑤𝜃𝑚1
; 𝑄𝑖𝑛𝑗  and 𝑄𝑐ℎ𝑎  are the well flow rates [L3T-1] in the injection and 

chasing phases, respectively. The mass balance for the well in Eqs. (6) -(7) is only relevant when 

velocity is greater than zero, because it does not contain terms for possible diffusive losses. 215 

The water level in the wellbore (e.g., ℎ𝑤,𝑖𝑛𝑗 and ℎ𝑤,𝑐ℎ𝑎 ) could be determined by solving the 

groundwater flow model. In the steady state, one has 

𝑄𝑖𝑛𝑗 = 2𝜋𝑟𝐵𝐾
𝑑ℎ

𝑑𝑟
, 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗,         (8) 

𝑄𝑐ℎ𝑎 = 2𝜋𝑟𝐵𝐾
𝑑ℎ

𝑑𝑟
, 𝑡 > 𝑡𝑖𝑛𝑗,          (9) 

where 𝐾  is the hydraulic conductivity [LT-1], and 𝐾 = {
𝐾1  when 𝑟𝑤 ≤ 𝑟 < 𝑟𝑠

𝐾2      when 𝑟𝑠 ≤ 𝑟     
; 𝐾1  and 𝐾2  are the 220 

hydraulic conductivities [LT-1] of skin and formation zones, respectively. 

By respectively conducting the integration on Eq. (8) and Eq. (9) from 𝑟𝑤 to 𝑟𝑠 and from 𝑟𝑠 to 𝑟𝑒, the 

water level in the wellbore could be obtained as follows 

ℎ𝑤,𝑖𝑛𝑗 = ℎ0 +
𝑄𝑖𝑛𝑗

2𝜋𝐵𝐾1
𝑙𝑛

𝑟𝑠

𝑟𝑤
+

𝑄𝑖𝑛𝑗

2𝜋𝐵𝐾2
𝑙𝑛

𝑟𝑒

𝑟𝑠
, 0 < 𝑡 ≤ 𝑡𝑖𝑛𝑗,      (10) 

ℎ𝑤,𝑐ℎ𝑎 = ℎ0 +
𝑄𝑐ℎ𝑎

2𝜋𝐵𝐾1
𝑙𝑛

𝑟𝑠

𝑟𝑤
+

𝑄𝑐ℎ𝑎

2𝜋𝐵𝐾2
𝑙𝑛

𝑟𝑒

𝑟𝑠
, 𝑡 > 𝑡𝑖𝑛𝑗,       (11)  225 
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where 𝑟𝑒 is the radial distance [L] from the center of the well to the outer boundary of the formation 

zone; ℎ0 is hydraulic head [L] at 𝑟𝑒. One could find that a finite radius 𝑟𝑒 is needed to keep ℎ𝑤 finite. It 

seems contradicts with the boundary condition of the transport problems, which is at the infinity as 

shown in Eq. (3). The reason for such a “contradiction” could be explained as follows. In reality, the 

influence area is limited by the finite injection rate and the finite injection time of the well (from a plane 230 

view perspective), bounded by a circle with a radius of 𝑟𝑒 where the hydraulic head is almost constant 

and the flow velocity is almost zero.  

At the interface between the skin and formation zones, the concentration and dispersive flux have to be 

continuous, and one has 

𝐶𝑚1(𝑟𝑠, 𝑡) = 𝐶𝑚2(𝑟𝑠, 𝑡), 𝑡 > 0,          (12) 235 

[𝛼1|𝑣𝑎1|
𝜕𝐶𝑚1(𝑟,𝑡)

𝜕𝑟
]|

𝑟=𝑟𝑠

= [𝛼2|𝑣𝑎2|
𝜕𝐶𝑚2(𝑟,𝑡)

𝜕𝑟
]|

𝑟=𝑟𝑠

, 𝑡 > 0.      (13) 

Since Darcy fluxes (advective solute fluxes) are continuous, it follows that dispersive fluxes have to be 

continuous, which is Eq. (13).  

Here, it is worthwhile to comment on the nature of using the MIM approach to describe transport in 

heterogeneous aquifers. First, it has been commonly observed that the aquifer heterogeneity renders the 240 

use of ADE invalid in many cases as ADE is developed and used primarily for homogeneous aquifers. 

In particular, ADE fails to explain the early breakthrough and long tailing phenomena that are 

frequently observed in transport in heterogeneous aquifers, as illustrated in the introduction. Second, a 

striking feature of a heterogeneous aquifer is that a sequence of mobile and less mobile regions co-exist 

while a homogeneous aquifer may be simplified as a single (mobile) region. Ideally, if one knows 245 
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exactly the spatial distribution of those mobile and less mobile regions and their associated flow and 

transport parameters, one will be able to use a high-resolution numerical simulator to predict the flow 

and transport process precisely. Unfortunately, this is not feasible for most practical cases. Therefore, as 

an alternative, we have adopted the concept of MIM approach in which two continuums consisting of a 

mobile domain and an immobile domain co-exist over the entire heterogeneous aquifer. Each of these 250 

two continuum itself has uniform flow and transport parameters (such as porosity, retardation factor, 

etc.) for the sake of simplification. Furthermore, mass can transfer between these two continuums in a 

certain fashion, usually using the first-order rate-limited equation. Third, this alternative approach has 

successfully explained a number of phenomena that cannot be explained using ADE, for instance, the 

early breakthrough and long tailing issues. Later on, the two-continuum MIM approach has been 255 

expanded to multiple-continuum MIM approach, or namely the multi-rate MIM approach to even better 

capture the transport features in a heterogeneous aquifer (Vangenuchten and Wierenga, 1976;Elenius 

and Abriola, 2019). In summary, the use of MIM is not to incorporate the spatial variation of flow and 

transport parameters that are mostly unknown. Instead, it is based on an alternative approach, using two 

or more interrelated continuum, and in each continuum the flow and transport parameters remain 260 

uniform over space. To date, the validation of the MIM model has been tested by numerous 

experimental studies (Griffioen et al., 1998;Gao et al., 2009b;Elenius and Abriola, 2019). 

2.2 Solution of radial dispersion 

In this study, dimensionless forms of parameters used in the derivation of analytical solution are defined 

as:  𝐶𝑚1𝐷 =
𝐶𝑚1

𝐶0
, 𝐶𝑖𝑚1𝐷 =

𝐶𝑖𝑚1

𝐶0
, 𝐶𝑚2𝐷 =

𝐶𝑚2

𝐶0
, 𝐶𝑖𝑚2𝐷 =

𝐶𝑖𝑚2

𝐶0
, 𝐶𝑖𝑛𝑗,𝐷 =

𝐶𝑖𝑛𝑗

𝐶0
, 𝐶𝑐ℎ𝑎,𝐷 =

𝐶𝑐ℎ𝑎

𝐶0
, 𝑡𝐷 =

|𝐴|𝑡

𝛼2
2𝑅𝑚1

, 265 
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𝑡𝑖𝑛𝑗,𝐷 =
|𝐴|𝑡𝑖𝑛𝑗

𝛼2
2𝑅𝑚1

, 𝑟𝐷 =
𝑟

𝛼2
, 𝑟𝑤𝐷 =

𝑟𝑤

𝛼2
, 𝑟𝑠𝐷 =

𝑟𝑠

𝛼2
, 𝑟0𝐷 =

𝑟0

𝛼2
,  𝜇𝑚1𝐷 =

𝛼2
2𝜇𝑚1

𝐴
, 𝜇𝑖𝑚1𝐷 =

𝛼2
2𝑅𝑚1𝜇𝑖𝑚1

𝑅𝑖𝑚1𝐴
,  𝜇𝑚2𝐷 =

𝛼2
2𝜇𝑚2𝑅𝑚1

𝐴𝑅𝑚2
, 𝜇𝑖𝑚2𝐷 =

𝛼2
2𝑅𝑚1𝜇𝑖𝑚2

𝑅𝑖𝑚2𝐴
 and 𝐴 =

𝑄

2𝜋𝐵𝜃𝑚1
. 

The detailed derivation of the analytical solution in the Laplace domain could be seen in Section S1 of 

Supplementary Materials. The analytical solution is 

𝐶�̅�1𝐷 = 𝑁1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝑁2𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1), 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,    (14a) 270 

𝐶�̅�𝑚1𝐷 =
𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
𝐶�̅�1𝐷, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,       (14b) 

𝐶�̅�2𝐷 = 𝑁3 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦2), 𝑟𝐷 > 𝑟𝑠𝐷,        (15a) 

𝐶�̅�𝑚2𝐷 =
𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
𝐶�̅�2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷,         (15b) 

where 𝐴𝑖(∙) and 𝐵𝑖(∙) are the Airy functions of the first kind and second kind, respectively; 𝐶𝑖𝑛𝑗,𝐷 and 

𝐶𝑐ℎ𝑎,𝐷 could be determined by Eqs. (A18) - (A19), which can be seen in Section S1 of Supplementary 275 

Materials; 𝐴𝑖
′(∙) and 𝐵𝑖

′(∙) are the derivatives of the Airy function of the first kind and second kind, 

respectively; 𝜆 =
𝛼1

𝛼2
, 𝜂 =

𝜃𝑚1𝑅𝑚1

𝜃𝑚2𝑅𝑚2
, 𝑦1 = (

𝐸1

𝜆
)

1/3

(𝑟𝐷 +
1

4𝜆𝐸1
) , 𝑦1𝑠 = (

𝐸1

𝜆
)

1/3

(𝑟𝑠𝐷 +
1

4𝜆𝐸1
) , 𝑦2 =

(𝐸2)1/3 (𝑟𝐷 +
1

4𝐸2
) , 𝑦2𝑠 = (𝐸2)1/3 (𝑟𝑠𝐷 +

1

4𝐸2
) , 𝐸1 = 𝑠 + 𝜀𝑚1 + 𝜇𝑚1𝐷 −

𝜀𝑚1𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
, 𝐸2 =

1

𝜂
(𝑠 + 𝜀𝑚2 + 𝜇𝑚2𝐷 −

𝜀𝑚2𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
), 𝛽𝑖𝑛𝑗 =

𝑉𝑤,𝑖𝑛𝑗𝑟𝑤𝐷

𝜉𝑅𝑚1𝛼2
, 𝛽𝑐ℎ𝑎 =

𝑉𝑤,𝑐ℎ𝑎𝑟𝑤𝐷

𝜉𝑅𝑚1𝛼2
, 𝜀𝑚1 =

𝜔1𝛼2
2

𝐴𝜃𝑚1
, 𝜀𝑖𝑚1 =

𝜔1𝛼2
2𝑅𝑚1

𝐴𝜃𝑖𝑚1𝑅𝑖𝑚1
, 

𝜀𝑚2 =
𝜔2𝛼2

2𝑅𝑚1

𝐴𝜃𝑚2𝑅𝑚2
 and 𝜀𝑖𝑚2 =

𝜔2𝛼2
2𝑅𝑚1

𝐴𝜃𝑖𝑚2𝑅𝑖𝑚2
; s is the dimensionless Laplace transform parameter in respect to 280 

dimensionless time 𝑡𝐷. the expressions for 𝑁1, 𝑁2 and 𝑁3 are listed in Table 2. 
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From Eqs. (14) - (15), one may find that it is not easy to analytically invert the Laplace-domain solution 

to obtain the real-time solution. Alternatively, numerical Laplace transform techniques such as the 

Fourier series method (Dubner and Abate, 1968), Zakian method (Zakian, 1969), Schapery method 

(Schapery, 1962), de Hoog method (De Hoog et al., 1982) Stehfest method (Stehfest and Harald, 285 

1970)are called in, where the de Hoog and Stehfest methods perform better for problems related to 

radial dispersion (Wang and Zhan, 2015). In this study, the MATLAB script of de Hoog method 

compiled by Hollenbeck (1998) will be employed to facilitate computation of the inverse Laplace 

transform, where the numerical tolerance is set 1× 10−10. 

2.3. Special cases of the new solution 290 

The new solution of this study considers the mixing effect, skin effect, and media heterogeneity (which 

is described using MIM) simultaneously, and the solute is injected into the well as a step source. This 

general solution encompasses many previous studies as special cases. For instance, when “𝑟𝑠 → ∞”, the 

skin effect is excluded; “𝑡𝑖𝑛𝑗 → ∞” implies that the solute is continuously injected into the well; while 

“𝑡𝑖𝑛𝑗 → 0” means that the solute is instantaneously injected into the well; “𝜔 = 0” implies that the 295 

MIM solution reduces to the ADE solution; “𝑉𝑤,𝑖𝑛𝑗 = 0” or “𝑟𝑤 = 0” shows that the mixing effect is 

excluded.  

Therefore, the new solution reduces to the solutions of Hoopes and Harleman (1967), Gelhar and 

Collins (1971), Tang and Babu (1979), Moench and Ogata (1981), Hsieh (1986), Tang and Peaceman 

(1987), and Philip (1994) when 𝑟𝑠 → ∞, 𝑡𝑖𝑛𝑗 → ∞, 𝜔 = 0, and 𝑉𝑤,𝑖𝑛𝑗 = 0. The solution of Wang et al. 300 

(2018) is a special case of this study when 𝑟𝑠 → ∞, 𝑡𝑖𝑛𝑗 → ∞, and 𝜔 = 0. 
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2.4. Extension of the new solution with scale-dependent dispersivity 

Due to the heterogeneities of the porous media, the dispersivity was found to be dependent on travel 

distance of solute from source, and such phenomenon was firstly observed in the field scale experiment 

(Dagan, 1988;Gelhar et al., 1992;Pickens and Grisak, 1981a). The field scale effect (i.e., dispersivity 305 

growing with distance from well), is usually considered to be a result of spatial heterogeneity at 

different scales in the aquifer. Subsequently, the scale-dependent dispersivity phenomenon was also 

found in controlled laboratory tests, due to heterogeneities caused by the bridging effect and 

microstructures, although the sediments (as the porous media) are well sorted and carefully packed 

(Silliman and Simpson, 1987;Berkowitz et al., 2000;Wang et al., 2019;Gao et al., 2010). For example, 310 

Silliman and Simpson (1987) found that the dispersivity continuously increased with distance, based on 

the experiments conducted in a 2.4×1.07×0.10 m sandbox. Berkowitz et al. (2000) obtained similar 

conclusions to Silliman and Simpson (1987) in the laboratory-controlled experiment. Wang et al. (2019) 

also concluded that the scale-dependent model performed better than the scale-independent model in 

interpreting observed BTCs of the laboratory-controlled experiment. To date, four types of functions 315 

have been widely used to describe the scale-dependent dispersivity, including asymptotic, parabolic, 

exponential and linear functions, as summarized by Pickens and Grisak (1981b). In this section, the 

model of the scale-independent dispersivity (e.g., Eqs. (14) - (15) in Section 2) will be extended by 

considering the linear-asymptotic dispersivity model in the formation zone. As for the other types of 

scale-dependent functions, the analytical solutions could be derived using a similar approach. The 320 

formula of the linear distance-dependent dispersivity is 
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𝛼2(𝑟) = {
𝑘𝑟, 𝑟𝑠 ≤ 𝑟 ≤ 𝑟0  

𝛼0,     𝑟 > 𝑟0      
,           (16) 

where 𝑟0  is the distance [L] where 𝛼2(𝑟0) = 𝛼0 , 𝑘  is a constant [dimensionless], and the modified 

solutions are 

𝐶�̅�1𝐷 = 𝒯1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝑦1) + 𝒯2𝑒𝑥𝑝 (

𝑟𝐷

2𝜆
) 𝐵𝑖(𝑦1), 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,     (17a) 325 

𝐶�̅�𝑚1𝐷 =
𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
𝐶�̅�1𝐷, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,       (17b) 

𝐶�̅�2𝐷 = 𝒯3𝑟𝐷
𝑚𝐾𝑚(𝜀1𝑟𝐷) + 𝒯4𝑟𝐷

𝑚𝐼𝑚(𝜀1𝑟𝐷), 𝑟𝑠𝐷 ≤ 𝑟𝐷 ≤ 𝑟0𝐷,      (18a) 

𝐶�̅�2𝐷 = 𝒯5 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦3) + 𝒯6𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐵𝑖(𝑦3), 𝑟𝐷 > 𝑟0𝐷,     (18b) 

𝐶�̅�𝑚2𝐷 =
𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
𝐶�̅�2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷,        (18c) 

where 𝑚 =
1

2𝑘
; 𝐾𝑚(∙) is 𝑚𝑡ℎ -order modified Bessel function of the second kind, 𝐼𝑚(∙) is 𝑚𝑡ℎ -order 330 

modified Bessel function of the first kind; the expressions for 𝒯1, 𝒯2, 𝒯3, 𝒯4, 𝒯5 and 𝒯6 are listed in Table 

3; 𝑦3 = (𝜀1)1/3 (𝑟𝐷 +
1

4𝜀1
) ; 𝑦4 = (𝜀1)1/3 (𝑟0𝐷 +

1

4𝜀1
) ; 𝐶𝑖𝑛𝑗,𝐷  and 𝐶𝑐ℎ𝑎,𝐷  could be determined by Eqs. 

(B15) - (B16), and the detailed derivation of Eqs. (17) - (18) could be seen in Section S2 of 

Supplementary Materials.  

Substituting Eq. (16) into the dispersivity coefficient (𝐷𝛼), one has 335 

𝐷𝛼 = 𝛼2|𝑣𝑎1| + 𝐷0 = {

𝑘𝑟𝑄

2𝜋𝑟𝐵𝜃𝑚1
+ 𝐷0 =

𝑘𝑄

2𝜋𝐵𝜃𝑚1
+ 𝐷0, 𝑟𝑠 ≤ 𝑟 ≤ 𝑟0  

𝛼0𝑄

2𝜋𝑟𝐵𝜃𝑚2
+ 𝐷0,                              𝑟 > 𝑟0               

,    (19) 
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where 𝐷0 is molecular diffusion coefficient [L2T-1]. A few interesting features are notable here. First, 

because of the unique feature of a divergent flow field in which the velocity is inversely proportional to 

the radial distance, and the use of a dispersivity function that is proportional to the radial distance when 

𝑟 ≤ 𝑟0, the dispersion coefficient in Eq. (19) actually becomes constant. However, one must be aware 340 

that if other types of dispersivity equations are used (such as exponential and parabolic functions), the 

dispersion coefficient in Eq. (19) will depend on the radial distance from the well. Second, even when 

𝐷𝛼 becomes constant for a linear dispersivity function when 𝑟 ≤ 𝑟0, the mechanical dispersion is still 

dominant, since the value of 𝐷0  is generally much smaller than the mechanical dispersion term of 

𝑘𝑄

2𝜋𝐵𝜃𝑚1
. For instance, the diffusion coefficient in water ranges from 1 × 10–9 to 2 × 10–9 m2/s, and it is 345 

much smaller in the porous media (Freeze and Cherry 1979). When 𝑘 = 0.01, 𝑄 = 0.1 m3/s, B=1m, 

𝜃𝑚1 = 0.3 , one has 
𝑘𝑄

2𝜋𝐵𝜃𝑚1
=5.3 × 10–4 m2/s. Therefore, it is reasonable to ignore the molecular 

diffusion effect when 𝑟 ≤ 𝑟0. The values of  
𝑘𝑄

2𝜋𝐵𝜃𝑚1
 is dependent on 𝑘. The chosen value of 𝑘 = 0.01 is 

from experimental studies, for instance, 𝑘 = 0.018 in Chen et al. (2007), and 𝑘 = 0.024 and 0.013 in 

this study as shown in Table 5.  350 

2.5. Extension of the new solution to a leaky-confined aquifer 

Regardless of Eqs. (14) - (15) or Eqs. (17) - (18), the aquifer is assumed to be completely isolated from 

the underlying and overlying aquitards (strictly confined), which might not be true in real applications. 

As stated before (Zhan et al., 2009b;Zhan et al., 2009a), it is nearly impossible to maintain a strictly 

confined condition in terms of transport. That is because as long as solute in the aquifer is in contact 355 
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with the upper or lower aquitard, molecular diffusion will always drive the solute from high 

concentration aquifer into the solute-free aquitard, even if the cross-formation flow in the aquitard does 

not exist. In fact, such diffusion-driven transport of solute into the aquitard and the subsequent back 

diffusion (from aquitard to aquifer when the aquifer solute concentration drops below the solute 

concentration in the aquitards) is responsible for many long tails in aquifer BTCs. The importance of 360 

aquitard in regulating solute transport has indeed been recognized by a number of investigators such as 

Chen (1985), Chen (1986), Yates (1988), Chen (1991), Novakowski (1992), Wang and Zhan (2013a), 

and Zhou et al. (2017).  

In this section, the solutions of Eqs. (14) - (15) will be extended considering both underlying and 

overlying aquitards. The detailed derivation of the analytical solution in Laplace domain could be seen 365 

in Section S3 of Supplementary Materials. 

In the aquifer, the solutions are  

𝐶�̅�1𝐷 = 𝑇1 𝑒𝑥𝑝 (
𝑟𝐷

2𝜆
) 𝐴𝑖(𝜑1) + 𝑇2𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐵𝑖(𝜑1), 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,    (20a) 

𝐶�̅�𝑚1𝐷 =
𝜀𝑖𝑚1

𝑠+𝜀𝑖𝑚1+𝜇𝑖𝑚1𝐷
𝐶�̅�1𝐷, 𝑟𝑤𝐷 ≤ 𝑟𝐷 ≤ 𝑟𝑠𝐷,       (20b) 

𝐶�̅�2𝐷 = 𝑇3 𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝜑2), 𝑟𝐷 > 𝑟𝑠𝐷,        (21a) 370 

𝐶�̅�𝑚2𝐷 =
𝜀𝑖𝑚2

𝑠+𝜀𝑖𝑚2+𝜇𝑖𝑚2𝐷
𝐶�̅�2𝐷, 𝑟𝐷 > 𝑟𝑠𝐷;        (21b) 

In the aquitards, the solutions are 

𝐶�̅�𝑚𝐷 = 𝐶�̅�1𝐷𝑒𝑥𝑝 (𝑎2𝑧𝐷 − 𝑎2), 𝑟𝑤𝐷 ≤  𝑟𝐷 ≤ 𝑟𝑠𝐷,       (22a) 
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𝐶�̅�𝑚𝐷 = 𝐶�̅�2𝐷𝑒𝑥𝑝 (𝑎2𝑧𝐷 − 𝑎2), 𝑟𝐷 > 𝑟𝑠𝐷,        (22b) 

𝐶�̅�𝑖𝑚𝐷 =
𝜀𝑢𝑖𝑚

𝑠+𝜀𝑢𝑖𝑚+𝜇𝑢𝑖𝑚𝐷
𝐶�̅�𝑚𝐷,  𝑟𝐷 > 𝑟𝑤𝐷,        (22c) 375 

𝐶�̅�𝑚𝐷 = 𝐶�̅�1𝐷𝑒𝑥𝑝 (𝑏1𝑧𝐷 + 𝑏1), 𝑟𝑤𝐷 ≤  𝑟𝐷 ≤ 𝑟𝑠𝐷,       (23a) 

𝐶�̅�𝑚𝐷 = 𝐶�̅�2𝐷𝑒𝑥𝑝 (𝑏1𝑧𝐷 + 𝑏1), 𝑟𝐷 > 𝑟𝑠𝐷,        (23b) 

𝐶�̅�𝑖𝑚𝐷 =
𝜀𝑙𝑖𝑚

𝑠+𝜀𝑙𝑖𝑚+𝜇𝑙𝑖𝑚𝐷
𝐶�̅�𝑚𝐷,  𝑟𝐷 > 𝑟𝑤𝐷,        (23c) 

where letters “u” and “l” in the subscript represent the upper and lower aquitards, respectively; 𝜑𝑤 =

(
𝐸3

𝜆
)

1/3

(𝑟𝑤𝐷 +
1

4𝜆𝐸3
) , 𝜑1 = (

𝐸3

𝜆
)

1/3

(𝑟𝐷 +
1

4𝜆𝐸3
) , 𝜑2 = 𝐸4

1/3 (𝑟𝐷 +
1

4𝐸4
) ; 𝜑1𝑠 = (

𝐸3

𝜆
)

1/3

(𝑟𝑠𝐷 +
1

4𝜆𝐸3
) ; 380 

𝜑2𝑠 = 𝐸4
1/3 (𝑟𝑠𝐷 +

1

4𝐸4
); the expressions for 𝑎2, 𝑏1, 𝑇1, 𝑇2 and 𝑇3 are listed in Table 4; 𝐶𝑖𝑛𝑗,𝐷 and 𝐶𝑐ℎ𝑎,𝐷 

could be determined by Eqs. (C36) - (C37), which can be seen in Section S3 of Supplementary 

Materials.  

The solutions of Chen (1985), Chen (1986), Yates (1988), and Chen (1991) are special cases of this 

study when 𝑟𝑠 → ∞, 𝑡𝑖𝑛𝑗 → ∞, 𝜔 = 0, and 𝑉𝑤,𝑖𝑛𝑗 = 0. When 𝑟𝑠 → ∞, 𝑡𝑖𝑛𝑗 → ∞, and 𝑉𝑤,𝑖𝑛𝑗 = 0, the 385 

new solution reduces to the solution of Zhou et al. (2017). Novakowski (1992) considered the wellbore 

mixing effect in an aquifer-aquitard system, while he ignored other factors such as the skin effect, scale-

dependent dispersivity, and mass transfer between the mobile and immobile domains in porous media. 
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3 Results and discussion 

3.1 Test of new solutions 390 

To test the new solution of this study, a numerical simulation based on the Galerkin finite-element 

method is conducted in the COMSOL Multiphysics platform. More details about the numerical 

simulation setup could be seen in Section S4 of Supplementary Materials. The parameters used in the 

numerical simulation are:  𝑟𝑤 = 2.5 cm; 𝑟𝑠 = 12.5 cm; 𝑄𝑖𝑛𝑗 = 𝑄𝑐ℎ𝑎 = 100 ml/s; 𝑡𝑖𝑛𝑗 = 300 s; 𝛼1 =

2.5cm; 𝛼2 = 2.5cm; 𝜃𝑚 = 0.30; 𝜃𝑖𝑚 = 0.01; 𝜔 = 0.001 d-1; 𝑅𝑚1 = 𝑅𝑖𝑚1 = 𝑅𝑚2 = 𝑅𝑖𝑚2 = 1; 𝐵 = 50 395 

cm; 𝜇𝑚1 = 𝜇𝑚2 = 𝜇𝑖𝑚1 = 𝜇𝑖𝑚2 = 10−7  s-1, and ℎ𝑤,𝑖𝑛𝑗 = ℎ𝑤,𝑐ℎ𝑎 = 𝐵 . These parameters are from the 

experimental applications of Chao (1999), Chen et al. (2017), Wang et al. (2018) and Wang et al. 

(2020), in which Wang et al. (2020) summarized the values of reaction rate, retardation factor, 

dispersivity, porosity, and first-order mass transfer coefficient for sandy and clay used in numerous 

investigations, as shown in Table 4 of Wang et al. (2020). In addition, the values of retardation factor 400 

and reaction rate represent that the chemical reaction and sorption are weak for the tracer of KBr in the 

experiment of Chao (1999). It is not surprising since KBr is commonly treated as a “conservative” 

tracer. 

As it is difficult to describe the wellbore mixing effect in COMSOL Multiphysics, the wellbore 

concentration is computed by the analytical solutions of Eqs. (14) - (15). Figures 1a and 1b show the 405 

comparison of concentration between the numerical and analytical solutions of this study, and good 

agreement between these two kinds of solutions is evident for different times and locations. The 
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comparisons between the numerical solution and analytical solutions of Eqs. (20) - (23) are shown in 

Section S4.2 of Supplementary Materials, and the agreement is also good between them. 

3.2 Test of model using experimental data  410 

To test the influence of the mixing effect, skin effect, scale effect and heterogeneity of the media on 

radial dispersion, the experimental data of Chao (1999) is employed. Chao (1999) reported a laboratory 

experiment of radial dispersion in a sand tank with 244 cm in length, 122 cm in width and 6.35 cm in 

depth. A well with a radius of 1.0 cm fully penetrated a confined aquifer. Two observation wells were 

respectively located at 22.5 cm and 30.4 cm away from the well center. Potassium Bromide (KBr) is 415 

chosen as a conservative tracer. Before the tracer is introduced into the wellbore, a steady-state flow 

field is produced by injecting KBr-free water into the aquifer with a constant injection rate of 9.9 

mL/min. The injection time is 5 hours (𝑡𝑖𝑛𝑗 = 300 min) for the tracer while maintaining the same 

injection rate of 9.9 mL/min. The experimental data of Chao (1999) was interpreted by Gao et al. 

(2009a) using the model of Chen et al. (2007), as shown in Figure 2. “SDM” and “CDM” in the legend 420 

of Figure 2 refer to the scale-dependent dispersivity model and the constant dispersivity model, 

respectively. Chen et al. (2007) approximated the injection as an instantaneous source (the validity of 

such a treatment will be addressed later) and the mass 𝑀 of the instantaneous injection is calculated by 

𝑀 = 𝐶0𝑄𝑖𝑛𝑗𝑡𝑖𝑛𝑗.            (24) 

The other parameters of the analytical solution are listed in Table 5. The parameters estimated by Gao et 425 

al. (2009a) are also included in Table 5 for comparison. One may find that the goodness-of-fit between 

the observed data and models of Gao et al. (2009a) and Chen et al. (2007) seems good at the 
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observation point close to the well, but they could not capture BTCs at r=30.4 cm. This is probably due 

to the following two reasons. Firstly, the model of Chen et al. (2007) used to best fit the data is an 

instantaneous slug test model, which is a rather gross approximation of the injection which lasted about 430 

5 hours. A more proper way is to treat the 5 hours injection as a step source. Secondly, the solution of 

Chen et al. (2007) only considered the scale-dependent dispersivity, but ignored the mixing effect and 

the mass transfer between the mobile and immobile domains.  

To test the new solutions of this study, we try to best fit the observed data again using the newly 

developed model considering the scale-dependent dispersivity, mixing effect and heterogeneity of the 435 

media (described using MIM). As there is no aquitard in the controlled laboratory experiment, the 

aquitard effect is irrelevant. Meanwhile, as there is no skin, so the skin effect is not included either. Best 

fitness between the analytical solution and the experimental data is an optimization process by 

minimizing the “error” between them, 

𝐸𝑟 = ∑ (𝐶𝑂𝐵𝑆 − 𝐶𝐶𝑂𝑀)2𝑁
𝑖=1 ,          (25) 440 

where 𝐶𝑂𝐵𝑆 and 𝐶𝐶𝑂𝑀 represent the observed and computed concentrations, respectively; 𝐸𝑟 is error; N 

is the number of sampling points. In this study, the genetic algorithm (GA) is employed to search the 

optimal parameter values, such as 𝜃𝑚2, 𝛼1 and 𝜔1 for CDM of Eqs. (14) - (15), and  𝜃𝑚2, 𝛼0, 𝑘 and 𝜔1 

for SDM of Eqs. (17) - (18). GA is a stochastic search method, based on natural selection, and it is 

preferred for optimization. Meanwhile, GA has been packaged into the MATLAB toolbox (Katoch et al., 445 

2020;Whitley, 1994;Deb et al., 2002), and therefore it is efficient, simple programming, and robustness. 

The estimated values of some key parameters are listed in Table 5. The errors between the observed and 
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computed BTCs by different models are listed in Table 6. Figure 3 shows the fitness between the 

analytical solution and the experimental data, with and without scale-dependent dispersivity, 

respectively. As GA converges after 500 generations (iterations), the fitness is good as shown in Figure 450 

3, and the estimated parameters are physically sound. 

Comparing Figures 2 and 3 shows that the solutions of this study perform better than the model of Chen 

et al. (2007), since the fitness is good for both observation locations. To better evaluate the overall 

performance of the models for both locations, we have used Eq. (25) and the coefficient of 

determination (𝑅2) to compute the errors of best fitness with two BTCs simultaneously in Figures 2 and 455 

3, and 𝑅2 is defined by 

𝑅2 = 1 −
∑ (𝐶𝑂𝐵𝑆−𝐶𝐶𝑂𝑀)2𝑁

𝑖=1

∑ (𝐶𝑂𝐵𝑆−�̅�𝑂𝐵𝑆)2𝑁
𝑖=1

,          (26) 

where 𝐶�̅�𝐵𝑆 is average concentration of observed data. The results are listed in the last two columns of 

Table 6. This table shows that the new model performs better. For example, when using CDM, the 

overall errors for best fitting two locations are 0.89 (which is the summation of 0.06 and 0.83 in Table 6) 460 

for Chen et al. (2007), and 0.39 (which is the summation of 0.34 and 0.05 in Table 6) for this study. 

When using SDM, however, the overall errors for best fitting two locations are 0.78 for Chen et al. 

(2007), and 0.25 for this study. The overall 𝑅2 shows the same observation as the overall 𝐸𝑟, where the 

overall 𝑅2 is closer to 2, implying that the model precision is higher. Evidently, the model with scale 

effect is the best choice for interpreting the experimental data.  465 

We have to emphasize that better fitting of one model than the other model with the experimental data 

should not be used as the only evidence of proof for model performance. That is because a model with 
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more fitting parameters usually performs better than the model with less fitting parameters. Besides the 

best fitting exercises, however, one should pay more attention to see if the model adequately 

acknowledges the underlying physiochemical principles governing the transport processes. As far as we 470 

can see, the new model proposed in this study has honored the underlying physiochemical principles 

governing the radial dispersion process properly. In addition, the model performance (as reflected in the 

best fitting practice with the experimental data) is also considerably better. Therefore, on the basis of 

these two considerations, the new model of this study can be regarded as a significant advancement of 

present knowledge on radial dispersion. Furthermore, the new model is quite general and it 475 

encompasses almost all the existing models as subsets.  

3.3 Sensitivity analysis 

As the new model involves a number of controlling parameters, it is necessary to prioritize the 

importance of these parameters in terms of their control on the model performance. In this study, a 

sensitivity analysis involving normalized parameters is conducted as follows (Kabala, 2001;Yang and 480 

Yeh, 2009) 

SC𝑖,𝑗 = 𝐼𝑗
𝜕𝐶𝑖

𝜕𝐼𝑗
,            (27) 

where SC𝑖,𝑗 is the sensitivity coefficient of the 𝑗𝑡ℎ parameter 𝐼𝑗  at the 𝑖𝑡ℎ time; 𝐶𝑖 is the concentration at 

the 𝑖𝑡ℎ time. 𝐼𝑗 represents any one parameter of interest, like volume of water in the wellbore (𝑉𝑤), k, 

𝜃𝑚 = 𝜃𝑚1 = 𝜃𝑚2, 𝜔 = 𝜔1 = 𝜔2, and so on. A larger |SC𝑖,𝑗| value means the higher sensitivity. 485 
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As the expression of the new analytical solution is complex, it is not easy to get the values of SC𝑖,𝑗 

directly from Eq. (27). Therefore, a finite-difference scheme is used alternatively to approximate the 

right-hand side term (Kabala, 2001;Yang and Yeh, 2009) 

SC𝑖,𝑗 = 𝐼𝑗
𝐶𝑖(𝐼𝑗+∆𝐼𝑗)−𝐶𝑖(𝐼𝑗)

∆𝐼𝑗
,          (28) 

where ∆𝐼𝑗  is a small increment of 𝐼𝑗. 490 

The main parameters of the new model include the volume of the water in the wellbore (𝑉𝑤) for the 

mixing effect, 𝑟𝑠  and 𝛼𝑠  for the skin zone, 𝜃𝑚  and 𝜔 for the MIM model, and k for scale dependent 

dispersivity. Figures 4a and 4b show SC𝑖,𝑗 at r=22.5 cm and r=30.4 cm, respectively. The parameters 

used in these two figures are the same as those used in Figure 3.  

Two observations could be found from Figures 4a and 4b. Firstly, the results are sensitive to the 495 

parameter of 𝜃𝑚. To test such a finding, we use the model of this study (Eqs. (17) - (18)) with the 

mixing effect to best fit the experimental data of Chao (1999) (shown in Figure S5 in Section S5 of 

Supplementary Materials), and the results show that the influence of the mixing effect could be 

negligible. Secondly, by comparing Figures 4a and 4b, we find that the sensitivity coefficient of 𝑉𝑤, 𝑟𝑠 

𝛼𝑠 and 𝑅 on BTCs increases with the distance from the wellbore.  500 

Figures 4a and 4b show that the sensitivity coefficient of 𝑉𝑤  on BTCs is very small, which might 

contradict with the finding reported in some previous studies (Wang et al., 2018). A careful inspection 

indicates that the well radius and the initial water level in the wellbore are very small in the experiment 

of Chao (1999), resulting in a very small value of 𝑉𝑤. From Eqs. (6) - (7), one can see that 𝑉𝑤 could be 
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influenced by the pumping rate, well radius, initial water level (ℎ0), and hydraulic parameters of the 505 

aquifer. In actual field practices, the value of 𝑉𝑤 can be significantly larger than what is used in Chao 

(1999). Therefore, the sensitivity coefficient of 𝑉𝑤 on BTCs will be investigated again using the well 

radius and the initial water level that are more commonly seen in field applications, e.g., 𝑟𝑤=5.0 cm and 

ℎ0=31.75 cm, and the other parameters are the same as ones in Figure 3. 

The sensitivity analysis after such modification shows that the parameter with the highest sensitivity 510 

coefficient is still 𝜃𝑚, but the parameter with the second highest sensitivity coefficient becomes the 

volume of water in the wellbore (Figure 5). Figures 6 and 7 illustrate  SC𝑖,𝑗  of 𝑉𝑤 for different 𝑟𝑤 and 

different observation locations, and that the sensitivity coefficient of 𝑉𝑤 increases with the well radius, 

but decreases with the distance from the wellbore. 

4 Conclusions 515 

Radial dispersion is an important process in the fields of chemical engineering, environmental science, 

and hydrogeology. It has been commonly employed to describe the reactive transport in the subsurface, 

or to estimate aquifer transport parameters (dispersivity, porosity, and reactive rate, etc.) required in 

optimization of remediation strategies. However, previous studies did not include all of the mixing 

effect, skin effect, and mass transfer between the mobile and immobile domains in porous media.  520 

In this study, a new general model is developed considering all above-mentioned factors. The new 

general model is against by a finite-element numerical model and existing experimental data. 

Meanwhile, the new model is also expanded considering the effect of the overlying and underlying 
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aquitards and the scale-dependent dispersivity. The sensitivity analysis is conducted to prioritize 

influences of various controlling parameters on BTCs. The following conclusions could be summarized: 525 

(1) The new general model honors the most relevant processes involved in radial dispersion (wellbore 

mixing effect, well skin effect, aquitard effect and mass transfer between the mobile and immobile 

domains), for which a solution has not yet been presented. 

(2) The new general model fits the experimental data of Chao (1999) much better than previous models. 

(3) The results are sensitive to parameters 𝜃𝑚  (mobile porosity) and 𝑉𝑤 (the volume of water in the 530 

wellbore). When 𝑉𝑤  is very small as in the laboratory experiment of Chao (1999), the sensitivity 

coefficient approaches 0. However, for typical values of 𝑉𝑤 in actual field applications, the sensitivity 

coefficient of 𝑉𝑤 increases significantly, and the value is often ranked as the second highest, after that of 

𝜃𝑚.  

(4) The sensitivity coefficient of 𝑉𝑤 increases with the well radius, while it decreases with increasing 535 

distance from the wellbore. 
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Nomenclature 

Symbol Description 

𝐴𝑖(∙),𝐵𝑖(∙) Airy functions of the first kind and the second kind, respectively 

𝐴𝑖
′(∙),𝐵𝑖

′(∙) Derivative of the Airy functions of the first kind and the second kind, respectively 

𝛼0 Longitudinal dispersivity [L] in the formation zone at 𝑟 > 𝑟0  

𝛼1, 𝛼2 Longitudinal dispersivities [L] in the skin and formation zones, respectively 

B The thickness [L] of aquifer 

b The half of aquifer thickness [L] 

𝐶𝑚1, 𝐶𝑖𝑚1 Resident mobile and immobile concentrations [ML-3] of the skin zone, respectively 

𝐶𝑚2, 𝐶𝑖𝑚2 
Resident mobile and immobile concentrations [ML-3] of the formation zone, 

respectively  

𝐶𝑢𝑚, 𝐶𝑢𝑖𝑚 
Resident mobile and immobile concentrations [ML-3] of the upper aquitard, 

respectively 

𝐶𝑙𝑚, 𝐶𝑙𝑖𝑚 
Resident mobile and immobile concentrations [ML-3] of the lower aquitard, 

respectively 

𝐶𝑖𝑛𝑗(𝑡), 

𝐶𝑐ℎ𝑎(𝑡) 

Concentrations [ML-3] of tracer in the wellbore at the injection and the chasing phases, 

respectively  

𝐶0 Concentration [ML-3] of tracer injected into the wellbore  

𝐶𝑤 Concentration [ML-3] of tracer in the wellbore 

𝐷𝑢, 𝐷𝑙 Vertical dispersion coefficients [L2T-1] of the upper and lower aquitards, respectively 

𝐷0 Molecular diffusion coefficient [L2T-1] 

ℎ Hydraulic head [L] 

ℎ0 Hydraulic head [L] at the 𝑟𝑒 

ℎ𝑤,𝑖𝑛𝑗, ℎ𝑤,𝑐ℎ𝑎 Water level in the wellbore in the injection and chasing phases [L] 

𝑘 A constant [dimensionless] and ranges from 0 to 1 

𝐾1, 𝐾2  Hydraulic conductivities [LT-1] of skin and formation zones, respectively 

𝐾𝑑 Equilibrium distribution coefficient [M-1L3] for the linear sorption process 

𝐼𝑚(∙), 𝐾𝑚(∙), The 𝑚𝑡ℎ-order modified Bessel function of the first and second kinds, respectively 

𝑄 Pumping rate [L3T-1] (negative for injection and positive for pumping) 

𝑄𝑖𝑛𝑗, 𝑄𝑐ℎ𝑎 Well flow rates [L3T-1] in the injection and chasing phases, respectively. 

𝑟 Radial distance [L] from the center of the well 
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𝑟𝑠 Distance [L] from the center of the well to the outer boundary of the skin zone 

𝑟𝑤 Radius [L] of the well 

𝑟𝑒  Radial distance [L] from the center of the well to the outer boundary 

𝑟0 Radial distance [L] for the linear distance-dependent dispersivity  

𝑅𝑚1, 𝑅𝑖𝑚1 
Retardation factors [dimensionless] for the mobile and immobile regions of the skin 

zone  

𝑅𝑚2, 𝑅𝑖𝑚2 
Retardation factors [dimensionless] for the mobile and immobile regions of the 

formation zone  

𝑅𝑢𝑚, 𝑅𝑢𝑖𝑚 
Retardation factors [dimensionless] for the mobile and immobile regions of the upper 

aquitard  

𝑅𝑙𝑚, 𝑅𝑙𝑖𝑚 
Retardation factors [dimensionless] for the mobile and immobile regions of the lower 

aquitard  

𝑡 Time [T] 

𝑡𝑖𝑛𝑗, 𝑡𝑐ℎ𝑎 Ending times [T] of the injection and the chasing phases, respectively 

𝑣𝑎1, 𝑣𝑎2 Average radial pore velocities [LT-1] of the skin zone, the formation zone, respectively 

𝑣𝑎1,𝑖𝑛𝑗, 

𝑣𝑎1,𝑐ℎ𝑎 
Average radial pore velocities [LT-1] at the well screen in the injection and chasing 

phases, respectively. 

𝑣𝑢𝑚,𝑣𝑙𝑚 Vertical velocities [LT-1] of the upper and lower aquitards, respectively  

 𝛼𝑢, 𝛼𝑙 Dispersivities [L] of the upper aquitard and the lower aquitard, respectively 

𝜇𝑚1, 𝜇𝑖𝑚1 
Decay constant for radioactive decay or reaction rate coefficient [T-1] in the mobile 

and immobile regions of the skin zone 

𝜇𝑚2, 𝜇𝑖𝑚2 
Decay constant [T-1] for radioactive decay or reaction rate coefficient in the mobile 

and immobile regions of the formation zone  

𝜇𝑢𝑚, 𝜇𝑢𝑖𝑚 
Decay constant [T-1] for radioactive decay or reaction rate coefficient in the mobile 

and immobile regions of the upper aquitard  

𝜇𝑙𝑚, 𝜇𝑙𝑖𝑚 
Decay constant [T-1] for radioactive decay or reaction rate coefficient in the mobile 

and immobile regions of the lower aquitard  

𝜃𝑚1, 𝜃𝑖𝑚1 Mobile and immobile porosities [dimensionless] in the skin zone  

𝜃𝑚2, 𝜃𝑖𝑚2 Mobile and immobile porosities [dimensionless] in the formation zone  

𝜃𝑢𝑚, 𝜃𝑢𝑖𝑚 Mobile and immobile porosities [dimensionless] in the upper aquitard  

𝜃𝑙𝑚, 𝜃𝑙𝑖𝑚 Mobile and immobile porosities [dimensionless] in the lower aquitard  

𝜌𝑏 Bulk density [ML-3] of the aquifer material  

𝜔1, 𝜔2 
First-order mass transfer coefficients [T-1] in the skin and formation zones, 

respectively 
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𝑠 Laplace transform variable with respect to the time 𝑡𝐷 

Subscript Description 

𝐷  Dimensionless form 

𝑚, 𝑖𝑚 Mobile and immobile regions, respectively 

𝑖𝑛𝑗, 𝑐ℎ𝑎 Injection and chasing phases, respectively 

𝑢, 𝑙 Upper and lower aquitard, respectively 

1, 2 Parameters in the skin and formation regions, respectively 

Acronyms Description 

ADE Advection-dispersion equation 

BTCs The observed breakthrough curves 

CDM The constant dispersivity model 

CTRW Continuous-time random-walk models 

fADE Fractional-derivative ADE models 

GA The genetic algorithm 

MFC The mass flux continuity 

MIM Mobile-immobile model 

MRMT The multi-rate mass transfer model 

RCC The resident concentration continuity 

SDM The scale-dependent dispersivity model 

  



43 

 

Figure Captions 

 

 760 

Figure 1. Comparison of the numerical solution by COMSOL Multiphysics and the analytical solution 

of this study for different times. (a). In the injection phase, (b). In the chasing phase. 
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Figure 2. Fitness of observed BTC by the solution of Chen et al. (2007) which considers the scale effect 765 

but ignores the mixing and skin effects. 
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Figure 3. Fitness of observed BTC by new solutions of this study, where Eqs. (14) - (15): without scale 

effect and Eqs. (17) - (18): with scale effect, respectively. 770 
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(a). 𝑟=22.5 cm 

  

(b). 𝑟=30.4 cm 

Figure 4. SC𝑖,𝑗 of the parameters 𝑟𝑤, 𝑟𝑠, 𝑘, 𝜃𝑚, ω, 𝑅 and 𝜇 using the parameters estimated by best fitting 775 

the experimental data. (a). 𝑟=22.5 cm, (b). 𝑟=30.4 cm. 
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Figure 5. SC𝑖,𝑗 of the parameters 𝑉𝑤, 𝑟𝑠, 𝑘, 𝜃𝑚, ω, 𝑅 and 𝜇 when increasing 𝑉𝑤. 



48 

 

 780 

Figure 6. SC𝑖,𝑗 of 𝑉𝑤 for different 𝑟𝑤 at 𝑟=22.5 cm. 
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Figure 7. SC𝑖,𝑗 of 𝑉𝑤 for different observed locations when 𝑟𝑤=5.0 cm. 
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Table Captions 785 

Table 1. Summary of the current models for the radial dispersion around the recharge well. 

Authors Conceptual models GE ME SCE SKE Method 

Hoopes and Harleman (1967)  Confined aquifer ADE N N N 

Approximated solution 

and finite-difference 

solution 

Gelbar and Collins (1971)  Confined aquifer ADE N N N 
A boundary layer 

approximation 

Tang and Babu (1979), Moench 

and Ogata (1981), Hsieh (1986), 

Tang and Peaceman (1987), 

Yates (1988), Cihan and Tyner 

(2011), Chen et al. (2012a) 

Confined aquifer ADE N N N Laplace transform 

Chen (1985), Chen (1991) Leaky-confined aquifer ADE N N N Laplace transform 

Chen (1986) Fracture aquifer ADE N N N Laplace transform 

Falade and Brigham (1989)  Confined aquifer MIM N N N Laplace transform 

Novakowski (1992) Leaky-confined aquifer ADE Y N N Laplace transform 

Philip (1994) Confined aquifer ADE N N N Finite-difference solution 

Veling (2001), Veling (2011), 

Chen et al. (2011) 
Confined aquifer ADE N N N 

Generalized Hankel 

transform 

Chen et al. (2007), Gao et al. 

(2009) 
Confined aquifer ADE N Y N Laplace transform 

Chen et al. (2012b), Hsieh and 

Yeh (2014) 
Confined aquifer ADE N N Y Laplace transform 

Wang and Zhan (2013)  Leaky-confined aquifer ADE N N N Laplace transform 

Zhou et al. (2017)  Fracture aquifer MIM N N N Laplace transform 

Chen et al. (2017) Confined aquifer MIM N N N Laplace transform 

Wang et al. (2018) Confined aquifer ADE Y N N 
Laplace transform and 

Green’s function method 

Huang et al. (2019) Confined aquifer ADE N N Y Laplace transform 

Li et al. (2020) Confined aquifer MIM N N Y Laplace transform 

Shi et al. (2020) Confined aquifer ADE Y N N Approximation 

Wang et al. (2020) Confined aquifer MIM Y N N 
Laplace transform and 

Green’s function method 

Note: “GE”, “ME”, “SCE”, and “SKE” represent governing equation, mixing effect, scale effect, and skin effect, 

respectively; “Y” and “N” represent whether the effect is considered or not. 
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Table 2. Expressions of coefficients in solutions of Eqs. (14a) - (15b) 790 

𝑁1 
𝐹 − 𝐻2𝑁2

𝐻1
 

𝑁2 
𝐻3𝐻8𝐹 − 𝐻5𝐻6𝐹

𝐻1𝐻5𝐻7 + 𝐻2𝐻3𝐻8 − 𝐻2𝐻5𝐻6 − 𝐻1𝐻4𝐻8
 

𝑁3 
𝐻3𝐹

𝐻1𝐻5
−

𝐻2𝐻3𝑁2

𝐻1𝐻5
+

𝐻4𝑁2

𝐻5
 

𝐻1 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] 

𝐻2 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] 

𝐻3 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝑦1𝑠) 

𝐻4 𝑒𝑥 𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝑦1𝑠) 

𝐻5 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) 𝐴𝑖(𝑦2𝑠) 

𝐻6 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦1𝑠)] 

𝐻7 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐵𝑖
′(𝑦1𝑠)] 

𝐻8 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) [

1

2
𝐴𝑖(𝑦2𝑠) + (𝐸2)1/3𝐴𝑖

′(𝑦2𝑠)] 

𝐹 𝐹 = 𝐶𝑖𝑛𝑗,𝐷

1 − 𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
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Table 3. Expressions of coefficients in solutions of Eqs. (17a) - (18c) 

𝒯1 
𝐹 − 𝑊2𝒯2

𝑊1
 

𝒯2 
𝑊1𝑊5

𝑊1𝑊4 − 𝑊2𝑊3
𝒯3 +

𝑊1𝑊6

𝑊1𝑊4 − 𝑊2𝑊3
𝒯4 −

𝑊3𝐹

𝑊1𝑊4 − 𝑊2𝑊3
 

𝒯3 
𝑊13𝑊15 − 𝑊12𝑊16

𝑊11𝑊16 − 𝑊13𝑊14
𝒯4 

𝒯4 𝑊3𝐹(𝑊1𝑊8 − 𝑊2𝑊7) − 𝑊7𝐹(𝑊1𝑊4 − 𝑊2𝑊3)

(𝑊1𝑊5Θ + 𝑊1𝑊6)(𝑊1𝑊8 − 𝑊2𝑊7) − (𝑊1𝑊9Θ − 𝑊1𝑊10)(𝑊1𝑊4 − 𝑊2𝑊3)
 

𝒯5 𝑊14

𝑊16
𝒯3 +

𝑊15

𝑊16
𝒯4 

𝒯6 0 

Θ 
𝑊13𝑊15 − 𝑊12𝑊16

𝑊11𝑊16 − 𝑊13𝑊14
 

𝑊1 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦𝑤)] 

𝑊2 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦𝑤) − 𝜆 (

𝐸1

𝜆
)

1/3

𝑒𝑥𝑝 (
𝑟𝑤𝐷

2
) 𝐵𝑖

′(𝑦𝑤)] 

𝑊3 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝑦1𝑠) 

𝑊4 𝑒𝑥 𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝑦1𝑠) 

𝑊5 𝑟𝑠𝐷
𝑚𝐾𝑚(𝜀1𝑟𝑠𝐷) 

𝑊6 𝑟𝐷
𝑚𝐼𝑚(𝜀1𝑟𝐷) 

𝑊7 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐴𝑖
′(𝑦1𝑠)] 

𝑊8 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝑦1𝑠) + 𝜆 (

𝐸1

𝜆
)

1/3

𝐵𝑖
′(𝑦1𝑠)] 

𝑊9 −𝑘𝜀1𝑟𝑠𝐷
𝑚+1𝐾𝑚−1(𝜀1𝑟𝑠𝐷) 

𝑊10 𝑘{𝑚𝑟𝑠𝐷
𝑚−1𝐼𝑚(𝜀1𝑟𝐷) + 0.5𝜀1𝑟𝑠𝐷

𝑚[𝐼𝑚−1(𝜀1𝑟𝐷) + 𝐼𝑚+1(𝜀1𝑟𝐷)]} 

𝑊11 −𝑘𝜀1𝑟0𝐷
𝑚+2𝐾𝑚−1(𝜀1𝑟0𝐷) 

𝑊12 𝑘{𝑚𝑟0𝐷
𝑚 𝐼𝑚(𝜀1𝑟0𝐷) + 0.5𝜀1𝑟0𝐷

𝑚+1[𝐼𝑚−1(𝜀1𝑟0𝐷) + 𝐼𝑚+1(𝜀1𝑟0𝐷)]} 

𝑊13 0.5𝑒𝑥𝑝 (
𝑟𝐷

2
) 𝐴𝑖(𝑦4) + 𝜀1

1/3
𝑒𝑥𝑝 (

𝑟𝐷

2
) 𝐴𝑖

′(𝑦4) 
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𝑊14 𝑟0𝐷
𝑚 𝐾𝑚(𝜀1𝑟0𝐷) 

𝑊15 𝑟0𝐷
𝑚 𝐼𝑚(𝜀1𝑟0𝐷) 

𝑊16 𝑒𝑥𝑝 (
𝑟0𝐷

2
) 𝐴𝑖(𝑦4) 
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Table 4. Expressions of coefficients in solutions of Eqs. (20a) - (23c). 

𝑇1 
𝐹 − 𝐺2𝑇2

𝐺1
 

𝑇2 
𝐺3𝐺8𝐹 − 𝐺5𝐺6𝐹

𝐺1𝐺5𝐺7 + 𝐺2𝐺3𝐺8 − 𝐺2𝐺5𝐺6 − 𝐺1𝐺4𝐺8
 

𝑇3 𝑇3 =
𝐺3𝐹

𝐺1𝐺5
−

𝐺2𝐺3𝑇2

𝐺1𝐺5
+

𝐺4𝑇2

𝐺5
 

𝐺1 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑𝑤) − 𝜆 (

𝐸3

𝜆
)

1/3

𝐴𝑖
′(𝜑𝑤)] 

𝐺2 𝑒𝑥𝑝 (
𝑟𝑤𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑𝑤) − 𝜆 (

𝐸3

𝜆
)

1/3

𝐵𝑖
′(𝜑𝑤)] 

𝐺3 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐴𝑖(𝜑1𝑠) 

𝐺4 𝑒𝑥 𝑝 (
𝑟𝑠𝐷

2𝜆
) 𝐵𝑖(𝜑1𝑠) 

𝐺5 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) 𝐴𝑖(𝜑2𝑠) 

𝐺6 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐴𝑖(𝜑1𝑠) + 𝜆 (

𝐸3

𝜆
)

1/3

𝐴𝑖
′(𝜑1𝑠)] 

𝐺7 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2𝜆
) [

1

2
𝐵𝑖(𝜑1𝑠) + 𝜆 (

𝐸3

𝜆
)

1/3

𝐵𝑖
′(𝜑1𝑠)] 

𝐺8 𝑒𝑥𝑝 (
𝑟𝑠𝐷

2
) [

1

2
𝐴𝑖(𝜑2𝑠) + 𝐸4

1/3𝐴𝑖
′(𝜑2𝑠)] 

𝐹 𝐶𝑖𝑛𝑗,𝐷

1 − 𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
+ 𝐶𝑐ℎ𝑎,𝐷

𝑒𝑥𝑝(−𝑡𝑖𝑛𝑗,𝐷𝑠)

𝑠
 

𝐸3 𝑠 + 𝜀𝑚1 + 𝜇𝑚1𝐷 −
𝜀𝑚1𝜀𝑖𝑚1

𝑠 + 𝜇𝑖𝑚1𝐷 + 𝜀𝑖𝑚1
−

𝑎2𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚1𝑏2
+

𝑏1𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚1
 

𝐸4 
1

𝜂
(𝑠 + 𝜀𝑚2 + 𝜇𝑚2𝐷 −

𝜀𝑚2𝜀𝑖𝑚2

𝑠 + 𝜇𝑖𝑚2𝐷 + 𝜀𝑖𝑚2
−

𝑎2𝜃𝑢𝑚𝛼2
2𝐷𝑢

2𝐴𝜃𝑚2𝑏2
+

𝑏1𝜃𝑙𝑚𝛼2
2𝐷𝑙

2𝐴𝑏2𝜃𝑚2
) 

𝑎2 −√𝑠 + 𝜀𝑢𝑚 + 𝜇𝑢𝑚𝐷 −
𝜀𝑢𝑚𝜀𝑢𝑖𝑚

𝑠 + 𝜇𝑢𝑖𝑚𝐷 + 𝜀𝑢𝑖𝑚
 

𝑏1 √𝑠 + 𝜀𝑙𝑚 + 𝜇𝑙𝑚𝐷 −
𝜀𝑙𝑚𝜀𝑙𝑖𝑚

𝑠 + 𝜇𝑙𝑖𝑚𝐷 + 𝜀𝑙𝑖𝑚
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Table 5. Parameter values used in Figures 2 and 3 

Parameters 
SDM of Chen (2007) CDM of Chen 

(2007) 
Eqs. (17) - (18) Eqs. (14) - (15) 

𝜃 (-) 0.58 0.58 \ \ 

𝜃𝑚1 = 𝜃𝑚2 (-) \ \ 0.38 0.39 

𝜃𝑖𝑚1 = 𝜃𝑖𝑚2 (-) \ \ 0.04 0.02 

𝛼1 =𝛼2 (cm) \ 0.45 0.50 0.45 

𝑘 (-) 2.4×10-2 \ 1.3×10-2 \ 

𝑟0 (cm) \ \ 10000 \ 

𝛼0 (cm) \ \ 0.50 \ 

𝜔1 = 𝜔2 (d-1) \ \ 1.0×10-3 1.0×10-3 

𝑡𝑖𝑛𝑗 (min) \ \ 300 300 

𝜇𝑚1 (s-1) 0.0 0.0 1.0×10-7 1.0×10-7 

𝜇𝑚2 (s-1) 0.0 0.0 1.0×10-7 1.0×10-7 

𝜇𝑖𝑚1 (s1) 0.0 0.0 1.0×10-7 1.0×10-7 

𝜇𝑖𝑚2 (s-1) 0.0 0.0 1.0×10-7 1.0×10-7 

ℎ𝑤,𝑖𝑛𝑗 (cm) \ \ 6.35 6.35 

ℎ𝑤,𝑐ℎ𝑎 (cm) \ \ 6.35 6.35 

𝑟𝑠 (cm) \ \ 𝑟𝑤 𝑟𝑤 

𝑅 = 𝑅𝑚1 = 𝑅𝑖𝑚1 = 𝑅𝑚2 =
𝑅𝑖𝑚2 (-) 

1 

Note: “SDM” represents the scale-dependent dispersivity model; “CDM” represents the constant dispersivity model; “-” 

represents that the variable is dimensionless; “\” represents that the variable is not included in the model. 
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Table 6. Errors between observed and computed BTCs in Figures 2 and 3. 

Models Solutions Observation location (cm) Error (𝑬𝒓) 𝑹𝟐 

CDM 

Chen et al. (2007) 
22.5 0.06 

0.89 
0.962 

1.107 
30.4 0.83 0.145 

This study 
22.5 0.34 

0.39 
0.878 

1.805 
30.4 0.05 0.927 

SDM 

Chen et al. (2007) 
22.5 0.07 

0.78 
0.958 

1.051 
30.4 0.71 0.093 

This study 
22.5 0.23 

0.25 
0.909 

1.881 
30.4 0.02 0.972 

  


