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Abstract. Hydrological models are widely used to characterise, understand and manage hydrosystems. Data-driven models 

are of particular interest in karst environments given the complexity and heterogeneity of these systems. There is a multitude 

of data-driven modelling approaches, which can make it difficult for a manager or researcher to choose. We therefore 

conducted a comparison of two data-driven modelling approaches: artificial neural networks (ANN) and reservoir models. 20 

We investigate five karst systems in the Mediterranean and Alpine regions with different characteristics in terms of climatic 

conditions, hydrogeological properties and data availability. We compare the results of ANN and reservoir modelling 

approaches using several performance criteria over different hydrological periods. The results show that both ANN and 

reservoir models can accurately simulate karst spring discharge, but also that they have different advantages and drawbacks: 

(i) ANN models are very flexible regarding the format and amount of input data, (ii) reservoir models can provide good 25 

results even with short calibration periods, and (iii) ANN models seem robust for reproducing high-flow conditions while 

reservoir models are superior for reproducing low-flow conditions. However, both modelling approaches struggle to 

reproduce extreme events (droughts, floods), which is a known problem in hydrological modelling. For research purposes, 

ANN models have shown to be useful to identify recharge areas and delineate catchment, based on insights into the input 

data. Reservoir models are adapted to understand the hydrological functioning of a system, by studying model structure and 30 

parameters. 
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1 Introduction 

Karst systems are complex and heterogeneous media. High contrasts in porosity and permeability induce a high variability in 

infiltration and internal flow processes (Bakalowicz, 2005; Ford and Williams, 2007) which can be difficult to assess. 

Considering the increasing demand for water and that around 9 % of the world’s population (up to 90 % in some parts of the 35 

Mediterranean area) depends on karst water resources for drinking water supply (Stevanović, 2019), the characterisation of 

karst systems functioning and water availability become a major challenge for water resource management. Among the 

numerous methods to study karst systems (Goldscheider, 2015), hydrological models are useful to characterise karst 

functioning, and specially to predict the impact of climate and land use changes (Hartmann et al., 2014). Hydrological 

models can be grouped into data-driven and distributed approaches (Kovács and Sauter, 2007). While distributed models 40 

divide a karst system into a two- or three-dimensional grid, for which each cell is assigned appropriate hydraulic parameters 

and system states, data-driven models are based on the mathematical analysis of input data (e.g. precipitation, temperature) 

for simulating spring discharge time series. They include (i) “black-box” models such as neural networks-based approaches, 

which use no a priori information about the functioning of a system; and (ii) reservoir models, which are based on a 

conceptual representation of a karst system – a succession of one or several reservoirs using simplified physical transfer 45 

functions. 

The choice of a modelling approach depends mainly on the objective of the study, but also on the current knowledge of the 

system and the available data. For karst systems, the available data are often scarce and poorly reflect the heterogeneity of 

the meteorological and karst processes. Distributed models require a lot of data for defining physical parameters and thus can 

be tough to use in a scarce data context. On the other hand, data-driven models permit studying complex and heterogeneous 50 

karst systems without requiring extensive meteorological and system-related data. Both “black-box” and reservoirs models 

are therefore relevant for operational and research applications. Artificial neural networks (ANN) have been successfully 

used to simulate karst spring discharge (Kurtulus and Razack, 2007; Hu et al., 2008; Meng et al., 2015; Wunsch et al., 2022), 

predict and forecast water flood/inrush (Wu et al., 2008; Kong A Siou et al., 2011) and manage the exploitation of karst 

aquifers (Yin et al., 2011; Kong A Siou et al., 2015). Reservoir models also have been successfully used to simulate karst 55 

spring discharge (Fleury et al., 2007; Dubois et al., 2020), manage the exploitation of karst aquifers (Fleury et al., 2009; 

Zhou et al., 2021), as well as characterise specific functioning in karst systems (Tritz et al., 2011; Perrin et al., 2003; Bittner 

et al., 2020; Jukić and Denić-Jukić, 2009). Although several authors compared the performance of different ANN models 

(Cheng et al., 2020; Kurtulus and Razack, 2010; Kovačević et al., 2018) and studied structure and parameters’ equifinality in 

reservoir models (Hartmann et al., 2012; Gondwe et al., 2011; Mazzilli et al., 2012; Makropoulos et al., 2008), only few 60 

studies have been conducted on the comparison of both approaches (Jeannin et al., 2021; Kong A Siou et al., 2014; Sezen et 

al., 2019). Kong A Siou et al. (2014) observed that ANN models are more effective for accounting for the nonlinearity of 

karst systems during extreme events (dry and flood periods), while reservoir models were better for representing the 

hydrological functioning of the system during intermediate water periods. Sezen et al. (2019) observed that ANN models 
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were better for simulating low-flow periods and reservoir models for simulating spring discharges on predominantly non-65 

karst catchments. Jeannin et al. (2021) emphasised the great potential of ANN models but highlighted two main limitations: 

(i) they require long time series to accurately learn the functioning of a karst system, and (ii) usually no information about 

specific functioning of a system can be deduced from the results. 

The performance of ANN and reservoir models can therefore be influenced by the characteristics of the catchment, as well as 

the format and length of the input data. The aim of the present study is to help researchers and stakeholders to choose 70 

between ANN and reservoir modelling approaches for simulating karst spring discharge, depending on their purpose and the 

available data. This research provides the first extensive comparison of ANN and reservoir models in karst hydrology by 

investigating results on five study sites with different context and input data. We use ANN as they have proven to be fast and 

reliable for modelling hydrological time series (Wunsch et al., 2021; Van et al., 2020; Jeannin et al., 2021). Reservoir 

modelling is carried out using the KarstMod platform, as it provides a powerful modular interface for varying the structure, 75 

parameters and transfer functions of the conceptual model (Mazzilli et al., 2019). This research seeks to address the 

following research questions: 

• What are the advantages and drawbacks of ANN and reservoir models in karst hydrogeology? 

• To which extent can ANN and reservoir models be used to get a better understanding of system functioning? 

• What are the implications from a stakeholder’s perspective? 80 

• Is one approach better suited for climate change predictions? 

2 Data and study sites 

We compare ANN and reservoir modelling approaches using data from five different well-studied karst systems (Table 1, 

Fig. A1). All systems have different characteristics in terms of hydrogeological properties (e.g. catchment area, 

karstification), data availability (e.g. length of the time series, number of meteorological stations, time step), and 85 

environmental conditions (e.g. climate, anthropogenic influence). Each study site is detailed in the following subsections and 

further details about the meteorological data can be found in Table B1. 
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Table 1: Summary of studied springs and areas. Qmean corresponds to the mean observed discharge and Pan to the annual mean 

precipitation over the considered period. 90 

Spring Country Climate 
Catchment area  

 [km2] 
Qmean 

 [m3.s-1] 
Pan 

 [mm] 
Period 

Aubach Austria Cool temperate and humid 9 0.91 2113 2012-11-20 – 2020-10-31 

Gato Cave Spain Mediterranean 69-79 1.50 1872 1963-10-02 – 2015-04-29 

Lez France Mediterranean 130 0.84 904 2008-10-21 – 2020-12-03 

Qachqouch Lebanon Mediterranean 56 2.01 1293 2015-09-06 – 2020-02-05 

Unica Slovenia Moderate continental 820 21.97 1605 1961-01-02 – 2018-12-31 

2.1 Aubach spring, Austria 

Aubach spring (1080 m asl) is a large non-permanent spring located in the Hochifen-Gottesacker area, on the border between 

Germany and Austria (Northern Alps). The Hochifen-Gottesacker system covers an area of about 35 km2 and its altitude 

varies between 1000 and 2230 m asl (Chen et al., 2018). The area is under a cool temperate, humid climate and is strongly 

affected by snow accumulation and melting, which typically occur between November and May (Chen et al., 2018). The 95 

spring is located in the Schwarzwasser valley, which follows the geological contact between highly karstified limestone 

(Schrattenkalk formation) in the northern and western part and impermeable sedimentary rocks of the Flysch zone in the 

southern part (Goldscheider, 2005). The main catchment of Aubach spring is estimated to be approximately 9 km2 

(Goldscheider, 2005; Chen and Goldscheider, 2014). The spring also receives inflow from several upstream karst catchments 

and the Flysch zone, where surface runoff can sink into an estavelle and pass through an underground karst conduit during 100 

low-flow periods, as demonstrated by multiple tracer tests (Goldscheider, 2005). 

Precipitation and temperature data were obtained from three meteorological stations located outside the catchment. The 

potential evapotranspiration is calculated using data from one station with the modified Turk-Ivanov approach after 

Wendling and Müller (1984), described in Conradt et al. (2013). 

2.2 Gato Cave spring, Spain 105 

Gato cave spring (462 m asl) is one of the main outlets of the karst system of Sierra de Lìbar. It is located in the north-

western part of the province of Málaga, within the boundaries of the Grazalema Natural Park, about 75 km west of Málaga. 

The altitude of the Sierra de Lìbar varies between 400 and 1400 m asl according to the main north-east/south-west mountain 

alignments. The area is under a Mediterranean climate, with an average annual precipitation of about 1500 mm and defined 

by a strong seasonal pattern (Andreo et al., 2006). The site is located within the External Zone of the Betic Cordillera and 110 

presents mainly Jurassic limestones and dolomites, Cretaceous-Paleogene marly-limestones and Tertiary clays and 

sandstones (Flysch) that cover the whole Mesozoic rock sequence. The Jurassic rocks outcrop as anticlinal cores, while the 
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synclines and tectonic grabens are composed of Cretaceous rocks (Martín-Algarra, 1987). The Hundidero-Gato system 

constitutes a binary karst system where a wide range of well-developed karst landforms are found, such as karrenfields, 

swallow holes and caves. These features strongly condition recharge, which is primarily produced in two ways: (i) 115 

autochthonous, by direct infiltration of rainfall through carbonate outcrops (20-40 km2) as well as rainwater that infiltrates 

through swallow holes in poljes; and (ii) allochthonous, as a contribution from runoff produced in the Gaduares River basins 

(43.5 km2). This runoff is stored in the Montejaque dam, which was built on karstified limestone, resulting in water losses in 

the reservoir and, consequently, the artificial recharge of the aquifer through the Hundidero cave (Andreo et al., 2004). 

Precipitation and temperature data are from the meteorological station of Grazalema, which is the closest to the catchment, 120 

and therefore the most representative. Potential evapotranspiration is calculated with the Hargreaves-Samani approach 

(Hargreaves and Samani, 1985). 

2.3 Lez spring, France 

The Lez spring (64 m asl) is located 15 km north of Montpellier, and the altitude of its catchment varies between 64 and 655 

m asl. The Lez catchment is exposed to a Mediterranean climate, which is characterised by hot, dry summers, mild winters 125 

and wet autumns. As a large part of the hydrogeological basin is relatively impermeable due to the presence of marl and 

marly-limestone formation, the effective recharge area of the Lez spring covers about 130 km2 (Fleury et al., 2009) and 

corresponds to Jurassic limestone outcrops. Localized infiltration occurs through fractures and sinkholes along the basin and 

through the major geologic fault of Corconne-Les Matelles. The Lez aquifer is subject to anthropic pressure (i.e. exploitation 

for water supply) with pumping directly into the karstic conduit. The discharge is measured at the spring pool and is 130 

regularly zero during low water periods, when the pumping rate exceeds the natural discharge of the spring. 

Precipitation data are from four meteorological stations. Three are located in the catchment and one is located about 5 km 

west of the catchment. Potential evapotranspiration is calculated with the Oudin approach (Oudin et al., 2005). Temperature 

data are from the Prades-le-Lez meteorological station. 

2.4 Qachqouch spring, Lebanon 135 

Qachqouch spring (64 m asl) is located in the Nahr el-Kalb catchment and originates from a Jurassic karst aquifer. The 

recharge area is estimated to be about 56 km2 with altitudes ranging from 60 to over 1500 m asl (Doummar and Aoun, 2018; 

Dubois et al., 2020). The catchment is primarily exposed to a Mediterranean climate, with snow influence at higher altitudes 

(Dubois et al., 2020). The lithology mainly consists in Jurassic karstified limestone and dolomitic limestone (on the higher 

plateaus) changing to more massive micritic limestone in the lower part of the catchment. The Qachqouch system is 140 

characterised by a duality of flow in a low permeability matrix and a high permeability conduit system (Dubois, 2017). 

Potential runoff inflows from higher altitudes and infiltrates downstream into the Jurassic karst aquifer. 

Precipitation and temperature data are from two meteorological stations. One is located in the catchment at 950 m asl. The 

other, with a heated rain gauge, is located 22 km north-east of the catchment at 1700 m asl (Doummar et al., 2018). Potential 
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evapotranspiration is calculated using data from the 950 m station with the modified Penman-Monteith approach (Allen et 145 

al., 1998). 

2.5 Unica springs, Slovenia 

Unica springs (450 m asl) are the outlets of a complex karst system with an estimated recharge area of about 820 km2. The 

area is under a moderate continental climate and is strongly influenced by snow accumulation and melting. It is subdivided 

into three subcatchments, with a predominance of (i) allogenic infiltration from two subcatchments drained by sinking rivers 150 

flowing through a chain of karst poljes and a river valley, and (ii) autogenous infiltration through a karst plateau with highly 

karstified limestone (Gabrovšek et al., 2010; Kovačič, 2010; Petric, 2010). The poljes follow each other in a descending 

series at altitudes between 450 and 750 m asl and are connected in a common hydrological system. Characterised by a 

network of surface rivers and frequent flooding, this induces a very particular response at the Unica springs with very high 

hydrological variability (by several orders of magnitude), as well as delayed and prolonged high-flow values (Mayaud et al., 155 

2019). Low-flow periods are sustained by flows from the karstified limestone aquifer, which reaches heights up to 1800 m 

asl and has significant groundwater storage (Ravbar et al., 2012). Part of the discharge is lost due to an underground 

bifurcation (Kogovšek et al., 1999). When the discharge exceeds about 60 m3 s-1 and remains high for a few days, a polje 

downstream of the springs becomes flooded. When the discharge reaches about 80 m3 s-1, the flooding reaches the 

monitoring station, influencing the measurement. The water from the lake is drained by several ponors downstream of the 160 

monitoring station, but their absorption capacity is much lower than the discharges of the springs. 

Precipitation, snow cover height, and height of new snow data were obtained from two meteorological stations located on the 

catchment. Temperature and relative humidity data are from Postojna meteorological station only. Potential 

evapotranspiration is calculated using data from the Postojna station with the modified Penman-Monteith approach (Allen et 

al., 1998). 165 

3 Methodology 

3.1 Artificial neural networks 

ANN are a branch of Machine Learning, i.e. a technique to learn complex relations from existing data. They imitate the basic 

functioning of biological nervous systems and similarly consist of mathematical representations of neurons structured and 

interconnected in layers. Given sufficient data from which to learn, ANN can establish complex input-output relations with 170 

only limited domain knowledge. 

In this study, Convolutional Neural Networks (CNN) (LeCun et al., 2015) – a specific model type from the ANN-subfield of 

Deep Learning (DL) – is used. CNN are predominantly successful in processing image-alike data, but are also useful in 

signal processing for sequential data. They usually consist of sequences or blocks of convolutional layers for feature 

recognition and pooling layers for information consolidation. In the former, filters of a specific size (defining their receptive 175 
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field) are used to produce feature maps. These feature maps are subsequently down-sampled (often by maximum selection) 

into pooling layers to consolidate the contained information. Several of these blocks with varying properties can be stacked 

on top of each other, also in combination with other layer types such as batch normalization layers (Ioffe and Szegedy, 2015) 

to prevent exploding gradients or dropout layers (Srivastava et al., 2014). Lastly, one (or multiple) fully connected dense 

layers follow to produce the model output. For the models in this study, we used a single 1D-Convolutional layer with a 180 

fixed kernel size (three) and an optimised number of filters. This layer was succeeded by (i) a Max-Pooling layer, (ii) a 

Monte-Carlo dropout layer (10 % dropout rate) and (iii) two dense layers: the first with an optimised number of neurons and 

the second with a single output neuron. We programmed our models in Python 3.8 (van Rossum, 1995), using the following 

frameworks and libraries: Numpy (van der Walt et al., 2011), Pandas (Reback et al., 2021; McKinney, 2010), Scikit-Learn 

(Pedregosa et al., 2018), Matplotlib (Hunter, 2007), BayesOpt (Nogueira, 2014), TensorFlow 2.7 (Abadi et al., 2016) and its 185 

Keras API (Chollet et al., 2015). 

3.2 Reservoir models 

Reservoir models are a conceptual representation of a hydrosystem, which involves the association of several reservoirs that 

are thought to be representative of the main processes at stake. Each reservoir is characterised by its water height and a flow 

equation that translates the variations of water height into discharges. The flow equation is function of a specific discharge 190 

coefficient and a positive exponent (different from 1 for non-linear flows), which are defined by calibration against observed 

data. 

Many reservoir models have been developed to study the relation between precipitation and discharge in karst systems 

(Hartmann et al., 2014). They all differ in complexity with respect to the number of reservoirs and parameters, which need to 

be well thought out in order to preserve physical realism and limit equifinality on model parameters. Careful sensitivity 195 

analyses and uncertainty assessment should be considered along with model results to avoid over-interpretation (Refsgaard 

et al., 2007). Reservoir models can be seen as a compromise between simulation performance and insight into the 

functioning of a system. This approach is well suited to karst systems due to the high heterogeneity and low level of 

knowledge of their structure (Hartmann et al., 2012; Fleury et al., 2009). 

We used the adjustable modelling platform KarstMod for performing reservoir modelling. KarstMod provides a modular, 200 

user-friendly interface for simulating spring discharge at karst outlets. Structure of models built using KarstMod platform is 

based on the conceptual model of a karst aquifer with infiltration and saturated zones (Mazzilli et al., 2019). The infiltration 

zone (soil and epikarst) drains water from the surface through a vertical network of fissures and conduits. Water storage can 

occur in the unsaturated zone, as well as local saturation. The saturated zone comprises a dual porosity functioning, with a 

network of high-permeability fractures and conduits, and a low-permeability matrix with a high storage capacity. 205 

In KarstMod, the model structure can include up to four reservoirs. One at the upper level reflects the processes (infiltration, 

storage and drainage) occurring in the soil and epikarst zone. Three at the lower level can be connected with the first one and 

correspond to the infiltration and/or saturated zones. The discharge can be simulated with (i) several linear and non-linear 
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water level-discharge laws, (ii) a hysteretic water level-discharge function to reproduce the hysteretic functioning observed 

on the wet-dry cycles in the unsaturated zone (Lehmann et al., 1998; Tritz et al., 2011), and (iii) an exchange function that 210 

aims to reproduce the interactions between matrix and conduits. More details on the balance equations, the parameters 

involved and the KarstMod platform in general can be found in Mazzilli et al. (2019) or in the KarstMod User Guide 

(Mazzilli and Bertin, 2019). 

In this study, we first addressed the structure of the models taking into account our expert knowledge and previous studies. 

For each site, we examined the major characteristics that determine the functioning of the system and associated the 215 

corresponding conceptual modelling. We then modified this base structure according to the performance of the model while 

trying to maintain physical realism. The most efficient model structures that we obtained after performing the modelling are 

shown in Fig. 1. 

Aubach spring selected model (Fig. 1a) is close to the conceptual model with a very reactive transfer function (QES), 

corresponding to the well-developed conduit network, and a matrix reservoir (M), which in this case mostly reflects the 220 

storage properties in the unsaturated limestone. We tested different configurations (lost discharge from upper level reservoir 

and/or pumping in lower reservoirs) to simulate the lost discharges through overflow springs and underground flows, but 

there were no significant increases in model performance. Gato Cave spring selected model (Fig. 1b) is different from the 

conceptual model as the platform could not account for the allochthonous recharge on the catchment. The model structure 

includes a soil available water capacity (Emin), matrix and conduits compartments (M and C), as well as matrix-conduits 225 

exchanges (QMC), which may translate the processes occurring through the dam. Lez spring selected model (Fig. 1c) is 

accurate with the conceptual model and includes an overflow transfer function (Qloss), matrix and conduits compartments (M 

and C), matrix-conduits exchanges (QMC), and pumping into the main conduit (Qpump). We considered a low soil available 

water capacity (Emin) as it greatly increased the performance of the model. Qachqouch spring selected model (Fig. 1d) is 

consistent with previous conceptual models that considered many different response times. The model structure features a 230 

very reactive transfer function (QESO), matrix and conduits compartments (M and C), matrix-conduits exchanges (QMC) as 

well as a soil available water capacity. The multiple different transfer functions help to reproduce the reactive and dampened 

responses of the Qachqouch karst aquifer. Unica springs selected model (Fig. 1e) is significantly simpler than the conceptual 

model, which includes polje flooding, allochthonous recharge, overflow springs and matrix-conduits exchanges. We only 

retained a very simple structure as it was the best trade-off between physical realism and model performance. The very 235 

reactive transfer function QESO allows reproducing fast flows through conduits, while the matrix reservoir (M) likely 

translates processes occurring in the matrix and surface flooding. 
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Figure 1: Selected model structures for (a) Aubach, (b) Gato Cave, (c) Lez, (d) Qachqouch and (e) Unica springs. Flux names 

correspond to the terminology of the KarstMod platform (Mazzilli and Bertin, 2019). 240 

3.3 Input data 

Input data are the time series that are used for simulating karst spring discharge. They can be derived from either a direct 

observation (e.g. observed discharge, temperature, sinking stream discharge or pumping) or a calculation from raw input data 

(e.g. potential evapotranspiration derived from temperature). Nature of input data usually differs between ANN and reservoir 

modelling approaches, as ANN models tends to make good use of direct observations, whereas reservoir models often 245 

requires to preprocess the raw input data. We decided to work with raw input data to ensure equitable performance between 

ANN and reservoir models. The raw input data was either used directly or preprocessed, depending on the modelling 

approach. 

The data used for each modelling approach and site is summarised in Table 2. Observed discharge time series were used 

directly (without further preprocessing) in ANN and reservoir models. In the case of the Lez spring, the models were 250 

simultaneously calibrated on the spring discharge (Q) as well as on the water level in the aquifer (Z). Furthermore, the 

pumped discharge time series in reservoir C (Qpump, Fig. 1c) was used as an input. Precipitation time series were used 

differently as there are often several meteorological station per study site. For ANN models, precipitation time series were 

used as raw input Praw, except for Lez spring where the individual raw precipitation data had too many missing values so we 
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used the same input as the reservoir model (Pin). In the case of Aubach, Qachqouch and Unica, Praw includes all the 255 

precipitation time series from the different meteorological stations (Table B1). For reservoir models, the precipitation time 

series were either (i) used directly if there was no snow dynamics on the catchment and only one meteorological station was 

available (Gato Cave), (ii) preprocessed with Thiessen’s polygons interpolation (Appendix C) if there were several 

meteorological stations (Lez), (iii) preprocessed with a snow routine (Appendix D) to simulate snow accumulation and 

melting over the catchment (Aubach) if snow dynamics could not be neglected, or (iv) preprocessed with both Thiessen’s 260 

polygons interpolation and snow routine (Qachqouch, Unica). For reservoir models, evapotranspiration processes were 

considered using time series of potential evapotranspiration. For ANN models, we used temperature time series instead of 

evapotranspiration because calculating potential evapotranspiration is generally not necessarily beforehand. Additionally, we 

used a sinusoidal temperature signal time series (Tsin, derived from the observed temperature) to better account for 

seasonality in Aubach, Lez and Unica ANN models. 265 

 

Table 2: Summary of input data. (i) Praw, (ii) Pin and (iii) Psr refer to (i) raw precipitation data, (ii) precipitation data interpolated 

with Thiessen’s polygons method, and (iii) precipitation data redistributed by applying the snow routine. Qobs, Zobs and T refer to 

observed discharge, observed water level and temperature, respectively. ET (Evapotranspiration) refers to either PET (Potential 

Evapotranspiration) or AET (Actual Evapotranspiration) time series. 270 

Spring Time step Date Range 
Data used Maximum gap [days] 

ANN Reservoir P T Q ET 

Aubach Hourly 2012–2020 Qobs, Praw, T, Tsin
a Qobs, Psr, PETc 0 0 0 0 

Gato Cave Daily 1963–2015 Qobs, Praw, Tmax, Tmin, Tmed Qobs, Praw, PET 0 0 0 0 

Lez Daily 2008–2020 Qobs, Qpump, Zobs, Pin, Tsin Qobs, Qpump, Zobs, Pin, PET 0 2 7 0 

Qachqouch Daily 2015–2020 Qobs, Praw, Tmax
b Qobs, Pin, PET 0 0 11 0 

Unica Daily 1961–2018 Qobs, Praw, T, Tsin, NS Qobs, Pin-sr, PET 0 1 0 29 

aPraw, T and Tsin data are from Diedamskopf, Oberstdorf and Walmendinger Horn meteorological stations 

bTmax data are from the 1700 m meteorological station 

cPsr data are calculated with the data from Diedamskopf station 

 

We handled missing values in the different time series as follows: (i) temperature gaps were linearly interpolated, (ii) 

precipitation and evapotranspiration gaps were considered to be equal to 0, and (iii) discharge gaps were interpolated with a 

Lagrange polynomial function. Maximum observed gaps for precipitation, temperature, discharge and evapotranspiration 

time series are detailed in Table 2. Note that (i) for Lez spring, we observed maximum gaps of 17 and 16 days for pumped 

discharge and piezometric level, respectively; and (ii) for Unica springs, there are no missing values in the Cerknica new 275 

snow height (NS) time series. 
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3.4 Model calibration and simulation 

The calibration period is the period used for selecting the parameters that provide the best results according to the 

performance measure. The validation period is intended to assess the relevance of the parameters over a time interval that is 

not used for calibration. In the domain of the ANN modelling, the validation is usually denoted as testing period. However, 280 

we unify the terminology at this point. The calibration period is again split into three different parts in the case of ANN 

modelling, (i) to train the model, (ii) to prevent the model from overfitting, and (iii) to optimize its hyperparameters. We 

defined the same calibration and validation periods for both modelling approaches (Table 3), which ensures fair initial 

conditions and a meaningful comparison of the results. We have chosen the periods in a way to maximise the length of the 

calibration periods, which allows for relevant model results (especially in ANN models). In reservoir model, we considered a 285 

short warm-up interval at the beginning of the calibration period for the model to adjust and reach an optimal state. 

 

Table 3: Calibration and validation periods. 

Spring Calibration period Validation period 
Objective function 

ANN Reservoir 

Aubach 2014-04-18   –   2019-12-31 2020-01-01    –   2020-10-31 MSE(Q) NSE(Q) 

Gato Cave 1963-10-02   –   2011-09-03 2011-09-04    –   2015-04-29 MSE(Q) NSE(Q) 

Lez 2008-10-21 –   2017-12-31 2018-01-01    –   2020-12-03 MSE(Q, Z) NSE(Q, Z) 

Qachqouch 2015-09-06 –   2019-09-30 2019-10-01    –   2020-01-22 MSE(Q) NSE(Q) 

Unica 1961-01-02   –   2016-09-28 2016-09-29  –   2018-12-31 MSE(Q) NSE(Q) 

 

We calibrated the models by applying the Mean Squared Error (MSE) and the Nash-Sutcliffe Efficiency (NSE, Nash and 290 

Sutcliffe (1970)) criteria – in ANN and reservoir models, respectively – on simulated and observed discharges time series. 

For Lez spring, we used a composite function of discharge and water level in order to consider both variables in the same 

modelling process. 

A total of 1000 simulations were carried out for each modelling approach at each site. The obtained simulated discharge (or 

water level) time series corresponds to the mean of the distribution of simulated values at each time step. We also considered 295 

the uncertainties in the model prediction by calculating the 90 % confidence interval, whose limits correspond to the 0.05 

and 0.95 quantile of the distribution at each time step. 

In KarstMod (reservoir models), the simulations correspond to the 1000 best results of a one-hour simulation run. The 

confidence interval reflects the uncertainty in the parameters used in the model, which are not fixed but defined as a range 

(e.g. catchment area = 150 to 200 km2). In the case of ANN models, we used a model ensemble of 10 models based on 300 
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different random number generator seeds for model initialization. Using the Monte-Carlo dropout layer, for each of the 

ensemble members a total of 100 simulation results were generated. 

3.5 Model evaluation 

We evaluated the performance of the models using several performance criteria that assess different aspects of the discharge: 

modified Kling-Gupta Efficiency (KGE’), KGE’ components (𝑟, 𝛾, 𝛽) (Kling et al., 2012) and Diagnostic Efficiency (DE) 305 

(Schwemmle et al., 2021). These criteria were all applied to the whole discharge regime, but also to sub-regimes of high- and 

low-flow conditions (with the exception of DE, which already takes sub-regimes into account). For Lez spring, we also 

applied the KGE’ criterion on water level. Model performance is usually evaluated on both calibration and validation periods 

for reservoir models. However, this approach is not suited to ANN models, for which the calibration period corresponds to 

the learning period of the model. Thus, we chose to only evaluate and compare the reservoir and ANN models on their 310 

validation periods. 

The KGE’ is based on the Kling-Gupta Efficiency (Gupta et al., 2009) and aims to ensure that bias and variability are not 

cross-correlated by using the coefficient of variation ratio (𝛾) instead of the standard deviation ratio (𝛼): 

 

 𝐾𝐺𝐸′ = 1 −√(𝑟 − 1)2 + (𝛾 − 1)2 + (𝛽 − 1)2 (1) 

 315 

With 𝑟  the Pearson correlation coefficient between the simulated and observed discharge, 𝛽  the ratio between mean 

simulated and mean observed discharge, and 𝛾  the ratio between simulated and observed coefficient of variation of 

discharge. The three components of KGE’ help to evaluate different aspects of a model: (i) 𝑟 is related to shape and timing 

(Santos et al., 2018), (ii) 𝛽 is used to assess the overall volume of water discharged at the spring (further referred to as 

“volume”), and (iii) 𝛾 gives insight into the flow variability. The KGE’ and 𝑟 criteria can range from -∞ to 1, whereas 𝛾 and 320 

𝛽 can range from -∞ to ∞. A KGE’ score equal to 1 means a perfect match between simulated and observed discharge, 

while a score lower than -0.41 indicates that the model is worse than using the observed mean as a predictor (Knoben et al., 

2019). 

The DE criterion is intended to help defining the weaknesses of a model. It is based on constant, dynamic and timing errors. 

DE is proposed as a numerical measure (ranging from 0 to ∞, with 0 indicating a perfect model), but can also be visualized 325 

on a polar plot that effectively differentiate error contributions. The overall error is calculated with the following equation: 

 

 
𝐷𝐸 = √𝐵𝑟𝑒𝑙

2
+ |𝐵𝑎𝑟𝑒𝑎|

2 + (𝑟 − 1)2 (2) 
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 330 

With 𝐵𝑟𝑒𝑙  and |𝐵𝑎𝑟𝑒𝑎| the measures for constant and dynamic errors, respectively. As these measures are based on the flow 

duration curve, they give an information in terms of exceedance probability. Details of their calculation can be found in 

Schwemmle et al. (2021). 

The performance criteria applied to high- and low-flow conditions are denoted by the lower script indices “L” and “H”, 

respectively. These criteria allow the performance of the models to be evaluated over different flow regimes 335 

(i.e. dry/intermediate, wet). Discharge thresholds were set manually based on our knowledge of the system and a careful 

assessment of the distribution of discharge values. They are equal to 1, 2, 0.8, 5, and 20 m3 s-1 for Aubach, Gato Cave, Lez, 

Qachqouch and Unica springs, respectively. 

4 Results and discussion 

The obtained models and their confidence intervals for the two approaches and each test site are presented in Fig. 2 for 340 

discharge and Fig. 3 for water level (Lez spring). Their performance – assessed with multiple criteria – are shown in Fig. 4 

and in Table 4. The DE polar plots for each site are presented in Fig. 5. 
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Figure 2: Observed and simulated spring discharge time series with (i) 90 % confidence intervals (CI) on the validation period and 

(ii) threshold for high and low flows used for the calculation of the performance criteria. (a) Aubach, (b) Gato Cave, (c) Lez, (d) 345 
Qachqouch and (e) Unica springs. 

 

Figure 3: Observed and simulated spring water level time series with 90 % confidence intervals (CI) on the validation period (Lez 

spring). 
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 350 

Figure 4: Performance of the ANN and reservoir models on the validation period, according to different performance criteria. 

Exact values can be found in Table 4. 
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Table 4: Details of indicator values for the reservoir and ANN models on the validation period. For each site, the simulations are 355 
evaluated with different performance criteria on total, high- and low-flow conditions. Values in bold correspond to the better score 

between ANN and reservoir models. 

Spring Flow regime 
KGE' β r γ 

ANN Reservoir ANN Reservoir ANN Reservoir ANN Reservoir 

Aubach 

Total 0.88 0.67 0.93 0.94 0.91 0.68 1.01 1.05 

High flow 0.80 0.47 0.91 0.85 0.84 0.54 1.07 1.22 

Low flow 0.57 -0.21 0.99 1.25 0.66 0.40 1.26 2.01 

Gato Cave 

Total 0.91 0.85 0.98 0.88 0.92 0.95 0.97 0.91 

High flow 0.77 0.79 0.92 0.82 0.82 0.90 1.11 0.98 

Low flow 0.59 0.67 1.32 1.22 0.82 0.86 1.19 1.20 

Lez 

Total 0.70 0.80 0.74 0.88 0.93 0.88 1.13 1.10 

High flow 0.52 0.49 0.75 0.87 0.84 0.67 1.38 1.36 

Low flow 0.38 0.65 0.64 0.99 0.64 0.76 1.34 1.26 

Qachqouch 

Total 0.67 0.86 0.87 1.01 0.82 0.94 0.75 0.87 

High flow 0.22 0.57 0.71 0.96 0.46 0.89 0.51 0.59 

Low flow 0.74 0.73 1.21 1.11 0.91 0.95 1.12 1.24 

Unica 

Total 0.73 0.78 1.03 0.80 0.93 0.94 0.74 0.91 

High flow 0.73 0.69 0.87 0.75 0.79 0.82 0.89 0.99 

Low flow 0.07 0.57 1.92 1.10 0.86 0.76 0.95 1.34 
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Figure 5: Diagnostic efficiency polar plots on the validation period. (a) Aubach, (b) Gato Cave, (c) Lez, (d) Qachqouch and (e) 

Unica springs. 360 

4.1 Modelling results 

4.1.1 Aubach spring 

ANN model is very good with a KGE’ of 0.88 (Table 4). The snow-influenced period from April to mid-June is accurately 

modelled, as are the peaks in summer and early autumn (Fig. 2a). The highest peaks of the whole time series occurring in 

February, July and November are only slightly underestimated. The model is balanced and accurate on volume (𝛽=0.93), 365 

variability (𝛾=1.01) and shape and timing (𝑟=0.91). The model is very good for simulating high flows and is decent on low 

flows, but could be improved especially on shape and timing (𝑟𝐻=0.84, 𝑟𝐿=0.66). The slightly higher value of 𝛾𝐿 (1.26) may 

be related to the tendency of the model to “oscillate” during low/medium flows (e.g. in September, Fig. E1a). This wave-like 

behaviour may be related to a high sensitivity to precipitation events or to an inappropriate learning from other data. DE is 

very good (0.14, Fig. 5a). The model shows negative dynamic and constant errors with a higher share of high flows, which 370 

points a small underestimation of the occurrence of high flows. 

Reservoir model is decent with a KGE’ of 0.67 (Table 4), but the model fails to accurately reproduce the discharges in all 

seasons. There is a deficit in water during winter/early spring and an excess during spring (Fig. 2a). The model is balanced 

and accurate on volume (𝛽=0.94) and variability (𝛾=1.05), but has middling shape and timing (𝑟=0.68). The model is 

particularly bad for simulating low flows, with high errors on volume (𝛽𝐿=1.25), variability (𝛾𝐿=2.01) and shape and timing 375 
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(𝑟𝐿=0.4). The simulated high flows are decent, although they are also poor on shape and timing (𝑟𝐻=0.54). DE is somewhat 

insufficient (0.45, Fig. 5a). The model has a positive dynamic error and a negative constant error, with a higher share of low 

flows, which highlight a substantial underestimation of the occurrence of low flows. These errors are probably due to a 

miscalibration of the snow routine, retaining too much water as snow in winter and thus releasing too much in warmer 

periods. 380 

In October, a series of peaks is not well captured by the outputs of both models (Fig. 2a). A plausible explanation is that the 

inputs do not capture the respective local precipitation events due to the location of the climate stations outside the 

catchment. 

The modelling of discharges from Aubach spring is challenging due to the large elevation differences and the heterogeneity 

of precipitation on the catchment. This makes it difficult to provide accurate data to the model, especially with regard to 385 

snow dynamics. The reservoir model is particularly confronted with these aspects because (i) it can only handle a single 

precipitation input (from one weather station or interpolated from several stations) and (ii) the snow dynamics must be 

simulated by a snow module. As these preprocessings are not included in the model calibration and are mostly performed 

manually, they strongly limit the model performance. Leaving aside the mismatches related to inadequate meteorological 

inputs, the structure of the reservoir model seems appropriate to simulate the hydrological response of the spring. In contrast, 390 

the ANN model is able to consider snow dynamics without any preprocessing, using only the precipitation and temperature 

time series during calibration. It shows a great versatility with respect to the input data, similar to that of a two-dimensional 

approach. 

4.1.2 Gato Cave spring 

ANN model is very good with a KGE’ of 0.91 (Table 4), but the model struggles to reproduce the discharges during flood 395 

events (Fig. 2b). Very high peaks are either overestimated (e.g. May 2012, April 2013, March 2014) or underestimated 

(e.g. December 2011, November 2012, March 2013). The model is balanced and accurate on volume (𝛽=0.98), variability 

(𝛾=0.97) and shape and timing (𝑟=0.92). The model is good for simulating high flows and is somewhat decent on low flows. 

It shows a slight lack on shape and timing on both high and low flows (𝑟𝐻=0.82, 𝑟𝐿=0.82), and also seems to overestimate 

low flows (𝛽𝐿=1.32). In the same way as Aubach ANN model, the slightly high variability (𝛾𝐿=1.19) may be related to the 400 

“oscillations” that can be observed especially on medium and low flows (e.g. January 2012, May 2013, Fig. E1b). 

Reservoir model is very good with a KGE’ of 0.85 (Table 4), although the model tends to slightly underestimate the 

discharges during high-flow events (𝛽𝐻=0.82; Fig. 2b). This seems to happen when precipitation occur during several days 

without reaching really high values, which may indicate either (i) some kind of hysteresis functioning with flow occurring 

after a connection has been made in the system, or (ii) inflows into the system that are not taken into account in the model. 405 

The model is balanced and accurate on variability (𝛾=0.91) and shape and timing (𝑟=0.95), but generally underestimates 

volume (𝛽=0.88). The model has good performance on high flows and is decent on low flows. After flood periods, the model 

seems to simulate a slower draining than observed – higher volume (𝛽𝐿=1.22) and variability (𝛾𝐿=1.2) of low/medium flows 
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– resulting in inaccurate recession periods for which the discharge is overestimated (e.g. November 2011, January 2013, 

April 2014). 410 

Some periods like November 2012 or February 2015 are not simulated very well by both models (Fig. 2b), which may be 

related to uncertainties in the meteorological data input. DE is decent (0.39) for ANN model and good (0.23) for reservoir 

model (Fig. 5b). Both models have a positive dynamic error with a higher share of low flows, which highlight a small 

underestimation of the occurrence of low flows. 

The modelling of discharges from Gato Cave spring shows that both approaches can have great performance given few 415 

modelling constraints. Raw precipitation input was used in both models, therefore avoiding additional uncertainties from 

interpolation or snow preprocessings. 

4.1.3 Lez spring 

ANN model is good with a KGE’ of 0.7 for discharge (Table 4) and 0.89 for water level (Fig. 3). The high piezometric levels 

(above 55 m asl) seems a bit too sensitive to precipitation events, especially at the end of 2019 (Fig. 2c). On discharges, the 420 

model is accurate on variability (𝛾=1.13) and shape and timing (𝑟=0.93), but underestimates volume (𝛽=0.74). The overall 

underestimation of volume mainly comes from high flows (𝛽𝐻=0.75) as they are the most represented on the time series. The 

model is decent on high flows, although having too much variability (𝛾𝐻=1.38). On low flows, the model performs poorly 

mainly due to high underestimation of volume (𝛽𝐿=0.64) and insufficient shape and timing (𝑟𝐿=0.64). 

Reservoir model is very good with a KGE’ of 0.8 for discharge (Table 4) and 0.78 for water level (Fig. 3). However, the 425 

model fails to reproduce the observed discharge for several months for the period between September 2017 and March 2018 

(Fig. 2c). During dry periods, there is a too high deficit in the lower reservoirs, leading to a strong delay in the spring 

response when fresh precipitation occur – the C reservoir having to be replenished beforehand. The model is balanced and 

accurate on variability (𝛾=1.1) and shape and timing (𝑟=0.88), but underestimates volume (𝛽=0.88). The model is decent on 

high flows, but has poor variability (𝛾𝐻=1.36) and shape and timing (𝑟𝐻=0.67), and also slightly underestimated volume 430 

(𝛽𝐻=0.87). On low flows, the model has too much variability (𝛾𝐿=1.26) and middling shape and timing (𝑟𝐿=0.76). The 

piezometric levels are satisfactory when the spring is flowing (greater than 65 m asl), but lose accuracy during dry periods. 

The model could not reproduce the changes in flow dynamics at 46 m asl (August 2019, August 2020, Fig. 3). Also, the 

draining of the aquifer seems to be simulated slower than observed (July 2018, July 2019), which can be a result of the 

model trying to fit the aforementioned periods during calibration. 435 

On both models, the poor overall KGE’ value on low/medium flows is probably due to the small occurrences of low 

discharges (except 0), thus inducing a high error on volume. DE is good for both ANN (0.31) and reservoir models (0.29) 

(Fig. 5c). Both models have negative dynamic and constant errors with a higher share of high flows, which highlight an 

underestimation of the occurrence of high flows. 

The time series is generally characterised by distinct dry periods without any recharge due to the anthropogenic pumping of 440 

water into the saturated zone of the aquifer. These periods are simulated fairly accurately by both models but ANN model is 
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better at simulating first floods after or during dry periods. Several boreholes at the north of the spring showed flow-bearing 

structures at 50 m asl (Dausse et al., 2019). These fast water transfer could explain the rapid increases in observed 

piezometric level and the reactive spring responses. We also suspect an evolution of the carbonate’s facies with depth, which 

could affect the effective porosity of the medium and induce different flow dynamics. These aspects are not considered in the 445 

reservoir model which results in poor simulations when the water level is below 60 m asl. However, this failure provides 

information on the structure of the aquifer, which is valuable for research. On the other hand, ANN model was successful in 

learning these particular behaviours, especially as it only had a medium learning time of about 8 years. 

4.1.4 Qachqouch spring 

ANN model is decent with a KGE’ of 0.67 (Table 4), but strongly overestimates low flows at the beginning of December, 450 

then underestimates the flood peak at the end of the month (Fig. 2d). The model slightly underestimates volume (𝛽=0.87), 

and is lacking in variability (𝛾=0.75) and shape and timing (𝑟=0.82). The high flows are poorly simulated but the low flows 

are well fitted, although volume is slightly overestimated (𝛽𝐿=1.21). The oscillations of the simulated discharges (Fig. E1c) 

may appear because the model does not account the time needed for the aquifer to replenish and generate an increase of 

discharge at the spring. 455 

Reservoir model is very good with a KGE’ of 0.86 (Table 4). At the end of the dry period, the low flows are overestimated 

and the first flood is underestimated (Fig. 2d). This may be due to heterogeneous precipitation occurring on highly 

transmissive parts of the catchment. In this case, the soil available water capacity (Emin) – which is necessary for a good 

simulation of low-flow periods – may not be representative of the whole catchment, thus inducing a more dampened 

response than observed. The model is balanced and accurate on volume (𝛽=1.01) and shape and timing (𝑟=0.94), but slightly 460 

lacks in variability (𝛾=0.87). The model is decent on high flows but has middling variability (𝛾𝐻=0.59) which can be due to 

the underestimation of the late December flood peak. The low flows and recession periods are slightly overestimated 

(𝛽𝐿=1.11 and 𝛾𝐿=1.24). 

DE is bad for ANN and reservoir models (0.77 and 0.76, respectively, Fig. 5d). Both models have a positive dynamic error 

with a higher share of low flows, which highlight an underestimation of the occurrence of low flows. Here, the positive 465 

dynamic error is influenced by the constant underestimation of the observed discharge during the dry period (October–

December 2019), accounting for more than 50 % of the observations. 

The very short data length is particularly detrimental to the ANN model as the learning period is only about 3 years. 

Furthermore, even when data are available, there is a significant amount of time without (relevant) discharge, for which no 

input-output relation can be learned. Due to the characteristics of the discharge time series, it can be assumed that a much 470 

longer time series of daily values would be needed to successfully simulate the discharges of Qachqouch spring. On the other 

hand, the reservoir model seems more appropriate to simulate Qachqouch spring discharges even with the limited data 

available. This highlights the strength of conceptual modelling to take into account recharge processes and reservoir 

replenishment, even on a short dataset. 
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4.1.5 Unica springs 475 

ANN model is good with a KGE’ of 0.73 (Table 4). The model is accurate on volume (𝛽=1.03) and shape and timing 

(𝑟=0.93), but insufficient on variability (𝛾=0.74). The model is good at simulating high flows, although slightly lacking in 

volume (𝛽𝐻=0.87), variability (𝛾𝐻=0.89) and shape and timing (𝑟𝐻=0.79). The model is poor for simulating low flows, which 

are often significantly overestimated (𝛽𝐿=1.92), especially the recession periods which systematically have a slower draining 

(Fig. 2e). The overestimation of low flows could be the result of the model trying to better fit the high-flow periods during 480 

training, which may shift the whole discharge curve slightly towards the upper limits. The model also seems to be too 

sensitive regarding precipitation events, hence the wave-like behaviour of the simulated time series (Fig. E1d). DE is bad 

(0.72, Fig. 5e). The model has a negative dynamic error and a positive constant error with a higher share of low flows, which 

highlights an overestimation of the occurrence of low flows. 

Reservoir model is good with a KGE’ of 0.78 (Table 4). The model is balanced and accurate on variability (𝛾=0.91) and 485 

shape and timing (𝑟=0.94), but has shortcomings on volume (𝛽=0.8). In some winter months (December 2017, March 2018), 

the model has a delayed response of the rising limb (Fig. 2e), which may be due to a slightly wrong parametrisation of the 

snow routine. The model is good on high flows, but shape and timing (𝑟𝐻=0.82) and volume (𝛽𝐻=0.75) could be improved. 

The model accurately simulates low flows volume, but has too much variability (𝛾𝐿=1.34) and is middling on shape and 

timing (𝑟𝐿=0.76). The difficulty of the model to reproduce the depletion of the capacitive function may be due to the size and 490 

complexity of the catchment and the very specific influence of poljes draining over the catchment, which cannot be 

simulated within KarstMod platform. DE is very good (0.16, Fig. 5e). The model has negative dynamic and constant errors 

with a higher share of high flows, which highlight a small underestimation of the occurrence of low flows. 

Both models were unable to reproduce the plateau-like behaviour observed at very high discharges (Fig. 2e), which is due to 

the flooding of a polje at Unica springs that influences the monitoring station. They are simulated as separate peaks, which is 495 

false in terms of model accuracy but may also have some underlying conceptual truth. Only two meteorological stations 

were considered, which is very few for such a large catchment (820 km2). Moreover, the major recharge area (Javorniki 

plateau) does not have any direct climate data available. Both models have difficulties in consistently reproducing the very 

particular hydrological functioning of the system (influenced by polje and surface water). ANN model is more reactive, 

which helps for reproducing the dynamics of high floods peaks but hinders the simulation of low flows. Reservoir model has 500 

better dynamics for medium and low flows but does not always manage to reproduce high floods peaks, which may be a 

consequence of the simple structure of the model. 

4.2 Source of uncertainties 

Both ANN and reservoir models have similar trends on water volume and hydrological variability (Fig. 4). Overall volumes 

are great with 𝛽 ranging from 0.74 to 1.03. High-flow volumes are systematically underestimated with 𝛽𝐻 ranging from 0.71 505 

to 1.01. Low-flow volumes are mainly overestimated – 𝛽𝐿 ranging from 0.99 to 1.92 – except for ANN model on Lez spring 
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with 𝛽𝐿  of 0.64. Overall hydrological variability is mainly underestimated, with only Lez and Aubach springs having 𝛾 

values slightly above 1. High-flow hydrological variability doesn’t show a distinct trend, being either overestimated or 

underestimated depending on the studied system. Low-flow hydrological variability is mainly overestimated with 𝛾𝐿 ranging 

from 0.95 to 2.01. These overestimations may be due to (i) improper – and generally softer – simulation of recession periods 510 

or (ii) too high sensitivity to precipitation events, especially in ANN models, inducing discharges oscillations during 

recession and low-flow periods. The performance on shape and timing (𝑟) are mixed between the two approaches. They 

depend mainly on the system studied and the quality of the model, but also on the hydrological period considered. 

These similar results between the two approaches highlight a common struggle to simulate extreme water conditions. As 

ANN and reservoir modelling approaches are very different, explanation must be sought in common factors to both 515 

approaches such as input data, observed data, internal/external system dynamics or the consideration of extreme events 

during calibration: 

• Input data: Generally, in one-dimensional modelling approaches, input data only comes from at most few 

meteorological stations and does not accurately reflect the heterogeneity of meteorological processes on a 

catchment. Spatial variability of precipitation can be very high and not fully captured by meteorological stations, (i) 520 

resulting in different travel time and generating a different response at the spring (Ollivier et al., 2020), and (ii) 

hindering the simulation of very high flows (Pereira et al., 2014; Hohmann et al., 2020) – especially in areas where 

strong convective storms are frequent (Lobligeois et al., 2014). Temperature data are generally less heterogeneous 

than precipitation, although it can be affected by complex topography (Aalto et al., 2017). The uncertainties related 

to precipitation and temperature input in one-dimensional hydrological models can thus – partly – explain the 525 

difficulties to reproduce extreme events (Lobligeois et al., 2014; Huang et al., 2019; Ollivier et al., 2020; Bittner et 

al., 2021), especially high flows. 

• Observed data: Discharge time series are generally derived from water height measured at the spring, using water 

level–discharge calibration curves. Numerous uncertainties are related to this determination method (Pelletier, 

1988), including extrapolation errors for extreme values (Di Baldassarre and Montanari, 2009; Moges et al., 2021). 530 

Extreme events occur more rarely and are harder to measure, especially high flows. This can result in inaccurately 

observed discharge time series that are difficult to reproduce with simulations (e.g. Unica springs at very high 

flows). 

• Internal/external system dynamics: Karst systems are inherently complex media. Internal dynamics are not 

necessarily captured in hydrological models (Sidle, 2006, 2021; Hartmann et al., 2017) and can be related to 535 

numerous processes in karst media, e.g. the saturation state of the system, surface water exchanges, temporary 

storage of water, incoming or outgoing flows from/to another aquifer, change of physical properties beyond a 

certain level, or karst features such as poljes or sinkholes. These complex processes do not occur systematically and 

can change from year to year (Ollivier et al., 2020). This can lead to difficulties in training ANN models or in 

adapting the structure of reservoir models. 540 
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• Extreme events during calibration: ANN and reservoir models are both trained on a calibration period. By 

definition, extreme events are rare. Therefore, models may have less opportunities to successfully fit model 

parameters to such events (Seibert, 2003), preferring more balanced parameters that are appropriate to the rest – and 

most – of the time series (Onyutha, 2019). In addition, models are generally calibrated over the whole time series 

using one performance criterion against observed data. In this case, extreme events are not explicitly emphasised in 545 

the objective function. A solution could be to give more weight to the reproduction of certain parts of the time 

series, such as flood and dry periods (Singh and Bárdossy, 2012). 

Both approaches can also benefit from a careful assessment of the calibration period. For example, the ANN model is 

thought to overestimate low flows in Unica springs by trying to fit the plateaus at very high discharges. In Lez spring, the 

reservoir model simulates a slower draining in the aquifer (piezometric level) because it does not account for a potential 550 

change in underground dynamics. These limitations emphasise the need for a meticulous investigation of the results in regard 

to the characteristics of the system and the input data. Such errors can be avoided or lessened by excluding abnormal periods 

during the calibration, which can be justified by inaccurate input data or limitation in the conceptual model. 

4.3 Comparison of general model properties 

The main findings of this study are presented in Table 5. The extensive analysis of high and low flows did not show a clear 555 

trend, but did reveal slight differences between the two approaches for this study. For high-flow periods, results slightly 

favour the ANN approach (except for Qachqouch spring), with consistently accurate volumes and shape and timing (Fig. 4). 

ANN models also tend to achieve higher flows than reservoir models (Fig. 2). For low-flow periods, results slightly favour 

the reservoir approach (except for Aubach spring), with very good estimation of volumes and only a slight overestimation of 

the hydrological variability (Fig. 4). The water level (Lez spring) was correctly simulated by both approaches, with only 560 

some imprecision during dry periods (Fig. 3). 
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Table 5: Advantages and drawbacks of ANN and reservoir models, based on the results of this research. 

 ANN models Reservoir models 

Advantages 

- Fast and reliable 
- The simulation is supported by a conceptual 

model 

- Flexible regarding input data - Slightly better on low flows 

- Slightly better on high flows 
- Can be used to gain knowledge about system 

functioning 

- Can be used to gain knowledge about input data, catchment 

delineation, recharge processes 
- Can work with short observed time series 

Drawbacks 

- Struggle to reproduce extreme events - Struggle to reproduce extreme events 

- Need medium/long observed time series for a proper learning - Input data generally need preprocessing 

- Essentially a black-box approach - Can be time consuming 

 - Potential platform/coding limitations 

 

ANN models are flexible and provide numerous advantages over reservoir models with respect to input data. It can easily 565 

integrate meteorological processes (e.g. snow dynamics, evapotranspiration) without any preprocessing of the raw data, 

whereas it is generally calculated beforehand in reservoir models. It is also possible to add a large amount of raw data in 

ANN models and let the model select those relevant for a good simulation, which make the modelling easier and also can 

give insight into the input data or catchment characteristics (Wunsch et al., 2022). This helps to avoid additional 

uncertainties related to (i) arbitrary decisions over the raw data (e.g. choosing precipitation from one station rather than 570 

another), (ii) interpolation (when data from several meteorological stations over a catchment are available) or (iii) 

preprocessing (e.g. snow routine, potential evapotranspiration). This great flexibility regarding input data makes ANN model 

close to a 2D or semi-distributed approach. If necessary, the transition between 1D and 2D input data are comparably easy, 

whereas in reservoir models this usually involves changing or adapting the tool. 

Reservoir models do not need long calibration period to provide accurate and relevant simulation results. In contrast, a short 575 

time series can be detrimental for the learning of ANN model, which seems to benefit from long calibration periods (at least 

5 years). We have seen that the ANN model has difficulties in simulating the flows of the Qachqouch spring, mainly because 

of (i) the short calibration period, and (ii) the long low water periods which are not relevant for training the model. On the 

other hand, the reservoir model has been able to integrate key elements (e.g. double porosity, matrix-conduit exchanges, fast 

conduit transfer in wet periods) by relying on the conceptual model. 580 

The ANN approach does not require any prior knowledge of the system and inherently considers model structure and 

parameters. This makes the modelling process easier and faster thus saving the operator a great amount of time. On the other 

hand, reservoir models require a significant investment in reading the literature, analysing expert knowledge, and doing trial 
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and error during model design. Moreover, the cost of a change of structure is not trivial. Depending on the modelling 

platform (e.g. software, raw code), it may take more or less time – or even be impossible – to take certain elements into 585 

account. For example, in this study, the KarstMod platform does not allow (i) different porosities to be considered in the 

same reservoir, leading to difficulties in modelling the piezometric levels during dry periods for the Lez system; (ii) using 

different Emin values, which may benefit the Qachqouch model; or (iii) considering polje and surface water influence in the 

Unica model. 

Both ANN and reservoir models can be used for research purpose. Model structure, transfer functions and parameters are 590 

explicitly expressed in reservoir models, which can provide valuable insights into the hydrogeological structure of the 

reservoir and the internal processes of the karst system, e.g. (i) the relative contributions of fast and slow flows; (ii) the 

draining of each compartment; (iii) the activation thresholds of the overflow transfer functions (either to the spring or out of 

the system); (iv) the changes in flow dynamics with respect to dry and wet periods; and (v) the exchanges between the 

matrix and conduit compartments. In comparison, ANN models act rather as a “black-box”, whose parameters are more 595 

difficult to exploit and associate with the hydrological functioning of a system. However, ANN model can help to explore 

input data, thus indirectly providing insights into catchment delineation or external recharge processes (Wunsch et al., 2022). 

5 Conclusion 

Our objective was to provide researchers and stakeholders with guidelines for choosing either artificial neural networks or 

reservoir models to simulate karst spring discharges, depending on their purpose, data availability, data length and time 600 

budget. Five test sites were considered, allowing different hydrological conditions and input data to be studied. The results of 

ANN and reservoir models were compared on the basis of several performance criteria, distinguishing between high- and 

low-flow conditions. Both models succeeded in simulating spring discharges satisfactorily, although struggling to reproduce 

extreme events (drought, flood), generally overestimating low flows and underestimating high flows. This can be related to 

common problems in hydrological modelling regarding uncertainties in the input data or observed data, internal/external 605 

system dynamics or the consideration of extreme events during calibration. 

ANN models seem robust for reproducing high-flow conditions and reservoir models for reproducing low-flow conditions. 

The input data are also a critical factor of choice. Reservoir models can work with relatively short time series while ANN 

models need a minimum number of relevant years to learn the functioning of a karst system. On the other hand, ANN 

models are very flexible on the format and amount of input data. It can learn many meteorological processes with no prior 610 

need for preprocessing the raw data, as well as use several time series for a single variable. This avoids arbitrary 

interpolation decisions (e.g. precipitation between several stations), parameter definitions (e.g. snow routine) or 

meteorological calculation (e.g. potential evapotranspiration), and allows these aspects to be integrated into the model 

calibration. 
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Both ANN and reservoir models can be used for karst aquifer management, flood forecasting and system characterisation. 615 

ANN models may be more appropriate for simulating high flows, delineating catchments, or assessing external recharge 

processes. Reservoir models seems more robust for simulating low flows and gaining insights into the internal functioning of 

a system. ANN models can also be interesting time-wise as (i) they do not require any prior knowledge of the system and (ii) 

model design is more flexible regarding input data and system functioning. Given appropriate input data, both models are 

suited for climate change predictions, as they showed accurate simulations with long calibration periods. However, the 620 

operator should keep in mind that the models (i) have difficulty in reproducing extreme events, which are likely to occur 

more frequently, and (ii) can only reproduce what they know or have learned during the calibration period and cannot take 

into account the impact of the evolution of recharge processes on the aquifer functioning. 

One of the difficulties this paper faced was to distinguish the general limitations of the reservoir modelling approach from 

those specific to the chosen modelling platform. In comparison to user-defined models, the modelling platform constrains the 625 

structure and the transfer functions of the conceptual model. Remaining within the KarstMod platform provided the time 

advantages of a turnkey toolbox (which are widely used in research and by stakeholder), but limited the possibilities of the 

conceptual models. For example, model performance could have been improved by considering the evolution of system 

properties with depth, or snow accumulation and melting could have been more accurate by including its parameters in the 

model calibration. Implementation of a meteorological module in KarstMod for directly calibrating the parameters of the 630 

snow routine is besides under implementation. 
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Appendix A: Location of the study sites 

 

Figure A1: Location of the study sites (carbonate outcrops from Chen et al. (2017)). 635 
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Appendix B: Origin of the meteorological data 

Table B1: Origin of the meteorological data (i) P, (ii) T, (iii) RSO, (iv) RH, (v) U, (vi) AET, (vii) RS, (viii) S and (ix) NS refer to (i) 

Precipitation, (ii) Temperature, (iii) Clear-sky solar radiation, (iv) Relative humidity, (v) Wind speed, (vi) Actual 

evapotranspiration, (vii) Solar radiation, (viii) Snow and (ix) New snow, respectively. 640 

Spring Station 
Altitude  

 [m] 
Latitude  

 [°] 
Longitude  

 [°] 
Data measured 

Aubach 

Diedamskopf 1790 47.3389 10.0256 P, T, RSO 

Oberstdorf 806 47.3984 10.2759 P, T, RSO 

Walmendinger Horn 1650 47.3219 10.1225 P, T, RSO 

Gato Cave Grazalema 901 36.7678 -5.3658 P, T 

Lez 

Prades-le-Lez 69 43.7176 3.8573 P, T, RH, U 

Puéchabon 250 43.7414 3.5958 AET 

Saint-Martin-de-Londres 214 43.7903 3.7326 P 

Sauteyrargues 150 43.8345 3.9207 P 

Valflaunès 155 43.8001 3.8707 P 

Qachqouch 
950 m station 950 33.9180 35.6763 P, T, RH, U, RS 

1700 m station 1700 34.0253 35.8360 P, T, RH, U, RS 

Unica 
Cerknica 569 45.7956 14.3634 P, S, NS 

Postojna 533 45.7661 14.1932 P, T, RH, S, NS 

Appendix C: Calculation details for the Thiessen’s polygons interpolation method 

The Thiessen’s polygons interpolation method consists of calculating a weighted average of precipitation data from several 

meteorological stations. The contribution percentages of the stations are proportional to their influence area on the 

catchment. An influence area corresponds to a polygon where the precipitation is considered to be identical to that measured 

at the associated meteorological station. The polygons are defined in two steps: (i) drawing the straight-line segments 645 

between all adjacent stations and (ii) adding the perpendicular bisectors of each segment, which correspond to the edges of 

the polygons. The weighted average of the precipitation 𝑃𝑇𝐻 is calculated with the following equation: 

 

 
𝑃𝑇𝐻 =

∑ 𝐴𝑖
𝑛
𝑖=1 𝑃𝑖
𝐴

 (C1) 
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 650 

 

With 𝐴 the area of the catchment, 𝑛 the number of meteorological stations, 𝐴𝑖 the area of the polygon associated to the 𝑖𝑡ℎ 

station and 𝑃𝑖  the precipitation measured at the 𝑖𝑡ℎ station. 

Appendix D: Calculation details for the snow routine 

Accounting for snow accumulation and melting in hydrological modelling can greatly improve model results, especially for 655 

regions with high snow volumes. Chen et al. (2018) successfully simulated spring discharge of a mountainous karst system 

strongly influenced by snow accumulation and melting. They applied a modified version of the HBV snow routine 

Bergström (1992) proposed by Hock (1999). We used this snow routine as an external KarstMod module (i.e. without 

internal calibration). 

The snow routine simulates snow accumulation and melting over different sub-catchments defined according to altitude 660 

ranges. The input data consist in three time series (temperature, precipitation and potential clear-sky solar radiation) and five 

parameters (temperature threshold, melt coefficient, refreezing coefficient, radiation coefficient and water holding capacity 

of snow). The potential clear sky solar radiation time series and radiation coefficient are only used when working at an 

hourly time scale to simulate a more refined snowmelt by considering sun exposure. We calibrated the temperature 

threshold, the melt coefficient and the radiation coefficient manually. 665 

Precipitation is considered as snow when the air temperature is below the temperature threshold. Snowmelt begins when the 

temperature is above the threshold according to a degree-day expression, where snowmelt is a function of the melt 

coefficient, solar radiation and degrees above the threshold. Runoff starts when the liquid water holding capacity of snow is 

exceeded. The refreezing coefficient allows to consider the refreezing processes of liquid water in the snow if snowmelt is 

interrupted (Bergström, 1992). The output of the snow routine is a time series of redistributed precipitation. 670 

Appendix E: Examples of wave-like behaviour produced by the ANN model 

The periods were selected in such a way that the influence of snow precipitation and melt is zero or almost zero. 

Precipitation input correspond to either direct observations from a meteorological station, or preprocessed observations with 

Thiessen’s polygon interpolation (Appendix C) if there are several meteorological stations. 
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 675 

Figure E1: Examples of wave-like behaviour produced by the ANN model on (a) Aubach, (b) Gato Cave, (c) Qachqouch and (d) 

Unica springs. 
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Code and data availability 

We provide complete codes for ANN models and .properties files for reservoir models on Github (Cinkus and Wunsch, 680 

2022). Due to redistribution restrictions from several parties, a dataset cannot be provided. However, the data are available 

from the local authorities upon request. Aubach spring discharge time series and meteorological data from Diedamskopf and 

Walmendinger Horn stations are available from the office of the federal state of Vorarlberg – division of water management. 

Meteorological data from Oberstdorf station are available on the DWD Open Data Server (DWD, 2022). Gato Cave spring 

discharge time series is available from the Confederación Hidrográfica de las Cuencas Mediterráneas Andaluzas (Cuenca 685 

Mediterránea Andaluza, 2022) and meteorological data is available in “Datos a la carta” section in Consejería de Agricultura, 

Pesa, Agua y Desarrollo rural (Consejería de Agricultura, Pesa, Agua y Desarrollo rural, 2022). Lez spring discharge time 

series is available on the OSU OREME website (SNO KARST, 2019), water level time series can be requested from 

Montpellier Méditerranée Métropole, and meteorological data are available on request from Météo-France. Qachqouch 

discharge time series and meteorological data are available on request from the Department of Geology at the American 690 

University of Beirut. Unica spring discharge time series and meteorological data are available from ARSO (Slovenian 

Environment Agency) (ARSO, 2021a, b). 
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