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 13 

Abstract  14 

In many flood-prone areas, it is essential for emergency responders to use advanced 15 

computer models to assess flood risk and develop informed flood evacuation plans. 16 

However, previous studies have limited understanding of how evacuation performances 17 

are affected by the arrangement of evacuation shelters regarding their number and 18 

geographical distribution and human behaviors regarding the heterogeneity of household 19 

evacuation preparation times and route searching strategies. In this study, we develop an 20 

integrated socio-hydrological modeling framework that couples (1) a hydrodynamic model 21 
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for flood simulation, (2) an agent-based model for evacuation management policies and 22 

human behaviors, and (3) a transportation model for simulating household evacuation 23 

processes in a road network. We apply the model to the Xiong’an New Area and examine 24 

household evacuation outcomes under various shelter location plans and human behavior 25 

scenarios. The results show that household evacuation processes are significantly affected 26 

by the number and geographical distribution of evacuation shelters. Surprisingly, we find 27 

that establishing more shelters may not improve evacuation results if the shelters are not 28 

strategically located. We also find that low heterogeneity in evacuation preparation times 29 

can result in heavy traffic congestion and long evacuation clearance times. If each 30 

household selects their own shortest route without considering the effects of other evacuees’ 31 

route choices, traffic congestions will likely to occur, thereby reducing system-level 32 

evacuation performance. These results demonstrate the unique functionality of our model 33 

to support flood risk assessment and to advance our understanding of how the multiple 34 

management and behavioral factors jointly affect evacuation performances.  35 

Keywords: 36 

Socio-hydrology; Flood management; Agent-based model; Emergency evacuation; Shelter 37 

allocation 38 

 39 

1. Introduction 40 

Flooding is one of the most devastating natural disasters and can lead to significant 41 

numbers of fatalities, social and economic disruptions, property and infrastructure damage, 42 

and environmental degradation around the world (Smith and Matthews, 2015; McClymont 43 
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et al., 2020; Brunner et al., 2020; Tanoue et al., 2016; Kreibich et al., 2014; Wang et al., 44 

2019). The global flood database shows that the global flood inundation land area is 45 

approximately 2.23 million km2, with 255~290 million people being directly affected by 46 

floods (Tellman et al., 2021). Flood-related economic damage increased globally from $94 47 

billion in the 1980s to more than $1 trillion U.S. dollars in the 2010s (Hino and Nance, 48 

2021). Furthermore, the severity, duration and frequency of damaging floods are expected 49 

to continue to increase in the future due to changes in climate, land use and infrastructure 50 

(Jongman et al., 2012; Moulds et al., 2021; Wedawatta and Ingirige, 2012; Tellman et al., 51 

2021). In many areas facing increasing flood threats, it is essential for emergency 52 

responders and decision-makers to use advanced computer models to assess the flood risk 53 

in flood-prone areas and to establish effective disaster-mitigation plans for informed flood 54 

management (Simonovic and Ahmad, 2005).  55 

Before an extreme flood occurs, evacuation is a critical emergency preparedness measure 56 

and a common practice because it is impractical and/or economically costly to construct 57 

the necessary infrastructure to resist floods (Wang et al., 2016; Liu and Lim, 2016; Islam 58 

et al., 2020; Kreibich et al., 2015). However, studies have shown that emergency 59 

evacuation is a complex and dynamic process that can be affected by factors from a wide 60 

range of interdisciplinary domains (Zhuo and Han, 2020; Hasan et al., 2011; Huang et al., 61 

2012; Chen et al., 2021; Sung et al., 2018). These factors include, but are not limited to, (1) 62 

the accuracy, lead time and sources of flood early warnings and the broadcasting channels 63 

through which flood information is disseminated to the affected population (Shi et al., 2020; 64 

Verkade and Werner, 2011; Alonso Vicario et al., 2020; Palen et al., 2010; Nester et al., 65 

2012; Goodarzi et al., 2019), (2) the infrastructure and engineering facilities needed for 66 
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emergency evacuation, which are influenced by the accessibility of transportation networks, 67 

road capacity and location of evacuation zones (Mostafizi et al., 2017; Chen and Zhan, 68 

2008; Saadi et al., 2018; Mostafizi et al., 2019; Koch et al., 2020; Oh et al., 2021; Liu and 69 

Lim, 2016), and (3) demographical attributes and household behavioral characteristics, 70 

such as residents’ belief and risk perception, previous knowledge, social networks, and past 71 

experience with flood events (Hofflinger et al., 2019; Huang et al., 2017; Lindell et al., 72 

2020; Wang and Jia, 2021; Shahabi and Wilson, 2014; Du et al., 2017). These studies 73 

highlight the need to develop comprehensive socio-hydrological modeling tools that can 74 

adequately incorporate various factors and processes to support flood management plans 75 

in the context of coupled flood-human systems.  76 

Among the many emergency management policies and plans, shelter location arrangement 77 

is essential for massive evacuation operations. City planners and policy makers need to 78 

identify safe areas outside of flood inundation region as feasible shelter locations for 79 

households who live in the at-risk areas. There have been some studies that explored the 80 

criteria of shelter location arrangement for evacuation planning (Alçada-Almeida et al., 81 

2009; Nappi and Souza, 2015; Bayram et al., 2015; Li et al., 2012; Alam et al., 2021). For 82 

instance, Bayram et al. (2015) developed an optimization model to allocate evacuation sites 83 

and assign each evacuee to the nearest shelter, with the objective of minimizing the total 84 

evacuation time. However, in this study each evacuee’s travel time is estimated based on a 85 

simple traffic volume-travel time function, which is not able to fully represent evacuees’ 86 

complex interactions in a road network. Liu and Lim (2016) applied spatial analysis 87 

methods to assign shelters to evacuating households, considering the spatial relationships 88 

between households and shelter sites. A limitation of this study is that evacuee’s travel time 89 
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is obtained from a simplified traffic model and the road network is not well represented in 90 

the network analysis. In a recent study, Alam et al. (2021) used a massive traffic simulation 91 

model and a multiple criteria evaluation method to identify candidate evacuation shelters, 92 

taking into account of environmental conditions, structural attributes, emergency services 93 

and transportation aspects. However, this study focused on obtaining a suitability score for 94 

each candidate shelter site with various weighting factors, and failed to examine to what 95 

extent evacuation performance could be affected by the number of shelters and their 96 

geographical distribution in the community. Nevertheless, the current studies have left a 97 

research gap that warrant research efforts to use physically-based flood simulation models 98 

to identify safe areas as feasible shelter locations, and more importantly, to use 99 

transportation models to systematically evaluate how evacuation performances could be 100 

affected by the number and geographical distribution of evacuation shelter locations. This 101 

is the primary research question we seek to explore in this study.  102 

The second research question to be explored in this study is associated with the role played 103 

by human behaviors in evacuation processes, which is an important research direction in 104 

disaster management (Aerts et al., 2018; Simonovic and Ahmad, 2005; Urata and Pel, 105 

2018). After receiving flood evacuation warnings, households will make decisions based 106 

on flood risk information, spend some time to complete a set of preparation tasks, and then 107 

evacuate from their homes to safe areas. Among these decisions and behaviors, households’ 108 

evacuation preparation times (i.e., from the time when they receive flood evacuation orders 109 

to the time when they start to evacuate on road) play an important role in evacuation 110 

performances. Many empirical studies have examined the geographic, demographical and 111 

behavioral factors that affect households’ preparation times (Lindell et al., 2005, 2020; 112 
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Huang et al., 2012, 2017; Chen et al., 2021). They found that household evacuation 113 

preparation times could vary significantly from a household to another, exhibiting a certain 114 

degree of behavioral heterogeneity in a community (Lindell et al., 2005, 2020; Rahman et 115 

al., 2021). As a result, here we hypothesize that the heterogeneity in households’ 116 

evacuation preparation times affect the traffic flow on the road network and consequently, 117 

affect the final evacuation outcomes. However, there are few studies that have explicitly 118 

examined how traffic condition and evacuation performances are affected by different 119 

degrees of heterogeneity in households’ evacuation preparation times (Wang et al., 2016). 120 

This is the second research question we aim to explore in this study.  121 

Furthermore, in this study we also seek to examine how evacuation processes are affected 122 

by households’ evacuation route searching strategies, which is another question that 123 

concerns emergency responders and policy makers. Previous studies have mostly applied 124 

the shortest distance path searching method for evacuees to find evacuation routes from 125 

their original locations to evacuation destinations (He et al., 2021; Bernardini et al., 2017; 126 

Du et al., 2016; Li et al., 2022). However, each evacuee’s searching for the shortest 127 

evacuation path may not ensure system-level evacuation outcomes. In this study, we focus 128 

on comparing the evacuation scenario in which each household chooses the shortest path 129 

for evacuation with the scenario in which system-level global optimal routes are assigned 130 

to the evacuees. Such comparative analyses are expected to provide policy implications in 131 

terms of evacuees’ route selections to improve evacuation performances during natural 132 

disasters.  133 

Motivated by the above research questions and knowledge gaps, in this study we develop 134 

an integrated socio-hydrological modeling framework that couples (1) a physically-based 135 
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hydrodynamic model for flood inundation simulation, (2) an agent-based model (ABM) 136 

for simulating flood management plans and human behaviors, and (3) a large-scale traffic 137 

simulation model for simulating households’ evacuation processes in a road network. We 138 

apply the modeling framework to the Xiong’an New Area, a large residential area with a 139 

high risk of flood in north China. Using a 100-year flood hazard as an example, a set of 140 

scenario analyses are conducted to explore how residents’ evacuation processes are jointly 141 

affected by management policies (i.e., the number and geographical distribution of 142 

evacuation shelter locations) and human behaviors (i.e., the heterogeneity in households’ 143 

evacuation preparation times and route searching strategies). This study aims to provide 144 

both modeling and policy implications for researchers and emergency responders to 145 

develop advanced socio-hydrological modeling tools for flood risk assessment and to 146 

improve our understanding of how flood evacuation performances are jointly affected by 147 

many management and behavioral factors.  148 

The remainder of this paper is organized as follows. Section 2 presents the modeling 149 

framework. Section 3 introduces the case study site, model construction and scenario 150 

design. Section 4 presents the modeling results. Section 5 discusses the insights, limitations, 151 

and future research directions of this study, followed by the conclusions in Section 6. 152 

2. Methodology 153 

This section introduces the integrated modeling framework of this study. As illustrated in 154 

Figure 1, the modeling framework consists of three models: (1) an ABM for simulating 155 

household decision-making and emergency responders’ flood management policies, (2) a 156 

transportation model for simulating residents’ evacuation activities in a road network, and 157 
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(3) a hydrodynamic model for simulating flood inundation processes. Detailed introduction 158 

to the three models and their coupling methods are described in turn as follows.  159 

 160 

Figure 1. Illustration of the integrated modeling framework that couples an ABM for 161 

simulating household decision-making and emergency responders’ flood management 162 

policies, a transportation model for simulating residents’ evacuation processes in a road 163 

network and a hydrodynamic model for simulating flood inundation processes  164 

2.1. The ABM for human decision-making during flood events 165 

In this study, an ABM is developed to simulate government’s disaster management plans 166 

and residents’ flood evacuation behaviors. Therefore, two types of agents are considered 167 

in the ABM: (1) an emergency responder (Type I agent) and (2) the set of households (Type 168 

II agents), which are described in turn below.  169 
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The emergency responder agent represents a government institution that makes flood 170 

management plans. As shown in Figure 1, in this study, we specifically consider two flood 171 

management decisions: (1) issuing a flood evacuation order to the residents who live in 172 

flood-prone area and (2) shelter arrangement (i.e., deciding the number and location of 173 

evacuation zones that should be used to protect evacuees from flood hazards). Note that 174 

other management practices (e.g., sandbagging and levee construction) are also important 175 

flood management measures, which are not explicitly discussed in this study.  176 

In this study, each household is represented by an autonomous decision unit (i.e., an agent), 177 

considering that all the family members in a household typically evacuate in a shared 178 

transportation mode after communicating with each other in arriving at a final evacuation 179 

decision (Du et al., 2016). After receiving evacuation orders, an agent will spend some 180 

time to complete a set of evacuation preparation tasks and then evacuate from its household 181 

location to a chosen evacuation destination. The following three decisions and/or behaviors 182 

are explicitly considered during this process.  183 

The first decision is selecting an evacuation shelter if multiple optional shelters are 184 

available. In this study, we assume that an agent will choose the evacuation destination 185 

(i.e., shelter) that is located the shortest geographical distance from its residential location. 186 

The second decision is associated with evacuation preparation activities (e.g., gather family 187 

members, pack bags, board up windows, and shut off utilities). These activities are 188 

aggregated and represented by a behavioral parameter called the evacuation preparation 189 

time. This parameter measures how long it takes an agent to prepare for evacuation and is 190 

indicated by the interval between the time when an agent receives an evacuation order and 191 

the time when they start to evacuate via a road network. Previous studies have shown that 192 
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households’ evacuation preparation times are influenced by both psychological and 193 

logistical preparation tasks, which may vary among agents, with noticeable behavioral 194 

heterogeneity even at the community scale (Lindell et al., 2020, 2005; Wang et al., 2016). 195 

In this study, the heterogeneity in agents’ evacuation preparation times is represented by 196 

the variation (i.e., standard deviation) in all the households’ evacuation preparation times, 197 

and we explicitly examine the role of human behavioral heterogeneity in community 198 

evacuation outcomes.  199 

The third decision is related to agents’ route selection strategy during evacuation processes. 200 

In a complex road network, an agent may have multiple route choices from an origin to a 201 

destination. In this study, we assume that each agent has good knowledge of the road 202 

network in their community. Thus, two route search methods are incorporated into the 203 

model as (1) the shortest distance route search method (Mode 1) and (2) the system 204 

optimization-based route search method (Mode 2). In the shortest distance route search 205 

method, each agent focuses on finding the shortest route from their current location to the 206 

selected evacuation destination in the road network (Gallo and Pallottino, 1988; Fu et al., 207 

2006; Li et al., 2022). Notably, an agent seeks to reduce their evacuation time without 208 

considering the effects of other agents’ evacuation route selections. In comparison, the 209 

optimization-based route search method adopts a heuristic iterative method to optimize 210 

agents’ collective evacuation routes so that system-level evacuation efficiency is achieved 211 

(Zhu et al., 2018; He et al., 2021). Based on the above three decisions and behaviors, all 212 

the agents’ movements and interactions in the road network are incorporated into a 213 

transportation model, which is described in the following section.  214 
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2.2. Transportation model for large-scale evacuation simulation 215 

As mentioned in Section 2.1, after an agent decides to evacuate, it will move from its 216 

household location to a chosen evacuation destination through the traffic network. During 217 

evacuation processes, an agent interacts with other agents and with the environment to 218 

adjust their movement in the road network over time. There are a number of modeling 219 

platforms and software packages used to model agents’ evacuation processes. These 220 

include the Network Explorer for Traffic Analysis (NEXTA), the Transportation Analysis 221 

and Simulation System (TRANSIMS), the Planung Transport Verkehr (PTV) VISSIM, the 222 

City Traffic Simulator (CTS), and the Multi-Agent Transport Simulation model (MATSim) 223 

(Mahmud and Town, 2016; Lee et al., 2014; Murray-Tuite and Wolshon, 2013).  224 

This study applies MATSim to simulate agents’ evacuation processes. MATSim is a widely 225 

used open-source software for large-scale transportation simulation. The model can 226 

provide detailed information about each evacuee’s travel demand, traffic flow and 227 

movement in a road network (Horni, 2016; Lämmel et al., 2009, 2010; Zhuge et al., 2021). 228 

As shown in Figure 2, MATSim requires a variety of data as model inputs. The plan data 229 

include the initial locations, evacuation destinations, and departure times of all agents, and 230 

these data can be retrieved from agents’ attributes and evacuation decisions in the ABM. 231 

The network data describe the attributes of the road network, such as the geographical 232 

structure of the road network, the number of lanes of each road, and road segment lengths 233 

and speed limits. These data are available from local or regional government institutions 234 

(e.g., the Department of Transportation) or from online data retrieval platforms such as 235 

Open Street Map or Google Maps (Farkas et al., 2014). Finally, the config input includes 236 

a model execution engine that defines a set of global model environments. Three modules, 237 
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namely, an execution module, a scoring module, and a replanning module, are incorporated 238 

into MATSim for transportation simulation. This model has been widely used by 239 

researchers and practitioners to support evacuation planning and simulation for various 240 

types of natural disasters, such as earthquakes (Koch et al., 2020), hurricanes (Zhu et al., 241 

2018), tsunamis (Muhammad et al., 2021), and floods (Saadi et al., 2018). For more details 242 

about MATSim and its applications in transportation simulation, see Lämmel et al. (2009) 243 

and Horni (2016).  244 

 245 

Figure 2. Input, modules and processes of the MATSim model 246 

2.3. The hydrodynamic model for flood inundation simulation 247 

Information on flood inundation processes (e.g., flood extent and water level) is essential 248 

for governments and the public to make flood management and evacuation decisions. 249 

Hydrodynamic models are important tools to simulate the timing and duration of flood 250 

dynamics by solving a set of mathematical equations that describe fluid motion (Guo et al., 251 

2021). There are many hydrodynamic models available for flood dynamics simulation. 252 
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These include, but are not limited to, HEC-RAS, MIKE11, MIKE 21, JFLOW, TRENT, 253 

TUFLOW and DELFT3D (Teng et al., 2017).  254 

Following our prior work (Wu et al., 2021), in this study we use the classic hydrodynamic 255 

model, MIKE 21, to simulate flood inundation processes in a floodplain. MIKE 21 256 

numerically solves the two-dimensional shallow water equations to obtain water levels and 257 

flows across space and over time in various watershed environments, such as rivers, lakes, 258 

estuaries, bays and coastal areas. MIKE 21 has been widely used to simulate flood 259 

inundation processes in many floodplains across the world, and is considered as one of the 260 

most effective modeling tools for flood risk mapping, flood forecasting and scenario 261 

analysis  (Nigussie and Altunkaynak, 2019; Papaioannou et al., 2016). Interested readers 262 

may refer to our prior work (Wu et al., 2021) for detailed introductions to the construction, 263 

calibration and validation of MIKE 21 model in the specific study area.  264 

2.4. Model integration and flowchart of the modeling framework 265 

In the prior sections (Sections 2.1-2.3), the structures and functionalities of the three 266 

models were introduced; this section introduces how they are coupled in an integrated 267 

modeling framework. Previous studies have shown that computer models can be coupled 268 

in either a loose or a tight manner (Harvey et al., 2019; Bhatt et al., 2014; Murray-Rust et 269 

al., 2014; Du et al., 2020; Li et al., 2021). The former refers to models that are linked 270 

together by input/output data interfaces. That is, the output of one model is used as the 271 

input of another model. In contrast, for the latter, a model uses a common data pool and 272 

workload to exchange data among multiple model components and, as a result, components 273 

affect each other during model running processes. 274 
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In this study, both the loose and tight coupling methods are employed to combine the three 275 

models. Specifically, MIKE 21 is coupled with the ABM and MATSim in a loose manner, 276 

while the ABM and MATSim are coupled in a tight manner. The model coupling process 277 

and flowchart of the integrated model are illustrated in Figure 3. First, MIKE 21 simulates 278 

flood inundation processes for a specific flood event (e.g., a 100-year flood). The modeling 279 

results of MIKE 21 are then used to assess the inundated area and affected households in 280 

the flood zone, which are used as input data for the ABM and MATSim. Next, based on 281 

the modeling results of MIKE 21, the two types of agents in the ABM are generated. The 282 

household agents who are located in the flood zone will receive flood warnings from an 283 

emergency responder agent and make evacuation decisions. Finally, all the agents’ 284 

movements and evacuation activities are simulated by MATSim. By integrating the three 285 

models, the proposed modeling framework is capable of simulating flood inundation 286 

processes, flood management practices, and household decision-making and evacuation 287 

processes in a coherent manner. In the next sections, we will use a real-world case study to 288 

demonstrate how the modeling framework can be used by researchers and practitioners for 289 

flood risk assessment and evacuation management. 290 
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 291 

Figure 3. The flowchart of the integrated modeling framework 292 

2.5. Measurement of flood evacuation performance 293 

Agents’ evacuation processes reflect their evacuation status and movements across space 294 

and over time in a road network. In this study, we use multiple parameters and indicators 295 

to represent agents’ evacuation processes and evaluate their evacuation performance. For 296 

a residential area with n household agents, we first use a categorical variable, , {1,2,3}j tS  , 297 

to describe an agent j’s evacuation status at time step t. , 1j tS   denotes that agent j has not 298 

started their evacuation process at time t. , 2j tS  denotes that agent j has already started 299 

evacuation but has not arrived at their evacuation destination at time t. , 3j tS   denotes that 300 

agent j has arrived at their evacuation destination at time t, which represents a successful 301 
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evacuation case. Let 0  denote the time when the flood evacuation order is issued to the 302 

public, and let j  and 
*

j  denote agent j’s departure time (i.e., the time when the agent starts 303 

their evacuation in the road network after evacuation preparation time) and arrival time 304 

(i.e., the time when agent j arrives at their evacuation destination), respectively. The agent’s 305 

evacuation time j  is defined as the time period from their departure time j  to their arrival 306 

time 
*

j  (i.e., 
*

j j j    ).  307 

By summarizing all the agents’ evacuation statuses over time, the effectiveness of flood 308 

evacuation processes in a region can be reflected by a matrix with two indicators at the 309 

system level: (1) agents’ average evacuation time   and (2) the system-level evacuation 310 

clearance time  . Agents’ average evacuation time   is the average value of all the agents’ 311 

evacuation times, which is calculated by 
1

1 n

j

jn




   . In comparison, the system-level 312 

evacuation clearance time   for a region is the duration from the time when the flood 313 

evacuation warning is issued in the residential area to the time when the last agent arrives 314 

at their evacuation destination (i.e., 
*

0max({ | 1,2,3,..., })j j n     ).  315 

3. Case study and scenario design  316 

3.1. Study site 317 

The Xiong’an New Area (XNA) is used as a case study to illustrate the functionality of the 318 

proposed modeling framework in flood simulation and evacuation management. The XNA 319 

is located in the Baiyangdian River Basin, which includes the largest freshwater wetland 320 

in North China. This region covers three counties (i.e., Xiongxian, Rongcheng, and Anxin), 321 
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encompassing a total area of 1768 km2 (Figure 4). The region has a population of 1.1 322 

million, and the GDP is 21.5 billion RMB (Sun and Yang, 2019).  323 

The XNA has a typical continental monsoon climate, with annual average precipitation 324 

totaling approximately 570 mm. The region is influenced by various natural disasters and 325 

environmental problems, such as water pollution, heat waves, and groundwater 326 

overexploitation. In particular, the XNA has a high risk of flooding due to frequent extreme 327 

rainstorm events (Jiang et al., 2018; Su et al., 2021). Historical climate records show that 328 

a total of 139 flood events have occurred in the XNA over the past 300 years (Wang et al., 329 

2020). For example, the heavy storm from 19 July to 21 July in 2016 affected a total 330 

population of approximately 517,000, leading to severe destruction and economic losses. 331 

Studies have found that compared with historical flood conditions, both the frequency and 332 

intensity of extreme flood events in the region are expected to increase under future climate 333 

change (Zhu et al., 2017; Wang et al., 2020). The flood problems in the XNA and many 334 

other flood-prone areas worldwide call for developing advanced computer models and 335 

decision support systems for robust flood risk assessment and informed management 336 

practices during extreme flood events. 337 
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 338 

Figure 4. Map of the Baiyangdian River Basin and the Xiong’an New Area (marked with 339 

solid black lines) 340 

3.2. Data collection and model construction 341 

Based on the modeling framework, data from various sources were collected and compiled 342 

to construct the model, including meteorological, land-use, hydrological, transportation 343 

and census data. Among them, land topology is retrieved from the 7-meter resolution DEM 344 

from the State Bureau of Surveying and Mapping. Meteorological data (e.g., daily 345 

precipitation, temperature, solar radiation and wind speed) from 98 stations in the study 346 

area are collected from the China Meteorological Administration. Population and 347 

household distribution are based on 30-meter resolution census data from the census bureau 348 
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of local government. Road network data is retrieved from OpenStreetMap, an open source 349 

global map data repository. Table 1 presents the primary data in this study and their sources.  350 

Table 1. List of data used in the integrated model 

Data type Data source Period Resolution Format 

Land elevation State Bureau of Surveying and Mapping 2019 7 m TIF 

Land use 
Data Center of the Chinese Academy of 

Sciences 

2015 30 m 
TIF 

River network 
Data Center of the Chinese Academy of 

Sciences 

2015 - 
SHP 

Streamflow Hydrological Yearbook in China 
1980-

2010 

Daily  
EXCEL 

Weather 

conditions 
China Meteorological Administration 

1980-

2010 

Daily 
EXCEL 

Soil type 
Data Center of Science in Cold and Arid 

Regions 

2009 1 km 
TIF 

Population Census Bureau of the local government 2020 30 m EXCEL 

Household 

distribution 
Census Bureau of the local government 

2020 30 m 
TIF 

Road network Open Street Map 2022 - XML 

 351 

Figure 5 illustrates how the data are merged and integrated into the modeling framework. 352 

As introduced in Section 2, the model starts by running the MIKE 21 model, with the 353 

meteorological, DEM, land use, soil type and river network data as the model input. For a 354 

given storm event, the MIKE 21 model generates flood dynamics processes, which can 355 

predict the inundated area and the affected population. These data are then used to construct 356 

the ABM and the MATSim model to simulate agents’ flood management and evacuation 357 

behaviors.  358 
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 359 

Figure 5. Data sources and flowchart of the integrated modeling framework 360 

3.3. Flood simulation and scenario design  361 

As mentioned above, the case study site has a high risk of flooding due to frequent extreme 362 

rainstorm events. Following the precautionary principle in natural disaster management 363 

(Etkin et al., 2012), we use the 100-year flood event as an example to evaluate the impacts 364 

of extreme flooding on the study area, and then examine the role of various management 365 

policies and human behaviors in household evacuation processes.  366 

We run the hydrodynamic model to simulate flood inundation processes under the 100-367 

year return period. The modeling results show that the inundated area is 66.5% of the land 368 

area in the 100-year return period (Figure 6). The affected population is 508,986 (45.8% 369 

of the total population). These modeling results are consistent with the results that have 370 

been reported in our prior work, and also agree with the empirical flood hazard experienced 371 

by this region in July 2016. For detailed introductions to the construction, calibration and 372 

validation of the hydrodynamic model, see Wu et al. (2021). With such a high flood risk, 373 
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it is essential for emergency responders to understand how flood evacuation performances 374 

are affected by various human behavioral factors and evacuation management plans.  375 

 376 

Figure 6. Flood inundation areas for the 100-year floods in the study area 377 

A scenario-based analysis is conducted to examine the roles played by the following factors 378 

in flood evacuation outcomes: (1) evacuation shelter establishment (i.e., the number and 379 

geographical distribution of shelter locations), (2) heterogeneity in households’ evacuation 380 

preparation times, and (3) evacuees’ route search strategies. Three experiments are 381 

designed to assess the joint impacts of the above three factors (Table 2), which are 382 

introduced in turn below.  383 

The first experiment focuses on assessing the impact of the number and geographical 384 

distribution of evacuation shelters on agents’ evacuation processes. Note that in the XNA, 385 
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five optional sites for evacuation shelters are identified based on the flood inundation area 386 

for the 100-year flood (illustrated by the red stars in Figure 6). Considering all the possible 387 

combinations of these shelters, a total of 31 simulations are performed in this experiment 388 

(i.e., 5 simulations for single-shelter scenarios and 26 simulations for multiple-shelter 389 

scenarios). Experiment 2 assesses the impacts of agents’ behavioral heterogeneity (i.e., 390 

variation in households’ evacuation preparation times) on traffic flow and evacuation 391 

outcomes. Note that in the first and second experiments, agents apply the shortest-distance 392 

route search method (i.e., Mode 1) to evacuate from their household locations to evacuation 393 

destinations. Experiment 3 simulates evacuation processes in which agents apply the 394 

system-level optimization method (i.e., Mode 2) for route selection. The simulation results 395 

of experiment 3 are compared with those of the first and second experiments to explore the 396 

effects of agents’ route search strategies on evacuation outcomes.  397 

Table 2. Scenario design for simulating household evacuation processes 

Experiment Shelter arrangement 
Heterogeneity in agents’ 

evacuation preparation times 

Evacuation route 

searching strategy 

1 

All the combinations of the 

five optional shelters #1, 

#2, #3, #4, and #5 

1.5(a) 
Mode 1 

(Shortest distance) 

2 {#1, #2, #3, #4, #5}(b) 0.2~3.0(a) 
Mode 1 

(Shortest distance) 

3 
Five one-shelter scenarios 

and {#1, #2, #3, #4, #5} 
0.2~3.0(a) 

Mode 2 

(System optimization) 

Note: 

(a) Residents’ behavioral heterogeneity is measured by the variation (i.e., standard deviation) in their 

evacuation preparation times. In the study area, residents’ average evacuation preparation time is set to 4 

hours based on our communication with the local flood management authorities. 

(b) The set {#1, #2, #3, #4, #5} denotes that all five shelters are selected for this scenario.  

 398 
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4. Modeling results  399 

4.1. An example of household evacuation processes 400 

In this study, the results of household evacuation simulations are extracted and analyzed 401 

with a data visualization tool Senozon Via (Milevich et al., 2016). Figure 7a presents a 402 

snapshot of residents’ evacuation schemes for the case in which all five evacuation shelters 403 

are used in the study area (note that each household is illustrated by a green dot in Figure 404 

7a). Figure 7b depicts the change in the ratio of the three groups of the population during 405 

the evacuation processes. The percentage of the population in the S=1 group (i.e., the 406 

agents that have not started evacuating) displays a consistent decreasing trend, as more 407 

agents start their evacuation processes over time. Consequently, the S=3 group (i.e., the 408 

agents that have arrived in a safe zone) exhibits a consistent increasing trend. The S=2 409 

group (i.e., the agents that have started evacuating but have not arrived at a safe zone, 410 

representing the residents who are moving in the road network) increases at the beginning 411 

of the evacuation period, reaching a peak of 43.1% after approximately 6.5 hours, and then 412 

decreases until the end of the evacuation period. The entire evacuation process takes 413 

approximately 15.5 hours (i.e., evacuation clearance time). In the following sections, the 414 

factors that influence the evacuation process will be assessed under different conditions. 415 
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 416 

Figure 7. (a) A snapshot of residents’ evacuation schemes when all five evacuation shelters 417 

are established in the study area; (b) The percentages of the population in the three groups 418 

of agents. Note that the S=1 group includes agents who have not started evacuating, S=2 419 

includes agents who have started evacuating but have not arrived at an evacuation 420 

destination, and S=3 includes agents who have successfully arrived at their destinations. 421 

4.2. Impacts of shelter location arrangement on evacuation processes 422 

We first conduct experiment 1 to examine agents’ evacuation processes for the five 423 

scenarios in which only one evacuation shelter is established. Figure 8 shows that the 424 

geographical location of an evacuation shelter has a fundamentally important influence on 425 
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residents’ flood evacuation performance. Residents’ average evacuation time is the shortest 426 

for shelter site #1 (20.1 hours), followed by sites #2 (23.7 hours), #5 (33.3 hours), #3 (35.7 427 

hours) and #4 (46.8 hours). The boxplot of all the agents’ evacuation times also shows that 428 

the variation in agents’ evacuation time is the largest for shelter site #4 (32.4 hours) and 429 

the shortest for shelter site #1 (15.4 hours). In terms of the system-level evacuation 430 

outcomes, shelter sites #1 and #2 are associated with the shortest evacuation clearance time 431 

(~ 56 hours), and shelter site #4 is associated with the longest evacuation clearance time 432 

(~108.9 hours) (the embedded figure in Figure 8). In this regard, among the five optional 433 

shelter locations, sites #1 and #2 are the best locations for shelter establishment, and site 434 

#4 is the worst, with the longest evacuation time. 435 

 436 

Figure 8. Boxplot of agents’ evacuation times (the main figure) and the system-level 437 

evacuation clearance times for the five one-shelter scenarios 438 
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Next, we compare the average evacuation time of agents for simulations in which all 31 439 

combinations of the five optional evacuation shelter locations are considered. As shown in 440 

Figure 9, when there are a small number of evacuation shelters, establishing more shelters 441 

in the system can notably reduce agents’ evacuation times, and this effect is more 442 

noticeable for the worst shelter allocation scenario (illustrated by the blue line) than for the 443 

best shelter allocation scenario (illustrated by the red line). For example, as the number of 444 

shelters increases from two to three, the average evacuation time is reduced from 44.7 445 

hours (shelter set {#4, #5}) to 29.7 hours (shelter set {#3, #4, #5}) for the worst shelter 446 

allocation scenario (i.e., a total reduction of 15 hours). In contrast, the reduction in 447 

evacuation time is only 5 hours for the best shelter allocation scenario (from 13.1 hours for 448 

set {#2, #3} to 8.1 hours for set {#1, #2, #3}). 449 

 450 

Figure 9. Residents’ average evacuation time under the scenarios that consider all the 451 

possible combinations of the five optional evacuation shelters 452 
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Notably, we find that the reduction in residents’ evacuation time due to the increase in the 453 

number of evacuation shelters is significantly affected by the existing number of 454 

evacuation shelters and, in particular, their geographical distribution in the region. After a 455 

certain number of evacuation shelters are established (larger than three in this case), 456 

including more shelters in the system has a marginal effect in reducing evacuation times. 457 

Taking the best shelter allocation scenario as an example (the red line in Figure 9), when 458 

there are only two evacuation shelters ({#2, #3}), adding one more evacuation shelter (#1) 459 

in the system can reduce the evacuation time by 5 hours (i.e., from 13.1 hours for set {#2, 460 

#3} to 8.1 hours for set {#1, #2, #3}). In contrast, the reduction in evacuation time is only 461 

1.3 hours when shelter #5 is added to the shelter set {#1, #2, #3}. In particular, it is noticed 462 

that the average evacuation time is 6.8 hours for shelter sets {#1, #2, #3, #5} and {#1, #2, 463 

#3, #4, #5}, which indicates that adding one more shelter in the system did not reduce the 464 

average evacuation time. This phenomenon is supported by the Braess paradox phenomena 465 

in the field of transportation research (Braess et al., 2005; Pas and Principio, 1997; 466 

Murchland, 1970), which suggests that including a new link in a traffic network could 467 

possibly result in heavier traffic congestion and longer travel times. This phenomenon and 468 

its policy implications will be further discussed in Section 5. 469 

4.3. Impacts of residents’ behavioral heterogeneity on evacuation processes 470 

Previous studies have shown that the evacuation preparation time of households plays an 471 

important role in their emergency evacuation outcomes during natural disasters (Lindell et 472 

al., 2005, 2020). However, the heterogeneity in human behaviors has not been explicitly 473 

examined in flood evacuation processes. In this section, we conduct experiment 2 to assess 474 

the impacts of human behavior heterogeneity (i.e., measured by the variance in agents’ 475 
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evacuation preparation times) on evacuation processes. Figure 10 shows that human 476 

behavioral heterogeneity has a nonlinear effect on agents’ evacuation outcomes. Increasing 477 

the heterogeneity in households’ evacuation preparation times will result in reductions in 478 

the average evacuation time and the system-level evacuation clearance time, and this effect 479 

is more significant when the variation in the evacuation preparation time is small (< 1.5 480 

hours). In particular, when the variation in preparation time is large (> 2 hours), the change 481 

in the heterogeneity of preparation times will not notably affect the average evacuation 482 

time or the system-level evacuation clearance time. These results are consistent with the 483 

modeling results obtained from our prior work, which examined the role of heterogeneity 484 

in residents’ tolerance to flood risk during evacuation processes (Du et al., 2016). 485 

 486 

Figure 10. The impacts of human behavioral heterogeneity (i.e., the variation of agents’ 487 

evacuation preparation times) on their average evacuation time (the left Y-axis) and the 488 

system-level evacuation clearance time (the right Y-axis) 489 
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Next, we assess the impacts of human behavioral heterogeneity on the traffic flow 490 

conditions in the road network. Figure 11 plots the percentage of the three groups of the 491 

population during evacuation processes, and the S=2 groups (illustrated by the two brown 492 

lines) are the agents who are evacuating in the road network. The modeling results show 493 

that the traffic peak time (i.e., the time when the number of agents in the road network 494 

reaches a maximum during the evacuation period) is delayed as the level of agents’ 495 

behavioral heterogeneity increases. In addition, the percentage of agents in the road 496 

network at the peak traffic time is significantly lower in the high behavioral heterogeneity 497 

scenario than in other scenarios. For example, the traffic peak time can be delayed from 498 

6.0 hours to 8.5 hours as the variation in the evacuation preparation times increases from 499 

1.0 hours to 3.0 hours. At the time of the traffic peak, the percentage of agents in the road 500 

network is reduced from 67.9% (the low-heterogeneity scenario) to 46.6% (the high-501 

heterogeneity scenario), and the system-level evacuation clearance time is reduced from 502 

28.5 hours (the low-heterogeneity scenario) to 27 hours (the high-heterogeneity scenario). 503 

Figure 12 compares the peak traffic time and the percentage of evacuating agents at the 504 

peak time under various levels of heterogeneity in agents’ evacuation preparation times. 505 

The modeling results show that as agents’ behavioral heterogeneity increases, flood 506 

evacuation outcomes can be improved (i.e., the traffic congestion problem is alleviated, the 507 

peak traffic time is delayed, and the evacuation clearance time is reduced). 508 
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509 

Figure 11. Comparison of the evacuation processes for low (solid lines) and high (dotted 510 

lines) levels of human behavioral heterogeneity. Note that agent’s behavioral heterogeneity 511 

is measured by the standard deviation of their evacuation preparation time, and the low and 512 

high levels of heterogeneity are 1.0 hours and 3.0 hours, respectively. 513 

 514 
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Figure 12. Peak traffic time (the left Y-axis) and the percentage of evacuating agents (i.e., 515 

S=2 group) at the peak traffic time (the right Y-axis) for various levels of human behavioral 516 

heterogeneity. 517 

4.4. Impacts of households’ evacuation route choices on evacuation processes 518 

In the above sections, the modeling results for scenarios in which the agents apply the 519 

shortest-distance route search method to travel from their original locations to destinations 520 

(i.e., Mode 1) during evacuation processes were presented. In this section, we conduct 521 

experiment 3, in which agents’ evacuation routes are obtained based on a system-level 522 

optimization approach (i.e., Mode 2). Then, we compare the three experiments to explore 523 

the joint impacts of the route search method and behavioral heterogeneity of residents on 524 

evacuation processes. 525 

Figure 13 compares agents’ average evacuation times for the two travel modes. Two 526 

implications are obtained from the modeling results. First, the results show that the average 527 

evacuation time is consistently smaller for Mode 2 than for Mode 1. This result agrees with 528 

the common belief in transportation research, in the sense that if each agent selects their 529 

shortest evacuation route without considering the effects of other agents’ route choices, 530 

traffic congestion will likely occur in the road network. In contrast, if agents’ evacuation 531 

route choices are optimized from the system level, traffic flow conditions can be improved, 532 

leading to a noticeable reduction in traffic congestion and shorter evacuation times. 533 
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 534 

Figure 13. Comparison of the average evacuation time of agents for the two evacuation 535 

route search strategies 536 

Second, one can observe that the variation in evacuation time across different shelter 537 

establishment scenarios is significantly higher for Mode 1 than for Mode 2. For example, 538 

among the five one-shelter scenarios, the agents’ average evacuation time ranges from 46.7 539 

hours to 20.1 hours (a difference of 26.6 hours) for Mode 1. In contrast, this value ranges 540 

from 16.5 hours to 9.2 hours (a difference of 7.3 hours) for Mode 2. This result implies that 541 

shelter establishment plays a more important role when residents only seek to minimize 542 

their individual evacuation times. In comparison, if agents’ evacuation routes are optimized 543 

from the system level, shelter establishment will become a less significant factor affecting 544 

evacuation performance. 545 

Figure 14 presents the percentages of the three groups of agents during the evacuation 546 

process, which aim to explicitly examine the impacts of different route search strategies. 547 

Compared with the shortest-distance search strategy (Mode 1), the system-level 548 
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optimization route search strategy (Mode 2) can reduce the evacuation clearance time by 549 

12 hours (i.e., from 27.5 hours for Mode 1 to 15.5 hours for Mode 2). In addition, the 550 

percentage of agents in the road network at the peak traffic time is reduced from 60.4% for 551 

Mode 1 to 43.1% for Mode 2, indicative of a significant improvement in traffic congestion 552 

during the evacuation period. However, the peak traffic time is similar in the two scenarios, 553 

suggesting that changing agents’ route search strategies does not considerably affect the 554 

peak time of traffic flows. 555 

 556 

Figure 14. Comparison of residents’ evacuation processes for the two route search 557 

strategies (note that all five evacuation shelters are selected for the two scenarios, and the 558 

variation in residents’ evacuation preparation times is 1.5 hours) 559 

The above analyses focused on assessing the impacts of a single factor (i.e., agents’ 560 

behavioral heterogeneity or evacuate route search strategies). Figure 15 examines how the 561 

two factors jointly affect evacuation processes. Notably, in general, the average evacuation 562 

time of agents and the system-level evacuation clearance time are small when the variation 563 
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in the evacuation preparation time is low and/or when agents follow Mode 2 to determine 564 

their evacuation routes. Interestingly, when the variation in agents’ evacuation preparation 565 

times is low (<1.0 hour), the difference between Mode 1 and Mode 2 is not significant in 566 

terms of the peak traffic time or the percentage of evacuating agents at the peak traffic time. 567 

This result indicates that changing agents’ route search strategies will not considerably 568 

affect the peak traffic time or the maximum traffic flow if all the agents start their 569 

evacuation activities within a short time window. In contrast, as the variation in the 570 

evacuation preparation time of agents increases, the evacuation route search strategy used 571 

can significantly affect the peak traffic time and the maximum traffic flow (Figures 15c-572 

15d). However, the variation in agents’ evacuation preparation times does not notably 573 

affect the changes in the average evacuation time or system-level evacuation clearance time 574 

between the two route search strategies. 575 
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 576 

Figure 15. The joint impacts of evacuation route search strategies and the variations in 577 

agents’ evacuation preparation times on (a) the average evacuation time, (b) the system-578 

level evacuation clearance time, (c) the time when the traffic peak is reached during 579 

evacuation processes, and (d) the percentage of evacuating agents at the peak traffic time 580 

5. Discussion 581 

5.1. Implications for flood risk assessment and evacuation management 582 

In this study, we employ an interdisciplinary socio-hydrological approach that incorporates 583 

a physically based hydrodynamic model, an agent-based human behavior and decision-584 

making model, and a large-scale transportation model into an integrated modeling 585 
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framework. We apply the model to the Xiong’an New Area (XNA) in China to assess the 586 

inundated areas of an extreme flood event and to examine household evacuation outcomes 587 

under various management policies and human behaviors. Several modeling and policy 588 

implications can be obtained based on the model construction and simulation results.  589 

First, the simulation results of this study show that the flood risk of and the flood damage 590 

to an area are not only affected by the hydrological characteristics of flood events but also 591 

by infrastructural, socioeconomic and human behavioral factors. In particular, the results 592 

show that household evacuation outcomes are significantly affected by shelter location 593 

arrangement, route selection strategies, and evacuation preparation times. Therefore, it is 594 

essential for researchers and policy makers to incorporate various social, hydrological and 595 

human behavioral factors into an integrated framework to obtain more robust estimations 596 

of flood risk and to design informed policies to support holistic flood management. 597 

Second, the modeling results show that the number of evacuation shelters and, in particular, 598 

their geographical distributions have important effects on flood evacuation processes. For 599 

example, by comparing the evacuation outcomes obtained for the five optional shelter sites 600 

in the case study area, we find that the average evacuation time of residents varies from 601 

20.1 hours (shelter site #1) to 46.8 hours (shelter site #4) (Figure 8). In this regard, if there 602 

are limited available resources and only one evacuation site can be established in the area, 603 

shelter #1 would be a better site than shelter #4 if the management goal is to minimize the 604 

average evacuation time of residents. Another implication associated with shelter choice is 605 

that establishing more shelters in the area does not necessarily lead to improvements in a 606 

community’s evacuation processes if there is already a sufficient number of evacuation 607 

shelters or if the shelters are not well distributed in the region. For example, in the case in 608 
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which there are three shelters (e.g., {#1, #2, #3}), including more shelters in the system 609 

(e.g., #4, #5, or both) will not effectively reduce households’ the average evacuation time 610 

(Figure 8). This finding, although somewhat contrary to what one would intuitively expect, 611 

is in line with the classic Braess paradox in the field of transportation research; notably, 612 

adding a new link in a traffic network may not improve the operation of the traffic system 613 

(Frank, 1981; Murchland, 1970). Some studies have shown that the occurrence of Braess 614 

paradox phenomena may be affected by the road network configuration, travel demand, 615 

and travelers’ route search behaviors (Pas and Principio, 1997; Braess et al., 2005). 616 

Therefore, regarding emergency management policies such as where to establish more 617 

shelters, policy-makers need to scrutinize the relationships among these factors to 618 

determine the number and geographical distributions of shelters in the system.  619 

Third, flood evacuation is a complex process in which residents’ evacuation activities can 620 

be affected by various social, economic, environmental and infrastructural factors. Thus, 621 

in a particular flood-prone area, residents’ decisions and evacuation behaviors could be 622 

highly heterogeneous, varying from family to family, from community to community, and 623 

from time to time (Paul, 2012; Huang et al., 2017). This study shows that human behavioral 624 

heterogeneity can significantly affect the flood evacuation outcomes in a given region. For 625 

example, the modeling results show that variations in residents’ evacuation preparation 626 

times could result in noticeable differences in traffic congestion conditions and the time 627 

required for evacuees to complete their evacuation processes (Figures 10-12). Therefore, 628 

in flood management practice, emergency responders need to explicitly consider the 629 

heterogeneity in residents’ behaviors and determine how to promote behavioral changes 630 

by providing the needed resources to vulnerable groups who are not able to take effective 631 
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flood mitigation actions to improve the overall disaster management performance in the 632 

community (Nakanishi et al., 2019; Hino and Nance, 2021). 633 

5.2. Limitations and future research directions 634 

Our modeling framework and the simulations in this study have a number of limitations 635 

that warrant future research to make improvements and extend the current approach. First, 636 

similar to other studies on emergency evacuation simulation (Wood et al., 2020; Zhu et al., 637 

2018; Koch et al., 2020; Saadi et al., 2018), this study focuses on car-based traffic 638 

simulation without considering other transportation modes (e.g., motorcycles). In real-639 

world evacuation cases, residents may use various types of transportation modes to 640 

evacuate, including by automobile, motorcycle, bus, or on foot (Melnikov et al., 2016). 641 

Residents may also change their travel modes during evacuation processes, for example, 642 

due to a change in the available transportation facilities. Recent studies have attempted to 643 

improve emergency evacuation simulations by considering more factors in evacuation 644 

simulation, such as multiple transportation facilities, changes in traffic network 645 

accessibility, variations in travel demand, pedestrian/vehicle interactions and speed 646 

adjustments (Dias et al., 2021; Takabatake et al., 2020; Wang and Jia, 2021; Sun et al., 647 

2020; Chen et al., 2022). Future research can extend upon this study by incorporating these 648 

factors into the modeling framework. 649 

Second, regarding the analyses of shelter establishment, we primarily focus on the number 650 

and geographical distribution of evacuation shelters without considering other important 651 

shelter characteristics, such as shelter capacity. However, it is sometimes necessary to 652 

consider the constraint of shelter capacity in evacuation management, especially in large-653 

scale evacuation scenarios. Recently, studies have analyzed the impacts of shelter 654 
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capacities and their geographical distribution on evacuation outcomes (Alam et al., 2021; 655 

Khalilpourazari and Pasandideh, 2021; Oh et al., 2021; Liu and Lim, 2016). Future studies 656 

should consider more shelter properties to improve the current modeling framework. 657 

Third, in this study, the hydrodynamic model is coupled with the agent-based model and 658 

transportation model in a one-way coupling manner. That is, the hydrodynamic model 659 

generates flood inundation results as the input for the agent-based model and transportation 660 

model, but the modeling results of the agent-based model and transportation model do not 661 

affect the hydrodynamic modeling processes. Such a one-way model coupling method is 662 

suitable for simulating residents’ evacuation activities before a flood occurs, but it is not 663 

suitable for cases in which evacuation processes and flood inundation processes have an 664 

overlapping time period. In particular, the model is not capable of simulating how human 665 

behaviors affect flood inundation processes, which is another limitation that needs to be 666 

addressed in future work. 667 

6. Conclusions 668 

A fundamental aspect of societal security is natural disaster management. Computational 669 

models are needed to assess the flood risk in flood-prone areas and to design holistic 670 

management policies for flood warning and damage mitigation. In this study, we propose 671 

an integrated socio-hydrological modeling framework that couples a hydrodynamic model 672 

for simulating flood inundation processes, an agent-based model for simulating the flood 673 

management practices of emergency responders and human behaviors, and a large-scale 674 

transportation model for simulating household evacuation processes in a road network. 675 

Using a case study of the Xiong’an New Area in China, we demonstrate the effectiveness 676 

of the modeling framework for assessing flood inundation processes for a 100-year flood 677 
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event and examining households’ evacuation outcomes considering various evacuation 678 

management policies and human behaviors. A number of scenario analyses are performed 679 

to explore the impacts of shelter location arrangement, evacuation preparation times and 680 

route search strategies on evacuation performance. 681 

Through a set of scenario analyses, the modeling results show that for a 100-year flood 682 

event, approximately 66.5% of the land area will be flooded, affecting 0.5 million people. 683 

Household evacuation processes can be significantly affected by the number and 684 

geographical distribution of evacuation shelters. For the five optional sites of evacuation 685 

shelters, the average evacuation time of residents ranges from 20.1 hours to 46.8 hours, 686 

depending on where the evacuation shelter is located. Counterintuitively, yet in line with 687 

the Braess paradox in the transportation field, we find that including more shelters in the 688 

system may not improve evacuation performance in a region if the number of shelters or 689 

shelter distribution is already optimal or near optimal. In addition, the simulation results 690 

show that residents’ flood evacuation outcomes are significantly affected by human 691 

decision-making processes, such as the selection of evacuation route search strategies. 692 

Compared with the system-level route optimization method, the shortest-distance route 693 

search method is associated with a longer evacuation travel time because evacuees seeking 694 

to minimize their own travel time may experience traffic congestion. We also find that a 695 

low level of heterogeneity in agents’ evacuation preparation times can result in heavy 696 

traffic congestion and long evacuation clearance time. These modeling results highlight 697 

that the flood risk of, and the ultimate damage to, an area is affected not only by the level 698 

of the flood itself but also by flood management practices and household behavioral factors. 699 

This study is therefore in line with some previous studies that highlight the significance of 700 
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a socio-hydrological approach for water science and watershed management (Di 701 

Baldassarre et al., 2013; Sivapalan et al., 2012; Abebe et al., 2019).  702 

This study still has a number of limitations that need to be addressed. Recommended future 703 

work includes incorporating more types of transportation facilities into the transportation 704 

model, considering the role of shelter capacity in evacuation management, and improving 705 

the model coupling method by employing a two-way coupling approach to simulate the 706 

impacts of human behaviors on flood inundation processes. We envision that these 707 

extensions will improve the functionality of the proposed modeling framework, and the 708 

simulation results with these improvements can provide more useful modeling and policy 709 

implications to support flood risk assessment and emergency evacuation management. 710 

 711 

Acknowledgments 712 

Financial support from the National Natural Science Foundation of China (grant numbers 713 

41971233, 51909118, and 41861124003) is gratefully acknowledged.  714 

 715 

References  716 

Abebe, Y. A., Ghorbani, A., Nikolic, I., Vojinovic, Z., and Sanchez, A.: A coupled flood-717 

agent-institution modelling (CLAIM) framework for urban flood risk management, 718 

Environ. Model. Softw., 111, 483–492, https://doi.org/10.1016/j.envsoft.2018.10.015, 719 

2019. 720 

Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., 721 

Michel-Kerjan, E., Mysiak, J., Surminski, S., and Kunreuther, H.: Integrating human 722 

behaviour dynamics into flood disaster risk assessment, Nat. Clim. Chang., 8, 193–199, 723 

https://doi.org/10.1038/s41558-018-0085-1, 2018. 724 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



42 

 

Alam, M. J., Habib, M. A., and Pothier, E.: Shelter locations in evacuation: A Multiple 725 

Criteria Evaluation combined with flood risk and traffic microsimulation modeling, Int. J. 726 

Disaster Risk Reduct., 53, 102016, https://doi.org/10.1016/j.ijdrr.2020.102016, 2021. 727 

Alçada-Almeida, L., Tralhão, L., Santos, L., and Coutinho-Rodrigues, J.: A 728 

multiobjective approach to locate emergency shelters and identify evacuation routes in 729 

urban areas, Geogr. Anal., 41, 9–29, https://doi.org/10.1111/j.1538-4632.2009.00745.x, 730 

2009. 731 

Alonso Vicario, S., Mazzoleni, M., Bhamidipati, S., Gharesifard, M., Ridolfi, E., 732 

Pandolfo, C., and Alfonso, L.: Unravelling the influence of human behaviour on reducing 733 

casualties during flood evacuation, Hydrol. Sci. J., 65, 2359–2375, 734 

https://doi.org/10.1080/02626667.2020.1810254, 2020. 735 

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Bloschl, G.: Socio-736 

hydrology: Conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–737 

3303, https://doi.org/10.5194/hess-17-3295-2013, 2013. 738 

Bayram, V., Tansel, B. T., and Yaman, H.: Compromising system and user interests in 739 

shelter location and evacuation planning, Transp. Res. Part B, 72, 146–163, 740 

https://doi.org/10.1016/j.trb.2014.11.010, 2015. 741 

Bernardini, G., Santarelli, S., Quagliarini, E., and Orazio, M. D.: Dynamic guidance tool 742 

for a safer earthquake pedestrian evacuation in urban systems, Comput. Environ. Urban 743 

Syst., 65, 150–161, https://doi.org/10.1016/j.compenvurbsys.2017.07.001, 2017. 744 

Bhatt, G., Kumar, M., and Duffy, C. J.: A tightly coupled GIS and distributed hydrologic 745 

modeling framework, Environ. Model. Softw., 62, 70–84, 746 

https://doi.org/10.1016/j.envsoft.2014.08.003, 2014. 747 

Braess, D., Nagurney, A., and Wakolbinger, T.: On a Paradox of Traffic Planning, 748 

Transp. Sci., 39, 446–450, https://doi.org/10.1287/trsc.1050.0127, 2005. 749 

Brunner, M. I., Papalexiou, S., Clark, M. P., and Gilleland, E.: How Probable Is 750 

Widespread Flooding in the United States?, Water Resour. Res., 56, 1–16, 751 

https://doi.org/10.1029/2020WR028096, 2020. 752 

Chen, C., Lindell, M. K., and Wang, H.: Tsunami preparedness and resilience in the 753 

Cascadia Subduction Zone : A multistage model of expected evacuation decisions and 754 

mode choice, Int. J. Disaster Risk Reduct., 59, 102244, 755 

https://doi.org/10.1016/j.ijdrr.2021.102244, 2021. 756 

Chen, C., Mostafizi, A., Wang, H., Cox, D., and Chand, C.: An integrative agent-based 757 

vertical evacuation risk assessment model for near-field tsunami hazards, Risk Anal., 1, 758 

1–15, https://doi.org/10.1111/risa.13881, 2022. 759 

Chen, X. and Zhan, F. B.: Agent-based modelling and simulation of urban evacuation: 760 

Relative effectiveness of simultaneous and staged evacuation strategies, J. Oper. Res. 761 

Soc., 59, 25–33, https://doi.org/10.1057/palgrave.jors.2602321, 2008. 762 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



43 

 

Dias, C., Rahman, N. A., and Zaiter, A.: Evacuation under flooded conditions: 763 

Experimental investigation of the influence of water depth on walking behaviors, Int. J. 764 

Disaster Risk Reduct., 58, 102192, https://doi.org/10.1016/j.ijdrr.2021.102192, 2021. 765 

Du, E., Rivera, S., Cai, X., Myers, L., Ernest, A., and Minsker, B.: Impacts of human 766 

behavioral heterogeneity on the benefits of probabilistic flood warnings: An agent-based 767 

modeling framework, J. Am. Water Resour. Assoc., 53, 316–332, 768 

https://doi.org/10.1111/1752-1688.12475, 2016. 769 

Du, E., Cai, X., Sun, Z., and Minsker, B.: Exploring the Role of Social Media and 770 

Individual Behaviors in Flood Evacuation Processes: An Agent-Based Modeling 771 

Approach, Water Resour. Res., 53, 9164–9180, https://doi.org/10.1002/2017WR021192, 772 

2017. 773 

Du, E., Tian, Y., Cai, X., Zheng, Y., Li, X., and Zheng, C.: Exploring spatial 774 

heterogeneity and temporal dynamics of human-hydrological interactions in large river 775 

basins with intensive agriculture: A tightly coupled, fully integrated modeling approach, 776 

J. Hydrol., 591, 125313, https://doi.org/10.1016/j.jhydrol.2020.125313, 2020. 777 

Etkin, D., Medalye, J., and Higuchi, K.: Climate warming and natural disaster 778 

management: An exploration of the issues, Clim. Change, 112, 585–599, 779 

https://doi.org/10.1007/s10584-011-0259-6, 2012. 780 

Farkas, K., Nagy, A., Tomas, T., and Szabo, R.: Participatory sensing based real-time 781 

public transport information service, in: IEEE International Conference on Pervasive 782 

Computing and Communication Workshops, 141–144, 783 

https://doi.org/10.1109/PerComW.2014.6815181, 2014. 784 

Frank, M.: The Braess paradox, Math. Program., 20, 283–302, 785 

https://doi.org/10.1007/BF01589354, 1981. 786 

Fu, L., Sun, D., and Rilett, L. R.: Heuristic shortest path algorithms for transportation 787 

applications: State of the art, Comput. Oper. Res., 33, 3324–3343, 788 

https://doi.org/10.1016/j.cor.2005.03.027, 2006. 789 

Gallo, G. and Pallottino, S.: Shortest path algorithms, Ann. Oper. Res., 13, 1–79, 1988. 790 

Goodarzi, L., Banihabib, M. E., and Roozbahani, A.: A decision-making model for flood 791 

warning system based on ensemble forecasts, J. Hydrol., 573, 207–219, 792 

https://doi.org/10.1016/j.jhydrol.2019.03.040, 2019. 793 

Guo, K., Guan, M., and Yu, D.: Urban surface water flood modelling-a comprehensive 794 

review of current models and future challenges, Hydrol. Earth Syst. Sci., 25, 2843–2860, 795 

https://doi.org/10.5194/hess-25-2843-2021, 2021. 796 

Harvey, E. P., Cardwell, R. C., McDonald, G. W., van Delden, H., Vanhout, R., Smith, 797 

N. J., Kim, J. hwan, Forgie, V. E., and van den Belt, M.: Developing integrated models 798 

by coupling together existing models; land use, economics, demographics and transport 799 

in Wellington, New Zealand, Comput. Environ. Urban Syst., 74, 100–113, 800 

https://doi.org/10.1016/j.compenvurbsys.2018.07.004, 2019. 801 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



44 

 

Hasan, S., Ukkusuri, S., Gladwin, H., and Murray-Tuite, P.: Behavioral model to 802 

understand household-level hurricane evacuation decision making, J. Transp. Eng., 137, 803 

341–348, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000223, 2011. 804 

He, M., Chen, C., Zheng, F., Chen, Q., Zhang, J., Yan, H., and Lin, Y.: An efficient 805 

dynamic route optimization for urban flooding evacuation based on Cellular Automata, 806 

Comput. Environ. Urban Syst., 87, 101622, 807 

https://doi.org/10.1016/j.compenvurbsys.2021.101622, 2021. 808 

Hino, M. and Nance, E.: Five ways to ensure flood-risk research helps the most 809 

vulnerable, Nature, 595, 27–29, https://doi.org/10.1038/d41586-021-01750-0, 2021. 810 

Hofflinger, A., Somos-Valenzuela, M. A., and Vallejos-Romero, A.: Response time to 811 

flood events using a social vulnerability index (ReTSVI), Nat. Hazards Earth Syst. Sci., 812 

19, 251–267, https://doi.org/10.5194/nhess-19-251-2019, 2019. 813 

Horni, A.: Multi-agent Transport Simulation Matsim, Ubiquity Press, London, 814 

https://doi.org/10.5334/baw, 2016. 815 

Huang, S.-K., Lindell, M. K., and Prater, C. S.: Multistage Model of Hurricane 816 

Evacuation Decision: Empirical Study of Hurricanes Katrina and Rita, Nat. Hazards 817 

Rev., 18, 05016008, https://doi.org/10.1061/(asce)nh.1527-6996.0000237, 2017. 818 

Huang, S., Lindell, M. K., Prater, C. S., Wu, H., and Siebeneck, L. K.: Household 819 

evacuation decision making in response to Hurricane Ike, Nat. Hazards Rev., 13, 283–820 

296, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000074., 2012. 821 

Islam, K. A., Marathe, M., Mortveit, H., Swarup, S., and Vullikanti, A.: A Simulation-822 

based Approach for Large-scale Evacuation Planning, in: IEEE International Conference 823 

on Big Data, 1338–1345, https://doi.org/10.1109/BigData50022.2020.9377794, 2020. 824 

Jiang, R., Yu, X., Xie, J., Zhao, Y., Li, F., and Yang, M.: Recent changes in daily climate 825 

extremes in a serious water shortage metropolitan region, a case study in Jing-Jin-Ji of 826 

China, Theor. Appl. Climatol., 134, 565–584, https://doi.org/10.1007/s00704-017-2293-827 

4, 2018. 828 

Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river and coastal 829 

flooding: Long term trends and changes, Glob. Environ. Chang., 22, 823–835, 830 

https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012. 831 

Khalilpourazari, S. and Pasandideh, S. H. R.: Designing emergency flood evacuation 832 

plans using robust optimization and artificial intelligence, J. Comb. Optim., 41, 640–677, 833 

https://doi.org/10.1007/s10878-021-00699-0, 2021. 834 

Koch, Z., Yuan, M., and Bristow, E.: Emergency Response after Disaster Strikes: Agent-835 

Based Simulation of Ambulances in New Windsor, NY, J. Infrastruct. Syst., 26, 836 

06020001, https://doi.org/10.1061/(asce)is.1943-555x.0000565, 2020. 837 

Kreibich, H., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Green, 838 

C., Hallegatte, S., Logar, I., Meyer, V., Schwarze, R., and Thieken, A. H.: Costing 839 

natural hazards, Nat. Clim. Chang., 4, 303–306, https://doi.org/10.1038/nclimate2182, 840 

2014. 841 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



45 

 

Kreibich, H., Bubeck, P., Van Vliet, M., and De Moel, H.: A review of damage-reducing 842 

measures to manage fluvial flood risks in a changing climate, Mitig. Adapt. Strateg. 843 

Glob. Chang., 20, 967–989, https://doi.org/10.1007/s11027-014-9629-5, 2015. 844 

Lämmel, G., Klüpfel, H., and Nagel, K.: The MATSim Network Flow Model for Traffic 845 

Simulation Adapted to Large-Scale Emergency Egress and an Application to the 846 

Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning, in: 847 

Pedestrian Behavior, edited by: Timmermans, H., Emerald Group Publishing Limited, 848 

245–265, https://doi.org/10.1108/9781848557512-011, 2009. 849 

Lämmel, G., Grether, D., and Nagel, K.: The representation and implementation of time-850 

dependent inundation in large-scale microscopic evacuation simulations, Transp. Res. 851 

Part C, 18, 84–98, https://doi.org/10.1016/j.trc.2009.04.020, 2010. 852 

Lee, K. S., Eom, J. K., and Moon, D.: Applications of TRANSIMS in transportation: A 853 

literature review, Procedia Comput. Sci., 32, 769–773, 854 

https://doi.org/10.1016/j.procs.2014.05.489, 2014. 855 

Li, A. C. Y., Nozick, L., Xu, N., and Davidson, R.: Shelter location and transportation 856 

planning under hurricane conditions, Transp. Res. Part E, 48, 715–729, 857 

https://doi.org/10.1016/j.tre.2011.12.004, 2012. 858 

Li, B., Hou, J., Ma, Y., Bai, G., Wang, T., Xu, G., Wu, B., and Jiao, Y.: A coupled high-859 

resolution hydrodynamic and cellular automata-based evacuation route planning model 860 

for pedestrians in flooding scenarios, Nat. Hazards, 110, 607–628, 861 

https://doi.org/10.1007/s11069-021-04960-x, 2022. 862 

Li, X., Zhang, L., Zheng, Y., Yang, D., Wu, F., Tian, Y., Han, F., Gao, B., Li, H., Zhang, 863 

Y., Ge, Y., Cheng, G., Fu, B., Xia, J., Song, C., and Zheng, C.: Novel hybrid coupling of 864 

ecohydrology and socioeconomy at river basin scale: A watershed system model for the 865 

Heihe River basin, Environ. Model. Softw., 141, 105058, 866 

https://doi.org/10.1016/j.envsoft.2021.105058, 2021. 867 

Lindell, M., Sorensen, J., Baker, E., and Lehman, W.: Community response to hurricane 868 

threat: Estimates of household evacuation preparation time distributions, Transp. Res. 869 

Part D, 85, 102457, https://doi.org/10.1016/j.trd.2020.102457, 2020. 870 

Lindell, M. K., Lu, J.-C., and Prater, C. S.: Household decision making and evacuation in 871 

response to hurricane Lili, Nat. Hazards Rev., 6, 171–179, 872 

https://doi.org/10.1061/(ASCE)1527-6988(2005)6:4(171), 2005. 873 

Liu, X. and Lim, S.: Integration of spatial analysis and an agent-based model into 874 

evacuation management for shelter assignment and routing, J. Spat. Sci., 61, 283–298, 875 

https://doi.org/10.1080/14498596.2016.1147393, 2016. 876 

Mahmud, K. and Town, G. E.: A review of computer tools for modeling electric vehicle 877 

energy requirements and their impact on power distribution networks, Appl. Energy, 172, 878 

337–359, https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.100, 2016. 879 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



46 

 

McClymont, K., Morrison, D., Beevers, L., and Carmen, E.: Flood resilience: a 880 

systematic review, J. Environ. Plan. Manag., 63, 1151–1176, 881 

https://doi.org/10.1080/09640568.2019.1641474, 2020. 882 

Melnikov, V. R., Krzhizhanovskaya, V. V, Lees, M. H., and Boukhanovsky, A. V: Data-883 

driven Travel Demand Modelling and Agent-based Traffic Simulation in Amsterdam 884 

Urban Area, Procedia Comput. Sci., 80, 2030–2041, 885 

https://doi.org/10.1016/j.procs.2016.05.523, 2016. 886 

Milevich, D., Melnikov, V., Karbovskii, V., and Krzhizhanovskaya, V.: Simulating an 887 

impact of road network improvements on the performance of transportation systems 888 

under critical load: Agent-based Approach, Procedia Comput. Sci., 101, 253–261, 889 

https://doi.org/10.1016/j.procs.2016.11.030, 2016. 890 

Mostafizi, A., Wang, H., Cox, D., Cramer, L., and Dong, S.: Agent-based tsunami 891 

evacuation modeling of unplanned network disruptions for evidence-driven resource 892 

allocation and retrofitting strategies, Nat. Hazards, 88, 1347–1372, 893 

https://doi.org/10.1007/s11069-017-2927-y, 2017. 894 

Mostafizi, A., Wang, H., Cox, D., and Dong, S.: An agent-based vertical evacuation 895 

model for a near-field tsunami: Choice behavior, logical shelter locations, and life safety, 896 

Int. J. Disaster Risk Reduct., 34, 467–479, https://doi.org/10.1016/j.ijdrr.2018.12.018, 897 

2019. 898 

Moulds, S., Buytaert, W., Templeton, M. R., and Kanu, I.: Modeling the Impacts of 899 

Urban Flood Risk Management on Social Inequality, Water Resour. Res., 57, 900 

e2020WR029024, https://doi.org/10.1029/2020WR029024, 2021. 901 

Muhammad, A., De Risi, R., De Luca, F., Mori, N., Yasuda, T., and Goda, K.: Are 902 

current tsunami evacuation approaches safe enough?, Stoch. Environ. Res. Risk Assess., 903 

35, 759–779, https://doi.org/10.1007/s00477-021-02000-5, 2021. 904 

Murchland, J. D.: Braess’s paradox of traffic flow, Transp. Res., 4, 391–394, 905 

https://doi.org/10.1016/0041-1647(70)90196-6, 1970. 906 

Murray-Rust, D., Robinson, D. T., Guillem, E., Karali, E., and Rounsevell, M.: An open 907 

framework for agent based modelling of agricultural land use change, Environ. Model. 908 

Softw., 61, 19–38, https://doi.org/10.1016/j.envsoft.2014.06.027, 2014. 909 

Murray-Tuite, P. and Wolshon, B.: Evacuation transportation modeling: An overview of 910 

research, development, and practice, Transp. Res. Part C, 27, 25–45, 911 

https://doi.org/10.1016/j.trc.2012.11.005, 2013. 912 

Nakanishi, H., Black, J., and Suenaga, Y.: Investigating the flood evacuation behaviour 913 

of older people: A case study of a rural town in Japan, Res. Transp. Bus. Manag., 30, 914 

100376, https://doi.org/10.1016/j.rtbm.2019.100376, 2019. 915 

Nappi, M. M. L. and Souza, J. C.: Disaster management: hierarchical structuring criteria 916 

for selection and location of temporary shelters, Nat. Hazards, 75, 2421–2436, 917 

https://doi.org/10.1007/s11069-014-1437-4, 2015. 918 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



47 

 

Nester, T., Komma, J., Viglione, A., and Blöschl, G.: Flood forecast errors and ensemble 919 

spread-A case study, Water Resour. Res., 48, 1–19, 920 

https://doi.org/10.1029/2011WR011649, 2012. 921 

Nigussie, T. A. and Altunkaynak, A.: Modeling the effect of urbanization on flood risk in 922 

Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model, Nat. Hazards, 99, 923 

1031–1047, https://doi.org/10.1007/s11069-019-03794-y, 2019. 924 

Oh, W. S., Yu, D. J., and Muneepeerakul, R.: Efficiency-fairness trade-offs in evacuation 925 

management of urban floods: The effects of the shelter capacity and zone prioritization, 926 

PLoS One, 16, e0253395, https://doi.org/10.1371/journal.pone.0253395, 2021. 927 

Palen, L., Starbird, K., Vieweg, S., and Hughes, A.: Twitter-based information 928 

distribution during the 2009 Red River Valley flood threat, Bull. Am. Soc. Inf. Sci. 929 

Technol., 36, 13–17, https://doi.org/10.1002/bult.2010.1720360505, 2010. 930 

Papaioannou, G., Loukas, A., Vasiliades, L., and Aronica, G. T.: Flood inundation 931 

mapping sensitivity to riverine spatial resolution and modelling approach, Nat. Hazards, 932 

83, S117–S132, https://doi.org/10.1007/s11069-016-2382-1, 2016. 933 

Pas, E. I. and Principio, S. L.: Braess’ paradox: Some new insights, Transp. Res. Part B 934 

Methodol., 31, 265–276, https://doi.org/10.1016/S0191-2615(96)00024-0, 1997. 935 

Paul, B. K.: Factors Affecting Evacuation Behavior: The Case of 2007 Cyclone Sidr, 936 

Bangladesh, Prof. Geogr., 64, 401–414, https://doi.org/10.1080/00330124.2011.609780, 937 

2012. 938 

Rahman, A., Hokugo, A., Ohtsu, N., and Chakma, S.: Evacuation Preparation Scenarios 939 

of Households during Early and Emergency Evacuation: A Case Study of Cyclone Bulbul 940 

in Southwestern Coastal Bangladesh, J. Integr. Disaster Risk Manag., 11, 108–137, 941 

https://doi.org/10.5595/001c.29128, 2021. 942 

Saadi, I., Mustafa, A., Teller, J., and Cools, M.: Investigating the impact of river floods 943 

on travel demand based on an agent-based modeling approach: The case of Liège, 944 

Belgium, Transp. Policy, 67, 102–110, https://doi.org/10.1016/j.tranpol.2017.09.009, 945 

2018. 946 

Shahabi, K. and Wilson, J. P.: CASPER: Intelligent capacity-aware evacuation routing, 947 

Comput. Environ. Urban Syst., 46, 12–24, 948 

https://doi.org/10.1016/j.compenvurbsys.2014.03.004, 2014. 949 

Shi, H., Du, E., Liu, S., and Chau, K.: Advances in Flood Early Warning: Ensemble 950 

Forecast, Information Dissemination and Decision-Support Systems, Hydrology, 7, 56, 951 

https://doi.org/10.3390/hydrology7030056, 2020. 952 

Simonovic, S. P. and Ahmad, S.: Computer-based model for flood evacuation emergency 953 

planning, Nat. Hazards, 34, 25–51, https://doi.org/10.1007/s11069-004-0785-x, 2005. 954 

Sivapalan, M., Savenije, H., and Blöschl, G.: Socio-hydrology: A new science of people 955 

and water, Hydrol. Process., 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012. 956 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



48 

 

Smith, A. B. and Matthews, J. L.: Quantifying uncertainty and variable sensitivity within 957 

the US billion-dollar weather and climate disaster cost estimates, Nat. Hazards, 77, 1829–958 

1851, https://doi.org/10.1007/s11069-015-1678-x, 2015. 959 

Su, H., Wang, W., Jia, Y., Han, S. C., Gao, H., Niu, C., and Ni, G.: Impact of 960 

urbanization on precipitation and temperature over a lake-marsh wetland: A case study in 961 

Xiong’an New Area, China, Agric. Water Manag., 243, 106503, 962 

https://doi.org/10.1016/j.agwat.2020.106503, 2021. 963 

Sun, B. and Yang, X.: Simulation of water resources carrying capacity in Xiong’an New 964 

Area based on system dynamics model, Water, 11, 1085, 965 

https://doi.org/10.3390/w11051085, 2019. 966 

Sun, J., Chow, A. C. H., and Madanat, S. M.: Multimodal transportation system 967 

protection against sea level rise, Transp. Res. Part D, 88, 102568, 968 

https://doi.org/10.1016/j.trd.2020.102568, 2020. 969 

Sung, K., Jeong, H., Sangwan, N., and Yu, D. J.: Effects of Flood Control Strategies on 970 

Flood Resilience Under Sociohydrological Disturbances, Water Resour. Res., 54, 2661–971 

2680, https://doi.org/10.1002/2017WR021440, 2018. 972 

Takabatake, T., Fujisawa, K., Esteban, M., and Shibayama, T.: Simulated effectiveness of 973 

a car evacuation from a tsunami, Int. J. Disaster Risk Reduct., 47, 101532, 974 

https://doi.org/10.1016/j.ijdrr.2020.101532, 2020. 975 

Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river flood vulnerability in 976 

the last 50 years, Sci. Rep., 6, 36021, https://doi.org/10.1038/srep36021, 2016. 977 

Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., 978 

Erickson, T. A., and Slayback, D. A.: Satellite imaging reveals increased proportion of 979 

population exposed to floods, Nature, 596, 80–86, https://doi.org/10.1038/s41586-021-980 

03695-w, 2021. 981 

Teng, J., Jakeman, A., Vaze, J., Croke, B., Dutta, D., and Kim, S.: Flood inundation 982 

modelling: A review of methods, recent advances and uncertainty analysis, Environ. 983 

Model. Softw., 90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017. 984 

Urata, J. and Pel, A. J.: People’s Risk Recognition Preceding Evacuation and Its Role in 985 

Demand Modeling and Planning, Risk Anal., 38, 889–905, 986 

https://doi.org/10.1111/risa.12931, 2018. 987 

Verkade, J. S. and Werner, M. G. F.: Estimating the benefits of single value and 988 

probability forecasting for flood warning, Hydrol. Earth Syst. Sci., 15, 3751–3765, 989 

https://doi.org/10.5194/hess-15-3751-2011, 2011. 990 

Wang, H., Mostafizi, A., Cramer, L. A., Cox, D., and Park, H.: An agent-based model of 991 

a multimodal near-field tsunami evacuation: Decision-making and life safety, Transp. 992 

Res. Part C Emerg. Technol., 64, 86–100, https://doi.org/10.1016/j.trc.2015.11.010, 2016. 993 

Wang, W., Yang, S., Stanley, H. E., and Gao, J.: Local floods induce large-scale abrupt 994 

failures of road networks, Nat. Commun., 10, 2114, https://doi.org/10.1038/s41467-019-995 

10063-w, 2019. 996 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.



49 

 

Wang, Y., Song, L., Han, Z., Liao, Y., Xu, H., Zhai, J., and Zhu, R.: Climate-related risks 997 

in the construction of Xiongan New Area, China, Theor. Appl. Climatol., 141, 1301–998 

1311, https://doi.org/10.1007/s00704-020-03277-2, 2020. 999 

Wang, Z. and Jia, G.: A novel agent-based model for tsunami evacuation simulation and 1000 

risk assessment, Nat. Hazards, 105, 2045–2071, https://doi.org/10.1007/s11069-020-1001 

04389-8, 2021. 1002 

Wedawatta, G. and Ingirige, B.: Resilience and adaptation of small and medium‐sized 1003 

enterprises to flood risk, Disaster Prev. Manag. An Int. J., 21, 474–488, 1004 

https://doi.org/10.1108/09653561211256170, 2012. 1005 

Wood, N., Henry, K., and Peters, J.: Influence of demand and capacity in transportation 1006 

simulations of short-notice, distant-tsunami evacuations, Transp. Res. Interdiscip. 1007 

Perspect., 7, 100211, https://doi.org/10.1016/j.trip.2020.100211, 2020. 1008 

Wu, F., Guo, N., Kumar, P., and Niu, L.: Scenario-based extreme flood risk analysis of 1009 

Xiong’an New Area in northern China, J. Flood Risk Manag., 14, e12707, 1010 

https://doi.org/10.1111/jfr3.12707, 2021. 1011 

Zhu, J., Ma, Z., Yan, Z., Yuan, X., and Fu, C.: Problems Faced by Construction of 1012 

Xiongan New Area under Climate Change, Bull. Chinese Acad. Sci., 32, 1231–1236, 1013 

https://doi.org/10.16418/j.issn.1000-3045.2017.11.00, 2017. 1014 

Zhu, Y., Xie, K., Ozbay, K., and Yang, H.: Hurricane Evacuation Modeling Using 1015 

Behavior Models and Scenario-Driven Agent-based Simulations, Procedia Comput. Sci., 1016 

130, 836–843, https://doi.org/10.1016/j.procs.2018.04.074, 2018. 1017 

Zhuge, C., Bithell, M., Shao, C., Li, X., and Gao, J.: An improvement in MATSim 1018 

computing time for large-scale travel behaviour microsimulation, Transportation (Amst)., 1019 

48, 193–214, https://doi.org/10.1007/s11116-019-10048-0, 2021. 1020 

Zhuo, L. and Han, D.: Agent-based modelling and flood risk management: A 1021 

compendious literature review, J. Hydrol., 591, 125600, 1022 

https://doi.org/10.1016/j.jhydrol.2020.125600, 2020. 1023 

 1024 

https://doi.org/10.5194/hess-2022-362
Preprint. Discussion started: 1 November 2022
c© Author(s) 2022. CC BY 4.0 License.


